Defining parameters
| Level: | \( N \) | \(=\) | \( 1014 = 2 \cdot 3 \cdot 13^{2} \) |
| Weight: | \( k \) | \(=\) | \( 6 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1014.m (of order \(13\) and degree \(12\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 169 \) |
| Character field: | \(\Q(\zeta_{13})\) | ||
| Sturm bound: | \(1092\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(1014, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 10968 | 1824 | 9144 |
| Cusp forms | 10872 | 1824 | 9048 |
| Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(1014, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{6}^{\mathrm{old}}(1014, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(1014, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(169, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(338, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(507, [\chi])\)\(^{\oplus 2}\)