Defining parameters
| Level: | \( N \) | = | \( 1014 = 2 \cdot 3 \cdot 13^{2} \) |
| Weight: | \( k \) | = | \( 6 \) |
| Nonzero newspaces: | \( 12 \) | ||
| Sturm bound: | \(340704\) | ||
| Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(1014))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 142872 | 35071 | 107801 |
| Cusp forms | 141048 | 35071 | 105977 |
| Eisenstein series | 1824 | 0 | 1824 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(1014))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(1014))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_1(1014)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(39))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(78))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(169))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(338))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(507))\)\(^{\oplus 2}\)