Properties

Label 1014.6
Level 1014
Weight 6
Dimension 35071
Nonzero newspaces 12
Sturm bound 340704
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 12 \)
Sturm bound: \(340704\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(1014))\).

Total New Old
Modular forms 142872 35071 107801
Cusp forms 141048 35071 105977
Eisenstein series 1824 0 1824

Trace form

\( 35071 q + 4 q^{2} - 9 q^{3} + 16 q^{4} - 66 q^{5} - 36 q^{6} + 2560 q^{7} - 704 q^{8} - 567 q^{9} - 504 q^{10} + 4212 q^{11} + 1008 q^{12} + 6288 q^{13} + 2816 q^{14} - 4158 q^{15} - 3840 q^{16} - 4290 q^{17}+ \cdots - 544068 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(1014))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1014.6.a \(\chi_{1014}(1, \cdot)\) 1014.6.a.a 1 1
1014.6.a.b 1
1014.6.a.c 1
1014.6.a.d 1
1014.6.a.e 1
1014.6.a.f 1
1014.6.a.g 1
1014.6.a.h 2
1014.6.a.i 2
1014.6.a.j 2
1014.6.a.k 2
1014.6.a.l 2
1014.6.a.m 2
1014.6.a.n 3
1014.6.a.o 3
1014.6.a.p 3
1014.6.a.q 3
1014.6.a.r 3
1014.6.a.s 3
1014.6.a.t 4
1014.6.a.u 4
1014.6.a.v 6
1014.6.a.w 6
1014.6.a.x 6
1014.6.a.y 6
1014.6.a.z 6
1014.6.a.ba 6
1014.6.a.bb 6
1014.6.a.bc 6
1014.6.a.bd 9
1014.6.a.be 9
1014.6.a.bf 9
1014.6.a.bg 9
1014.6.b \(\chi_{1014}(337, \cdot)\) n/a 126 1
1014.6.e \(\chi_{1014}(529, \cdot)\) n/a 260 2
1014.6.g \(\chi_{1014}(239, \cdot)\) n/a 516 2
1014.6.i \(\chi_{1014}(361, \cdot)\) n/a 256 2
1014.6.k \(\chi_{1014}(89, \cdot)\) n/a 1024 4
1014.6.m \(\chi_{1014}(79, \cdot)\) n/a 1824 12
1014.6.p \(\chi_{1014}(25, \cdot)\) n/a 1848 12
1014.6.q \(\chi_{1014}(55, \cdot)\) n/a 3600 24
1014.6.r \(\chi_{1014}(5, \cdot)\) n/a 7248 24
1014.6.u \(\chi_{1014}(43, \cdot)\) n/a 3648 24
1014.6.x \(\chi_{1014}(11, \cdot)\) n/a 14592 48

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(1014))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(1014)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(39))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(78))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(169))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(338))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(507))\)\(^{\oplus 2}\)