Properties

Label 1008.3.m.e.127.2
Level $1008$
Weight $3$
Character 1008.127
Analytic conductor $27.466$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,3,Mod(127,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.127"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1008.m (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(27.4660106475\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-7})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - x^{2} - 2x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 336)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 127.2
Root \(-0.895644 + 1.09445i\) of defining polynomial
Character \(\chi\) \(=\) 1008.127
Dual form 1008.3.m.e.127.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{5} -2.64575i q^{7} +17.5112i q^{11} +20.3303 q^{13} -32.3303 q^{17} +28.0942i q^{19} -10.2016i q^{23} -21.0000 q^{25} -22.6606 q^{29} -27.7128i q^{31} -5.29150i q^{35} +62.6606 q^{37} +28.3303 q^{41} +48.8788i q^{43} +91.2108i q^{47} -7.00000 q^{49} -46.6606 q^{53} +35.0224i q^{55} +41.9506i q^{59} +12.3303 q^{61} +40.6606 q^{65} -55.4256i q^{67} +53.2964i q^{71} +21.3394 q^{73} +46.3303 q^{77} +96.9948i q^{79} +63.8794i q^{83} -64.6606 q^{85} +16.9909 q^{89} -53.7889i q^{91} +56.1884i q^{95} -95.3212 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{5} + 8 q^{13} - 56 q^{17} - 84 q^{25} + 56 q^{29} + 104 q^{37} + 40 q^{41} - 28 q^{49} - 40 q^{53} - 24 q^{61} + 16 q^{65} + 232 q^{73} + 112 q^{77} - 112 q^{85} - 152 q^{89} - 88 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.00000 0.400000 0.200000 0.979796i \(-0.435906\pi\)
0.200000 + 0.979796i \(0.435906\pi\)
\(6\) 0 0
\(7\) − 2.64575i − 0.377964i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 17.5112i 1.59193i 0.605344 + 0.795964i \(0.293036\pi\)
−0.605344 + 0.795964i \(0.706964\pi\)
\(12\) 0 0
\(13\) 20.3303 1.56387 0.781935 0.623360i \(-0.214233\pi\)
0.781935 + 0.623360i \(0.214233\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −32.3303 −1.90178 −0.950891 0.309525i \(-0.899830\pi\)
−0.950891 + 0.309525i \(0.899830\pi\)
\(18\) 0 0
\(19\) 28.0942i 1.47864i 0.673353 + 0.739321i \(0.264854\pi\)
−0.673353 + 0.739321i \(0.735146\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 10.2016i − 0.443548i −0.975098 0.221774i \(-0.928815\pi\)
0.975098 0.221774i \(-0.0711847\pi\)
\(24\) 0 0
\(25\) −21.0000 −0.840000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −22.6606 −0.781400 −0.390700 0.920518i \(-0.627767\pi\)
−0.390700 + 0.920518i \(0.627767\pi\)
\(30\) 0 0
\(31\) − 27.7128i − 0.893962i −0.894544 0.446981i \(-0.852499\pi\)
0.894544 0.446981i \(-0.147501\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 5.29150i − 0.151186i
\(36\) 0 0
\(37\) 62.6606 1.69353 0.846765 0.531967i \(-0.178547\pi\)
0.846765 + 0.531967i \(0.178547\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 28.3303 0.690983 0.345491 0.938422i \(-0.387712\pi\)
0.345491 + 0.938422i \(0.387712\pi\)
\(42\) 0 0
\(43\) 48.8788i 1.13672i 0.822781 + 0.568358i \(0.192421\pi\)
−0.822781 + 0.568358i \(0.807579\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 91.2108i 1.94066i 0.241792 + 0.970328i \(0.422265\pi\)
−0.241792 + 0.970328i \(0.577735\pi\)
\(48\) 0 0
\(49\) −7.00000 −0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −46.6606 −0.880389 −0.440194 0.897902i \(-0.645090\pi\)
−0.440194 + 0.897902i \(0.645090\pi\)
\(54\) 0 0
\(55\) 35.0224i 0.636771i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 41.9506i 0.711027i 0.934671 + 0.355514i \(0.115694\pi\)
−0.934671 + 0.355514i \(0.884306\pi\)
\(60\) 0 0
\(61\) 12.3303 0.202136 0.101068 0.994880i \(-0.467774\pi\)
0.101068 + 0.994880i \(0.467774\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 40.6606 0.625548
\(66\) 0 0
\(67\) − 55.4256i − 0.827248i −0.910448 0.413624i \(-0.864263\pi\)
0.910448 0.413624i \(-0.135737\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 53.2964i 0.750654i 0.926892 + 0.375327i \(0.122470\pi\)
−0.926892 + 0.375327i \(0.877530\pi\)
\(72\) 0 0
\(73\) 21.3394 0.292320 0.146160 0.989261i \(-0.453308\pi\)
0.146160 + 0.989261i \(0.453308\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 46.3303 0.601692
\(78\) 0 0
\(79\) 96.9948i 1.22778i 0.789390 + 0.613891i \(0.210397\pi\)
−0.789390 + 0.613891i \(0.789603\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 63.8794i 0.769632i 0.922993 + 0.384816i \(0.125735\pi\)
−0.922993 + 0.384816i \(0.874265\pi\)
\(84\) 0 0
\(85\) −64.6606 −0.760713
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 16.9909 0.190909 0.0954545 0.995434i \(-0.469570\pi\)
0.0954545 + 0.995434i \(0.469570\pi\)
\(90\) 0 0
\(91\) − 53.7889i − 0.591087i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 56.1884i 0.591457i
\(96\) 0 0
\(97\) −95.3212 −0.982693 −0.491346 0.870964i \(-0.663495\pi\)
−0.491346 + 0.870964i \(0.663495\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.33939 −0.0132613 −0.00663067 0.999978i \(-0.502111\pi\)
−0.00663067 + 0.999978i \(0.502111\pi\)
\(102\) 0 0
\(103\) 29.2384i 0.283868i 0.989876 + 0.141934i \(0.0453321\pi\)
−0.989876 + 0.141934i \(0.954668\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 92.5772i − 0.865208i −0.901584 0.432604i \(-0.857595\pi\)
0.901584 0.432604i \(-0.142405\pi\)
\(108\) 0 0
\(109\) −106.661 −0.978538 −0.489269 0.872133i \(-0.662736\pi\)
−0.489269 + 0.872133i \(0.662736\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 135.321 1.19753 0.598766 0.800924i \(-0.295658\pi\)
0.598766 + 0.800924i \(0.295658\pi\)
\(114\) 0 0
\(115\) − 20.4032i − 0.177419i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 85.5379i 0.718806i
\(120\) 0 0
\(121\) −185.642 −1.53423
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −92.0000 −0.736000
\(126\) 0 0
\(127\) 84.6640i 0.666646i 0.942813 + 0.333323i \(0.108170\pi\)
−0.942813 + 0.333323i \(0.891830\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 75.4474i 0.575935i 0.957640 + 0.287967i \(0.0929794\pi\)
−0.957640 + 0.287967i \(0.907021\pi\)
\(132\) 0 0
\(133\) 74.3303 0.558874
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 173.303 1.26499 0.632493 0.774566i \(-0.282032\pi\)
0.632493 + 0.774566i \(0.282032\pi\)
\(138\) 0 0
\(139\) 230.156i 1.65580i 0.560875 + 0.827900i \(0.310465\pi\)
−0.560875 + 0.827900i \(0.689535\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 356.008i 2.48957i
\(144\) 0 0
\(145\) −45.3212 −0.312560
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −87.9818 −0.590482 −0.295241 0.955423i \(-0.595400\pi\)
−0.295241 + 0.955423i \(0.595400\pi\)
\(150\) 0 0
\(151\) − 20.4032i − 0.135121i −0.997715 0.0675603i \(-0.978478\pi\)
0.997715 0.0675603i \(-0.0215215\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 55.4256i − 0.357585i
\(156\) 0 0
\(157\) 170.312 1.08479 0.542395 0.840123i \(-0.317518\pi\)
0.542395 + 0.840123i \(0.317518\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −26.9909 −0.167645
\(162\) 0 0
\(163\) 250.178i 1.53484i 0.641148 + 0.767418i \(0.278459\pi\)
−0.641148 + 0.767418i \(0.721541\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 228.249i − 1.36676i −0.730062 0.683381i \(-0.760509\pi\)
0.730062 0.683381i \(-0.239491\pi\)
\(168\) 0 0
\(169\) 244.321 1.44569
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 39.3576 0.227500 0.113750 0.993509i \(-0.463714\pi\)
0.113750 + 0.993509i \(0.463714\pi\)
\(174\) 0 0
\(175\) 55.5608i 0.317490i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 64.8644i 0.362371i 0.983449 + 0.181186i \(0.0579935\pi\)
−0.983449 + 0.181186i \(0.942007\pi\)
\(180\) 0 0
\(181\) 13.6515 0.0754227 0.0377114 0.999289i \(-0.487993\pi\)
0.0377114 + 0.999289i \(0.487993\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 125.321 0.677412
\(186\) 0 0
\(187\) − 566.143i − 3.02750i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 238.451i − 1.24843i −0.781251 0.624217i \(-0.785418\pi\)
0.781251 0.624217i \(-0.214582\pi\)
\(192\) 0 0
\(193\) 68.6424 0.355660 0.177830 0.984061i \(-0.443092\pi\)
0.177830 + 0.984061i \(0.443092\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 211.982 1.07605 0.538025 0.842929i \(-0.319171\pi\)
0.538025 + 0.842929i \(0.319171\pi\)
\(198\) 0 0
\(199\) − 157.442i − 0.791164i −0.918431 0.395582i \(-0.870543\pi\)
0.918431 0.395582i \(-0.129457\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 59.9543i 0.295342i
\(204\) 0 0
\(205\) 56.6606 0.276393
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −491.964 −2.35389
\(210\) 0 0
\(211\) − 205.876i − 0.975716i −0.872923 0.487858i \(-0.837778\pi\)
0.872923 0.487858i \(-0.162222\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 97.7576i 0.454687i
\(216\) 0 0
\(217\) −73.3212 −0.337886
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −657.285 −2.97414
\(222\) 0 0
\(223\) − 164.307i − 0.736802i −0.929667 0.368401i \(-0.879905\pi\)
0.929667 0.368401i \(-0.120095\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 282.086i − 1.24267i −0.783545 0.621336i \(-0.786590\pi\)
0.783545 0.621336i \(-0.213410\pi\)
\(228\) 0 0
\(229\) 93.6515 0.408959 0.204479 0.978871i \(-0.434450\pi\)
0.204479 + 0.978871i \(0.434450\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 225.339 0.967122 0.483561 0.875311i \(-0.339343\pi\)
0.483561 + 0.875311i \(0.339343\pi\)
\(234\) 0 0
\(235\) 182.422i 0.776263i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 81.7720i − 0.342142i −0.985259 0.171071i \(-0.945277\pi\)
0.985259 0.171071i \(-0.0547228\pi\)
\(240\) 0 0
\(241\) −326.000 −1.35270 −0.676349 0.736582i \(-0.736439\pi\)
−0.676349 + 0.736582i \(0.736439\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −14.0000 −0.0571429
\(246\) 0 0
\(247\) 571.164i 2.31240i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 255.136i − 1.01648i −0.861216 0.508240i \(-0.830296\pi\)
0.861216 0.508240i \(-0.169704\pi\)
\(252\) 0 0
\(253\) 178.642 0.706097
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −129.652 −0.504481 −0.252240 0.967665i \(-0.581167\pi\)
−0.252240 + 0.967665i \(0.581167\pi\)
\(258\) 0 0
\(259\) − 165.784i − 0.640094i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 394.685i 1.50070i 0.661038 + 0.750352i \(0.270116\pi\)
−0.661038 + 0.750352i \(0.729884\pi\)
\(264\) 0 0
\(265\) −93.3212 −0.352156
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −27.9818 −0.104022 −0.0520108 0.998647i \(-0.516563\pi\)
−0.0520108 + 0.998647i \(0.516563\pi\)
\(270\) 0 0
\(271\) − 26.9500i − 0.0994465i −0.998763 0.0497233i \(-0.984166\pi\)
0.998763 0.0497233i \(-0.0158339\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 367.735i − 1.33722i
\(276\) 0 0
\(277\) 48.6788 0.175736 0.0878678 0.996132i \(-0.471995\pi\)
0.0878678 + 0.996132i \(0.471995\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −113.303 −0.403214 −0.201607 0.979467i \(-0.564616\pi\)
−0.201607 + 0.979467i \(0.564616\pi\)
\(282\) 0 0
\(283\) − 238.992i − 0.844493i −0.906481 0.422246i \(-0.861242\pi\)
0.906481 0.422246i \(-0.138758\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 74.9549i − 0.261167i
\(288\) 0 0
\(289\) 756.248 2.61678
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −5.37576 −0.0183473 −0.00917365 0.999958i \(-0.502920\pi\)
−0.00917365 + 0.999958i \(0.502920\pi\)
\(294\) 0 0
\(295\) 83.9012i 0.284411i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 207.402i − 0.693651i
\(300\) 0 0
\(301\) 129.321 0.429639
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 24.6606 0.0808544
\(306\) 0 0
\(307\) − 12.7122i − 0.0414078i −0.999786 0.0207039i \(-0.993409\pi\)
0.999786 0.0207039i \(-0.00659073\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 172.061i 0.553250i 0.960978 + 0.276625i \(0.0892161\pi\)
−0.960978 + 0.276625i \(0.910784\pi\)
\(312\) 0 0
\(313\) 6.66061 0.0212799 0.0106399 0.999943i \(-0.496613\pi\)
0.0106399 + 0.999943i \(0.496613\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 598.624 1.88840 0.944202 0.329366i \(-0.106835\pi\)
0.944202 + 0.329366i \(0.106835\pi\)
\(318\) 0 0
\(319\) − 396.815i − 1.24393i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 908.294i − 2.81206i
\(324\) 0 0
\(325\) −426.936 −1.31365
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 241.321 0.733499
\(330\) 0 0
\(331\) − 446.012i − 1.34747i −0.738974 0.673734i \(-0.764689\pi\)
0.738974 0.673734i \(-0.235311\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 110.851i − 0.330899i
\(336\) 0 0
\(337\) 6.03637 0.0179121 0.00895603 0.999960i \(-0.497149\pi\)
0.00895603 + 0.999960i \(0.497149\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 485.285 1.42312
\(342\) 0 0
\(343\) 18.5203i 0.0539949i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 439.306i − 1.26601i −0.774147 0.633005i \(-0.781821\pi\)
0.774147 0.633005i \(-0.218179\pi\)
\(348\) 0 0
\(349\) −223.009 −0.638995 −0.319497 0.947587i \(-0.603514\pi\)
−0.319497 + 0.947587i \(0.603514\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −624.955 −1.77041 −0.885205 0.465202i \(-0.845982\pi\)
−0.885205 + 0.465202i \(0.845982\pi\)
\(354\) 0 0
\(355\) 106.593i 0.300262i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 112.218i − 0.312584i −0.987711 0.156292i \(-0.950046\pi\)
0.987711 0.156292i \(-0.0499541\pi\)
\(360\) 0 0
\(361\) −428.285 −1.18638
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 42.6788 0.116928
\(366\) 0 0
\(367\) − 288.252i − 0.785427i −0.919661 0.392714i \(-0.871536\pi\)
0.919661 0.392714i \(-0.128464\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 123.452i 0.332756i
\(372\) 0 0
\(373\) −391.248 −1.04892 −0.524462 0.851434i \(-0.675733\pi\)
−0.524462 + 0.851434i \(0.675733\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −460.697 −1.22201
\(378\) 0 0
\(379\) 412.197i 1.08759i 0.839218 + 0.543795i \(0.183013\pi\)
−0.839218 + 0.543795i \(0.816987\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 56.1884i 0.146706i 0.997306 + 0.0733530i \(0.0233700\pi\)
−0.997306 + 0.0733530i \(0.976630\pi\)
\(384\) 0 0
\(385\) 92.6606 0.240677
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 401.267 1.03153 0.515767 0.856729i \(-0.327507\pi\)
0.515767 + 0.856729i \(0.327507\pi\)
\(390\) 0 0
\(391\) 329.821i 0.843532i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 193.990i 0.491113i
\(396\) 0 0
\(397\) −278.936 −0.702610 −0.351305 0.936261i \(-0.614262\pi\)
−0.351305 + 0.936261i \(0.614262\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 467.982 1.16704 0.583518 0.812100i \(-0.301676\pi\)
0.583518 + 0.812100i \(0.301676\pi\)
\(402\) 0 0
\(403\) − 563.410i − 1.39804i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1097.26i 2.69598i
\(408\) 0 0
\(409\) 69.9636 0.171060 0.0855301 0.996336i \(-0.472742\pi\)
0.0855301 + 0.996336i \(0.472742\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 110.991 0.268743
\(414\) 0 0
\(415\) 127.759i 0.307853i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 111.233i 0.265472i 0.991151 + 0.132736i \(0.0423762\pi\)
−0.991151 + 0.132736i \(0.957624\pi\)
\(420\) 0 0
\(421\) −436.606 −1.03707 −0.518535 0.855057i \(-0.673522\pi\)
−0.518535 + 0.855057i \(0.673522\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 678.936 1.59750
\(426\) 0 0
\(427\) − 32.6229i − 0.0764003i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 664.060i − 1.54074i −0.637596 0.770371i \(-0.720071\pi\)
0.637596 0.770371i \(-0.279929\pi\)
\(432\) 0 0
\(433\) −116.055 −0.268024 −0.134012 0.990980i \(-0.542786\pi\)
−0.134012 + 0.990980i \(0.542786\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 286.606 0.655849
\(438\) 0 0
\(439\) 363.762i 0.828615i 0.910137 + 0.414308i \(0.135976\pi\)
−0.910137 + 0.414308i \(0.864024\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 723.299i − 1.63273i −0.577537 0.816365i \(-0.695986\pi\)
0.577537 0.816365i \(-0.304014\pi\)
\(444\) 0 0
\(445\) 33.9818 0.0763636
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 264.715 0.589566 0.294783 0.955564i \(-0.404753\pi\)
0.294783 + 0.955564i \(0.404753\pi\)
\(450\) 0 0
\(451\) 496.098i 1.10000i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) − 107.578i − 0.236435i
\(456\) 0 0
\(457\) −277.927 −0.608156 −0.304078 0.952647i \(-0.598348\pi\)
−0.304078 + 0.952647i \(0.598348\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −758.000 −1.64425 −0.822126 0.569306i \(-0.807212\pi\)
−0.822126 + 0.569306i \(0.807212\pi\)
\(462\) 0 0
\(463\) − 499.593i − 1.07904i −0.841974 0.539518i \(-0.818607\pi\)
0.841974 0.539518i \(-0.181393\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 419.888i 0.899117i 0.893251 + 0.449558i \(0.148419\pi\)
−0.893251 + 0.449558i \(0.851581\pi\)
\(468\) 0 0
\(469\) −146.642 −0.312670
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −855.927 −1.80957
\(474\) 0 0
\(475\) − 589.978i − 1.24206i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 690.850i − 1.44228i −0.692791 0.721138i \(-0.743619\pi\)
0.692791 0.721138i \(-0.256381\pi\)
\(480\) 0 0
\(481\) 1273.91 2.64846
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −190.642 −0.393077
\(486\) 0 0
\(487\) 163.544i 0.335819i 0.985802 + 0.167910i \(0.0537017\pi\)
−0.985802 + 0.167910i \(0.946298\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 184.551i − 0.375867i −0.982182 0.187934i \(-0.939821\pi\)
0.982182 0.187934i \(-0.0601790\pi\)
\(492\) 0 0
\(493\) 732.624 1.48605
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 141.009 0.283721
\(498\) 0 0
\(499\) − 574.659i − 1.15162i −0.817583 0.575811i \(-0.804686\pi\)
0.817583 0.575811i \(-0.195314\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 198.567i 0.394764i 0.980327 + 0.197382i \(0.0632440\pi\)
−0.980327 + 0.197382i \(0.936756\pi\)
\(504\) 0 0
\(505\) −2.67879 −0.00530453
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 209.376 0.411347 0.205674 0.978621i \(-0.434061\pi\)
0.205674 + 0.978621i \(0.434061\pi\)
\(510\) 0 0
\(511\) − 56.4587i − 0.110487i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 58.4768i 0.113547i
\(516\) 0 0
\(517\) −1597.21 −3.08939
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −340.367 −0.653295 −0.326647 0.945146i \(-0.605919\pi\)
−0.326647 + 0.945146i \(0.605919\pi\)
\(522\) 0 0
\(523\) 237.022i 0.453196i 0.973988 + 0.226598i \(0.0727604\pi\)
−0.973988 + 0.226598i \(0.927240\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 895.964i 1.70012i
\(528\) 0 0
\(529\) 424.927 0.803265
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 575.964 1.08061
\(534\) 0 0
\(535\) − 185.154i − 0.346083i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 122.578i − 0.227418i
\(540\) 0 0
\(541\) 692.570 1.28017 0.640083 0.768306i \(-0.278900\pi\)
0.640083 + 0.768306i \(0.278900\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −213.321 −0.391415
\(546\) 0 0
\(547\) 301.027i 0.550323i 0.961398 + 0.275162i \(0.0887314\pi\)
−0.961398 + 0.275162i \(0.911269\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 636.632i − 1.15541i
\(552\) 0 0
\(553\) 256.624 0.464058
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −82.6970 −0.148469 −0.0742343 0.997241i \(-0.523651\pi\)
−0.0742343 + 0.997241i \(0.523651\pi\)
\(558\) 0 0
\(559\) 993.721i 1.77768i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 75.1290i − 0.133444i −0.997772 0.0667220i \(-0.978746\pi\)
0.997772 0.0667220i \(-0.0212541\pi\)
\(564\) 0 0
\(565\) 270.642 0.479013
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −255.909 −0.449752 −0.224876 0.974387i \(-0.572198\pi\)
−0.224876 + 0.974387i \(0.572198\pi\)
\(570\) 0 0
\(571\) 791.341i 1.38589i 0.720992 + 0.692943i \(0.243686\pi\)
−0.720992 + 0.692943i \(0.756314\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 214.234i 0.372580i
\(576\) 0 0
\(577\) −384.642 −0.666625 −0.333312 0.942816i \(-0.608166\pi\)
−0.333312 + 0.942816i \(0.608166\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 169.009 0.290893
\(582\) 0 0
\(583\) − 817.084i − 1.40152i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 429.167i 0.731120i 0.930788 + 0.365560i \(0.119122\pi\)
−0.930788 + 0.365560i \(0.880878\pi\)
\(588\) 0 0
\(589\) 778.570 1.32185
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −859.524 −1.44945 −0.724725 0.689038i \(-0.758033\pi\)
−0.724725 + 0.689038i \(0.758033\pi\)
\(594\) 0 0
\(595\) 171.076i 0.287522i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 745.228i 1.24412i 0.782970 + 0.622060i \(0.213704\pi\)
−0.782970 + 0.622060i \(0.786296\pi\)
\(600\) 0 0
\(601\) 52.6424 0.0875914 0.0437957 0.999041i \(-0.486055\pi\)
0.0437957 + 0.999041i \(0.486055\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −371.285 −0.613694
\(606\) 0 0
\(607\) 635.425i 1.04683i 0.852078 + 0.523414i \(0.175342\pi\)
−0.852078 + 0.523414i \(0.824658\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1854.34i 3.03493i
\(612\) 0 0
\(613\) 71.9818 0.117425 0.0587127 0.998275i \(-0.481300\pi\)
0.0587127 + 0.998275i \(0.481300\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1173.23 1.90151 0.950754 0.309947i \(-0.100311\pi\)
0.950754 + 0.309947i \(0.100311\pi\)
\(618\) 0 0
\(619\) − 97.6947i − 0.157827i −0.996881 0.0789133i \(-0.974855\pi\)
0.996881 0.0789133i \(-0.0251450\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 44.9537i − 0.0721569i
\(624\) 0 0
\(625\) 341.000 0.545600
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −2025.84 −3.22073
\(630\) 0 0
\(631\) − 198.692i − 0.314885i −0.987528 0.157443i \(-0.949675\pi\)
0.987528 0.157443i \(-0.0503249\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 169.328i 0.266658i
\(636\) 0 0
\(637\) −142.312 −0.223410
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −342.588 −0.534458 −0.267229 0.963633i \(-0.586108\pi\)
−0.267229 + 0.963633i \(0.586108\pi\)
\(642\) 0 0
\(643\) − 776.340i − 1.20737i −0.797222 0.603686i \(-0.793698\pi\)
0.797222 0.603686i \(-0.206302\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 755.430i 1.16759i 0.811902 + 0.583794i \(0.198432\pi\)
−0.811902 + 0.583794i \(0.801568\pi\)
\(648\) 0 0
\(649\) −734.606 −1.13190
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 681.339 1.04340 0.521699 0.853129i \(-0.325298\pi\)
0.521699 + 0.853129i \(0.325298\pi\)
\(654\) 0 0
\(655\) 150.895i 0.230374i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 65.9456i 0.100069i 0.998747 + 0.0500346i \(0.0159332\pi\)
−0.998747 + 0.0500346i \(0.984067\pi\)
\(660\) 0 0
\(661\) 161.615 0.244501 0.122250 0.992499i \(-0.460989\pi\)
0.122250 + 0.992499i \(0.460989\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 148.661 0.223550
\(666\) 0 0
\(667\) 231.175i 0.346589i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 215.919i 0.321786i
\(672\) 0 0
\(673\) 451.248 0.670503 0.335251 0.942129i \(-0.391179\pi\)
0.335251 + 0.942129i \(0.391179\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 117.964 0.174245 0.0871223 0.996198i \(-0.472233\pi\)
0.0871223 + 0.996198i \(0.472233\pi\)
\(678\) 0 0
\(679\) 252.196i 0.371423i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 49.9268i − 0.0730993i −0.999332 0.0365496i \(-0.988363\pi\)
0.999332 0.0365496i \(-0.0116367\pi\)
\(684\) 0 0
\(685\) 346.606 0.505994
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −948.624 −1.37681
\(690\) 0 0
\(691\) − 725.047i − 1.04927i −0.851327 0.524636i \(-0.824201\pi\)
0.851327 0.524636i \(-0.175799\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 460.313i 0.662320i
\(696\) 0 0
\(697\) −915.927 −1.31410
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 587.982 0.838776 0.419388 0.907807i \(-0.362245\pi\)
0.419388 + 0.907807i \(0.362245\pi\)
\(702\) 0 0
\(703\) 1760.40i 2.50413i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 3.54370i 0.00501231i
\(708\) 0 0
\(709\) 801.303 1.13019 0.565094 0.825027i \(-0.308840\pi\)
0.565094 + 0.825027i \(0.308840\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −282.715 −0.396515
\(714\) 0 0
\(715\) 712.016i 0.995827i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 328.740i − 0.457218i −0.973518 0.228609i \(-0.926582\pi\)
0.973518 0.228609i \(-0.0734177\pi\)
\(720\) 0 0
\(721\) 77.3576 0.107292
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 475.873 0.656376
\(726\) 0 0
\(727\) − 767.442i − 1.05563i −0.849360 0.527814i \(-0.823012\pi\)
0.849360 0.527814i \(-0.176988\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 1580.27i − 2.16179i
\(732\) 0 0
\(733\) −60.2939 −0.0822564 −0.0411282 0.999154i \(-0.513095\pi\)
−0.0411282 + 0.999154i \(0.513095\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 970.570 1.31692
\(738\) 0 0
\(739\) 920.499i 1.24560i 0.782381 + 0.622801i \(0.214005\pi\)
−0.782381 + 0.622801i \(0.785995\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 598.273i 0.805213i 0.915373 + 0.402606i \(0.131896\pi\)
−0.915373 + 0.402606i \(0.868104\pi\)
\(744\) 0 0
\(745\) −175.964 −0.236193
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −244.936 −0.327018
\(750\) 0 0
\(751\) 150.450i 0.200334i 0.994971 + 0.100167i \(0.0319376\pi\)
−0.994971 + 0.100167i \(0.968062\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 40.8064i − 0.0540482i
\(756\) 0 0
\(757\) 773.339 1.02158 0.510792 0.859704i \(-0.329352\pi\)
0.510792 + 0.859704i \(0.329352\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 389.652 0.512026 0.256013 0.966673i \(-0.417591\pi\)
0.256013 + 0.966673i \(0.417591\pi\)
\(762\) 0 0
\(763\) 282.197i 0.369852i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 852.869i 1.11195i
\(768\) 0 0
\(769\) 15.9818 0.0207826 0.0103913 0.999946i \(-0.496692\pi\)
0.0103913 + 0.999946i \(0.496692\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 833.303 1.07801 0.539006 0.842302i \(-0.318800\pi\)
0.539006 + 0.842302i \(0.318800\pi\)
\(774\) 0 0
\(775\) 581.969i 0.750928i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 795.918i 1.02172i
\(780\) 0 0
\(781\) −933.285 −1.19499
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 340.624 0.433916
\(786\) 0 0
\(787\) 1498.72i 1.90434i 0.305565 + 0.952171i \(0.401155\pi\)
−0.305565 + 0.952171i \(0.598845\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 358.026i − 0.452625i
\(792\) 0 0
\(793\) 250.679 0.316114
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −800.715 −1.00466 −0.502331 0.864676i \(-0.667524\pi\)
−0.502331 + 0.864676i \(0.667524\pi\)
\(798\) 0 0
\(799\) − 2948.87i − 3.69071i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 373.679i 0.465353i
\(804\) 0 0
\(805\) −53.9818 −0.0670582
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −243.394 −0.300858 −0.150429 0.988621i \(-0.548065\pi\)
−0.150429 + 0.988621i \(0.548065\pi\)
\(810\) 0 0
\(811\) − 750.597i − 0.925521i −0.886483 0.462760i \(-0.846859\pi\)
0.886483 0.462760i \(-0.153141\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 500.356i 0.613934i
\(816\) 0 0
\(817\) −1373.21 −1.68080
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1203.98 1.46648 0.733241 0.679969i \(-0.238007\pi\)
0.733241 + 0.679969i \(0.238007\pi\)
\(822\) 0 0
\(823\) 1385.51i 1.68349i 0.539873 + 0.841746i \(0.318472\pi\)
−0.539873 + 0.841746i \(0.681528\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 120.608i 0.145839i 0.997338 + 0.0729193i \(0.0232315\pi\)
−0.997338 + 0.0729193i \(0.976768\pi\)
\(828\) 0 0
\(829\) −814.936 −0.983035 −0.491518 0.870868i \(-0.663558\pi\)
−0.491518 + 0.870868i \(0.663558\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 226.312 0.271683
\(834\) 0 0
\(835\) − 456.499i − 0.546705i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1267.35i 1.51055i 0.655406 + 0.755276i \(0.272497\pi\)
−0.655406 + 0.755276i \(0.727503\pi\)
\(840\) 0 0
\(841\) −327.497 −0.389414
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 488.642 0.578275
\(846\) 0 0
\(847\) 491.164i 0.579886i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 639.239i − 0.751162i
\(852\) 0 0
\(853\) −824.330 −0.966390 −0.483195 0.875513i \(-0.660524\pi\)
−0.483195 + 0.875513i \(0.660524\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1054.83 1.23084 0.615418 0.788201i \(-0.288987\pi\)
0.615418 + 0.788201i \(0.288987\pi\)
\(858\) 0 0
\(859\) − 288.189i − 0.335493i −0.985830 0.167747i \(-0.946351\pi\)
0.985830 0.167747i \(-0.0536491\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 497.338i − 0.576290i −0.957587 0.288145i \(-0.906961\pi\)
0.957587 0.288145i \(-0.0930385\pi\)
\(864\) 0 0
\(865\) 78.7152 0.0910002
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1698.50 −1.95454
\(870\) 0 0
\(871\) − 1126.82i − 1.29371i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 243.409i 0.278182i
\(876\) 0 0
\(877\) −822.624 −0.937998 −0.468999 0.883199i \(-0.655385\pi\)
−0.468999 + 0.883199i \(0.655385\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1017.47 1.15490 0.577452 0.816425i \(-0.304047\pi\)
0.577452 + 0.816425i \(0.304047\pi\)
\(882\) 0 0
\(883\) 1333.58i 1.51029i 0.655559 + 0.755144i \(0.272433\pi\)
−0.655559 + 0.755144i \(0.727567\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 1422.95i − 1.60423i −0.597170 0.802115i \(-0.703708\pi\)
0.597170 0.802115i \(-0.296292\pi\)
\(888\) 0 0
\(889\) 224.000 0.251969
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −2562.50 −2.86954
\(894\) 0 0
\(895\) 129.729i 0.144948i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 627.989i 0.698542i
\(900\) 0 0
\(901\) 1508.55 1.67431
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 27.3030 0.0301691
\(906\) 0 0
\(907\) − 1055.57i − 1.16380i −0.813260 0.581901i \(-0.802309\pi\)
0.813260 0.581901i \(-0.197691\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 239.851i − 0.263283i −0.991297 0.131641i \(-0.957975\pi\)
0.991297 0.131641i \(-0.0420247\pi\)
\(912\) 0 0
\(913\) −1118.61 −1.22520
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 199.615 0.217683
\(918\) 0 0
\(919\) − 690.850i − 0.751741i −0.926672 0.375871i \(-0.877344\pi\)
0.926672 0.375871i \(-0.122656\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1083.53i 1.17392i
\(924\) 0 0
\(925\) −1315.87 −1.42257
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 918.900 0.989128 0.494564 0.869141i \(-0.335328\pi\)
0.494564 + 0.869141i \(0.335328\pi\)
\(930\) 0 0
\(931\) − 196.659i − 0.211235i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 1132.29i − 1.21100i
\(936\) 0 0
\(937\) −513.891 −0.548443 −0.274221 0.961667i \(-0.588420\pi\)
−0.274221 + 0.961667i \(0.588420\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −525.855 −0.558825 −0.279413 0.960171i \(-0.590140\pi\)
−0.279413 + 0.960171i \(0.590140\pi\)
\(942\) 0 0
\(943\) − 289.015i − 0.306484i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1822.53i 1.92453i 0.272110 + 0.962266i \(0.412279\pi\)
−0.272110 + 0.962266i \(0.587721\pi\)
\(948\) 0 0
\(949\) 433.836 0.457151
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1394.04 1.46279 0.731394 0.681955i \(-0.238870\pi\)
0.731394 + 0.681955i \(0.238870\pi\)
\(954\) 0 0
\(955\) − 476.902i − 0.499374i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 458.517i − 0.478120i
\(960\) 0 0
\(961\) 193.000 0.200832
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 137.285 0.142264
\(966\) 0 0
\(967\) 1199.92i 1.24086i 0.784260 + 0.620432i \(0.213043\pi\)
−0.784260 + 0.620432i \(0.786957\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 1067.52i − 1.09940i −0.835362 0.549700i \(-0.814742\pi\)
0.835362 0.549700i \(-0.185258\pi\)
\(972\) 0 0
\(973\) 608.936 0.625834
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 399.945 0.409361 0.204680 0.978829i \(-0.434385\pi\)
0.204680 + 0.978829i \(0.434385\pi\)
\(978\) 0 0
\(979\) 297.531i 0.303914i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 15.3820i 0.0156480i 0.999969 + 0.00782401i \(0.00249049\pi\)
−0.999969 + 0.00782401i \(0.997510\pi\)
\(984\) 0 0
\(985\) 423.964 0.430420
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 498.642 0.504188
\(990\) 0 0
\(991\) − 1242.69i − 1.25398i −0.779028 0.626989i \(-0.784287\pi\)
0.779028 0.626989i \(-0.215713\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 314.883i − 0.316466i
\(996\) 0 0
\(997\) 604.330 0.606149 0.303074 0.952967i \(-0.401987\pi\)
0.303074 + 0.952967i \(0.401987\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.3.m.e.127.2 4
3.2 odd 2 336.3.m.b.127.3 yes 4
4.3 odd 2 inner 1008.3.m.e.127.3 4
12.11 even 2 336.3.m.b.127.2 4
21.20 even 2 2352.3.m.i.1471.1 4
24.5 odd 2 1344.3.m.b.127.1 4
24.11 even 2 1344.3.m.b.127.4 4
84.83 odd 2 2352.3.m.i.1471.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
336.3.m.b.127.2 4 12.11 even 2
336.3.m.b.127.3 yes 4 3.2 odd 2
1008.3.m.e.127.2 4 1.1 even 1 trivial
1008.3.m.e.127.3 4 4.3 odd 2 inner
1344.3.m.b.127.1 4 24.5 odd 2
1344.3.m.b.127.4 4 24.11 even 2
2352.3.m.i.1471.1 4 21.20 even 2
2352.3.m.i.1471.4 4 84.83 odd 2