Properties

Label 1014.6.m
Level $1014$
Weight $6$
Character orbit 1014.m
Rep. character $\chi_{1014}(79,\cdot)$
Character field $\Q(\zeta_{13})$
Dimension $1824$
Sturm bound $1092$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1014.m (of order \(13\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 169 \)
Character field: \(\Q(\zeta_{13})\)
Sturm bound: \(1092\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(1014, [\chi])\).

Total New Old
Modular forms 10968 1824 9144
Cusp forms 10872 1824 9048
Eisenstein series 96 0 96

Trace form

\( 1824 q - 8 q^{2} + 18 q^{3} - 2432 q^{4} + 44 q^{5} + 196 q^{7} - 128 q^{8} - 12312 q^{9} + 1024 q^{10} + 752 q^{11} + 288 q^{12} - 4074 q^{13} - 1760 q^{14} - 792 q^{15} - 38912 q^{16} - 444 q^{17} - 648 q^{18}+ \cdots + 60912 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(1014, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{6}^{\mathrm{old}}(1014, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(1014, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(169, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(338, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(507, [\chi])\)\(^{\oplus 2}\)