Properties

Label 1000.2.t.b.701.41
Level $1000$
Weight $2$
Character 1000.701
Analytic conductor $7.985$
Analytic rank $0$
Dimension $224$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1000,2,Mod(101,1000)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1000.101"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1000, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 6])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1000 = 2^{3} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1000.t (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [224] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.98504020213\)
Analytic rank: \(0\)
Dimension: \(224\)
Relative dimension: \(56\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 200)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 701.41
Character \(\chi\) \(=\) 1000.701
Dual form 1000.2.t.b.301.41

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.961518 - 1.03706i) q^{2} +(-0.232961 + 0.0756938i) q^{3} +(-0.150967 - 1.99429i) q^{4} +(-0.145498 + 0.314375i) q^{6} -1.59435 q^{7} +(-2.21335 - 1.76099i) q^{8} +(-2.37851 + 1.72809i) q^{9} +(-2.84212 + 3.91185i) q^{11} +(0.186125 + 0.453166i) q^{12} +(-1.09172 - 1.50262i) q^{13} +(-1.53300 + 1.65343i) q^{14} +(-3.95442 + 0.602144i) q^{16} +(-1.35781 + 4.17890i) q^{17} +(-0.494857 + 4.12823i) q^{18} +(2.84592 + 0.924695i) q^{19} +(0.371422 - 0.120682i) q^{21} +(1.32405 + 6.70875i) q^{22} +(4.65342 + 3.38091i) q^{23} +(0.648921 + 0.242706i) q^{24} +(-2.60801 - 0.312625i) q^{26} +(0.855230 - 1.17712i) q^{27} +(0.240694 + 3.17961i) q^{28} +(-3.24693 + 1.05499i) q^{29} +(-0.378200 + 1.16398i) q^{31} +(-3.17779 + 4.67992i) q^{32} +(0.366003 - 1.12644i) q^{33} +(3.02820 + 5.42621i) q^{34} +(3.80539 + 4.48256i) q^{36} +(-4.64888 - 6.39864i) q^{37} +(3.69536 - 2.06226i) q^{38} +(0.368067 + 0.267416i) q^{39} +(-6.95275 + 5.05147i) q^{41} +(0.231975 - 0.501224i) q^{42} -10.9570i q^{43} +(8.23044 + 5.07747i) q^{44} +(7.98053 - 1.57505i) q^{46} +(-0.289478 - 0.890923i) q^{47} +(0.875648 - 0.439601i) q^{48} -4.45804 q^{49} -1.07630i q^{51} +(-2.83185 + 2.40405i) q^{52} +(5.12271 - 1.66447i) q^{53} +(-0.398422 - 2.01874i) q^{54} +(3.52886 + 2.80763i) q^{56} -0.732983 q^{57} +(-2.02790 + 4.38164i) q^{58} +(-5.45825 - 7.51263i) q^{59} +(-3.06376 + 4.21690i) q^{61} +(0.843466 + 1.51140i) q^{62} +(3.79218 - 2.75518i) q^{63} +(1.79784 + 7.79537i) q^{64} +(-0.816262 - 1.46266i) q^{66} +(-2.33135 - 0.757501i) q^{67} +(8.53894 + 2.07699i) q^{68} +(-1.33998 - 0.435386i) q^{69} +(4.47330 + 13.7674i) q^{71} +(8.30762 + 0.363664i) q^{72} +(-2.60150 - 1.89010i) q^{73} +(-11.1057 - 1.33126i) q^{74} +(1.41448 - 5.81520i) q^{76} +(4.53134 - 6.23686i) q^{77} +(0.631228 - 0.124580i) q^{78} +(3.26966 + 10.0630i) q^{79} +(2.61539 - 8.04936i) q^{81} +(-1.44654 + 12.0675i) q^{82} +(1.66114 + 0.539736i) q^{83} +(-0.296749 - 0.722506i) q^{84} +(-11.3630 - 10.5353i) q^{86} +(0.676554 - 0.491545i) q^{87} +(13.1793 - 3.65334i) q^{88} +(-9.19471 - 6.68035i) q^{89} +(1.74058 + 2.39570i) q^{91} +(6.04001 - 9.79069i) q^{92} -0.299790i q^{93} +(-1.20227 - 0.556433i) q^{94} +(0.386061 - 1.33078i) q^{96} +(4.42235 + 13.6106i) q^{97} +(-4.28649 + 4.62324i) q^{98} -14.2158i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 224 q + 6 q^{4} + 2 q^{6} + 60 q^{9} + 6 q^{14} - 30 q^{16} + 32 q^{24} - 28 q^{26} - 36 q^{31} - 18 q^{34} + 82 q^{36} + 20 q^{39} - 20 q^{41} + 64 q^{44} + 26 q^{46} + 160 q^{49} - 86 q^{54} + 72 q^{56}+ \cdots + 92 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1000\mathbb{Z}\right)^\times\).

\(n\) \(377\) \(501\) \(751\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.961518 1.03706i 0.679896 0.733309i
\(3\) −0.232961 + 0.0756938i −0.134500 + 0.0437018i −0.375494 0.926825i \(-0.622527\pi\)
0.240993 + 0.970527i \(0.422527\pi\)
\(4\) −0.150967 1.99429i −0.0754833 0.997147i
\(5\) 0 0
\(6\) −0.145498 + 0.314375i −0.0593993 + 0.128343i
\(7\) −1.59435 −0.602608 −0.301304 0.953528i \(-0.597422\pi\)
−0.301304 + 0.953528i \(0.597422\pi\)
\(8\) −2.21335 1.76099i −0.782537 0.622604i
\(9\) −2.37851 + 1.72809i −0.792836 + 0.576029i
\(10\) 0 0
\(11\) −2.84212 + 3.91185i −0.856932 + 1.17947i 0.125360 + 0.992111i \(0.459991\pi\)
−0.982292 + 0.187355i \(0.940009\pi\)
\(12\) 0.186125 + 0.453166i 0.0537297 + 0.130818i
\(13\) −1.09172 1.50262i −0.302788 0.416752i 0.630327 0.776330i \(-0.282921\pi\)
−0.933115 + 0.359578i \(0.882921\pi\)
\(14\) −1.53300 + 1.65343i −0.409711 + 0.441898i
\(15\) 0 0
\(16\) −3.95442 + 0.602144i −0.988605 + 0.150536i
\(17\) −1.35781 + 4.17890i −0.329317 + 1.01353i 0.640138 + 0.768260i \(0.278877\pi\)
−0.969454 + 0.245272i \(0.921123\pi\)
\(18\) −0.494857 + 4.12823i −0.116639 + 0.973034i
\(19\) 2.84592 + 0.924695i 0.652899 + 0.212140i 0.616692 0.787205i \(-0.288472\pi\)
0.0362069 + 0.999344i \(0.488472\pi\)
\(20\) 0 0
\(21\) 0.371422 0.120682i 0.0810510 0.0263351i
\(22\) 1.32405 + 6.70875i 0.282288 + 1.43031i
\(23\) 4.65342 + 3.38091i 0.970305 + 0.704968i 0.955521 0.294923i \(-0.0952940\pi\)
0.0147838 + 0.999891i \(0.495294\pi\)
\(24\) 0.648921 + 0.242706i 0.132460 + 0.0495421i
\(25\) 0 0
\(26\) −2.60801 0.312625i −0.511472 0.0613108i
\(27\) 0.855230 1.17712i 0.164589 0.226537i
\(28\) 0.240694 + 3.17961i 0.0454869 + 0.600889i
\(29\) −3.24693 + 1.05499i −0.602941 + 0.195907i −0.594551 0.804058i \(-0.702670\pi\)
−0.00838909 + 0.999965i \(0.502670\pi\)
\(30\) 0 0
\(31\) −0.378200 + 1.16398i −0.0679268 + 0.209057i −0.979258 0.202616i \(-0.935056\pi\)
0.911331 + 0.411673i \(0.135056\pi\)
\(32\) −3.17779 + 4.67992i −0.561759 + 0.827301i
\(33\) 0.366003 1.12644i 0.0637129 0.196088i
\(34\) 3.02820 + 5.42621i 0.519331 + 0.930587i
\(35\) 0 0
\(36\) 3.80539 + 4.48256i 0.634232 + 0.747094i
\(37\) −4.64888 6.39864i −0.764271 1.05193i −0.996847 0.0793510i \(-0.974715\pi\)
0.232575 0.972578i \(-0.425285\pi\)
\(38\) 3.69536 2.06226i 0.599467 0.334543i
\(39\) 0.368067 + 0.267416i 0.0589379 + 0.0428209i
\(40\) 0 0
\(41\) −6.95275 + 5.05147i −1.08584 + 0.788907i −0.978691 0.205336i \(-0.934171\pi\)
−0.107146 + 0.994243i \(0.534171\pi\)
\(42\) 0.231975 0.501224i 0.0357945 0.0773405i
\(43\) 10.9570i 1.67092i −0.549549 0.835461i \(-0.685201\pi\)
0.549549 0.835461i \(-0.314799\pi\)
\(44\) 8.23044 + 5.07747i 1.24078 + 0.765457i
\(45\) 0 0
\(46\) 7.98053 1.57505i 1.17667 0.232228i
\(47\) −0.289478 0.890923i −0.0422248 0.129954i 0.927722 0.373272i \(-0.121764\pi\)
−0.969947 + 0.243318i \(0.921764\pi\)
\(48\) 0.875648 0.439601i 0.126389 0.0634509i
\(49\) −4.45804 −0.636864
\(50\) 0 0
\(51\) 1.07630i 0.150712i
\(52\) −2.83185 + 2.40405i −0.392707 + 0.333382i
\(53\) 5.12271 1.66447i 0.703659 0.228633i 0.0647347 0.997903i \(-0.479380\pi\)
0.638924 + 0.769270i \(0.279380\pi\)
\(54\) −0.398422 2.01874i −0.0542184 0.274716i
\(55\) 0 0
\(56\) 3.52886 + 2.80763i 0.471563 + 0.375186i
\(57\) −0.732983 −0.0970860
\(58\) −2.02790 + 4.38164i −0.266276 + 0.575338i
\(59\) −5.45825 7.51263i −0.710603 0.978061i −0.999784 0.0207867i \(-0.993383\pi\)
0.289181 0.957274i \(-0.406617\pi\)
\(60\) 0 0
\(61\) −3.06376 + 4.21690i −0.392274 + 0.539919i −0.958784 0.284136i \(-0.908293\pi\)
0.566510 + 0.824055i \(0.308293\pi\)
\(62\) 0.843466 + 1.51140i 0.107120 + 0.191948i
\(63\) 3.79218 2.75518i 0.477770 0.347120i
\(64\) 1.79784 + 7.79537i 0.224730 + 0.974421i
\(65\) 0 0
\(66\) −0.816262 1.46266i −0.100475 0.180041i
\(67\) −2.33135 0.757501i −0.284819 0.0925434i 0.163123 0.986606i \(-0.447843\pi\)
−0.447943 + 0.894062i \(0.647843\pi\)
\(68\) 8.53894 + 2.07699i 1.03550 + 0.251872i
\(69\) −1.33998 0.435386i −0.161315 0.0524143i
\(70\) 0 0
\(71\) 4.47330 + 13.7674i 0.530883 + 1.63389i 0.752381 + 0.658728i \(0.228905\pi\)
−0.221499 + 0.975161i \(0.571095\pi\)
\(72\) 8.30762 + 0.363664i 0.979062 + 0.0428582i
\(73\) −2.60150 1.89010i −0.304482 0.221219i 0.425043 0.905173i \(-0.360259\pi\)
−0.729525 + 0.683954i \(0.760259\pi\)
\(74\) −11.1057 1.33126i −1.29101 0.154756i
\(75\) 0 0
\(76\) 1.41448 5.81520i 0.162251 0.667049i
\(77\) 4.53134 6.23686i 0.516394 0.710756i
\(78\) 0.631228 0.124580i 0.0714725 0.0141059i
\(79\) 3.26966 + 10.0630i 0.367865 + 1.13217i 0.948167 + 0.317772i \(0.102935\pi\)
−0.580302 + 0.814402i \(0.697065\pi\)
\(80\) 0 0
\(81\) 2.61539 8.04936i 0.290599 0.894373i
\(82\) −1.44654 + 12.0675i −0.159744 + 1.33263i
\(83\) 1.66114 + 0.539736i 0.182333 + 0.0592437i 0.398761 0.917055i \(-0.369440\pi\)
−0.216427 + 0.976299i \(0.569440\pi\)
\(84\) −0.296749 0.722506i −0.0323779 0.0788319i
\(85\) 0 0
\(86\) −11.3630 10.5353i −1.22530 1.13605i
\(87\) 0.676554 0.491545i 0.0725342 0.0526992i
\(88\) 13.1793 3.65334i 1.40492 0.389447i
\(89\) −9.19471 6.68035i −0.974637 0.708116i −0.0181337 0.999836i \(-0.505772\pi\)
−0.956504 + 0.291720i \(0.905772\pi\)
\(90\) 0 0
\(91\) 1.74058 + 2.39570i 0.182462 + 0.251138i
\(92\) 6.04001 9.79069i 0.629715 1.02075i
\(93\) 0.299790i 0.0310868i
\(94\) −1.20227 0.556433i −0.124005 0.0573917i
\(95\) 0 0
\(96\) 0.386061 1.33078i 0.0394022 0.135822i
\(97\) 4.42235 + 13.6106i 0.449022 + 1.38195i 0.878012 + 0.478638i \(0.158869\pi\)
−0.428990 + 0.903309i \(0.641131\pi\)
\(98\) −4.28649 + 4.62324i −0.433001 + 0.467018i
\(99\) 14.2158i 1.42874i
\(100\) 0 0
\(101\) 9.35559i 0.930916i 0.885070 + 0.465458i \(0.154110\pi\)
−0.885070 + 0.465458i \(0.845890\pi\)
\(102\) −1.11618 1.03488i −0.110519 0.102469i
\(103\) −2.77679 8.54607i −0.273605 0.842069i −0.989585 0.143949i \(-0.954020\pi\)
0.715980 0.698121i \(-0.245980\pi\)
\(104\) −0.229744 + 5.24833i −0.0225283 + 0.514641i
\(105\) 0 0
\(106\) 3.19943 6.91295i 0.310756 0.671445i
\(107\) 1.58107i 0.152847i −0.997075 0.0764237i \(-0.975650\pi\)
0.997075 0.0764237i \(-0.0243502\pi\)
\(108\) −2.47664 1.52787i −0.238315 0.147020i
\(109\) −2.12791 2.92882i −0.203817 0.280530i 0.694856 0.719149i \(-0.255468\pi\)
−0.898673 + 0.438618i \(0.855468\pi\)
\(110\) 0 0
\(111\) 1.56735 + 1.13874i 0.148766 + 0.108085i
\(112\) 6.30473 0.960029i 0.595741 0.0907142i
\(113\) −16.3390 + 11.8710i −1.53705 + 1.11673i −0.584892 + 0.811111i \(0.698863\pi\)
−0.952154 + 0.305618i \(0.901137\pi\)
\(114\) −0.704777 + 0.760144i −0.0660084 + 0.0711940i
\(115\) 0 0
\(116\) 2.59415 + 6.31607i 0.240860 + 0.586433i
\(117\) 5.19332 + 1.68741i 0.480123 + 0.156001i
\(118\) −13.0392 1.56303i −1.20036 0.143888i
\(119\) 2.16482 6.66264i 0.198449 0.610763i
\(120\) 0 0
\(121\) −3.82569 11.7743i −0.347790 1.07039i
\(122\) 1.42730 + 7.23192i 0.129222 + 0.654747i
\(123\) 1.23736 1.70308i 0.111569 0.153561i
\(124\) 2.37842 + 0.578520i 0.213588 + 0.0519527i
\(125\) 0 0
\(126\) 0.788975 6.58185i 0.0702875 0.586358i
\(127\) −8.20214 5.95921i −0.727822 0.528794i 0.161051 0.986946i \(-0.448512\pi\)
−0.888874 + 0.458152i \(0.848512\pi\)
\(128\) 9.81288 + 5.63093i 0.867344 + 0.497709i
\(129\) 0.829374 + 2.55255i 0.0730223 + 0.224740i
\(130\) 0 0
\(131\) 5.82215 + 1.89173i 0.508683 + 0.165281i 0.552103 0.833776i \(-0.313825\pi\)
−0.0434199 + 0.999057i \(0.513825\pi\)
\(132\) −2.30171 0.559862i −0.200338 0.0487297i
\(133\) −4.53740 1.47429i −0.393442 0.127837i
\(134\) −3.02720 + 1.68939i −0.261510 + 0.145941i
\(135\) 0 0
\(136\) 10.3643 6.85829i 0.888732 0.588093i
\(137\) 1.90752 1.38590i 0.162971 0.118405i −0.503311 0.864105i \(-0.667885\pi\)
0.666282 + 0.745700i \(0.267885\pi\)
\(138\) −1.73993 + 0.971002i −0.148113 + 0.0826572i
\(139\) −11.6027 + 15.9697i −0.984127 + 1.35453i −0.0495502 + 0.998772i \(0.515779\pi\)
−0.934576 + 0.355762i \(0.884221\pi\)
\(140\) 0 0
\(141\) 0.134875 + 0.185639i 0.0113585 + 0.0156336i
\(142\) 18.5787 + 8.59854i 1.55909 + 0.721573i
\(143\) 8.98081 0.751013
\(144\) 8.36506 8.26579i 0.697089 0.688816i
\(145\) 0 0
\(146\) −4.46153 + 0.880533i −0.369238 + 0.0728735i
\(147\) 1.03855 0.337446i 0.0856584 0.0278321i
\(148\) −12.0589 + 10.2372i −0.991239 + 0.841494i
\(149\) 12.5490i 1.02806i −0.857774 0.514028i \(-0.828153\pi\)
0.857774 0.514028i \(-0.171847\pi\)
\(150\) 0 0
\(151\) 10.1466 0.825718 0.412859 0.910795i \(-0.364530\pi\)
0.412859 + 0.910795i \(0.364530\pi\)
\(152\) −4.67064 7.05831i −0.378839 0.572504i
\(153\) −3.99195 12.2860i −0.322730 0.993262i
\(154\) −2.11100 10.6961i −0.170109 0.861916i
\(155\) 0 0
\(156\) 0.477741 0.774405i 0.0382499 0.0620020i
\(157\) 7.71018i 0.615340i 0.951493 + 0.307670i \(0.0995492\pi\)
−0.951493 + 0.307670i \(0.900451\pi\)
\(158\) 13.5797 + 6.28492i 1.08034 + 0.500001i
\(159\) −1.06740 + 0.775515i −0.0846507 + 0.0615023i
\(160\) 0 0
\(161\) −7.41918 5.39035i −0.584714 0.424819i
\(162\) −5.83288 10.4519i −0.458274 0.821180i
\(163\) 5.55848 + 7.65059i 0.435374 + 0.599240i 0.969176 0.246369i \(-0.0792374\pi\)
−0.533803 + 0.845609i \(0.679237\pi\)
\(164\) 11.1237 + 13.1032i 0.868619 + 1.02319i
\(165\) 0 0
\(166\) 2.15695 1.20372i 0.167412 0.0934270i
\(167\) 6.56132 20.1937i 0.507730 1.56263i −0.288402 0.957509i \(-0.593124\pi\)
0.796132 0.605123i \(-0.206876\pi\)
\(168\) −1.03461 0.386958i −0.0798217 0.0298545i
\(169\) 2.95120 9.08286i 0.227015 0.698682i
\(170\) 0 0
\(171\) −8.36700 + 2.71860i −0.639841 + 0.207897i
\(172\) −21.8514 + 1.65414i −1.66616 + 0.126127i
\(173\) 10.6052 14.5968i 0.806296 1.10977i −0.185588 0.982628i \(-0.559419\pi\)
0.991884 0.127144i \(-0.0405809\pi\)
\(174\) 0.140759 1.17425i 0.0106709 0.0890199i
\(175\) 0 0
\(176\) 8.88345 17.1804i 0.669615 1.29502i
\(177\) 1.84022 + 1.33700i 0.138319 + 0.100495i
\(178\) −15.7688 + 3.11215i −1.18192 + 0.233265i
\(179\) 4.37062 1.42010i 0.326675 0.106143i −0.141088 0.989997i \(-0.545060\pi\)
0.467763 + 0.883854i \(0.345060\pi\)
\(180\) 0 0
\(181\) −20.8534 6.77570i −1.55002 0.503633i −0.595904 0.803056i \(-0.703206\pi\)
−0.954121 + 0.299422i \(0.903206\pi\)
\(182\) 4.15808 + 0.498434i 0.308217 + 0.0369464i
\(183\) 0.394545 1.21428i 0.0291656 0.0897624i
\(184\) −4.34591 15.6777i −0.320384 1.15578i
\(185\) 0 0
\(186\) −0.310899 0.288253i −0.0227962 0.0211358i
\(187\) −12.4882 17.1885i −0.913225 1.25695i
\(188\) −1.73306 + 0.711804i −0.126396 + 0.0519137i
\(189\) −1.36354 + 1.87675i −0.0991827 + 0.136513i
\(190\) 0 0
\(191\) 5.50448 3.99924i 0.398290 0.289375i −0.370554 0.928811i \(-0.620832\pi\)
0.768844 + 0.639436i \(0.220832\pi\)
\(192\) −1.00889 1.67994i −0.0728102 0.121239i
\(193\) −5.92258 −0.426317 −0.213158 0.977018i \(-0.568375\pi\)
−0.213158 + 0.977018i \(0.568375\pi\)
\(194\) 18.3671 + 8.50061i 1.31868 + 0.610308i
\(195\) 0 0
\(196\) 0.673016 + 8.89065i 0.0480726 + 0.635047i
\(197\) −8.87830 + 2.88473i −0.632552 + 0.205529i −0.607705 0.794163i \(-0.707910\pi\)
−0.0248470 + 0.999691i \(0.507910\pi\)
\(198\) −14.7426 13.6687i −1.04771 0.971395i
\(199\) 21.5328 1.52642 0.763211 0.646149i \(-0.223622\pi\)
0.763211 + 0.646149i \(0.223622\pi\)
\(200\) 0 0
\(201\) 0.600452 0.0423526
\(202\) 9.70226 + 8.99557i 0.682649 + 0.632926i
\(203\) 5.17675 1.68203i 0.363337 0.118055i
\(204\) −2.14646 + 0.162485i −0.150282 + 0.0113763i
\(205\) 0 0
\(206\) −11.5327 5.33752i −0.803520 0.371883i
\(207\) −16.9107 −1.17538
\(208\) 5.22190 + 5.28462i 0.362074 + 0.366422i
\(209\) −11.7057 + 8.50470i −0.809701 + 0.588283i
\(210\) 0 0
\(211\) 0.604508 0.832033i 0.0416160 0.0572795i −0.787702 0.616057i \(-0.788729\pi\)
0.829318 + 0.558777i \(0.188729\pi\)
\(212\) −4.09280 9.96491i −0.281095 0.684393i
\(213\) −2.08421 2.86867i −0.142808 0.196558i
\(214\) −1.63965 1.52022i −0.112084 0.103920i
\(215\) 0 0
\(216\) −3.96582 + 1.09933i −0.269840 + 0.0748003i
\(217\) 0.602984 1.85579i 0.0409332 0.125980i
\(218\) −5.08338 0.609351i −0.344290 0.0412704i
\(219\) 0.749118 + 0.243403i 0.0506207 + 0.0164477i
\(220\) 0 0
\(221\) 7.76164 2.52191i 0.522105 0.169642i
\(222\) 2.68797 0.530502i 0.180405 0.0356050i
\(223\) 16.4740 + 11.9690i 1.10318 + 0.801506i 0.981576 0.191073i \(-0.0611968\pi\)
0.121602 + 0.992579i \(0.461197\pi\)
\(224\) 5.06651 7.46144i 0.338520 0.498538i
\(225\) 0 0
\(226\) −3.39939 + 28.3586i −0.226124 + 1.88639i
\(227\) 0.720114 0.991152i 0.0477956 0.0657850i −0.784450 0.620192i \(-0.787055\pi\)
0.832246 + 0.554407i \(0.187055\pi\)
\(228\) 0.110656 + 1.46178i 0.00732837 + 0.0968090i
\(229\) −0.927598 + 0.301395i −0.0612974 + 0.0199167i −0.339505 0.940604i \(-0.610260\pi\)
0.278208 + 0.960521i \(0.410260\pi\)
\(230\) 0 0
\(231\) −0.583537 + 1.79594i −0.0383939 + 0.118164i
\(232\) 9.04443 + 3.38275i 0.593796 + 0.222088i
\(233\) −0.781559 + 2.40539i −0.0512017 + 0.157583i −0.973388 0.229163i \(-0.926401\pi\)
0.922186 + 0.386746i \(0.126401\pi\)
\(234\) 6.74341 3.76328i 0.440830 0.246013i
\(235\) 0 0
\(236\) −14.1584 + 12.0195i −0.921632 + 0.782403i
\(237\) −1.52341 2.09679i −0.0989560 0.136201i
\(238\) −4.82801 8.65128i −0.312953 0.560779i
\(239\) 15.9729 + 11.6050i 1.03320 + 0.750665i 0.968947 0.247269i \(-0.0795331\pi\)
0.0642544 + 0.997934i \(0.479533\pi\)
\(240\) 0 0
\(241\) 12.9006 9.37282i 0.830999 0.603756i −0.0888425 0.996046i \(-0.528317\pi\)
0.919842 + 0.392289i \(0.128317\pi\)
\(242\) −15.8890 7.35371i −1.02139 0.472715i
\(243\) 6.43817i 0.413009i
\(244\) 8.87227 + 5.47343i 0.567989 + 0.350400i
\(245\) 0 0
\(246\) −0.576443 2.92075i −0.0367527 0.186220i
\(247\) −1.71747 5.28584i −0.109280 0.336330i
\(248\) 2.88685 1.91029i 0.183315 0.121304i
\(249\) −0.427835 −0.0271129
\(250\) 0 0
\(251\) 15.4738i 0.976698i −0.872648 0.488349i \(-0.837599\pi\)
0.872648 0.488349i \(-0.162401\pi\)
\(252\) −6.06713 7.14678i −0.382193 0.450205i
\(253\) −26.4512 + 8.59451i −1.66297 + 0.540332i
\(254\) −14.0665 + 2.77619i −0.882613 + 0.174194i
\(255\) 0 0
\(256\) 15.2748 4.76226i 0.954678 0.297641i
\(257\) 6.14189 0.383120 0.191560 0.981481i \(-0.438645\pi\)
0.191560 + 0.981481i \(0.438645\pi\)
\(258\) 3.44460 + 1.59422i 0.214451 + 0.0992516i
\(259\) 7.41195 + 10.2017i 0.460556 + 0.633901i
\(260\) 0 0
\(261\) 5.89974 8.12030i 0.365185 0.502634i
\(262\) 7.55993 4.21896i 0.467054 0.260648i
\(263\) −18.2699 + 13.2738i −1.12657 + 0.818500i −0.985192 0.171456i \(-0.945153\pi\)
−0.141377 + 0.989956i \(0.545153\pi\)
\(264\) −2.79374 + 1.84868i −0.171943 + 0.113778i
\(265\) 0 0
\(266\) −5.89171 + 3.28797i −0.361244 + 0.201599i
\(267\) 2.64767 + 0.860281i 0.162035 + 0.0526484i
\(268\) −1.15872 + 4.76375i −0.0707803 + 0.290992i
\(269\) 20.0823 + 6.52512i 1.22444 + 0.397844i 0.848696 0.528881i \(-0.177388\pi\)
0.375741 + 0.926725i \(0.377388\pi\)
\(270\) 0 0
\(271\) −1.68049 5.17201i −0.102082 0.314177i 0.886952 0.461861i \(-0.152818\pi\)
−0.989035 + 0.147684i \(0.952818\pi\)
\(272\) 2.85304 17.3427i 0.172991 1.05156i
\(273\) −0.586828 0.426355i −0.0355164 0.0258042i
\(274\) 0.396866 3.31077i 0.0239756 0.200011i
\(275\) 0 0
\(276\) −0.665996 + 2.73804i −0.0400882 + 0.164811i
\(277\) 1.58397 2.18015i 0.0951714 0.130992i −0.758776 0.651352i \(-0.774202\pi\)
0.853947 + 0.520360i \(0.174202\pi\)
\(278\) 5.40529 + 27.3878i 0.324188 + 1.64261i
\(279\) −1.11191 3.42210i −0.0665682 0.204876i
\(280\) 0 0
\(281\) −2.50433 + 7.70752i −0.149396 + 0.459792i −0.997550 0.0699568i \(-0.977714\pi\)
0.848154 + 0.529749i \(0.177714\pi\)
\(282\) 0.322202 + 0.0386228i 0.0191869 + 0.00229995i
\(283\) −20.0273 6.50726i −1.19050 0.386816i −0.354241 0.935154i \(-0.615261\pi\)
−0.836257 + 0.548338i \(0.815261\pi\)
\(284\) 26.7809 10.9995i 1.58915 0.652699i
\(285\) 0 0
\(286\) 8.63521 9.31359i 0.510611 0.550724i
\(287\) 11.0851 8.05382i 0.654334 0.475402i
\(288\) −0.528920 16.6227i −0.0311669 0.979504i
\(289\) −1.86629 1.35594i −0.109782 0.0797610i
\(290\) 0 0
\(291\) −2.06047 2.83600i −0.120787 0.166249i
\(292\) −3.37668 + 5.47350i −0.197605 + 0.320312i
\(293\) 26.3688i 1.54048i 0.637751 + 0.770242i \(0.279865\pi\)
−0.637751 + 0.770242i \(0.720135\pi\)
\(294\) 0.648637 1.40150i 0.0378292 0.0817369i
\(295\) 0 0
\(296\) −0.978325 + 22.3491i −0.0568640 + 1.29901i
\(297\) 2.17405 + 6.69105i 0.126151 + 0.388254i
\(298\) −13.0140 12.0661i −0.753882 0.698970i
\(299\) 10.6833i 0.617832i
\(300\) 0 0
\(301\) 17.4693i 1.00691i
\(302\) 9.75613 10.5226i 0.561402 0.605506i
\(303\) −0.708160 2.17949i −0.0406827 0.125209i
\(304\) −11.8108 1.94298i −0.677393 0.111438i
\(305\) 0 0
\(306\) −16.5796 7.67330i −0.947790 0.438654i
\(307\) 18.9501i 1.08154i 0.841171 + 0.540770i \(0.181867\pi\)
−0.841171 + 0.540770i \(0.818133\pi\)
\(308\) −13.1222 8.09527i −0.747707 0.461271i
\(309\) 1.29377 + 1.78072i 0.0735999 + 0.101302i
\(310\) 0 0
\(311\) 10.7210 + 7.78926i 0.607932 + 0.441689i 0.848686 0.528898i \(-0.177395\pi\)
−0.240753 + 0.970586i \(0.577395\pi\)
\(312\) −0.343744 1.24005i −0.0194607 0.0702039i
\(313\) −13.9133 + 10.1086i −0.786426 + 0.571372i −0.906901 0.421345i \(-0.861558\pi\)
0.120475 + 0.992716i \(0.461558\pi\)
\(314\) 7.99589 + 7.41348i 0.451234 + 0.418367i
\(315\) 0 0
\(316\) 19.5749 8.03984i 1.10118 0.452276i
\(317\) 2.20790 + 0.717389i 0.124008 + 0.0402926i 0.370364 0.928887i \(-0.379233\pi\)
−0.246356 + 0.969180i \(0.579233\pi\)
\(318\) −0.222077 + 1.85263i −0.0124535 + 0.103890i
\(319\) 5.10121 15.6999i 0.285613 0.879027i
\(320\) 0 0
\(321\) 0.119677 + 0.368327i 0.00667971 + 0.0205580i
\(322\) −12.7238 + 2.51118i −0.709068 + 0.139943i
\(323\) −7.72842 + 10.6373i −0.430021 + 0.591873i
\(324\) −16.4476 4.00068i −0.913757 0.222260i
\(325\) 0 0
\(326\) 13.2787 + 1.59173i 0.735437 + 0.0881578i
\(327\) 0.717415 + 0.521233i 0.0396731 + 0.0288242i
\(328\) 24.2845 + 1.06305i 1.34088 + 0.0586969i
\(329\) 0.461530 + 1.42044i 0.0254450 + 0.0783116i
\(330\) 0 0
\(331\) 10.8707 + 3.53209i 0.597505 + 0.194141i 0.592127 0.805844i \(-0.298288\pi\)
0.00537779 + 0.999986i \(0.498288\pi\)
\(332\) 0.825615 3.39427i 0.0453115 0.186285i
\(333\) 22.1148 + 7.18554i 1.21188 + 0.393765i
\(334\) −14.6331 26.2210i −0.800688 1.43475i
\(335\) 0 0
\(336\) −1.39609 + 0.700878i −0.0761630 + 0.0382361i
\(337\) −11.2300 + 8.15904i −0.611735 + 0.444451i −0.850025 0.526743i \(-0.823413\pi\)
0.238290 + 0.971194i \(0.423413\pi\)
\(338\) −6.58180 11.7939i −0.358003 0.641503i
\(339\) 2.90780 4.00225i 0.157930 0.217372i
\(340\) 0 0
\(341\) −3.47842 4.78764i −0.188367 0.259265i
\(342\) −5.22568 + 11.2910i −0.282572 + 0.610549i
\(343\) 18.2681 0.986387
\(344\) −19.2951 + 24.2516i −1.04032 + 1.30756i
\(345\) 0 0
\(346\) −4.94059 25.0332i −0.265608 1.34579i
\(347\) −15.4461 + 5.01875i −0.829191 + 0.269421i −0.692705 0.721221i \(-0.743581\pi\)
−0.136486 + 0.990642i \(0.543581\pi\)
\(348\) −1.08242 1.27504i −0.0580240 0.0683494i
\(349\) 10.1963i 0.545797i 0.962043 + 0.272899i \(0.0879824\pi\)
−0.962043 + 0.272899i \(0.912018\pi\)
\(350\) 0 0
\(351\) −2.70244 −0.144245
\(352\) −9.27547 25.7319i −0.494384 1.37152i
\(353\) −4.14740 12.7644i −0.220744 0.679379i −0.998696 0.0510557i \(-0.983741\pi\)
0.777952 0.628324i \(-0.216259\pi\)
\(354\) 3.15595 0.622862i 0.167737 0.0331047i
\(355\) 0 0
\(356\) −11.9345 + 19.3455i −0.632526 + 1.02531i
\(357\) 1.71600i 0.0908204i
\(358\) 2.72970 5.89802i 0.144269 0.311720i
\(359\) −6.13662 + 4.45851i −0.323878 + 0.235311i −0.737829 0.674988i \(-0.764149\pi\)
0.413950 + 0.910299i \(0.364149\pi\)
\(360\) 0 0
\(361\) −8.12712 5.90470i −0.427743 0.310774i
\(362\) −27.0777 + 15.1112i −1.42317 + 0.794228i
\(363\) 1.78248 + 2.45337i 0.0935558 + 0.128768i
\(364\) 4.51497 3.83290i 0.236649 0.200899i
\(365\) 0 0
\(366\) −0.879917 1.57672i −0.0459940 0.0824165i
\(367\) −2.70498 + 8.32507i −0.141199 + 0.434565i −0.996503 0.0835618i \(-0.973370\pi\)
0.855304 + 0.518127i \(0.173370\pi\)
\(368\) −20.4374 10.5675i −1.06537 0.550869i
\(369\) 7.80780 24.0299i 0.406458 1.25095i
\(370\) 0 0
\(371\) −8.16740 + 2.65375i −0.424030 + 0.137776i
\(372\) −0.597870 + 0.0452583i −0.0309981 + 0.00234653i
\(373\) −3.48778 + 4.80051i −0.180590 + 0.248561i −0.889709 0.456528i \(-0.849093\pi\)
0.709119 + 0.705089i \(0.249093\pi\)
\(374\) −29.8330 3.57612i −1.54263 0.184917i
\(375\) 0 0
\(376\) −0.928188 + 2.48169i −0.0478676 + 0.127983i
\(377\) 5.12999 + 3.72715i 0.264208 + 0.191958i
\(378\) 0.635225 + 3.21859i 0.0326725 + 0.165546i
\(379\) −5.13756 + 1.66929i −0.263899 + 0.0857458i −0.437978 0.898986i \(-0.644305\pi\)
0.174079 + 0.984732i \(0.444305\pi\)
\(380\) 0 0
\(381\) 2.36186 + 0.767414i 0.121002 + 0.0393158i
\(382\) 1.14522 9.55378i 0.0585948 0.488814i
\(383\) 8.42878 25.9411i 0.430690 1.32553i −0.466749 0.884390i \(-0.654575\pi\)
0.897439 0.441139i \(-0.145425\pi\)
\(384\) −2.71225 0.569016i −0.138409 0.0290375i
\(385\) 0 0
\(386\) −5.69467 + 6.14205i −0.289851 + 0.312622i
\(387\) 18.9346 + 26.0613i 0.962501 + 1.32477i
\(388\) 26.4759 10.8742i 1.34411 0.552055i
\(389\) −17.0621 + 23.4839i −0.865081 + 1.19068i 0.115253 + 0.993336i \(0.463232\pi\)
−0.980334 + 0.197346i \(0.936768\pi\)
\(390\) 0 0
\(391\) −20.4469 + 14.8556i −1.03405 + 0.751278i
\(392\) 9.86721 + 7.85057i 0.498370 + 0.396513i
\(393\) −1.49953 −0.0756412
\(394\) −5.54501 + 11.9810i −0.279354 + 0.603594i
\(395\) 0 0
\(396\) −28.3505 + 2.14611i −1.42467 + 0.107846i
\(397\) 10.3426 3.36051i 0.519080 0.168659i −0.0377479 0.999287i \(-0.512018\pi\)
0.556828 + 0.830628i \(0.312018\pi\)
\(398\) 20.7042 22.3307i 1.03781 1.11934i
\(399\) 1.16863 0.0585048
\(400\) 0 0
\(401\) −27.9140 −1.39396 −0.696980 0.717090i \(-0.745474\pi\)
−0.696980 + 0.717090i \(0.745474\pi\)
\(402\) 0.577345 0.622702i 0.0287954 0.0310576i
\(403\) 2.16191 0.702447i 0.107692 0.0349914i
\(404\) 18.6578 1.41238i 0.928260 0.0702686i
\(405\) 0 0
\(406\) 3.23318 6.98588i 0.160460 0.346703i
\(407\) 38.2432 1.89564
\(408\) −1.89535 + 2.38223i −0.0938340 + 0.117938i
\(409\) −8.51534 + 6.18676i −0.421057 + 0.305916i −0.778063 0.628186i \(-0.783797\pi\)
0.357006 + 0.934102i \(0.383797\pi\)
\(410\) 0 0
\(411\) −0.339476 + 0.467248i −0.0167451 + 0.0230476i
\(412\) −16.6242 + 6.82790i −0.819014 + 0.336387i
\(413\) 8.70236 + 11.9778i 0.428215 + 0.589388i
\(414\) −16.2599 + 17.5373i −0.799133 + 0.861913i
\(415\) 0 0
\(416\) 10.5014 0.334144i 0.514873 0.0163828i
\(417\) 1.49417 4.59858i 0.0731698 0.225193i
\(418\) −2.43541 + 20.3169i −0.119120 + 0.993732i
\(419\) 22.7262 + 7.38420i 1.11025 + 0.360742i 0.806039 0.591863i \(-0.201607\pi\)
0.304211 + 0.952605i \(0.401607\pi\)
\(420\) 0 0
\(421\) 30.5748 9.93434i 1.49012 0.484170i 0.553003 0.833179i \(-0.313482\pi\)
0.937119 + 0.349009i \(0.113482\pi\)
\(422\) −0.281620 1.42692i −0.0137090 0.0694615i
\(423\) 2.22812 + 1.61882i 0.108335 + 0.0787099i
\(424\) −14.2695 5.33698i −0.692987 0.259187i
\(425\) 0 0
\(426\) −4.97898 0.596836i −0.241232 0.0289168i
\(427\) 4.88471 6.72323i 0.236388 0.325360i
\(428\) −3.15311 + 0.238688i −0.152411 + 0.0115374i
\(429\) −2.09218 + 0.679791i −0.101012 + 0.0328206i
\(430\) 0 0
\(431\) 1.14163 3.51358i 0.0549904 0.169243i −0.919789 0.392413i \(-0.871640\pi\)
0.974780 + 0.223170i \(0.0716404\pi\)
\(432\) −2.67314 + 5.16981i −0.128611 + 0.248732i
\(433\) 3.09474 9.52464i 0.148724 0.457725i −0.848747 0.528799i \(-0.822643\pi\)
0.997471 + 0.0710739i \(0.0226426\pi\)
\(434\) −1.34478 2.40971i −0.0645515 0.115670i
\(435\) 0 0
\(436\) −5.51969 + 4.68584i −0.264345 + 0.224411i
\(437\) 10.1169 + 13.9248i 0.483959 + 0.666113i
\(438\) 0.972713 0.542840i 0.0464780 0.0259379i
\(439\) −23.2982 16.9271i −1.11196 0.807887i −0.128989 0.991646i \(-0.541173\pi\)
−0.982971 + 0.183759i \(0.941173\pi\)
\(440\) 0 0
\(441\) 10.6035 7.70389i 0.504929 0.366852i
\(442\) 4.84760 10.4741i 0.230577 0.498203i
\(443\) 21.7711i 1.03438i −0.855872 0.517188i \(-0.826979\pi\)
0.855872 0.517188i \(-0.173021\pi\)
\(444\) 2.03437 3.29766i 0.0965471 0.156500i
\(445\) 0 0
\(446\) 28.2525 5.57596i 1.33780 0.264030i
\(447\) 0.949882 + 2.92344i 0.0449279 + 0.138274i
\(448\) −2.86638 12.4286i −0.135424 0.587194i
\(449\) 2.36468 0.111596 0.0557981 0.998442i \(-0.482230\pi\)
0.0557981 + 0.998442i \(0.482230\pi\)
\(450\) 0 0
\(451\) 41.5550i 1.95675i
\(452\) 26.1409 + 30.7927i 1.22956 + 1.44837i
\(453\) −2.36376 + 0.768034i −0.111059 + 0.0360854i
\(454\) −0.335477 1.69981i −0.0157447 0.0797759i
\(455\) 0 0
\(456\) 1.62235 + 1.29078i 0.0759734 + 0.0604461i
\(457\) 11.3909 0.532843 0.266422 0.963857i \(-0.414159\pi\)
0.266422 + 0.963857i \(0.414159\pi\)
\(458\) −0.579339 + 1.25177i −0.0270707 + 0.0584912i
\(459\) 3.75784 + 5.17223i 0.175401 + 0.241419i
\(460\) 0 0
\(461\) 21.5814 29.7043i 1.00515 1.38347i 0.0830335 0.996547i \(-0.473539\pi\)
0.922114 0.386919i \(-0.126461\pi\)
\(462\) 1.30141 + 2.33199i 0.0605470 + 0.108494i
\(463\) −12.3951 + 9.00559i −0.576051 + 0.418525i −0.837298 0.546747i \(-0.815866\pi\)
0.261247 + 0.965272i \(0.415866\pi\)
\(464\) 12.2045 6.12700i 0.566579 0.284439i
\(465\) 0 0
\(466\) 1.74304 + 3.12335i 0.0807448 + 0.144686i
\(467\) 28.7275 + 9.33412i 1.32935 + 0.431931i 0.885695 0.464267i \(-0.153682\pi\)
0.443653 + 0.896199i \(0.353682\pi\)
\(468\) 2.58118 10.6117i 0.119315 0.490528i
\(469\) 3.71699 + 1.20772i 0.171634 + 0.0557674i
\(470\) 0 0
\(471\) −0.583613 1.79618i −0.0268915 0.0827634i
\(472\) −1.14865 + 26.2400i −0.0528709 + 1.20779i
\(473\) 42.8620 + 31.1411i 1.97080 + 1.43187i
\(474\) −3.63927 0.436245i −0.167157 0.0200374i
\(475\) 0 0
\(476\) −13.6141 3.31146i −0.624000 0.151780i
\(477\) −9.30807 + 12.8115i −0.426187 + 0.586596i
\(478\) 27.3933 5.40637i 1.25294 0.247282i
\(479\) 10.3930 + 31.9863i 0.474868 + 1.46149i 0.846136 + 0.532967i \(0.178923\pi\)
−0.371268 + 0.928526i \(0.621077\pi\)
\(480\) 0 0
\(481\) −4.53945 + 13.9710i −0.206981 + 0.637023i
\(482\) 2.68401 22.3907i 0.122253 1.01987i
\(483\) 2.13640 + 0.694158i 0.0972095 + 0.0315853i
\(484\) −22.9038 + 9.40707i −1.04108 + 0.427594i
\(485\) 0 0
\(486\) 6.67674 + 6.19042i 0.302863 + 0.280803i
\(487\) −28.8574 + 20.9661i −1.30765 + 0.950065i −0.999999 0.00143291i \(-0.999544\pi\)
−0.307654 + 0.951498i \(0.599544\pi\)
\(488\) 14.2071 3.93824i 0.643125 0.178276i
\(489\) −1.87401 1.36155i −0.0847458 0.0615714i
\(490\) 0 0
\(491\) 19.3917 + 26.6904i 0.875135 + 1.20452i 0.977745 + 0.209798i \(0.0672808\pi\)
−0.102610 + 0.994722i \(0.532719\pi\)
\(492\) −3.58324 2.21055i −0.161545 0.0996592i
\(493\) 15.0011i 0.675615i
\(494\) −7.13309 3.30132i −0.320933 0.148533i
\(495\) 0 0
\(496\) 0.794678 4.83060i 0.0356821 0.216900i
\(497\) −7.13200 21.9501i −0.319914 0.984594i
\(498\) −0.411371 + 0.443689i −0.0184340 + 0.0198822i
\(499\) 34.7937i 1.55758i 0.627285 + 0.778790i \(0.284166\pi\)
−0.627285 + 0.778790i \(0.715834\pi\)
\(500\) 0 0
\(501\) 5.20100i 0.232363i
\(502\) −16.0472 14.8783i −0.716221 0.664053i
\(503\) −5.30944 16.3408i −0.236736 0.728600i −0.996886 0.0788520i \(-0.974875\pi\)
0.760150 0.649748i \(-0.225125\pi\)
\(504\) −13.2453 0.579808i −0.589991 0.0258267i
\(505\) 0 0
\(506\) −16.5203 + 35.6951i −0.734417 + 1.58684i
\(507\) 2.33934i 0.103894i
\(508\) −10.6462 + 17.2571i −0.472347 + 0.765661i
\(509\) −3.41389 4.69882i −0.151318 0.208271i 0.726628 0.687031i \(-0.241086\pi\)
−0.877946 + 0.478760i \(0.841086\pi\)
\(510\) 0 0
\(511\) 4.14770 + 3.01348i 0.183484 + 0.133309i
\(512\) 9.74831 20.4199i 0.430819 0.902438i
\(513\) 3.52240 2.55917i 0.155518 0.112990i
\(514\) 5.90553 6.36947i 0.260482 0.280945i
\(515\) 0 0
\(516\) 4.96533 2.03937i 0.218587 0.0897781i
\(517\) 4.30788 + 1.39972i 0.189461 + 0.0615595i
\(518\) 17.7064 + 2.12249i 0.777975 + 0.0932569i
\(519\) −1.36571 + 4.20323i −0.0599481 + 0.184501i
\(520\) 0 0
\(521\) 1.56244 + 4.80869i 0.0684517 + 0.210673i 0.979431 0.201779i \(-0.0646724\pi\)
−0.910979 + 0.412452i \(0.864672\pi\)
\(522\) −2.74849 13.9262i −0.120298 0.609532i
\(523\) −11.5984 + 15.9638i −0.507161 + 0.698047i −0.983437 0.181249i \(-0.941986\pi\)
0.476277 + 0.879296i \(0.341986\pi\)
\(524\) 2.89372 11.8967i 0.126413 0.519708i
\(525\) 0 0
\(526\) −3.80111 + 31.7099i −0.165736 + 1.38262i
\(527\) −4.35064 3.16092i −0.189517 0.137692i
\(528\) −0.769048 + 4.67480i −0.0334685 + 0.203445i
\(529\) 3.11638 + 9.59125i 0.135495 + 0.417011i
\(530\) 0 0
\(531\) 25.9650 + 8.43653i 1.12678 + 0.366114i
\(532\) −2.25517 + 9.27147i −0.0977741 + 0.401969i
\(533\) 15.1809 + 4.93257i 0.657557 + 0.213653i
\(534\) 3.43794 1.91861i 0.148774 0.0830263i
\(535\) 0 0
\(536\) 3.82614 + 5.78209i 0.165264 + 0.249748i
\(537\) −0.910692 + 0.661657i −0.0392993 + 0.0285526i
\(538\) 26.0764 14.5524i 1.12423 0.627398i
\(539\) 12.6703 17.4392i 0.545749 0.751159i
\(540\) 0 0
\(541\) −12.7304 17.5219i −0.547322 0.753324i 0.442324 0.896855i \(-0.354154\pi\)
−0.989646 + 0.143532i \(0.954154\pi\)
\(542\) −6.97948 3.23022i −0.299794 0.138750i
\(543\) 5.37093 0.230489
\(544\) −15.2421 19.6341i −0.653500 0.841805i
\(545\) 0 0
\(546\) −1.00640 + 0.198625i −0.0430699 + 0.00850034i
\(547\) −1.61054 + 0.523296i −0.0688618 + 0.0223745i −0.343245 0.939246i \(-0.611526\pi\)
0.274384 + 0.961620i \(0.411526\pi\)
\(548\) −3.05186 3.59494i −0.130369 0.153568i
\(549\) 15.3244i 0.654029i
\(550\) 0 0
\(551\) −10.2161 −0.435219
\(552\) 2.19914 + 3.32335i 0.0936014 + 0.141451i
\(553\) −5.21298 16.0439i −0.221679 0.682257i
\(554\) −0.737917 3.73891i −0.0313511 0.158851i
\(555\) 0 0
\(556\) 33.5999 + 20.7283i 1.42495 + 0.879074i
\(557\) 1.82388i 0.0772805i 0.999253 + 0.0386402i \(0.0123026\pi\)
−0.999253 + 0.0386402i \(0.987697\pi\)
\(558\) −4.61803 2.13730i −0.195497 0.0904792i
\(559\) −16.4642 + 11.9619i −0.696360 + 0.505935i
\(560\) 0 0
\(561\) 4.21032 + 3.05898i 0.177760 + 0.129150i
\(562\) 5.58517 + 10.0080i 0.235596 + 0.422164i
\(563\) 24.8339 + 34.1809i 1.04662 + 1.44055i 0.891700 + 0.452627i \(0.149513\pi\)
0.154924 + 0.987926i \(0.450487\pi\)
\(564\) 0.349857 0.297005i 0.0147316 0.0125062i
\(565\) 0 0
\(566\) −26.0050 + 14.5126i −1.09307 + 0.610008i
\(567\) −4.16986 + 12.8335i −0.175118 + 0.538956i
\(568\) 14.3432 38.3495i 0.601829 1.60911i
\(569\) −8.58452 + 26.4204i −0.359882 + 1.10760i 0.593243 + 0.805024i \(0.297847\pi\)
−0.953125 + 0.302578i \(0.902153\pi\)
\(570\) 0 0
\(571\) −26.0253 + 8.45612i −1.08912 + 0.353878i −0.797908 0.602780i \(-0.794060\pi\)
−0.291216 + 0.956657i \(0.594060\pi\)
\(572\) −1.35580 17.9104i −0.0566890 0.748870i
\(573\) −0.979614 + 1.34832i −0.0409239 + 0.0563270i
\(574\) 2.30630 19.2398i 0.0962630 0.803053i
\(575\) 0 0
\(576\) −17.7473 15.4345i −0.739469 0.643106i
\(577\) −7.00015 5.08591i −0.291420 0.211729i 0.432463 0.901652i \(-0.357645\pi\)
−0.723883 + 0.689923i \(0.757645\pi\)
\(578\) −3.20065 + 0.631685i −0.133130 + 0.0262746i
\(579\) 1.37973 0.448303i 0.0573398 0.0186308i
\(580\) 0 0
\(581\) −2.64843 0.860528i −0.109875 0.0357007i
\(582\) −4.92227 0.590039i −0.204035 0.0244579i
\(583\) −8.04822 + 24.7699i −0.333323 + 1.02586i
\(584\) 2.42958 + 8.76466i 0.100537 + 0.362684i
\(585\) 0 0
\(586\) 27.3459 + 25.3541i 1.12965 + 1.04737i
\(587\) 1.23640 + 1.70175i 0.0510315 + 0.0702388i 0.833770 0.552112i \(-0.186178\pi\)
−0.782739 + 0.622351i \(0.786178\pi\)
\(588\) −0.829754 2.02024i −0.0342185 0.0833131i
\(589\) −2.15266 + 2.96288i −0.0886986 + 0.122083i
\(590\) 0 0
\(591\) 1.84994 1.34406i 0.0760965 0.0552874i
\(592\) 22.2365 + 22.5036i 0.913915 + 0.924892i
\(593\) 39.8777 1.63758 0.818791 0.574091i \(-0.194645\pi\)
0.818791 + 0.574091i \(0.194645\pi\)
\(594\) 9.02938 + 4.17895i 0.370480 + 0.171464i
\(595\) 0 0
\(596\) −25.0264 + 1.89448i −1.02512 + 0.0776010i
\(597\) −5.01632 + 1.62990i −0.205304 + 0.0667074i
\(598\) −11.0792 10.2722i −0.453061 0.420061i
\(599\) −13.7239 −0.560745 −0.280373 0.959891i \(-0.590458\pi\)
−0.280373 + 0.959891i \(0.590458\pi\)
\(600\) 0 0
\(601\) 25.6448 1.04607 0.523036 0.852310i \(-0.324799\pi\)
0.523036 + 0.852310i \(0.324799\pi\)
\(602\) 18.1166 + 16.7970i 0.738377 + 0.684595i
\(603\) 6.85416 2.22705i 0.279123 0.0906926i
\(604\) −1.53180 20.2353i −0.0623279 0.823362i
\(605\) 0 0
\(606\) −2.94116 1.36122i −0.119477 0.0552958i
\(607\) −9.08062 −0.368571 −0.184286 0.982873i \(-0.558997\pi\)
−0.184286 + 0.982873i \(0.558997\pi\)
\(608\) −13.3712 + 10.3802i −0.542275 + 0.420973i
\(609\) −1.07866 + 0.783696i −0.0437097 + 0.0317570i
\(610\) 0 0
\(611\) −1.02269 + 1.40761i −0.0413736 + 0.0569459i
\(612\) −23.8992 + 9.81590i −0.966067 + 0.396784i
\(613\) −24.1729 33.2712i −0.976335 1.34381i −0.938780 0.344516i \(-0.888043\pi\)
−0.0375550 0.999295i \(-0.511957\pi\)
\(614\) 19.6523 + 18.2209i 0.793102 + 0.735334i
\(615\) 0 0
\(616\) −21.0125 + 5.82470i −0.846617 + 0.234684i
\(617\) −11.6227 + 35.7710i −0.467912 + 1.44009i 0.387370 + 0.921924i \(0.373384\pi\)
−0.855283 + 0.518162i \(0.826616\pi\)
\(618\) 3.09069 + 0.370484i 0.124326 + 0.0149031i
\(619\) −23.5409 7.64891i −0.946190 0.307436i −0.205024 0.978757i \(-0.565727\pi\)
−0.741167 + 0.671321i \(0.765727\pi\)
\(620\) 0 0
\(621\) 7.95948 2.58619i 0.319403 0.103780i
\(622\) 18.3863 3.62875i 0.737225 0.145500i
\(623\) 14.6596 + 10.6508i 0.587324 + 0.426716i
\(624\) −1.61651 0.835847i −0.0647123 0.0334606i
\(625\) 0 0
\(626\) −2.89471 + 24.1485i −0.115696 + 0.965166i
\(627\) 2.08323 2.86732i 0.0831961 0.114510i
\(628\) 15.3764 1.16398i 0.613584 0.0464479i
\(629\) 33.0516 10.7391i 1.31785 0.428196i
\(630\) 0 0
\(631\) 2.94258 9.05633i 0.117142 0.360527i −0.875246 0.483679i \(-0.839300\pi\)
0.992388 + 0.123152i \(0.0393003\pi\)
\(632\) 10.4839 28.0307i 0.417027 1.11500i
\(633\) −0.0778472 + 0.239589i −0.00309415 + 0.00952281i
\(634\) 2.86691 1.59993i 0.113859 0.0635413i
\(635\) 0 0
\(636\) 1.70775 + 2.01164i 0.0677166 + 0.0797668i
\(637\) 4.86692 + 6.69875i 0.192835 + 0.265414i
\(638\) −11.3768 20.3860i −0.450411 0.807089i
\(639\) −34.4310 25.0156i −1.36207 0.989602i
\(640\) 0 0
\(641\) −16.5944 + 12.0565i −0.655440 + 0.476205i −0.865120 0.501565i \(-0.832758\pi\)
0.209680 + 0.977770i \(0.432758\pi\)
\(642\) 0.497047 + 0.230042i 0.0196169 + 0.00907903i
\(643\) 3.19936i 0.126170i −0.998008 0.0630852i \(-0.979906\pi\)
0.998008 0.0630852i \(-0.0200940\pi\)
\(644\) −9.62990 + 15.6098i −0.379471 + 0.615112i
\(645\) 0 0
\(646\) 3.60041 + 18.2427i 0.141656 + 0.717750i
\(647\) −2.25397 6.93701i −0.0886128 0.272722i 0.896924 0.442185i \(-0.145797\pi\)
−0.985537 + 0.169463i \(0.945797\pi\)
\(648\) −19.9636 + 13.2104i −0.784245 + 0.518952i
\(649\) 44.9013 1.76253
\(650\) 0 0
\(651\) 0.477971i 0.0187331i
\(652\) 14.4184 12.2402i 0.564667 0.479364i
\(653\) −34.9692 + 11.3622i −1.36845 + 0.444637i −0.898856 0.438244i \(-0.855601\pi\)
−0.469596 + 0.882881i \(0.655601\pi\)
\(654\) 1.23035 0.242825i 0.0481107 0.00949519i
\(655\) 0 0
\(656\) 24.4524 24.1622i 0.954705 0.943375i
\(657\) 9.45395 0.368834
\(658\) 1.91685 + 0.887150i 0.0747265 + 0.0345847i
\(659\) 6.86949 + 9.45505i 0.267598 + 0.368316i 0.921577 0.388196i \(-0.126902\pi\)
−0.653979 + 0.756512i \(0.726902\pi\)
\(660\) 0 0
\(661\) −11.7497 + 16.1721i −0.457012 + 0.629023i −0.973886 0.227039i \(-0.927096\pi\)
0.516874 + 0.856062i \(0.327096\pi\)
\(662\) 14.1153 7.87730i 0.548607 0.306160i
\(663\) −1.61727 + 1.17502i −0.0628096 + 0.0456338i
\(664\) −2.72621 4.11986i −0.105797 0.159882i
\(665\) 0 0
\(666\) 28.7156 16.0253i 1.11271 0.620966i
\(667\) −18.6762 6.06826i −0.723144 0.234964i
\(668\) −41.2626 10.0366i −1.59650 0.388329i
\(669\) −4.74378 1.54135i −0.183405 0.0595919i
\(670\) 0 0
\(671\) −7.78830 23.9699i −0.300664 0.925348i
\(672\) −0.615517 + 2.12173i −0.0237441 + 0.0818475i
\(673\) 5.02552 + 3.65125i 0.193720 + 0.140746i 0.680417 0.732825i \(-0.261799\pi\)
−0.486698 + 0.873571i \(0.661799\pi\)
\(674\) −2.33643 + 19.4911i −0.0899959 + 0.750771i
\(675\) 0 0
\(676\) −18.5594 4.51435i −0.713824 0.173629i
\(677\) −4.52233 + 6.22446i −0.173807 + 0.239225i −0.887030 0.461713i \(-0.847235\pi\)
0.713222 + 0.700938i \(0.247235\pi\)
\(678\) −1.35465 6.86378i −0.0520249 0.263602i
\(679\) −7.05078 21.7001i −0.270584 0.832772i
\(680\) 0 0
\(681\) −0.0927347 + 0.285408i −0.00355360 + 0.0109369i
\(682\) −8.30961 0.996083i −0.318191 0.0381420i
\(683\) −25.3851 8.24813i −0.971336 0.315606i −0.219981 0.975504i \(-0.570599\pi\)
−0.751355 + 0.659898i \(0.770599\pi\)
\(684\) 6.68483 + 16.2758i 0.255601 + 0.622323i
\(685\) 0 0
\(686\) 17.5651 18.9451i 0.670641 0.723326i
\(687\) 0.193281 0.140427i 0.00737413 0.00535762i
\(688\) 6.59767 + 43.3284i 0.251534 + 1.65188i
\(689\) −8.09362 5.88036i −0.308342 0.224024i
\(690\) 0 0
\(691\) −29.7127 40.8960i −1.13033 1.55576i −0.787451 0.616378i \(-0.788600\pi\)
−0.342874 0.939381i \(-0.611400\pi\)
\(692\) −30.7113 18.9462i −1.16747 0.720226i
\(693\) 22.6650i 0.860971i
\(694\) −9.64700 + 20.8441i −0.366195 + 0.791231i
\(695\) 0 0
\(696\) −2.36306 0.103442i −0.0895714 0.00392097i
\(697\) −11.6691 35.9138i −0.441999 1.36033i
\(698\) 10.5742 + 9.80396i 0.400238 + 0.371085i
\(699\) 0.619523i 0.0234325i
\(700\) 0 0
\(701\) 45.0199i 1.70038i 0.526477 + 0.850190i \(0.323513\pi\)
−0.526477 + 0.850190i \(0.676487\pi\)
\(702\) −2.59844 + 2.80258i −0.0980718 + 0.105776i
\(703\) −7.31355 22.5088i −0.275836 0.848936i
\(704\) −35.6040 15.1225i −1.34187 0.569952i
\(705\) 0 0
\(706\) −17.2252 7.97210i −0.648278 0.300034i
\(707\) 14.9161i 0.560978i
\(708\) 2.38856 3.87178i 0.0897674 0.145510i
\(709\) 23.2922 + 32.0589i 0.874756 + 1.20400i 0.977846 + 0.209326i \(0.0671271\pi\)
−0.103090 + 0.994672i \(0.532873\pi\)
\(710\) 0 0
\(711\) −25.1666 18.2846i −0.943822 0.685727i
\(712\) 8.58710 + 30.9777i 0.321815 + 1.16094i
\(713\) −5.69523 + 4.13783i −0.213288 + 0.154963i
\(714\) 1.77959 + 1.64997i 0.0665994 + 0.0617484i
\(715\) 0 0
\(716\) −3.49191 8.50191i −0.130499 0.317731i
\(717\) −4.59950 1.49447i −0.171771 0.0558119i
\(718\) −1.27674 + 10.6509i −0.0476476 + 0.397490i
\(719\) 6.66328 20.5075i 0.248499 0.764800i −0.746543 0.665337i \(-0.768288\pi\)
0.995041 0.0994625i \(-0.0317123\pi\)
\(720\) 0 0
\(721\) 4.42717 + 13.6254i 0.164877 + 0.507438i
\(722\) −13.9379 + 2.75080i −0.518714 + 0.102374i
\(723\) −2.29587 + 3.16000i −0.0853845 + 0.117522i
\(724\) −10.3646 + 42.6108i −0.385196 + 1.58362i
\(725\) 0 0
\(726\) 4.25816 + 0.510431i 0.158035 + 0.0189439i
\(727\) 32.8992 + 23.9026i 1.22016 + 0.886500i 0.996114 0.0880780i \(-0.0280725\pi\)
0.224049 + 0.974578i \(0.428072\pi\)
\(728\) 0.366293 8.36767i 0.0135757 0.310127i
\(729\) 7.35885 + 22.6482i 0.272550 + 0.838823i
\(730\) 0 0
\(731\) 45.7881 + 14.8775i 1.69353 + 0.550263i
\(732\) −2.48120 0.603522i −0.0917079 0.0223068i
\(733\) −1.01139 0.328621i −0.0373566 0.0121379i 0.290279 0.956942i \(-0.406252\pi\)
−0.327636 + 0.944804i \(0.606252\pi\)
\(734\) 6.03267 + 10.8099i 0.222670 + 0.399001i
\(735\) 0 0
\(736\) −30.6100 + 11.0338i −1.12830 + 0.406712i
\(737\) 9.58920 6.96696i 0.353223 0.256631i
\(738\) −17.4130 31.2023i −0.640982 1.14857i
\(739\) −4.06593 + 5.59628i −0.149568 + 0.205862i −0.877226 0.480077i \(-0.840609\pi\)
0.727658 + 0.685940i \(0.240609\pi\)
\(740\) 0 0
\(741\) 0.800210 + 1.10140i 0.0293965 + 0.0404608i
\(742\) −5.10102 + 11.0217i −0.187264 + 0.404618i
\(743\) −31.5085 −1.15594 −0.577968 0.816059i \(-0.696154\pi\)
−0.577968 + 0.816059i \(0.696154\pi\)
\(744\) −0.527927 + 0.663540i −0.0193547 + 0.0243266i
\(745\) 0 0
\(746\) 1.62484 + 8.23280i 0.0594895 + 0.301424i
\(747\) −4.88374 + 1.58682i −0.178687 + 0.0580588i
\(748\) −32.3936 + 27.5000i −1.18443 + 1.00550i
\(749\) 2.52077i 0.0921071i
\(750\) 0 0
\(751\) −31.8120 −1.16084 −0.580418 0.814319i \(-0.697111\pi\)
−0.580418 + 0.814319i \(0.697111\pi\)
\(752\) 1.68118 + 3.34877i 0.0613064 + 0.122117i
\(753\) 1.17127 + 3.60480i 0.0426835 + 0.131366i
\(754\) 8.79784 1.73635i 0.320398 0.0632343i
\(755\) 0 0
\(756\) 3.94863 + 2.43597i 0.143610 + 0.0885952i
\(757\) 32.4034i 1.17772i −0.808235 0.588860i \(-0.799577\pi\)
0.808235 0.588860i \(-0.200423\pi\)
\(758\) −3.20870 + 6.93298i −0.116545 + 0.251817i
\(759\) 5.51155 4.00438i 0.200057 0.145350i
\(760\) 0 0
\(761\) 32.4295 + 23.5614i 1.17557 + 0.854099i 0.991665 0.128845i \(-0.0411271\pi\)
0.183902 + 0.982945i \(0.441127\pi\)
\(762\) 3.06682 1.71149i 0.111099 0.0620009i
\(763\) 3.39264 + 4.66957i 0.122822 + 0.169050i
\(764\) −8.80665 10.3738i −0.318613 0.375311i
\(765\) 0 0
\(766\) −18.7979 33.6839i −0.679197 1.21705i
\(767\) −5.32977 + 16.4033i −0.192447 + 0.592290i
\(768\) −3.19798 + 2.26563i −0.115397 + 0.0817540i
\(769\) 7.33782 22.5835i 0.264609 0.814382i −0.727175 0.686453i \(-0.759167\pi\)
0.991783 0.127929i \(-0.0408331\pi\)
\(770\) 0 0
\(771\) −1.43082 + 0.464902i −0.0515298 + 0.0167430i
\(772\) 0.894113 + 11.8114i 0.0321798 + 0.425101i
\(773\) 24.9098 34.2854i 0.895943 1.23316i −0.0758016 0.997123i \(-0.524152\pi\)
0.971744 0.236036i \(-0.0758484\pi\)
\(774\) 45.2329 + 5.42213i 1.62586 + 0.194894i
\(775\) 0 0
\(776\) 14.1799 37.9127i 0.509029 1.36099i
\(777\) −2.49890 1.81556i −0.0896476 0.0651328i
\(778\) 7.94864 + 40.2745i 0.284972 + 1.44391i
\(779\) −24.4580 + 7.94690i −0.876300 + 0.284727i
\(780\) 0 0
\(781\) −66.5696 21.6298i −2.38205 0.773974i
\(782\) −4.25405 + 35.4885i −0.152124 + 1.26907i
\(783\) −1.53502 + 4.72430i −0.0548571 + 0.168833i
\(784\) 17.6290 2.68438i 0.629606 0.0958709i
\(785\) 0 0
\(786\) −1.44182 + 1.55509i −0.0514281 + 0.0554683i
\(787\) −17.2985 23.8094i −0.616627 0.848714i 0.380475 0.924791i \(-0.375760\pi\)
−0.997102 + 0.0760773i \(0.975760\pi\)
\(788\) 7.09333 + 17.2704i 0.252690 + 0.615234i
\(789\) 3.25143 4.47521i 0.115754 0.159322i
\(790\) 0 0
\(791\) 26.0501 18.9265i 0.926236 0.672950i
\(792\) −25.0339 + 31.4645i −0.889540 + 1.11804i
\(793\) 9.68116 0.343788
\(794\) 6.45955 13.9570i 0.229241 0.495316i
\(795\) 0 0
\(796\) −3.25074 42.9428i −0.115219 1.52207i
\(797\) −9.01881 + 2.93039i −0.319462 + 0.103800i −0.464359 0.885647i \(-0.653715\pi\)
0.144896 + 0.989447i \(0.453715\pi\)
\(798\) 1.12366 1.21194i 0.0397772 0.0429021i
\(799\) 4.11613 0.145618
\(800\) 0 0
\(801\) 33.4139 1.18062
\(802\) −26.8398 + 28.9484i −0.947748 + 1.02220i
\(803\) 14.7876 4.80477i 0.521842 0.169557i
\(804\) −0.0906482 1.19748i −0.00319692 0.0422318i
\(805\) 0 0
\(806\) 1.35024 2.91743i 0.0475601 0.102762i
\(807\) −5.17230 −0.182074
\(808\) 16.4751 20.7072i 0.579592 0.728477i
\(809\) 18.6979 13.5848i 0.657383 0.477617i −0.208395 0.978045i \(-0.566824\pi\)
0.865778 + 0.500428i \(0.166824\pi\)
\(810\) 0 0
\(811\) −22.3488 + 30.7604i −0.784771 + 1.08014i 0.209968 + 0.977708i \(0.432664\pi\)
−0.994740 + 0.102437i \(0.967336\pi\)
\(812\) −4.13598 10.0700i −0.145144 0.353389i
\(813\) 0.782978 + 1.07768i 0.0274602 + 0.0377958i
\(814\) 36.7715 39.6603i 1.28884 1.39009i
\(815\) 0 0
\(816\) 0.648088 + 4.25614i 0.0226876 + 0.148995i
\(817\) 10.1319 31.1827i 0.354469 1.09094i
\(818\) −1.77164 + 14.7796i −0.0619441 + 0.516755i
\(819\) −8.27997 2.69033i −0.289326 0.0940076i
\(820\) 0 0
\(821\) 7.25976 2.35884i 0.253367 0.0823240i −0.179580 0.983743i \(-0.557474\pi\)
0.432947 + 0.901419i \(0.357474\pi\)
\(822\) 0.158150 + 0.801322i 0.00551612 + 0.0279493i
\(823\) −18.1266 13.1698i −0.631855 0.459069i 0.225188 0.974315i \(-0.427700\pi\)
−0.857042 + 0.515246i \(0.827700\pi\)
\(824\) −8.90353 + 23.8053i −0.310169 + 0.829298i
\(825\) 0 0
\(826\) 20.7891 + 2.49201i 0.723345 + 0.0867083i
\(827\) −18.6693 + 25.6961i −0.649196 + 0.893542i −0.999064 0.0432571i \(-0.986227\pi\)
0.349868 + 0.936799i \(0.386227\pi\)
\(828\) 2.55295 + 33.7249i 0.0887212 + 1.17202i
\(829\) −1.36860 + 0.444686i −0.0475335 + 0.0154446i −0.332687 0.943037i \(-0.607955\pi\)
0.285154 + 0.958482i \(0.407955\pi\)
\(830\) 0 0
\(831\) −0.203980 + 0.627786i −0.00707599 + 0.0217777i
\(832\) 9.75075 11.2118i 0.338046 0.388699i
\(833\) 6.05317 18.6297i 0.209730 0.645482i
\(834\) −3.33231 5.97115i −0.115388 0.206764i
\(835\) 0 0
\(836\) 18.7280 + 22.0607i 0.647723 + 0.762986i
\(837\) 1.04670 + 1.44066i 0.0361793 + 0.0497965i
\(838\) 29.5095 16.4683i 1.01939 0.568888i
\(839\) 24.7233 + 17.9626i 0.853544 + 0.620136i 0.926121 0.377227i \(-0.123122\pi\)
−0.0725766 + 0.997363i \(0.523122\pi\)
\(840\) 0 0
\(841\) −14.0319 + 10.1948i −0.483859 + 0.351544i
\(842\) 19.0957 41.2598i 0.658082 1.42191i
\(843\) 1.98512i 0.0683711i
\(844\) −1.75058 1.07996i −0.0602574 0.0371736i
\(845\) 0 0
\(846\) 3.82119 0.754155i 0.131375 0.0259284i
\(847\) 6.09949 + 18.7723i 0.209581 + 0.645024i
\(848\) −19.2551 + 9.66662i −0.661223 + 0.331953i
\(849\) 5.15814 0.177027
\(850\) 0 0
\(851\) 45.4930i 1.55948i
\(852\) −5.40633 + 4.58960i −0.185218 + 0.157237i
\(853\) 12.0902 3.92833i 0.413960 0.134504i −0.0946304 0.995512i \(-0.530167\pi\)
0.508590 + 0.861009i \(0.330167\pi\)
\(854\) −2.27562 11.5302i −0.0778701 0.394556i
\(855\) 0 0
\(856\) −2.78424 + 3.49945i −0.0951633 + 0.119609i
\(857\) −36.9869 −1.26345 −0.631724 0.775194i \(-0.717652\pi\)
−0.631724 + 0.775194i \(0.717652\pi\)
\(858\) −1.30669 + 2.82334i −0.0446097 + 0.0963872i
\(859\) −16.1605 22.2430i −0.551388 0.758921i 0.438811 0.898579i \(-0.355400\pi\)
−0.990200 + 0.139658i \(0.955400\pi\)
\(860\) 0 0
\(861\) −1.97278 + 2.71530i −0.0672323 + 0.0925373i
\(862\) −2.54608 4.56230i −0.0867197 0.155393i
\(863\) −37.1971 + 27.0253i −1.26620 + 0.919951i −0.999045 0.0437013i \(-0.986085\pi\)
−0.267159 + 0.963652i \(0.586085\pi\)
\(864\) 2.79110 + 7.74305i 0.0949553 + 0.263424i
\(865\) 0 0
\(866\) −6.90192 12.3675i −0.234537 0.420266i
\(867\) 0.537409 + 0.174615i 0.0182514 + 0.00593023i
\(868\) −3.79203 0.922365i −0.128710 0.0313071i
\(869\) −48.6576 15.8098i −1.65060 0.536311i
\(870\) 0 0
\(871\) 1.40694 + 4.33011i 0.0476722 + 0.146720i
\(872\) −0.447804 + 10.2297i −0.0151646 + 0.346423i
\(873\) −34.0389 24.7307i −1.15204 0.837008i
\(874\) 24.1684 + 2.89710i 0.817508 + 0.0979958i
\(875\) 0 0
\(876\) 0.372326 1.53071i 0.0125797 0.0517178i
\(877\) 10.4421 14.3723i 0.352604 0.485317i −0.595466 0.803381i \(-0.703032\pi\)
0.948069 + 0.318063i \(0.103032\pi\)
\(878\) −39.9559 + 7.88576i −1.34845 + 0.266132i
\(879\) −1.99596 6.14292i −0.0673220 0.207196i
\(880\) 0 0
\(881\) −1.85556 + 5.71084i −0.0625155 + 0.192403i −0.977436 0.211231i \(-0.932253\pi\)
0.914921 + 0.403634i \(0.132253\pi\)
\(882\) 2.20609 18.4038i 0.0742830 0.619690i
\(883\) −23.6121 7.67204i −0.794611 0.258185i −0.116545 0.993185i \(-0.537182\pi\)
−0.678066 + 0.735001i \(0.737182\pi\)
\(884\) −6.20118 15.0983i −0.208568 0.507810i
\(885\) 0 0
\(886\) −22.5778 20.9333i −0.758517 0.703268i
\(887\) 6.32030 4.59197i 0.212215 0.154183i −0.476600 0.879120i \(-0.658131\pi\)
0.688815 + 0.724937i \(0.258131\pi\)
\(888\) −1.46377 5.28052i −0.0491210 0.177203i
\(889\) 13.0771 + 9.50107i 0.438592 + 0.318655i
\(890\) 0 0
\(891\) 24.0546 + 33.1083i 0.805858 + 1.10917i
\(892\) 21.3827 34.6608i 0.715947 1.16053i
\(893\) 2.80317i 0.0938046i
\(894\) 3.94509 + 1.82586i 0.131944 + 0.0610658i
\(895\) 0 0
\(896\) −15.6452 8.97768i −0.522669 0.299923i
\(897\) 0.808660 + 2.48880i 0.0270004 + 0.0830986i
\(898\) 2.27368 2.45230i 0.0758737 0.0818344i
\(899\) 4.17837i 0.139356i
\(900\) 0 0
\(901\) 23.6673i 0.788473i
\(902\) −43.0948 39.9559i −1.43490 1.33038i
\(903\) −1.32231 4.06966i −0.0440039 0.135430i
\(904\) 57.0687 + 2.49817i 1.89808 + 0.0830878i
\(905\) 0 0
\(906\) −1.47631 + 3.18983i −0.0490471 + 0.105975i
\(907\) 33.1767i 1.10162i −0.834632 0.550808i \(-0.814320\pi\)
0.834632 0.550808i \(-0.185680\pi\)
\(908\) −2.08536 1.28649i −0.0692051 0.0426936i
\(909\) −16.1673 22.2524i −0.536235 0.738064i
\(910\) 0 0
\(911\) 3.00382 + 2.18240i 0.0995209 + 0.0723062i 0.636433 0.771332i \(-0.280409\pi\)
−0.536912 + 0.843638i \(0.680409\pi\)
\(912\) 2.89852 0.441361i 0.0959797 0.0146149i
\(913\) −6.83251 + 4.96411i −0.226123 + 0.164288i
\(914\) 10.9525 11.8130i 0.362278 0.390739i
\(915\) 0 0
\(916\) 0.741107 + 1.80440i 0.0244869 + 0.0596192i
\(917\) −9.28255 3.01608i −0.306537 0.0995998i
\(918\) 8.97712 + 1.07610i 0.296289 + 0.0355165i
\(919\) −10.6715 + 32.8435i −0.352020 + 1.08341i 0.605697 + 0.795695i \(0.292894\pi\)
−0.957717 + 0.287711i \(0.907106\pi\)
\(920\) 0 0
\(921\) −1.43440 4.41464i −0.0472652 0.145467i
\(922\) −10.0541 50.9423i −0.331113 1.67770i
\(923\) 15.8036 21.7518i 0.520181 0.715968i
\(924\) 3.66973 + 0.892616i 0.120725 + 0.0293649i
\(925\) 0 0
\(926\) −2.57885 + 21.5135i −0.0847462 + 0.706977i
\(927\) 21.3730 + 15.5284i 0.701981 + 0.510019i
\(928\) 5.38078 18.5479i 0.176633 0.608866i
\(929\) −0.229893 0.707539i −0.00754256 0.0232136i 0.947214 0.320601i \(-0.103885\pi\)
−0.954757 + 0.297387i \(0.903885\pi\)
\(930\) 0 0
\(931\) −12.6872 4.12233i −0.415807 0.135104i
\(932\) 4.91505 + 1.19553i 0.160998 + 0.0391607i
\(933\) −3.08718 1.00309i −0.101070 0.0328395i
\(934\) 37.3020 20.8170i 1.22056 0.681154i
\(935\) 0 0
\(936\) −8.52312 12.8802i −0.278587 0.421003i
\(937\) 19.8502 14.4220i 0.648479 0.471148i −0.214274 0.976774i \(-0.568738\pi\)
0.862753 + 0.505626i \(0.168738\pi\)
\(938\) 4.82642 2.69347i 0.157588 0.0879450i
\(939\) 2.47610 3.40806i 0.0808046 0.111218i
\(940\) 0 0
\(941\) 6.85654 + 9.43722i 0.223517 + 0.307645i 0.906017 0.423241i \(-0.139108\pi\)
−0.682500 + 0.730885i \(0.739108\pi\)
\(942\) −2.42389 1.12182i −0.0789745 0.0365508i
\(943\) −49.4326 −1.60975
\(944\) 26.1079 + 26.4214i 0.849739 + 0.859944i
\(945\) 0 0
\(946\) 73.5075 14.5076i 2.38994 0.471681i
\(947\) 47.0221 15.2784i 1.52801 0.496481i 0.579973 0.814635i \(-0.303063\pi\)
0.948039 + 0.318154i \(0.103063\pi\)
\(948\) −3.95164 + 3.35467i −0.128343 + 0.108955i
\(949\) 5.97252i 0.193876i
\(950\) 0 0
\(951\) −0.568657 −0.0184400
\(952\) −16.5243 + 10.9345i −0.535557 + 0.354390i
\(953\) 11.6368 + 35.8144i 0.376953 + 1.16014i 0.942151 + 0.335187i \(0.108800\pi\)
−0.565198 + 0.824955i \(0.691200\pi\)
\(954\) 4.33631 + 21.9714i 0.140393 + 0.711351i
\(955\) 0 0
\(956\) 20.7324 33.6066i 0.670534 1.08692i
\(957\) 4.04361i 0.130711i
\(958\) 43.1646 + 19.9773i 1.39459 + 0.645438i
\(959\) −3.04126 + 2.20961i −0.0982075 + 0.0713519i
\(960\) 0 0
\(961\) 23.8677 + 17.3409i 0.769926 + 0.559384i
\(962\) 10.1239 + 18.1410i 0.326409 + 0.584890i
\(963\) 2.73222 + 3.76058i 0.0880446 + 0.121183i
\(964\) −20.6397 24.3126i −0.664761 0.783055i
\(965\) 0 0
\(966\) 2.77407 1.54812i 0.0892541 0.0498099i
\(967\) −1.17113 + 3.60438i −0.0376611 + 0.115909i −0.968120 0.250488i \(-0.919409\pi\)
0.930459 + 0.366397i \(0.119409\pi\)
\(968\) −12.2668 + 32.7976i −0.394268 + 1.05415i
\(969\) 0.995250 3.06306i 0.0319720 0.0983998i
\(970\) 0 0
\(971\) −50.3226 + 16.3508i −1.61493 + 0.524722i −0.970738 0.240143i \(-0.922806\pi\)
−0.644191 + 0.764865i \(0.722806\pi\)
\(972\) 12.8396 0.971949i 0.411831 0.0311753i
\(973\) 18.4987 25.4613i 0.593043 0.816253i
\(974\) −6.00387 + 50.0860i −0.192376 + 1.60486i
\(975\) 0 0
\(976\) 9.57621 18.5202i 0.306527 0.592818i
\(977\) −32.5072 23.6179i −1.04000 0.755603i −0.0697129 0.997567i \(-0.522208\pi\)
−0.970285 + 0.241964i \(0.922208\pi\)
\(978\) −3.21390 + 0.634300i −0.102769 + 0.0202827i
\(979\) 52.2650 16.9819i 1.67040 0.542745i
\(980\) 0 0
\(981\) 10.1225 + 3.28901i 0.323187 + 0.105010i
\(982\) 46.3249 + 5.55302i 1.47829 + 0.177204i
\(983\) −2.61133 + 8.03684i −0.0832885 + 0.256336i −0.984025 0.178030i \(-0.943027\pi\)
0.900737 + 0.434366i \(0.143027\pi\)
\(984\) −5.73781 + 1.59053i −0.182915 + 0.0507043i
\(985\) 0 0
\(986\) −15.5570 14.4238i −0.495435 0.459348i
\(987\) −0.215037 0.295974i −0.00684472 0.00942094i
\(988\) −10.2822 + 4.22313i −0.327122 + 0.134356i
\(989\) 37.0445 50.9874i 1.17795 1.62130i
\(990\) 0 0
\(991\) 19.3979 14.0934i 0.616193 0.447691i −0.235397 0.971899i \(-0.575639\pi\)
0.851590 + 0.524209i \(0.175639\pi\)
\(992\) −4.24550 5.46883i −0.134795 0.173636i
\(993\) −2.79980 −0.0888490
\(994\) −29.6210 13.7091i −0.939520 0.434826i
\(995\) 0 0
\(996\) 0.0645888 + 0.853229i 0.00204658 + 0.0270356i
\(997\) 8.67368 2.81825i 0.274698 0.0892548i −0.168428 0.985714i \(-0.553869\pi\)
0.443127 + 0.896459i \(0.353869\pi\)
\(998\) 36.0830 + 33.4548i 1.14219 + 1.05899i
\(999\) −11.5078 −0.364092
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1000.2.t.b.701.41 224
5.2 odd 4 200.2.o.a.109.22 yes 112
5.3 odd 4 1000.2.o.a.549.7 112
5.4 even 2 inner 1000.2.t.b.701.16 224
8.5 even 2 inner 1000.2.t.b.701.20 224
20.7 even 4 800.2.be.a.209.14 112
25.2 odd 20 1000.2.o.a.949.24 112
25.11 even 5 inner 1000.2.t.b.301.20 224
25.14 even 10 inner 1000.2.t.b.301.37 224
25.23 odd 20 200.2.o.a.189.5 yes 112
40.13 odd 4 1000.2.o.a.549.24 112
40.27 even 4 800.2.be.a.209.15 112
40.29 even 2 inner 1000.2.t.b.701.37 224
40.37 odd 4 200.2.o.a.109.5 112
100.23 even 20 800.2.be.a.689.15 112
200.61 even 10 inner 1000.2.t.b.301.41 224
200.77 odd 20 1000.2.o.a.949.7 112
200.123 even 20 800.2.be.a.689.14 112
200.173 odd 20 200.2.o.a.189.22 yes 112
200.189 even 10 inner 1000.2.t.b.301.16 224
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.2.o.a.109.5 112 40.37 odd 4
200.2.o.a.109.22 yes 112 5.2 odd 4
200.2.o.a.189.5 yes 112 25.23 odd 20
200.2.o.a.189.22 yes 112 200.173 odd 20
800.2.be.a.209.14 112 20.7 even 4
800.2.be.a.209.15 112 40.27 even 4
800.2.be.a.689.14 112 200.123 even 20
800.2.be.a.689.15 112 100.23 even 20
1000.2.o.a.549.7 112 5.3 odd 4
1000.2.o.a.549.24 112 40.13 odd 4
1000.2.o.a.949.7 112 200.77 odd 20
1000.2.o.a.949.24 112 25.2 odd 20
1000.2.t.b.301.16 224 200.189 even 10 inner
1000.2.t.b.301.20 224 25.11 even 5 inner
1000.2.t.b.301.37 224 25.14 even 10 inner
1000.2.t.b.301.41 224 200.61 even 10 inner
1000.2.t.b.701.16 224 5.4 even 2 inner
1000.2.t.b.701.20 224 8.5 even 2 inner
1000.2.t.b.701.37 224 40.29 even 2 inner
1000.2.t.b.701.41 224 1.1 even 1 trivial