Properties

Label 1008.3.f.j.433.5
Level $1008$
Weight $3$
Character 1008.433
Analytic conductor $27.466$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,3,Mod(433,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.433"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1008.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,4,0,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(27.4660106475\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.551252791296.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} - 17x^{6} + 26x^{5} + 270x^{4} - 302x^{3} - 1007x^{2} - 3502x + 10609 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{11} \)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 433.5
Root \(-3.47991 - 1.76998i\) of defining polynomial
Character \(\chi\) \(=\) 1008.433
Dual form 1008.3.f.j.433.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.55678i q^{5} +(-6.95983 + 0.748863i) q^{7} -5.82252 q^{11} -21.8397i q^{13} +16.7166i q^{17} -1.37203i q^{19} +10.2911 q^{23} +18.4629 q^{25} +32.1825 q^{29} -35.1222i q^{31} +(-1.91468 - 17.7947i) q^{35} +47.2786 q^{37} +12.2290i q^{41} -20.4805 q^{43} +86.4736i q^{47} +(47.8784 - 10.4239i) q^{49} +51.3355 q^{53} -14.8869i q^{55} +41.5283i q^{59} +103.227i q^{61} +55.8393 q^{65} -25.5411 q^{67} +74.8267 q^{71} -6.02572i q^{73} +(40.5238 - 4.36027i) q^{77} +20.8784 q^{79} -141.066i q^{83} -42.7407 q^{85} -137.025i q^{89} +(16.3550 + 152.001i) q^{91} +3.50798 q^{95} -56.0358i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{7} - 16 q^{11} + 96 q^{23} + 64 q^{29} - 120 q^{35} - 40 q^{37} - 136 q^{43} + 112 q^{49} - 112 q^{53} + 208 q^{65} + 8 q^{67} + 16 q^{71} - 288 q^{77} - 104 q^{79} - 424 q^{85} + 192 q^{91}+ \cdots - 240 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.55678i 0.511356i 0.966762 + 0.255678i \(0.0822986\pi\)
−0.966762 + 0.255678i \(0.917701\pi\)
\(6\) 0 0
\(7\) −6.95983 + 0.748863i −0.994261 + 0.106980i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −5.82252 −0.529320 −0.264660 0.964342i \(-0.585260\pi\)
−0.264660 + 0.964342i \(0.585260\pi\)
\(12\) 0 0
\(13\) 21.8397i 1.67998i −0.542603 0.839989i \(-0.682561\pi\)
0.542603 0.839989i \(-0.317439\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 16.7166i 0.983332i 0.870784 + 0.491666i \(0.163612\pi\)
−0.870784 + 0.491666i \(0.836388\pi\)
\(18\) 0 0
\(19\) 1.37203i 0.0722121i −0.999348 0.0361060i \(-0.988505\pi\)
0.999348 0.0361060i \(-0.0114954\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 10.2911 0.447439 0.223720 0.974654i \(-0.428180\pi\)
0.223720 + 0.974654i \(0.428180\pi\)
\(24\) 0 0
\(25\) 18.4629 0.738515
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 32.1825 1.10974 0.554870 0.831937i \(-0.312768\pi\)
0.554870 + 0.831937i \(0.312768\pi\)
\(30\) 0 0
\(31\) 35.1222i 1.13298i −0.824070 0.566488i \(-0.808302\pi\)
0.824070 0.566488i \(-0.191698\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.91468 17.7947i −0.0547050 0.508421i
\(36\) 0 0
\(37\) 47.2786 1.27780 0.638900 0.769290i \(-0.279390\pi\)
0.638900 + 0.769290i \(0.279390\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 12.2290i 0.298269i 0.988817 + 0.149135i \(0.0476488\pi\)
−0.988817 + 0.149135i \(0.952351\pi\)
\(42\) 0 0
\(43\) −20.4805 −0.476291 −0.238146 0.971229i \(-0.576540\pi\)
−0.238146 + 0.971229i \(0.576540\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 86.4736i 1.83986i 0.392077 + 0.919932i \(0.371757\pi\)
−0.392077 + 0.919932i \(0.628243\pi\)
\(48\) 0 0
\(49\) 47.8784 10.4239i 0.977110 0.212733i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 51.3355 0.968594 0.484297 0.874904i \(-0.339075\pi\)
0.484297 + 0.874904i \(0.339075\pi\)
\(54\) 0 0
\(55\) 14.8869i 0.270671i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 41.5283i 0.703870i 0.936025 + 0.351935i \(0.114476\pi\)
−0.936025 + 0.351935i \(0.885524\pi\)
\(60\) 0 0
\(61\) 103.227i 1.69224i 0.532991 + 0.846121i \(0.321068\pi\)
−0.532991 + 0.846121i \(0.678932\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 55.8393 0.859066
\(66\) 0 0
\(67\) −25.5411 −0.381210 −0.190605 0.981667i \(-0.561045\pi\)
−0.190605 + 0.981667i \(0.561045\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 74.8267 1.05390 0.526948 0.849897i \(-0.323336\pi\)
0.526948 + 0.849897i \(0.323336\pi\)
\(72\) 0 0
\(73\) 6.02572i 0.0825441i −0.999148 0.0412720i \(-0.986859\pi\)
0.999148 0.0412720i \(-0.0131410\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 40.5238 4.36027i 0.526282 0.0566269i
\(78\) 0 0
\(79\) 20.8784 0.264284 0.132142 0.991231i \(-0.457815\pi\)
0.132142 + 0.991231i \(0.457815\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 141.066i 1.69959i −0.527112 0.849796i \(-0.676725\pi\)
0.527112 0.849796i \(-0.323275\pi\)
\(84\) 0 0
\(85\) −42.7407 −0.502832
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 137.025i 1.53961i −0.638281 0.769804i \(-0.720354\pi\)
0.638281 0.769804i \(-0.279646\pi\)
\(90\) 0 0
\(91\) 16.3550 + 152.001i 0.179725 + 1.67034i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.50798 0.0369261
\(96\) 0 0
\(97\) 56.0358i 0.577689i −0.957376 0.288844i \(-0.906729\pi\)
0.957376 0.288844i \(-0.0932710\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 64.2057i 0.635700i 0.948141 + 0.317850i \(0.102961\pi\)
−0.948141 + 0.317850i \(0.897039\pi\)
\(102\) 0 0
\(103\) 34.8932i 0.338768i −0.985550 0.169384i \(-0.945822\pi\)
0.985550 0.169384i \(-0.0541779\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 118.803 1.11031 0.555156 0.831746i \(-0.312658\pi\)
0.555156 + 0.831746i \(0.312658\pi\)
\(108\) 0 0
\(109\) 123.572 1.13369 0.566845 0.823824i \(-0.308164\pi\)
0.566845 + 0.823824i \(0.308164\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −40.3527 −0.357103 −0.178552 0.983931i \(-0.557141\pi\)
−0.178552 + 0.983931i \(0.557141\pi\)
\(114\) 0 0
\(115\) 26.3121i 0.228801i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −12.5185 116.345i −0.105197 0.977689i
\(120\) 0 0
\(121\) −87.0982 −0.719820
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 111.125i 0.889000i
\(126\) 0 0
\(127\) 187.867 1.47927 0.739634 0.673009i \(-0.234999\pi\)
0.739634 + 0.673009i \(0.234999\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 149.663i 1.14247i −0.820787 0.571235i \(-0.806465\pi\)
0.820787 0.571235i \(-0.193535\pi\)
\(132\) 0 0
\(133\) 1.02746 + 9.54909i 0.00772528 + 0.0717977i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −32.2395 −0.235325 −0.117662 0.993054i \(-0.537540\pi\)
−0.117662 + 0.993054i \(0.537540\pi\)
\(138\) 0 0
\(139\) 102.864i 0.740026i 0.929027 + 0.370013i \(0.120647\pi\)
−0.929027 + 0.370013i \(0.879353\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 127.162i 0.889246i
\(144\) 0 0
\(145\) 82.2834i 0.567472i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 184.202 1.23626 0.618129 0.786077i \(-0.287891\pi\)
0.618129 + 0.786077i \(0.287891\pi\)
\(150\) 0 0
\(151\) 19.6611 0.130206 0.0651030 0.997879i \(-0.479262\pi\)
0.0651030 + 0.997879i \(0.479262\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 89.7998 0.579353
\(156\) 0 0
\(157\) 6.07390i 0.0386872i 0.999813 + 0.0193436i \(0.00615765\pi\)
−0.999813 + 0.0193436i \(0.993842\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −71.6243 + 7.70662i −0.444871 + 0.0478672i
\(162\) 0 0
\(163\) 218.020 1.33754 0.668772 0.743467i \(-0.266820\pi\)
0.668772 + 0.743467i \(0.266820\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 250.335i 1.49901i 0.661997 + 0.749506i \(0.269709\pi\)
−0.661997 + 0.749506i \(0.730291\pi\)
\(168\) 0 0
\(169\) −307.973 −1.82233
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 326.475i 1.88714i −0.331174 0.943570i \(-0.607445\pi\)
0.331174 0.943570i \(-0.392555\pi\)
\(174\) 0 0
\(175\) −128.499 + 13.8262i −0.734277 + 0.0790067i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 190.382 1.06359 0.531793 0.846874i \(-0.321518\pi\)
0.531793 + 0.846874i \(0.321518\pi\)
\(180\) 0 0
\(181\) 199.662i 1.10310i −0.834141 0.551552i \(-0.814036\pi\)
0.834141 0.551552i \(-0.185964\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 120.881i 0.653410i
\(186\) 0 0
\(187\) 97.3330i 0.520497i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 161.628 0.846222 0.423111 0.906078i \(-0.360938\pi\)
0.423111 + 0.906078i \(0.360938\pi\)
\(192\) 0 0
\(193\) −1.25133 −0.00648355 −0.00324178 0.999995i \(-0.501032\pi\)
−0.00324178 + 0.999995i \(0.501032\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −262.759 −1.33380 −0.666901 0.745146i \(-0.732380\pi\)
−0.666901 + 0.745146i \(0.732380\pi\)
\(198\) 0 0
\(199\) 343.362i 1.72544i −0.505685 0.862718i \(-0.668760\pi\)
0.505685 0.862718i \(-0.331240\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −223.984 + 24.1002i −1.10337 + 0.118720i
\(204\) 0 0
\(205\) −31.2669 −0.152522
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 7.98867i 0.0382233i
\(210\) 0 0
\(211\) 297.884 1.41177 0.705886 0.708325i \(-0.250549\pi\)
0.705886 + 0.708325i \(0.250549\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 52.3641i 0.243554i
\(216\) 0 0
\(217\) 26.3017 + 244.445i 0.121206 + 1.12647i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 365.087 1.65198
\(222\) 0 0
\(223\) 99.6525i 0.446872i −0.974719 0.223436i \(-0.928273\pi\)
0.974719 0.223436i \(-0.0717274\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 334.346i 1.47289i 0.676498 + 0.736444i \(0.263497\pi\)
−0.676498 + 0.736444i \(0.736503\pi\)
\(228\) 0 0
\(229\) 49.7313i 0.217167i 0.994087 + 0.108584i \(0.0346316\pi\)
−0.994087 + 0.108584i \(0.965368\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −406.511 −1.74468 −0.872340 0.488899i \(-0.837399\pi\)
−0.872340 + 0.488899i \(0.837399\pi\)
\(234\) 0 0
\(235\) −221.094 −0.940825
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −302.533 −1.26583 −0.632914 0.774222i \(-0.718141\pi\)
−0.632914 + 0.774222i \(0.718141\pi\)
\(240\) 0 0
\(241\) 391.822i 1.62582i −0.582392 0.812908i \(-0.697883\pi\)
0.582392 0.812908i \(-0.302117\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 26.6516 + 122.414i 0.108782 + 0.499651i
\(246\) 0 0
\(247\) −29.9647 −0.121315
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 33.7831i 0.134594i −0.997733 0.0672971i \(-0.978562\pi\)
0.997733 0.0672971i \(-0.0214375\pi\)
\(252\) 0 0
\(253\) −59.9202 −0.236839
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 357.247i 1.39007i 0.718977 + 0.695033i \(0.244610\pi\)
−0.718977 + 0.695033i \(0.755390\pi\)
\(258\) 0 0
\(259\) −329.051 + 35.4052i −1.27047 + 0.136700i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −374.711 −1.42476 −0.712379 0.701795i \(-0.752382\pi\)
−0.712379 + 0.701795i \(0.752382\pi\)
\(264\) 0 0
\(265\) 131.253i 0.495296i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 69.3103i 0.257659i 0.991667 + 0.128830i \(0.0411220\pi\)
−0.991667 + 0.128830i \(0.958878\pi\)
\(270\) 0 0
\(271\) 454.972i 1.67886i 0.543466 + 0.839431i \(0.317112\pi\)
−0.543466 + 0.839431i \(0.682888\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −107.501 −0.390911
\(276\) 0 0
\(277\) 141.878 0.512195 0.256098 0.966651i \(-0.417563\pi\)
0.256098 + 0.966651i \(0.417563\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −477.922 −1.70079 −0.850395 0.526144i \(-0.823637\pi\)
−0.850395 + 0.526144i \(0.823637\pi\)
\(282\) 0 0
\(283\) 37.6953i 0.133199i 0.997780 + 0.0665994i \(0.0212150\pi\)
−0.997780 + 0.0665994i \(0.978785\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −9.15788 85.1120i −0.0319090 0.296558i
\(288\) 0 0
\(289\) 9.55390 0.0330585
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 71.7594i 0.244913i 0.992474 + 0.122456i \(0.0390771\pi\)
−0.992474 + 0.122456i \(0.960923\pi\)
\(294\) 0 0
\(295\) −106.179 −0.359928
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 224.755i 0.751688i
\(300\) 0 0
\(301\) 142.541 15.3371i 0.473558 0.0509538i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −263.928 −0.865337
\(306\) 0 0
\(307\) 414.109i 1.34889i −0.738325 0.674445i \(-0.764383\pi\)
0.738325 0.674445i \(-0.235617\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 241.225i 0.775644i −0.921734 0.387822i \(-0.873228\pi\)
0.921734 0.387822i \(-0.126772\pi\)
\(312\) 0 0
\(313\) 197.478i 0.630919i −0.948939 0.315460i \(-0.897841\pi\)
0.948939 0.315460i \(-0.102159\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 446.669 1.40905 0.704524 0.709680i \(-0.251160\pi\)
0.704524 + 0.709680i \(0.251160\pi\)
\(318\) 0 0
\(319\) −187.383 −0.587408
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 22.9357 0.0710085
\(324\) 0 0
\(325\) 403.224i 1.24069i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −64.7569 601.842i −0.196829 1.82931i
\(330\) 0 0
\(331\) −129.870 −0.392355 −0.196178 0.980568i \(-0.562853\pi\)
−0.196178 + 0.980568i \(0.562853\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 65.3029i 0.194934i
\(336\) 0 0
\(337\) −368.682 −1.09401 −0.547006 0.837128i \(-0.684233\pi\)
−0.547006 + 0.837128i \(0.684233\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 204.500i 0.599707i
\(342\) 0 0
\(343\) −325.419 + 108.403i −0.948745 + 0.316044i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −489.785 −1.41148 −0.705742 0.708468i \(-0.749386\pi\)
−0.705742 + 0.708468i \(0.749386\pi\)
\(348\) 0 0
\(349\) 288.064i 0.825400i 0.910867 + 0.412700i \(0.135414\pi\)
−0.910867 + 0.412700i \(0.864586\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 97.2115i 0.275387i 0.990475 + 0.137693i \(0.0439688\pi\)
−0.990475 + 0.137693i \(0.956031\pi\)
\(354\) 0 0
\(355\) 191.315i 0.538916i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 284.701 0.793039 0.396520 0.918026i \(-0.370218\pi\)
0.396520 + 0.918026i \(0.370218\pi\)
\(360\) 0 0
\(361\) 359.118 0.994785
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 15.4064 0.0422094
\(366\) 0 0
\(367\) 51.7192i 0.140924i 0.997514 + 0.0704622i \(0.0224474\pi\)
−0.997514 + 0.0704622i \(0.977553\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −357.286 + 38.4432i −0.963035 + 0.103621i
\(372\) 0 0
\(373\) 597.420 1.60166 0.800832 0.598890i \(-0.204391\pi\)
0.800832 + 0.598890i \(0.204391\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 702.856i 1.86434i
\(378\) 0 0
\(379\) 71.2607 0.188023 0.0940115 0.995571i \(-0.470031\pi\)
0.0940115 + 0.995571i \(0.470031\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 363.128i 0.948116i −0.880494 0.474058i \(-0.842789\pi\)
0.880494 0.474058i \(-0.157211\pi\)
\(384\) 0 0
\(385\) 11.1482 + 103.610i 0.0289565 + 0.269118i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 236.454 0.607850 0.303925 0.952696i \(-0.401703\pi\)
0.303925 + 0.952696i \(0.401703\pi\)
\(390\) 0 0
\(391\) 172.033i 0.439981i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 53.3815i 0.135143i
\(396\) 0 0
\(397\) 460.991i 1.16119i 0.814194 + 0.580593i \(0.197179\pi\)
−0.814194 + 0.580593i \(0.802821\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 295.902 0.737909 0.368955 0.929447i \(-0.379716\pi\)
0.368955 + 0.929447i \(0.379716\pi\)
\(402\) 0 0
\(403\) −767.060 −1.90337
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −275.281 −0.676365
\(408\) 0 0
\(409\) 547.907i 1.33962i 0.742530 + 0.669812i \(0.233625\pi\)
−0.742530 + 0.669812i \(0.766375\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −31.0990 289.030i −0.0753003 0.699830i
\(414\) 0 0
\(415\) 360.675 0.869096
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 352.472i 0.841223i 0.907241 + 0.420611i \(0.138184\pi\)
−0.907241 + 0.420611i \(0.861816\pi\)
\(420\) 0 0
\(421\) −679.902 −1.61497 −0.807485 0.589888i \(-0.799172\pi\)
−0.807485 + 0.589888i \(0.799172\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 308.637i 0.726206i
\(426\) 0 0
\(427\) −77.3027 718.440i −0.181037 1.68253i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 529.775 1.22918 0.614589 0.788848i \(-0.289322\pi\)
0.614589 + 0.788848i \(0.289322\pi\)
\(432\) 0 0
\(433\) 398.400i 0.920093i 0.887895 + 0.460047i \(0.152167\pi\)
−0.887895 + 0.460047i \(0.847833\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 14.1197i 0.0323105i
\(438\) 0 0
\(439\) 372.685i 0.848940i 0.905442 + 0.424470i \(0.139540\pi\)
−0.905442 + 0.424470i \(0.860460\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −24.4995 −0.0553036 −0.0276518 0.999618i \(-0.508803\pi\)
−0.0276518 + 0.999618i \(0.508803\pi\)
\(444\) 0 0
\(445\) 350.343 0.787287
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −891.739 −1.98606 −0.993028 0.117879i \(-0.962391\pi\)
−0.993028 + 0.117879i \(0.962391\pi\)
\(450\) 0 0
\(451\) 71.2039i 0.157880i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −388.632 + 41.8160i −0.854136 + 0.0919033i
\(456\) 0 0
\(457\) −457.868 −1.00190 −0.500950 0.865476i \(-0.667016\pi\)
−0.500950 + 0.865476i \(0.667016\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 37.6805i 0.0817364i 0.999165 + 0.0408682i \(0.0130124\pi\)
−0.999165 + 0.0408682i \(0.986988\pi\)
\(462\) 0 0
\(463\) −116.909 −0.252504 −0.126252 0.991998i \(-0.540295\pi\)
−0.126252 + 0.991998i \(0.540295\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 348.521i 0.746297i 0.927772 + 0.373148i \(0.121722\pi\)
−0.927772 + 0.373148i \(0.878278\pi\)
\(468\) 0 0
\(469\) 177.762 19.1268i 0.379022 0.0407820i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 119.248 0.252110
\(474\) 0 0
\(475\) 25.3316i 0.0533297i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 361.489i 0.754674i −0.926076 0.377337i \(-0.876840\pi\)
0.926076 0.377337i \(-0.123160\pi\)
\(480\) 0 0
\(481\) 1032.55i 2.14668i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 143.271 0.295404
\(486\) 0 0
\(487\) 278.730 0.572341 0.286170 0.958179i \(-0.407618\pi\)
0.286170 + 0.958179i \(0.407618\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −114.355 −0.232902 −0.116451 0.993196i \(-0.537152\pi\)
−0.116451 + 0.993196i \(0.537152\pi\)
\(492\) 0 0
\(493\) 537.983i 1.09124i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −520.781 + 56.0349i −1.04785 + 0.112746i
\(498\) 0 0
\(499\) 731.571 1.46607 0.733037 0.680189i \(-0.238102\pi\)
0.733037 + 0.680189i \(0.238102\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 178.420i 0.354712i −0.984147 0.177356i \(-0.943246\pi\)
0.984147 0.177356i \(-0.0567544\pi\)
\(504\) 0 0
\(505\) −164.160 −0.325069
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 581.588i 1.14261i −0.820738 0.571305i \(-0.806437\pi\)
0.820738 0.571305i \(-0.193563\pi\)
\(510\) 0 0
\(511\) 4.51244 + 41.9380i 0.00883060 + 0.0820704i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 89.2140 0.173231
\(516\) 0 0
\(517\) 503.495i 0.973878i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 223.945i 0.429836i 0.976632 + 0.214918i \(0.0689485\pi\)
−0.976632 + 0.214918i \(0.931052\pi\)
\(522\) 0 0
\(523\) 77.0909i 0.147401i 0.997280 + 0.0737006i \(0.0234809\pi\)
−0.997280 + 0.0737006i \(0.976519\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 587.126 1.11409
\(528\) 0 0
\(529\) −423.093 −0.799798
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 267.079 0.501086
\(534\) 0 0
\(535\) 303.754i 0.567765i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −278.773 + 60.6935i −0.517204 + 0.112604i
\(540\) 0 0
\(541\) 11.6427 0.0215208 0.0107604 0.999942i \(-0.496575\pi\)
0.0107604 + 0.999942i \(0.496575\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 315.947i 0.579719i
\(546\) 0 0
\(547\) 140.549 0.256945 0.128473 0.991713i \(-0.458993\pi\)
0.128473 + 0.991713i \(0.458993\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 44.1553i 0.0801366i
\(552\) 0 0
\(553\) −145.310 + 15.6351i −0.262767 + 0.0282732i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −214.834 −0.385698 −0.192849 0.981228i \(-0.561773\pi\)
−0.192849 + 0.981228i \(0.561773\pi\)
\(558\) 0 0
\(559\) 447.289i 0.800159i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 338.814i 0.601801i −0.953655 0.300901i \(-0.902713\pi\)
0.953655 0.300901i \(-0.0972873\pi\)
\(564\) 0 0
\(565\) 103.173i 0.182607i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 497.478 0.874302 0.437151 0.899388i \(-0.355988\pi\)
0.437151 + 0.899388i \(0.355988\pi\)
\(570\) 0 0
\(571\) 614.030 1.07536 0.537679 0.843149i \(-0.319301\pi\)
0.537679 + 0.843149i \(0.319301\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 190.003 0.330441
\(576\) 0 0
\(577\) 922.638i 1.59903i −0.600649 0.799513i \(-0.705091\pi\)
0.600649 0.799513i \(-0.294909\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 105.639 + 981.796i 0.181823 + 1.68984i
\(582\) 0 0
\(583\) −298.902 −0.512696
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 522.573i 0.890244i 0.895470 + 0.445122i \(0.146840\pi\)
−0.895470 + 0.445122i \(0.853160\pi\)
\(588\) 0 0
\(589\) −48.1888 −0.0818145
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 675.966i 1.13991i 0.821676 + 0.569955i \(0.193039\pi\)
−0.821676 + 0.569955i \(0.806961\pi\)
\(594\) 0 0
\(595\) 297.468 32.0070i 0.499947 0.0537932i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 18.2174 0.0304131 0.0152065 0.999884i \(-0.495159\pi\)
0.0152065 + 0.999884i \(0.495159\pi\)
\(600\) 0 0
\(601\) 467.784i 0.778342i 0.921165 + 0.389171i \(0.127239\pi\)
−0.921165 + 0.389171i \(0.872761\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 222.691i 0.368084i
\(606\) 0 0
\(607\) 979.229i 1.61323i −0.591079 0.806614i \(-0.701298\pi\)
0.591079 0.806614i \(-0.298702\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1888.56 3.09093
\(612\) 0 0
\(613\) 423.249 0.690455 0.345227 0.938519i \(-0.387802\pi\)
0.345227 + 0.938519i \(0.387802\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −11.3273 −0.0183586 −0.00917932 0.999958i \(-0.502922\pi\)
−0.00917932 + 0.999958i \(0.502922\pi\)
\(618\) 0 0
\(619\) 2.10827i 0.00340592i −0.999999 0.00170296i \(-0.999458\pi\)
0.999999 0.00170296i \(-0.000542070\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 102.613 + 953.671i 0.164708 + 1.53077i
\(624\) 0 0
\(625\) 177.450 0.283921
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 790.339i 1.25650i
\(630\) 0 0
\(631\) 646.524 1.02460 0.512301 0.858806i \(-0.328793\pi\)
0.512301 + 0.858806i \(0.328793\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 480.334i 0.756432i
\(636\) 0 0
\(637\) −227.655 1045.65i −0.357387 1.64152i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 302.562 0.472015 0.236008 0.971751i \(-0.424161\pi\)
0.236008 + 0.971751i \(0.424161\pi\)
\(642\) 0 0
\(643\) 302.605i 0.470615i 0.971921 + 0.235307i \(0.0756097\pi\)
−0.971921 + 0.235307i \(0.924390\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0.0187510i 2.89815e-5i −1.00000 1.44908e-5i \(-0.999995\pi\)
1.00000 1.44908e-5i \(-4.61255e-6\pi\)
\(648\) 0 0
\(649\) 241.799i 0.372572i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 809.123 1.23909 0.619543 0.784963i \(-0.287318\pi\)
0.619543 + 0.784963i \(0.287318\pi\)
\(654\) 0 0
\(655\) 382.656 0.584208
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 854.384 1.29649 0.648243 0.761434i \(-0.275504\pi\)
0.648243 + 0.761434i \(0.275504\pi\)
\(660\) 0 0
\(661\) 520.330i 0.787186i 0.919285 + 0.393593i \(0.128768\pi\)
−0.919285 + 0.393593i \(0.871232\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −24.4149 + 2.62699i −0.0367141 + 0.00395037i
\(666\) 0 0
\(667\) 331.193 0.496541
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 601.040i 0.895738i
\(672\) 0 0
\(673\) −140.121 −0.208203 −0.104101 0.994567i \(-0.533197\pi\)
−0.104101 + 0.994567i \(0.533197\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 134.613i 0.198837i −0.995046 0.0994184i \(-0.968302\pi\)
0.995046 0.0994184i \(-0.0316982\pi\)
\(678\) 0 0
\(679\) 41.9631 + 390.000i 0.0618014 + 0.574373i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 99.1586 0.145181 0.0725905 0.997362i \(-0.476873\pi\)
0.0725905 + 0.997362i \(0.476873\pi\)
\(684\) 0 0
\(685\) 82.4292i 0.120335i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1121.15i 1.62722i
\(690\) 0 0
\(691\) 935.002i 1.35311i −0.736390 0.676557i \(-0.763471\pi\)
0.736390 0.676557i \(-0.236529\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −262.999 −0.378416
\(696\) 0 0
\(697\) −204.428 −0.293298
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −18.2160 −0.0259857 −0.0129928 0.999916i \(-0.504136\pi\)
−0.0129928 + 0.999916i \(0.504136\pi\)
\(702\) 0 0
\(703\) 64.8676i 0.0922726i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −48.0812 446.860i −0.0680074 0.632051i
\(708\) 0 0
\(709\) −290.529 −0.409773 −0.204887 0.978786i \(-0.565683\pi\)
−0.204887 + 0.978786i \(0.565683\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 361.446i 0.506938i
\(714\) 0 0
\(715\) −325.126 −0.454721
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 529.734i 0.736765i 0.929674 + 0.368383i \(0.120088\pi\)
−0.929674 + 0.368383i \(0.879912\pi\)
\(720\) 0 0
\(721\) 26.1302 + 242.850i 0.0362416 + 0.336824i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 594.181 0.819560
\(726\) 0 0
\(727\) 858.179i 1.18044i −0.807243 0.590219i \(-0.799041\pi\)
0.807243 0.590219i \(-0.200959\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 342.365i 0.468352i
\(732\) 0 0
\(733\) 989.920i 1.35050i 0.737587 + 0.675252i \(0.235965\pi\)
−0.737587 + 0.675252i \(0.764035\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 148.714 0.201782
\(738\) 0 0
\(739\) 1042.74 1.41102 0.705511 0.708699i \(-0.250718\pi\)
0.705511 + 0.708699i \(0.250718\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1225.64 −1.64959 −0.824794 0.565434i \(-0.808709\pi\)
−0.824794 + 0.565434i \(0.808709\pi\)
\(744\) 0 0
\(745\) 470.965i 0.632167i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −826.852 + 88.9675i −1.10394 + 0.118782i
\(750\) 0 0
\(751\) 742.516 0.988703 0.494351 0.869262i \(-0.335406\pi\)
0.494351 + 0.869262i \(0.335406\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 50.2691i 0.0665816i
\(756\) 0 0
\(757\) 449.076 0.593232 0.296616 0.954997i \(-0.404142\pi\)
0.296616 + 0.954997i \(0.404142\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 504.360i 0.662759i −0.943498 0.331380i \(-0.892486\pi\)
0.943498 0.331380i \(-0.107514\pi\)
\(762\) 0 0
\(763\) −860.042 + 92.5387i −1.12718 + 0.121283i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 906.967 1.18249
\(768\) 0 0
\(769\) 152.033i 0.197702i 0.995102 + 0.0988508i \(0.0315167\pi\)
−0.995102 + 0.0988508i \(0.968483\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1084.50i 1.40297i −0.712685 0.701485i \(-0.752521\pi\)
0.712685 0.701485i \(-0.247479\pi\)
\(774\) 0 0
\(775\) 648.458i 0.836720i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 16.7786 0.0215387
\(780\) 0 0
\(781\) −435.680 −0.557849
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −15.5296 −0.0197829
\(786\) 0 0
\(787\) 1037.74i 1.31860i 0.751882 + 0.659298i \(0.229146\pi\)
−0.751882 + 0.659298i \(0.770854\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 280.848 30.2186i 0.355054 0.0382031i
\(792\) 0 0
\(793\) 2254.44 2.84293
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 409.579i 0.513901i 0.966425 + 0.256950i \(0.0827177\pi\)
−0.966425 + 0.256950i \(0.917282\pi\)
\(798\) 0 0
\(799\) −1445.55 −1.80920
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 35.0849i 0.0436923i
\(804\) 0 0
\(805\) −19.7041 183.127i −0.0244772 0.227487i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 555.816 0.687041 0.343520 0.939145i \(-0.388381\pi\)
0.343520 + 0.939145i \(0.388381\pi\)
\(810\) 0 0
\(811\) 1234.27i 1.52191i 0.648805 + 0.760955i \(0.275269\pi\)
−0.648805 + 0.760955i \(0.724731\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 557.428i 0.683961i
\(816\) 0 0
\(817\) 28.0999i 0.0343940i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 679.883 0.828116 0.414058 0.910250i \(-0.364111\pi\)
0.414058 + 0.910250i \(0.364111\pi\)
\(822\) 0 0
\(823\) −928.586 −1.12829 −0.564147 0.825674i \(-0.690795\pi\)
−0.564147 + 0.825674i \(0.690795\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1321.98 −1.59852 −0.799262 0.600982i \(-0.794776\pi\)
−0.799262 + 0.600982i \(0.794776\pi\)
\(828\) 0 0
\(829\) 1036.65i 1.25048i 0.780433 + 0.625240i \(0.214999\pi\)
−0.780433 + 0.625240i \(0.785001\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 174.253 + 800.366i 0.209187 + 0.960824i
\(834\) 0 0
\(835\) −640.051 −0.766528
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 653.282i 0.778644i −0.921102 0.389322i \(-0.872709\pi\)
0.921102 0.389322i \(-0.127291\pi\)
\(840\) 0 0
\(841\) 194.711 0.231523
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 787.419i 0.931857i
\(846\) 0 0
\(847\) 606.189 65.2246i 0.715689 0.0770067i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 486.549 0.571738
\(852\) 0 0
\(853\) 1227.98i 1.43961i −0.694178 0.719803i \(-0.744232\pi\)
0.694178 0.719803i \(-0.255768\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 378.900i 0.442123i 0.975260 + 0.221062i \(0.0709522\pi\)
−0.975260 + 0.221062i \(0.929048\pi\)
\(858\) 0 0
\(859\) 322.806i 0.375793i 0.982189 + 0.187897i \(0.0601670\pi\)
−0.982189 + 0.187897i \(0.939833\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 183.339 0.212444 0.106222 0.994342i \(-0.466125\pi\)
0.106222 + 0.994342i \(0.466125\pi\)
\(864\) 0 0
\(865\) 834.724 0.964999
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −121.565 −0.139891
\(870\) 0 0
\(871\) 557.810i 0.640425i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −83.2174 773.411i −0.0951056 0.883898i
\(876\) 0 0
\(877\) 88.5528 0.100972 0.0504862 0.998725i \(-0.483923\pi\)
0.0504862 + 0.998725i \(0.483923\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 993.847i 1.12809i −0.825744 0.564045i \(-0.809245\pi\)
0.825744 0.564045i \(-0.190755\pi\)
\(882\) 0 0
\(883\) −264.028 −0.299012 −0.149506 0.988761i \(-0.547768\pi\)
−0.149506 + 0.988761i \(0.547768\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1093.22i 1.23249i 0.787553 + 0.616247i \(0.211348\pi\)
−0.787553 + 0.616247i \(0.788652\pi\)
\(888\) 0 0
\(889\) −1307.52 + 140.687i −1.47078 + 0.158253i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 118.644 0.132860
\(894\) 0 0
\(895\) 486.764i 0.543871i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1130.32i 1.25731i
\(900\) 0 0
\(901\) 858.157i 0.952449i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 510.491 0.564078
\(906\) 0 0
\(907\) −587.162 −0.647367 −0.323684 0.946165i \(-0.604921\pi\)
−0.323684 + 0.946165i \(0.604921\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 32.9303 0.0361475 0.0180737 0.999837i \(-0.494247\pi\)
0.0180737 + 0.999837i \(0.494247\pi\)
\(912\) 0 0
\(913\) 821.360i 0.899628i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 112.077 + 1041.63i 0.122222 + 1.13591i
\(918\) 0 0
\(919\) 90.0432 0.0979796 0.0489898 0.998799i \(-0.484400\pi\)
0.0489898 + 0.998799i \(0.484400\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1634.19i 1.77052i
\(924\) 0 0
\(925\) 872.899 0.943675
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1754.02i 1.88807i 0.329842 + 0.944036i \(0.393005\pi\)
−0.329842 + 0.944036i \(0.606995\pi\)
\(930\) 0 0
\(931\) −14.3019 65.6906i −0.0153619 0.0705592i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 248.859 0.266159
\(936\) 0 0
\(937\) 126.768i 0.135291i −0.997709 0.0676454i \(-0.978451\pi\)
0.997709 0.0676454i \(-0.0215487\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 9.81118i 0.0104263i 0.999986 + 0.00521316i \(0.00165941\pi\)
−0.999986 + 0.00521316i \(0.998341\pi\)
\(942\) 0 0
\(943\) 125.850i 0.133457i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −409.685 −0.432614 −0.216307 0.976325i \(-0.569401\pi\)
−0.216307 + 0.976325i \(0.569401\pi\)
\(948\) 0 0
\(949\) −131.600 −0.138672
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1074.46 1.12745 0.563725 0.825962i \(-0.309368\pi\)
0.563725 + 0.825962i \(0.309368\pi\)
\(954\) 0 0
\(955\) 413.248i 0.432720i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 224.381 24.1430i 0.233974 0.0251751i
\(960\) 0 0
\(961\) −272.571 −0.283633
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 3.19936i 0.00331540i
\(966\) 0 0
\(967\) −1124.26 −1.16263 −0.581316 0.813678i \(-0.697462\pi\)
−0.581316 + 0.813678i \(0.697462\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 214.012i 0.220403i 0.993909 + 0.110202i \(0.0351497\pi\)
−0.993909 + 0.110202i \(0.964850\pi\)
\(972\) 0 0
\(973\) −77.0308 715.913i −0.0791683 0.735779i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −750.558 −0.768227 −0.384114 0.923286i \(-0.625493\pi\)
−0.384114 + 0.923286i \(0.625493\pi\)
\(978\) 0 0
\(979\) 797.831i 0.814945i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 117.208i 0.119235i 0.998221 + 0.0596176i \(0.0189881\pi\)
−0.998221 + 0.0596176i \(0.981012\pi\)
\(984\) 0 0
\(985\) 671.817i 0.682048i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −210.767 −0.213111
\(990\) 0 0
\(991\) 1466.43 1.47975 0.739875 0.672744i \(-0.234885\pi\)
0.739875 + 0.672744i \(0.234885\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 877.900 0.882311
\(996\) 0 0
\(997\) 485.333i 0.486793i −0.969927 0.243397i \(-0.921738\pi\)
0.969927 0.243397i \(-0.0782616\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.3.f.j.433.5 8
3.2 odd 2 336.3.f.d.97.6 8
4.3 odd 2 504.3.f.c.433.5 8
7.6 odd 2 inner 1008.3.f.j.433.4 8
12.11 even 2 168.3.f.a.97.2 8
21.20 even 2 336.3.f.d.97.3 8
24.5 odd 2 1344.3.f.h.769.3 8
24.11 even 2 1344.3.f.g.769.7 8
28.27 even 2 504.3.f.c.433.4 8
84.11 even 6 1176.3.z.a.313.3 8
84.23 even 6 1176.3.z.f.913.2 8
84.47 odd 6 1176.3.z.a.913.3 8
84.59 odd 6 1176.3.z.f.313.2 8
84.83 odd 2 168.3.f.a.97.7 yes 8
168.83 odd 2 1344.3.f.g.769.2 8
168.125 even 2 1344.3.f.h.769.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.3.f.a.97.2 8 12.11 even 2
168.3.f.a.97.7 yes 8 84.83 odd 2
336.3.f.d.97.3 8 21.20 even 2
336.3.f.d.97.6 8 3.2 odd 2
504.3.f.c.433.4 8 28.27 even 2
504.3.f.c.433.5 8 4.3 odd 2
1008.3.f.j.433.4 8 7.6 odd 2 inner
1008.3.f.j.433.5 8 1.1 even 1 trivial
1176.3.z.a.313.3 8 84.11 even 6
1176.3.z.a.913.3 8 84.47 odd 6
1176.3.z.f.313.2 8 84.59 odd 6
1176.3.z.f.913.2 8 84.23 even 6
1344.3.f.g.769.2 8 168.83 odd 2
1344.3.f.g.769.7 8 24.11 even 2
1344.3.f.h.769.3 8 24.5 odd 2
1344.3.f.h.769.6 8 168.125 even 2