Properties

Label 1011.1.f.b.485.2
Level $1011$
Weight $1$
Character 1011.485
Analytic conductor $0.505$
Analytic rank $0$
Dimension $4$
Projective image $S_{4}$
CM/RM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1011,1,Mod(485,1011)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1011.485"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1011, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 1011 = 3 \cdot 337 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1011.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.504554727772\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(S_{4}\)
Projective field: Galois closure of 4.2.114818259.2

Embedding invariants

Embedding label 485.2
Root \(-0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1011.485
Dual form 1011.1.f.b.863.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{2} +1.00000i q^{3} -1.00000 q^{4} +(-0.707107 + 0.707107i) q^{5} -1.41421 q^{6} -1.00000i q^{7} -1.00000 q^{9} +(-1.00000 - 1.00000i) q^{10} -1.00000i q^{12} -1.00000 q^{13} +1.41421 q^{14} +(-0.707107 - 0.707107i) q^{15} -1.00000 q^{16} +(-0.707107 + 0.707107i) q^{17} -1.41421i q^{18} +(0.707107 - 0.707107i) q^{20} +1.00000 q^{21} -1.41421i q^{26} -1.00000i q^{27} +1.00000i q^{28} +(-0.707107 + 0.707107i) q^{29} +(1.00000 - 1.00000i) q^{30} +(1.00000 + 1.00000i) q^{31} -1.41421i q^{32} +(-1.00000 - 1.00000i) q^{34} +(0.707107 + 0.707107i) q^{35} +1.00000 q^{36} +1.00000 q^{37} -1.00000i q^{39} +1.41421i q^{42} +1.00000i q^{43} +(0.707107 - 0.707107i) q^{45} +1.41421 q^{47} -1.00000i q^{48} +(-0.707107 - 0.707107i) q^{51} +1.00000 q^{52} +(0.707107 + 0.707107i) q^{53} +1.41421 q^{54} +(-1.00000 - 1.00000i) q^{58} +(-0.707107 - 0.707107i) q^{59} +(0.707107 + 0.707107i) q^{60} +(-1.41421 + 1.41421i) q^{62} +1.00000i q^{63} +1.00000 q^{64} +(0.707107 - 0.707107i) q^{65} +(-1.00000 + 1.00000i) q^{67} +(0.707107 - 0.707107i) q^{68} +(-1.00000 + 1.00000i) q^{70} +(0.707107 + 0.707107i) q^{71} +1.41421i q^{74} +1.41421 q^{78} +1.00000 q^{79} +(0.707107 - 0.707107i) q^{80} +1.00000 q^{81} +(-0.707107 + 0.707107i) q^{83} -1.00000 q^{84} -1.00000i q^{85} -1.41421 q^{86} +(-0.707107 - 0.707107i) q^{87} +(0.707107 - 0.707107i) q^{89} +(1.00000 + 1.00000i) q^{90} +1.00000i q^{91} +(-1.00000 + 1.00000i) q^{93} +2.00000i q^{94} +1.41421 q^{96} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} - 4 q^{9} - 4 q^{10} - 4 q^{13} - 4 q^{16} + 4 q^{21} + 4 q^{30} + 4 q^{31} - 4 q^{34} + 4 q^{36} + 4 q^{37} + 4 q^{52} - 4 q^{58} + 4 q^{64} - 4 q^{67} - 4 q^{70} + 4 q^{79} + 4 q^{81} - 4 q^{84}+ \cdots - 4 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1011\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(338\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(3\) 1.00000i 1.00000i
\(4\) −1.00000 −1.00000
\(5\) −0.707107 + 0.707107i −0.707107 + 0.707107i −0.965926 0.258819i \(-0.916667\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(6\) −1.41421 −1.41421
\(7\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(8\) 0 0
\(9\) −1.00000 −1.00000
\(10\) −1.00000 1.00000i −1.00000 1.00000i
\(11\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(12\) 1.00000i 1.00000i
\(13\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(14\) 1.41421 1.41421
\(15\) −0.707107 0.707107i −0.707107 0.707107i
\(16\) −1.00000 −1.00000
\(17\) −0.707107 + 0.707107i −0.707107 + 0.707107i −0.965926 0.258819i \(-0.916667\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(18\) 1.41421i 1.41421i
\(19\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(20\) 0.707107 0.707107i 0.707107 0.707107i
\(21\) 1.00000 1.00000
\(22\) 0 0
\(23\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 1.41421i 1.41421i
\(27\) 1.00000i 1.00000i
\(28\) 1.00000i 1.00000i
\(29\) −0.707107 + 0.707107i −0.707107 + 0.707107i −0.965926 0.258819i \(-0.916667\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(30\) 1.00000 1.00000i 1.00000 1.00000i
\(31\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(32\) 1.41421i 1.41421i
\(33\) 0 0
\(34\) −1.00000 1.00000i −1.00000 1.00000i
\(35\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(36\) 1.00000 1.00000
\(37\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(38\) 0 0
\(39\) 1.00000i 1.00000i
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 1.41421i 1.41421i
\(43\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(44\) 0 0
\(45\) 0.707107 0.707107i 0.707107 0.707107i
\(46\) 0 0
\(47\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(48\) 1.00000i 1.00000i
\(49\) 0 0
\(50\) 0 0
\(51\) −0.707107 0.707107i −0.707107 0.707107i
\(52\) 1.00000 1.00000
\(53\) 0.707107 + 0.707107i 0.707107 + 0.707107i 0.965926 0.258819i \(-0.0833333\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(54\) 1.41421 1.41421
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −1.00000 1.00000i −1.00000 1.00000i
\(59\) −0.707107 0.707107i −0.707107 0.707107i 0.258819 0.965926i \(-0.416667\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(60\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(61\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(62\) −1.41421 + 1.41421i −1.41421 + 1.41421i
\(63\) 1.00000i 1.00000i
\(64\) 1.00000 1.00000
\(65\) 0.707107 0.707107i 0.707107 0.707107i
\(66\) 0 0
\(67\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(68\) 0.707107 0.707107i 0.707107 0.707107i
\(69\) 0 0
\(70\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(71\) 0.707107 + 0.707107i 0.707107 + 0.707107i 0.965926 0.258819i \(-0.0833333\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(72\) 0 0
\(73\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(74\) 1.41421i 1.41421i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 1.41421 1.41421
\(79\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(80\) 0.707107 0.707107i 0.707107 0.707107i
\(81\) 1.00000 1.00000
\(82\) 0 0
\(83\) −0.707107 + 0.707107i −0.707107 + 0.707107i −0.965926 0.258819i \(-0.916667\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(84\) −1.00000 −1.00000
\(85\) 1.00000i 1.00000i
\(86\) −1.41421 −1.41421
\(87\) −0.707107 0.707107i −0.707107 0.707107i
\(88\) 0 0
\(89\) 0.707107 0.707107i 0.707107 0.707107i −0.258819 0.965926i \(-0.583333\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(90\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(91\) 1.00000i 1.00000i
\(92\) 0 0
\(93\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(94\) 2.00000i 2.00000i
\(95\) 0 0
\(96\) 1.41421 1.41421
\(97\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.41421 1.41421i −1.41421 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 0.707107i \(-0.750000\pi\)
\(102\) 1.00000 1.00000i 1.00000 1.00000i
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(106\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 1.00000i 1.00000i
\(109\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(110\) 0 0
\(111\) 1.00000i 1.00000i
\(112\) 1.00000i 1.00000i
\(113\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0.707107 0.707107i 0.707107 0.707107i
\(117\) 1.00000 1.00000
\(118\) 1.00000 1.00000i 1.00000 1.00000i
\(119\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(120\) 0 0
\(121\) 1.00000i 1.00000i
\(122\) 0 0
\(123\) 0 0
\(124\) −1.00000 1.00000i −1.00000 1.00000i
\(125\) −0.707107 0.707107i −0.707107 0.707107i
\(126\) −1.41421 −1.41421
\(127\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) −1.00000 −1.00000
\(130\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(131\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −1.41421 1.41421i −1.41421 1.41421i
\(135\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(136\) 0 0
\(137\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(138\) 0 0
\(139\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(140\) −0.707107 0.707107i −0.707107 0.707107i
\(141\) 1.41421i 1.41421i
\(142\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(143\) 0 0
\(144\) 1.00000 1.00000
\(145\) 1.00000i 1.00000i
\(146\) 0 0
\(147\) 0 0
\(148\) −1.00000 −1.00000
\(149\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(150\) 0 0
\(151\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(152\) 0 0
\(153\) 0.707107 0.707107i 0.707107 0.707107i
\(154\) 0 0
\(155\) −1.41421 −1.41421
\(156\) 1.00000i 1.00000i
\(157\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(158\) 1.41421i 1.41421i
\(159\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(160\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(161\) 0 0
\(162\) 1.41421i 1.41421i
\(163\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −1.00000 1.00000i −1.00000 1.00000i
\(167\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 1.41421 1.41421
\(171\) 0 0
\(172\) 1.00000i 1.00000i
\(173\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(174\) 1.00000 1.00000i 1.00000 1.00000i
\(175\) 0 0
\(176\) 0 0
\(177\) 0.707107 0.707107i 0.707107 0.707107i
\(178\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(179\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(180\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(181\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(182\) −1.41421 −1.41421
\(183\) 0 0
\(184\) 0 0
\(185\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(186\) −1.41421 1.41421i −1.41421 1.41421i
\(187\) 0 0
\(188\) −1.41421 −1.41421
\(189\) −1.00000 −1.00000
\(190\) 0 0
\(191\) 0.707107 0.707107i 0.707107 0.707107i −0.258819 0.965926i \(-0.583333\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(192\) 1.00000i 1.00000i
\(193\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(194\) 0 0
\(195\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(196\) 0 0
\(197\) 1.41421 + 1.41421i 1.41421 + 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(198\) 0 0
\(199\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(200\) 0 0
\(201\) −1.00000 1.00000i −1.00000 1.00000i
\(202\) 2.00000 2.00000i 2.00000 2.00000i
\(203\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(204\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 1.00000 1.00000
\(209\) 0 0
\(210\) −1.00000 1.00000i −1.00000 1.00000i
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) −0.707107 0.707107i −0.707107 0.707107i
\(213\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(214\) 0 0
\(215\) −0.707107 0.707107i −0.707107 0.707107i
\(216\) 0 0
\(217\) 1.00000 1.00000i 1.00000 1.00000i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0.707107 0.707107i 0.707107 0.707107i
\(222\) −1.41421 −1.41421
\(223\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(224\) −1.41421 −1.41421
\(225\) 0 0
\(226\) 2.00000i 2.00000i
\(227\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(228\) 0 0
\(229\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 1.41421i 1.41421i
\(235\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(236\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(237\) 1.00000i 1.00000i
\(238\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(241\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(242\) 1.41421 1.41421
\(243\) 1.00000i 1.00000i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −0.707107 0.707107i −0.707107 0.707107i
\(250\) 1.00000 1.00000i 1.00000 1.00000i
\(251\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(252\) 1.00000i 1.00000i
\(253\) 0 0
\(254\) −1.41421 + 1.41421i −1.41421 + 1.41421i
\(255\) 1.00000 1.00000
\(256\) 1.00000 1.00000
\(257\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(258\) 1.41421i 1.41421i
\(259\) 1.00000i 1.00000i
\(260\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(261\) 0.707107 0.707107i 0.707107 0.707107i
\(262\) 2.00000 2.00000
\(263\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(264\) 0 0
\(265\) −1.00000 −1.00000
\(266\) 0 0
\(267\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(268\) 1.00000 1.00000i 1.00000 1.00000i
\(269\) 0.707107 0.707107i 0.707107 0.707107i −0.258819 0.965926i \(-0.583333\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(270\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(271\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(272\) 0.707107 0.707107i 0.707107 0.707107i
\(273\) −1.00000 −1.00000
\(274\) 2.00000i 2.00000i
\(275\) 0 0
\(276\) 0 0
\(277\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(278\) −1.41421 1.41421i −1.41421 1.41421i
\(279\) −1.00000 1.00000i −1.00000 1.00000i
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) −2.00000 −2.00000
\(283\) 2.00000i 2.00000i 1.00000i \(0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) −0.707107 0.707107i −0.707107 0.707107i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 1.41421i 1.41421i
\(289\) 0 0
\(290\) 1.41421 1.41421
\(291\) 0 0
\(292\) 0 0
\(293\) −1.41421 1.41421i −1.41421 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 0.707107i \(-0.750000\pi\)
\(294\) 0 0
\(295\) 1.00000 1.00000
\(296\) 0 0
\(297\) 0 0
\(298\) 2.00000i 2.00000i
\(299\) 0 0
\(300\) 0 0
\(301\) 1.00000 1.00000
\(302\) 0 0
\(303\) 1.41421 1.41421i 1.41421 1.41421i
\(304\) 0 0
\(305\) 0 0
\(306\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(307\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 2.00000i 2.00000i
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(314\) 0 0
\(315\) −0.707107 0.707107i −0.707107 0.707107i
\(316\) −1.00000 −1.00000
\(317\) 0.707107 0.707107i 0.707107 0.707107i −0.258819 0.965926i \(-0.583333\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(318\) −1.00000 1.00000i −1.00000 1.00000i
\(319\) 0 0
\(320\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −1.00000 −1.00000
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.41421i 1.41421i
\(330\) 0 0
\(331\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(332\) 0.707107 0.707107i 0.707107 0.707107i
\(333\) −1.00000 −1.00000
\(334\) 2.00000i 2.00000i
\(335\) 1.41421i 1.41421i
\(336\) −1.00000 −1.00000
\(337\) 1.00000i 1.00000i
\(338\) 0 0
\(339\) 1.41421i 1.41421i
\(340\) 1.00000i 1.00000i
\(341\) 0 0
\(342\) 0 0
\(343\) 1.00000i 1.00000i
\(344\) 0 0
\(345\) 0 0
\(346\) −2.00000 −2.00000
\(347\) 0.707107 0.707107i 0.707107 0.707107i −0.258819 0.965926i \(-0.583333\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(348\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 1.00000i 1.00000i
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(355\) −1.00000 −1.00000
\(356\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(357\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(358\) 2.00000 2.00000
\(359\) 0.707107 + 0.707107i 0.707107 + 0.707107i 0.965926 0.258819i \(-0.0833333\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(360\) 0 0
\(361\) 1.00000i 1.00000i
\(362\) 1.41421 1.41421
\(363\) 1.00000 1.00000
\(364\) 1.00000i 1.00000i
\(365\) 0 0
\(366\) 0 0
\(367\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(368\) 0 0
\(369\) 0 0
\(370\) −1.00000 1.00000i −1.00000 1.00000i
\(371\) 0.707107 0.707107i 0.707107 0.707107i
\(372\) 1.00000 1.00000i 1.00000 1.00000i
\(373\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(374\) 0 0
\(375\) 0.707107 0.707107i 0.707107 0.707107i
\(376\) 0 0
\(377\) 0.707107 0.707107i 0.707107 0.707107i
\(378\) 1.41421i 1.41421i
\(379\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(380\) 0 0
\(381\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(382\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(383\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 1.41421i 1.41421i
\(387\) 1.00000i 1.00000i
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(391\) 0 0
\(392\) 0 0
\(393\) 1.41421 1.41421
\(394\) −2.00000 + 2.00000i −2.00000 + 2.00000i
\(395\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(396\) 0 0
\(397\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 1.41421 1.41421i 1.41421 1.41421i
\(403\) −1.00000 1.00000i −1.00000 1.00000i
\(404\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(405\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(406\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 1.41421i 1.41421i
\(412\) 0 0
\(413\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(414\) 0 0
\(415\) 1.00000i 1.00000i
\(416\) 1.41421i 1.41421i
\(417\) −1.00000 1.00000i −1.00000 1.00000i
\(418\) 0 0
\(419\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(420\) 0.707107 0.707107i 0.707107 0.707107i
\(421\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(422\) 0 0
\(423\) −1.41421 −1.41421
\(424\) 0 0
\(425\) 0 0
\(426\) −1.00000 1.00000i −1.00000 1.00000i
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 1.00000 1.00000i 1.00000 1.00000i
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 1.00000i 1.00000i
\(433\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(434\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(435\) 1.00000 1.00000
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(440\) 0 0
\(441\) 0 0
\(442\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(443\) 0.707107 + 0.707107i 0.707107 + 0.707107i 0.965926 0.258819i \(-0.0833333\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(444\) 1.00000i 1.00000i
\(445\) 1.00000i 1.00000i
\(446\) 0 0
\(447\) 1.41421i 1.41421i
\(448\) 1.00000i 1.00000i
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 1.41421 1.41421
\(453\) 0 0
\(454\) −2.00000 −2.00000
\(455\) −0.707107 0.707107i −0.707107 0.707107i
\(456\) 0 0
\(457\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(458\) −1.41421 −1.41421
\(459\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(460\) 0 0
\(461\) −0.707107 + 0.707107i −0.707107 + 0.707107i −0.965926 0.258819i \(-0.916667\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0.707107 0.707107i 0.707107 0.707107i
\(465\) 1.41421i 1.41421i
\(466\) 0 0
\(467\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(468\) −1.00000 −1.00000
\(469\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(470\) −1.41421 1.41421i −1.41421 1.41421i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) −1.41421 −1.41421
\(475\) 0 0
\(476\) −0.707107 0.707107i −0.707107 0.707107i
\(477\) −0.707107 0.707107i −0.707107 0.707107i
\(478\) 0 0
\(479\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(480\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(481\) −1.00000 −1.00000
\(482\) 1.41421 1.41421
\(483\) 0 0
\(484\) 1.00000i 1.00000i
\(485\) 0 0
\(486\) −1.41421 −1.41421
\(487\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0.707107 0.707107i 0.707107 0.707107i −0.258819 0.965926i \(-0.583333\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(492\) 0 0
\(493\) 1.00000i 1.00000i
\(494\) 0 0
\(495\) 0 0
\(496\) −1.00000 1.00000i −1.00000 1.00000i
\(497\) 0.707107 0.707107i 0.707107 0.707107i
\(498\) 1.00000 1.00000i 1.00000 1.00000i
\(499\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(500\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(501\) 1.41421i 1.41421i
\(502\) 2.00000i 2.00000i
\(503\) −0.707107 + 0.707107i −0.707107 + 0.707107i −0.965926 0.258819i \(-0.916667\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(504\) 0 0
\(505\) 2.00000 2.00000
\(506\) 0 0
\(507\) 0 0
\(508\) −1.00000 1.00000i −1.00000 1.00000i
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 1.41421i 1.41421i
\(511\) 0 0
\(512\) 1.41421i 1.41421i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 1.00000 1.00000
\(517\) 0 0
\(518\) 1.41421 1.41421
\(519\) −1.41421 −1.41421
\(520\) 0 0
\(521\) −0.707107 + 0.707107i −0.707107 + 0.707107i −0.965926 0.258819i \(-0.916667\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(522\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(523\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(524\) 1.41421i 1.41421i
\(525\) 0 0
\(526\) −2.00000 −2.00000
\(527\) −1.41421 −1.41421
\(528\) 0 0
\(529\) 1.00000i 1.00000i
\(530\) 1.41421i 1.41421i
\(531\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(532\) 0 0
\(533\) 0 0
\(534\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(535\) 0 0
\(536\) 0 0
\(537\) 1.41421 1.41421
\(538\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(539\) 0 0
\(540\) −0.707107 0.707107i −0.707107 0.707107i
\(541\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(542\) −1.41421 + 1.41421i −1.41421 + 1.41421i
\(543\) 1.00000 1.00000
\(544\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(545\) 0 0
\(546\) 1.41421i 1.41421i
\(547\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(548\) −1.41421 −1.41421
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 1.00000i 1.00000i
\(554\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(555\) −0.707107 0.707107i −0.707107 0.707107i
\(556\) 1.00000 1.00000i 1.00000 1.00000i
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 1.41421 1.41421i 1.41421 1.41421i
\(559\) 1.00000i 1.00000i
\(560\) −0.707107 0.707107i −0.707107 0.707107i
\(561\) 0 0
\(562\) 0 0
\(563\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(564\) 1.41421i 1.41421i
\(565\) 1.00000 1.00000i 1.00000 1.00000i
\(566\) −2.82843 −2.82843
\(567\) 1.00000i 1.00000i
\(568\) 0 0
\(569\) −1.41421 + 1.41421i −1.41421 + 1.41421i −0.707107 + 0.707107i \(0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(570\) 0 0
\(571\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(572\) 0 0
\(573\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(574\) 0 0
\(575\) 0 0
\(576\) −1.00000 −1.00000
\(577\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(578\) 0 0
\(579\) 1.00000i 1.00000i
\(580\) 1.00000i 1.00000i
\(581\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(586\) 2.00000 2.00000i 2.00000 2.00000i
\(587\) −0.707107 0.707107i −0.707107 0.707107i 0.258819 0.965926i \(-0.416667\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 1.41421i 1.41421i
\(591\) −1.41421 + 1.41421i −1.41421 + 1.41421i
\(592\) −1.00000 −1.00000
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) −1.00000 −1.00000
\(596\) −1.41421 −1.41421
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(602\) 1.41421i 1.41421i
\(603\) 1.00000 1.00000i 1.00000 1.00000i
\(604\) 0 0
\(605\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(606\) 2.00000 + 2.00000i 2.00000 + 2.00000i
\(607\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(608\) 0 0
\(609\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(610\) 0 0
\(611\) −1.41421 −1.41421
\(612\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(613\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(614\) −1.41421 1.41421i −1.41421 1.41421i
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(618\) 0 0
\(619\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(620\) 1.41421 1.41421
\(621\) 0 0
\(622\) 0 0
\(623\) −0.707107 0.707107i −0.707107 0.707107i
\(624\) 1.00000i 1.00000i
\(625\) 1.00000 1.00000
\(626\) 1.41421 1.41421
\(627\) 0 0
\(628\) 0 0
\(629\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(630\) 1.00000 1.00000i 1.00000 1.00000i
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(635\) −1.41421 −1.41421
\(636\) 0.707107 0.707107i 0.707107 0.707107i
\(637\) 0 0
\(638\) 0 0
\(639\) −0.707107 0.707107i −0.707107 0.707107i
\(640\) 0 0
\(641\) 0.707107 0.707107i 0.707107 0.707107i −0.258819 0.965926i \(-0.583333\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(642\) 0 0
\(643\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0.707107 0.707107i 0.707107 0.707107i
\(646\) 0 0
\(647\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(652\) 0 0
\(653\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(654\) 0 0
\(655\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(656\) 0 0
\(657\) 0 0
\(658\) 2.00000 2.00000
\(659\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(660\) 0 0
\(661\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(662\) 1.41421 1.41421
\(663\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(664\) 0 0
\(665\) 0 0
\(666\) 1.41421i 1.41421i
\(667\) 0 0
\(668\) 1.41421 1.41421
\(669\) 0 0
\(670\) 2.00000 2.00000
\(671\) 0 0
\(672\) 1.41421i 1.41421i
\(673\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(674\) 1.41421 1.41421
\(675\) 0 0
\(676\) 0 0
\(677\) −1.41421 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(678\) 2.00000 2.00000
\(679\) 0 0
\(680\) 0 0
\(681\) −1.41421 −1.41421
\(682\) 0 0
\(683\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(684\) 0 0
\(685\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(686\) 1.41421 1.41421
\(687\) −1.00000 −1.00000
\(688\) 1.00000i 1.00000i
\(689\) −0.707107 0.707107i −0.707107 0.707107i
\(690\) 0 0
\(691\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(692\) 1.41421i 1.41421i
\(693\) 0 0
\(694\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(695\) 1.41421i 1.41421i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) −1.41421 −1.41421
\(703\) 0 0
\(704\) 0 0
\(705\) −1.00000 1.00000i −1.00000 1.00000i
\(706\) 0 0
\(707\) −1.41421 + 1.41421i −1.41421 + 1.41421i
\(708\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(709\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(710\) 1.41421i 1.41421i
\(711\) −1.00000 −1.00000
\(712\) 0 0
\(713\) 0 0
\(714\) −1.00000 1.00000i −1.00000 1.00000i
\(715\) 0 0
\(716\) 1.41421i 1.41421i
\(717\) 0 0
\(718\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(719\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(720\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(721\) 0 0
\(722\) 1.41421 1.41421
\(723\) 1.00000 1.00000
\(724\) 1.00000i 1.00000i
\(725\) 0 0
\(726\) 1.41421i 1.41421i
\(727\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(728\) 0 0
\(729\) −1.00000 −1.00000
\(730\) 0 0
\(731\) −0.707107 0.707107i −0.707107 0.707107i
\(732\) 0 0
\(733\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(734\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(740\) 0.707107 0.707107i 0.707107 0.707107i
\(741\) 0 0
\(742\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(743\) 0.707107 + 0.707107i 0.707107 + 0.707107i 0.965926 0.258819i \(-0.0833333\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(744\) 0 0
\(745\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(746\) 1.41421i 1.41421i
\(747\) 0.707107 0.707107i 0.707107 0.707107i
\(748\) 0 0
\(749\) 0 0
\(750\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(751\) −1.00000 1.00000i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(752\) −1.41421 −1.41421
\(753\) 1.41421i 1.41421i
\(754\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(755\) 0 0
\(756\) 1.00000 1.00000
\(757\) 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 \(0\)
1.00000i \(0.5\pi\)
\(758\) 1.41421i 1.41421i
\(759\) 0 0
\(760\) 0 0
\(761\) 0.707107 + 0.707107i 0.707107 + 0.707107i 0.965926 0.258819i \(-0.0833333\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(762\) −1.41421 1.41421i −1.41421 1.41421i
\(763\) 0 0
\(764\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(765\) 1.00000i 1.00000i
\(766\) 0 0
\(767\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(768\) 1.00000i 1.00000i
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1.00000 1.00000
\(773\) 0.707107 + 0.707107i 0.707107 + 0.707107i 0.965926 0.258819i \(-0.0833333\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(774\) 1.41421 1.41421
\(775\) 0 0
\(776\) 0 0
\(777\) 1.00000 1.00000
\(778\) 0 0
\(779\) 0 0
\(780\) −0.707107 0.707107i −0.707107 0.707107i
\(781\) 0 0
\(782\) 0 0
\(783\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(784\) 0 0
\(785\) 0 0
\(786\) 2.00000i 2.00000i
\(787\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(788\) −1.41421 1.41421i −1.41421 1.41421i
\(789\) −1.41421 −1.41421
\(790\) −1.00000 1.00000i −1.00000 1.00000i
\(791\) 1.41421i 1.41421i
\(792\) 0 0
\(793\) 0 0
\(794\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(795\) 1.00000i 1.00000i
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(800\) 0 0
\(801\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(802\) 0 0
\(803\) 0 0
\(804\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(805\) 0 0
\(806\) 1.41421 1.41421i 1.41421 1.41421i
\(807\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(808\) 0 0
\(809\) −0.707107 0.707107i −0.707107 0.707107i 0.258819 0.965926i \(-0.416667\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(810\) −1.00000 1.00000i −1.00000 1.00000i
\(811\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(812\) −0.707107 0.707107i −0.707107 0.707107i
\(813\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(814\) 0 0
\(815\) 0 0
\(816\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(817\) 0 0
\(818\) 0 0
\(819\) 1.00000i 1.00000i
\(820\) 0 0
\(821\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(822\) −2.00000 −2.00000
\(823\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) −1.00000 1.00000i −1.00000 1.00000i
\(827\) 0.707107 0.707107i 0.707107 0.707107i −0.258819 0.965926i \(-0.583333\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(828\) 0 0
\(829\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(830\) 1.41421 1.41421
\(831\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(832\) −1.00000 −1.00000
\(833\) 0 0
\(834\) 1.41421 1.41421i 1.41421 1.41421i
\(835\) 1.00000 1.00000i 1.00000 1.00000i
\(836\) 0 0
\(837\) 1.00000 1.00000i 1.00000 1.00000i
\(838\) −2.00000 −2.00000
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 0 0
\(842\) 1.41421i 1.41421i
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 2.00000i 2.00000i
\(847\) −1.00000 −1.00000
\(848\) −0.707107 0.707107i −0.707107 0.707107i
\(849\) −2.00000 −2.00000
\(850\) 0 0
\(851\) 0 0
\(852\) 0.707107 0.707107i 0.707107 0.707107i
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −0.707107 + 0.707107i −0.707107 + 0.707107i −0.965926 0.258819i \(-0.916667\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(858\) 0 0
\(859\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(860\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(861\) 0 0
\(862\) 0 0
\(863\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(864\) −1.41421 −1.41421
\(865\) −1.00000 1.00000i −1.00000 1.00000i
\(866\) 1.41421 1.41421
\(867\) 0 0
\(868\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(869\) 0 0
\(870\) 1.41421i 1.41421i
\(871\) 1.00000 1.00000i 1.00000 1.00000i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(876\) 0 0
\(877\) 1.00000 1.00000i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(878\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(879\) 1.41421 1.41421i 1.41421 1.41421i
\(880\) 0 0
\(881\) 0.707107 0.707107i 0.707107 0.707107i −0.258819 0.965926i \(-0.583333\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(882\) 0 0
\(883\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(884\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(885\) 1.00000i 1.00000i
\(886\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(887\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(888\) 0 0
\(889\) 1.00000 1.00000i 1.00000 1.00000i
\(890\) −1.41421 −1.41421
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) −2.00000 −2.00000
\(895\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −1.41421 −1.41421
\(900\) 0 0
\(901\) −1.00000 −1.00000
\(902\) 0 0
\(903\) 1.00000i 1.00000i
\(904\) 0 0
\(905\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(906\) 0 0
\(907\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(908\) 1.41421i 1.41421i
\(909\) 1.41421 + 1.41421i 1.41421 + 1.41421i
\(910\) 1.00000 1.00000i 1.00000 1.00000i
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −1.41421 1.41421i −1.41421 1.41421i
\(915\) 0 0
\(916\) 1.00000i 1.00000i
\(917\) −1.41421 −1.41421
\(918\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(919\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(920\) 0 0
\(921\) −1.00000 1.00000i −1.00000 1.00000i
\(922\) −1.00000 1.00000i −1.00000 1.00000i
\(923\) −0.707107 0.707107i −0.707107 0.707107i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(929\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(930\) 2.00000 2.00000
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(938\) −1.41421 + 1.41421i −1.41421 + 1.41421i
\(939\) 1.00000 1.00000
\(940\) 1.00000 1.00000i 1.00000 1.00000i
\(941\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(945\) 0.707107 0.707107i 0.707107 0.707107i
\(946\) 0 0
\(947\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(948\) 1.00000i 1.00000i
\(949\) 0 0
\(950\) 0 0
\(951\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(952\) 0 0
\(953\) 0.707107 0.707107i 0.707107 0.707107i −0.258819 0.965926i \(-0.583333\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(954\) 1.00000 1.00000i 1.00000 1.00000i
\(955\) 1.00000i 1.00000i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1.41421i 1.41421i
\(960\) −0.707107 0.707107i −0.707107 0.707107i
\(961\) 1.00000i 1.00000i
\(962\) 1.41421i 1.41421i
\(963\) 0 0
\(964\) 1.00000i 1.00000i
\(965\) 0.707107 0.707107i 0.707107 0.707107i
\(966\) 0 0
\(967\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −0.707107 + 0.707107i −0.707107 + 0.707107i −0.965926 0.258819i \(-0.916667\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(972\) 1.00000i 1.00000i
\(973\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(974\) 1.41421i 1.41421i
\(975\) 0 0
\(976\) 0 0
\(977\) −0.707107 + 0.707107i −0.707107 + 0.707107i −0.965926 0.258819i \(-0.916667\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) −2.00000 −2.00000
\(986\) 1.41421 1.41421
\(987\) 1.41421 1.41421
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(992\) 1.41421 1.41421i 1.41421 1.41421i
\(993\) 1.00000 1.00000
\(994\) 1.00000 + 1.00000i 1.00000 + 1.00000i
\(995\) 0 0
\(996\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(997\) 1.00000i 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(998\) 1.41421i 1.41421i
\(999\) 1.00000i 1.00000i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1011.1.f.b.485.2 yes 4
3.2 odd 2 inner 1011.1.f.b.485.1 4
337.189 even 4 inner 1011.1.f.b.863.2 yes 4
1011.863 odd 4 inner 1011.1.f.b.863.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1011.1.f.b.485.1 4 3.2 odd 2 inner
1011.1.f.b.485.2 yes 4 1.1 even 1 trivial
1011.1.f.b.863.1 yes 4 1011.863 odd 4 inner
1011.1.f.b.863.2 yes 4 337.189 even 4 inner