Properties

Label 1000.2.o.a.549.20
Level $1000$
Weight $2$
Character 1000.549
Analytic conductor $7.985$
Analytic rank $0$
Dimension $112$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1000,2,Mod(149,1000)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1000.149"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1000, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1000 = 2^{3} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1000.o (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [112] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.98504020213\)
Analytic rank: \(0\)
Dimension: \(112\)
Relative dimension: \(28\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 200)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 549.20
Character \(\chi\) \(=\) 1000.549
Dual form 1000.2.o.a.949.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.927056 - 1.06797i) q^{2} +(-0.305611 - 0.940574i) q^{3} +(-0.281133 - 1.98014i) q^{4} +(-1.28783 - 0.545581i) q^{6} +3.68114i q^{7} +(-2.37537 - 1.53546i) q^{8} +(1.63577 - 1.18846i) q^{9} +(2.38116 - 3.27739i) q^{11} +(-1.77655 + 0.869580i) q^{12} +(4.97551 - 3.61492i) q^{13} +(3.93136 + 3.41262i) q^{14} +(-3.84193 + 1.11337i) q^{16} +(-3.70129 - 1.20262i) q^{17} +(0.247211 - 2.84872i) q^{18} +(-3.35127 - 1.08889i) q^{19} +(3.46238 - 1.12500i) q^{21} +(-1.29269 - 5.58134i) q^{22} +(-1.50362 + 2.06955i) q^{23} +(-0.718277 + 2.70346i) q^{24} +(0.751941 - 8.66495i) q^{26} +(-4.01804 - 2.91928i) q^{27} +(7.28918 - 1.03489i) q^{28} +(5.85554 - 1.90258i) q^{29} +(1.35546 - 4.17167i) q^{31} +(-2.37264 + 5.13523i) q^{32} +(-3.81033 - 1.23805i) q^{33} +(-4.71567 + 2.83798i) q^{34} +(-2.81318 - 2.90494i) q^{36} +(-2.99215 + 2.17392i) q^{37} +(-4.26972 + 2.56960i) q^{38} +(-4.92068 - 3.57508i) q^{39} +(-3.35481 + 2.43741i) q^{41} +(2.00836 - 4.74067i) q^{42} +1.74279 q^{43} +(-7.15911 - 3.79365i) q^{44} +(0.816288 + 3.52441i) q^{46} +(4.86486 - 1.58069i) q^{47} +(2.22134 + 3.27336i) q^{48} -6.55078 q^{49} +3.84887i q^{51} +(-8.55685 - 8.83595i) q^{52} +(-3.95398 - 12.1691i) q^{53} +(-6.84266 + 1.58483i) q^{54} +(5.65224 - 8.74405i) q^{56} +3.48489i q^{57} +(3.39651 - 8.01736i) q^{58} +(-0.784512 - 1.07979i) q^{59} +(-0.998070 + 1.37373i) q^{61} +(-3.19865 - 5.31497i) q^{62} +(4.37487 + 6.02149i) q^{63} +(3.28472 + 7.29456i) q^{64} +(-4.85460 + 2.92159i) q^{66} +(-4.50052 + 13.8512i) q^{67} +(-1.34081 + 7.66718i) q^{68} +(2.40609 + 0.781786i) q^{69} +(1.24027 + 3.81715i) q^{71} +(-5.71038 + 0.311357i) q^{72} +(5.69843 - 7.84322i) q^{73} +(-0.452199 + 5.21089i) q^{74} +(-1.21401 + 6.94211i) q^{76} +(12.0645 + 8.76538i) q^{77} +(-8.37984 + 1.94085i) q^{78} +(4.76893 + 14.6772i) q^{79} +(0.356584 - 1.09745i) q^{81} +(-0.507007 + 5.84247i) q^{82} +(0.520370 - 1.60153i) q^{83} +(-3.20105 - 6.53974i) q^{84} +(1.61566 - 1.86125i) q^{86} +(-3.57904 - 4.92612i) q^{87} +(-10.6884 + 4.12881i) q^{88} +(6.61157 + 4.80359i) q^{89} +(13.3070 + 18.3156i) q^{91} +(4.52072 + 2.39556i) q^{92} -4.33801 q^{93} +(2.82186 - 6.66092i) q^{94} +(5.55517 + 0.662258i) q^{96} +(6.90528 - 2.24366i) q^{97} +(-6.07294 + 6.99606i) q^{98} -8.19095i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 112 q + 5 q^{2} - 3 q^{4} + q^{6} - 10 q^{8} - 30 q^{9} + 5 q^{12} - 3 q^{14} - 15 q^{16} + 10 q^{17} + 30 q^{22} + 10 q^{23} - 16 q^{24} - 14 q^{26} - 15 q^{28} - 18 q^{31} + 10 q^{33} + 9 q^{34} + 41 q^{36}+ \cdots - 90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1000\mathbb{Z}\right)^\times\).

\(n\) \(377\) \(501\) \(751\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.927056 1.06797i 0.655528 0.755171i
\(3\) −0.305611 0.940574i −0.176445 0.543041i 0.823252 0.567676i \(-0.192158\pi\)
−0.999697 + 0.0246354i \(0.992158\pi\)
\(4\) −0.281133 1.98014i −0.140567 0.990071i
\(5\) 0 0
\(6\) −1.28783 0.545581i −0.525753 0.222732i
\(7\) 3.68114i 1.39134i 0.718362 + 0.695670i \(0.244892\pi\)
−0.718362 + 0.695670i \(0.755108\pi\)
\(8\) −2.37537 1.53546i −0.839818 0.542867i
\(9\) 1.63577 1.18846i 0.545256 0.396152i
\(10\) 0 0
\(11\) 2.38116 3.27739i 0.717947 0.988169i −0.281643 0.959519i \(-0.590879\pi\)
0.999590 0.0286497i \(-0.00912074\pi\)
\(12\) −1.77655 + 0.869580i −0.512847 + 0.251026i
\(13\) 4.97551 3.61492i 1.37996 1.00260i 0.383076 0.923717i \(-0.374865\pi\)
0.996884 0.0788822i \(-0.0251351\pi\)
\(14\) 3.93136 + 3.41262i 1.05070 + 0.912062i
\(15\) 0 0
\(16\) −3.84193 + 1.11337i −0.960482 + 0.278342i
\(17\) −3.70129 1.20262i −0.897694 0.291679i −0.176409 0.984317i \(-0.556448\pi\)
−0.721285 + 0.692638i \(0.756448\pi\)
\(18\) 0.247211 2.84872i 0.0582682 0.671450i
\(19\) −3.35127 1.08889i −0.768833 0.249809i −0.101768 0.994808i \(-0.532450\pi\)
−0.667065 + 0.744999i \(0.732450\pi\)
\(20\) 0 0
\(21\) 3.46238 1.12500i 0.755554 0.245494i
\(22\) −1.29269 5.58134i −0.275603 1.18994i
\(23\) −1.50362 + 2.06955i −0.313526 + 0.431531i −0.936477 0.350730i \(-0.885934\pi\)
0.622951 + 0.782261i \(0.285934\pi\)
\(24\) −0.718277 + 2.70346i −0.146618 + 0.551842i
\(25\) 0 0
\(26\) 0.751941 8.66495i 0.147468 1.69934i
\(27\) −4.01804 2.91928i −0.773272 0.561815i
\(28\) 7.28918 1.03489i 1.37753 0.195576i
\(29\) 5.85554 1.90258i 1.08735 0.353300i 0.290126 0.956988i \(-0.406303\pi\)
0.797220 + 0.603688i \(0.206303\pi\)
\(30\) 0 0
\(31\) 1.35546 4.17167i 0.243448 0.749255i −0.752440 0.658660i \(-0.771123\pi\)
0.995888 0.0905941i \(-0.0288766\pi\)
\(32\) −2.37264 + 5.13523i −0.419427 + 0.907789i
\(33\) −3.81033 1.23805i −0.663294 0.215517i
\(34\) −4.71567 + 2.83798i −0.808731 + 0.486709i
\(35\) 0 0
\(36\) −2.81318 2.90494i −0.468863 0.484157i
\(37\) −2.99215 + 2.17392i −0.491906 + 0.357391i −0.805917 0.592029i \(-0.798327\pi\)
0.314011 + 0.949420i \(0.398327\pi\)
\(38\) −4.26972 + 2.56960i −0.692640 + 0.416844i
\(39\) −4.92068 3.57508i −0.787939 0.572471i
\(40\) 0 0
\(41\) −3.35481 + 2.43741i −0.523934 + 0.380660i −0.818084 0.575099i \(-0.804963\pi\)
0.294150 + 0.955759i \(0.404963\pi\)
\(42\) 2.00836 4.74067i 0.309897 0.731501i
\(43\) 1.74279 0.265772 0.132886 0.991131i \(-0.457576\pi\)
0.132886 + 0.991131i \(0.457576\pi\)
\(44\) −7.15911 3.79365i −1.07928 0.571915i
\(45\) 0 0
\(46\) 0.816288 + 3.52441i 0.120355 + 0.519646i
\(47\) 4.86486 1.58069i 0.709612 0.230567i 0.0680985 0.997679i \(-0.478307\pi\)
0.641514 + 0.767112i \(0.278307\pi\)
\(48\) 2.22134 + 3.27336i 0.320623 + 0.472469i
\(49\) −6.55078 −0.935825
\(50\) 0 0
\(51\) 3.84887i 0.538950i
\(52\) −8.55685 8.83595i −1.18662 1.22533i
\(53\) −3.95398 12.1691i −0.543121 1.67155i −0.725416 0.688310i \(-0.758353\pi\)
0.182295 0.983244i \(-0.441647\pi\)
\(54\) −6.84266 + 1.58483i −0.931168 + 0.215667i
\(55\) 0 0
\(56\) 5.65224 8.74405i 0.755313 1.16847i
\(57\) 3.48489i 0.461585i
\(58\) 3.39651 8.01736i 0.445984 1.05273i
\(59\) −0.784512 1.07979i −0.102135 0.140576i 0.754891 0.655851i \(-0.227690\pi\)
−0.857025 + 0.515274i \(0.827690\pi\)
\(60\) 0 0
\(61\) −0.998070 + 1.37373i −0.127790 + 0.175888i −0.868118 0.496358i \(-0.834670\pi\)
0.740328 + 0.672246i \(0.234670\pi\)
\(62\) −3.19865 5.31497i −0.406229 0.675002i
\(63\) 4.37487 + 6.02149i 0.551182 + 0.758637i
\(64\) 3.28472 + 7.29456i 0.410590 + 0.911820i
\(65\) 0 0
\(66\) −4.85460 + 2.92159i −0.597560 + 0.359623i
\(67\) −4.50052 + 13.8512i −0.549826 + 1.69219i 0.159404 + 0.987213i \(0.449043\pi\)
−0.709230 + 0.704977i \(0.750957\pi\)
\(68\) −1.34081 + 7.66718i −0.162597 + 0.929782i
\(69\) 2.40609 + 0.781786i 0.289659 + 0.0941160i
\(70\) 0 0
\(71\) 1.24027 + 3.81715i 0.147193 + 0.453013i 0.997286 0.0736188i \(-0.0234548\pi\)
−0.850094 + 0.526631i \(0.823455\pi\)
\(72\) −5.71038 + 0.311357i −0.672974 + 0.0366938i
\(73\) 5.69843 7.84322i 0.666951 0.917979i −0.332736 0.943020i \(-0.607972\pi\)
0.999686 + 0.0250412i \(0.00797169\pi\)
\(74\) −0.452199 + 5.21089i −0.0525670 + 0.605753i
\(75\) 0 0
\(76\) −1.21401 + 6.94211i −0.139256 + 0.796314i
\(77\) 12.0645 + 8.76538i 1.37488 + 0.998908i
\(78\) −8.37984 + 1.94085i −0.948830 + 0.219758i
\(79\) 4.76893 + 14.6772i 0.536546 + 1.65132i 0.740284 + 0.672294i \(0.234691\pi\)
−0.203738 + 0.979025i \(0.565309\pi\)
\(80\) 0 0
\(81\) 0.356584 1.09745i 0.0396205 0.121939i
\(82\) −0.507007 + 5.84247i −0.0559896 + 0.645193i
\(83\) 0.520370 1.60153i 0.0571181 0.175791i −0.918427 0.395590i \(-0.870540\pi\)
0.975545 + 0.219799i \(0.0705401\pi\)
\(84\) −3.20105 6.53974i −0.349263 0.713544i
\(85\) 0 0
\(86\) 1.61566 1.86125i 0.174221 0.200703i
\(87\) −3.57904 4.92612i −0.383713 0.528136i
\(88\) −10.6884 + 4.12881i −1.13939 + 0.440133i
\(89\) 6.61157 + 4.80359i 0.700825 + 0.509179i 0.880201 0.474602i \(-0.157408\pi\)
−0.179376 + 0.983781i \(0.557408\pi\)
\(90\) 0 0
\(91\) 13.3070 + 18.3156i 1.39496 + 1.91999i
\(92\) 4.52072 + 2.39556i 0.471318 + 0.249754i
\(93\) −4.33801 −0.449831
\(94\) 2.82186 6.66092i 0.291053 0.687022i
\(95\) 0 0
\(96\) 5.55517 + 0.662258i 0.566972 + 0.0675914i
\(97\) 6.90528 2.24366i 0.701125 0.227809i 0.0633041 0.997994i \(-0.479836\pi\)
0.637820 + 0.770185i \(0.279836\pi\)
\(98\) −6.07294 + 6.99606i −0.613460 + 0.706708i
\(99\) 8.19095i 0.823221i
\(100\) 0 0
\(101\) 9.04213i 0.899726i −0.893098 0.449863i \(-0.851473\pi\)
0.893098 0.449863i \(-0.148527\pi\)
\(102\) 4.11049 + 3.56812i 0.406999 + 0.353297i
\(103\) −10.0754 + 3.27371i −0.992762 + 0.322568i −0.759970 0.649959i \(-0.774786\pi\)
−0.232792 + 0.972527i \(0.574786\pi\)
\(104\) −17.3692 + 0.947055i −1.70319 + 0.0928664i
\(105\) 0 0
\(106\) −16.6618 7.05870i −1.61834 0.685601i
\(107\) −0.391362 −0.0378344 −0.0189172 0.999821i \(-0.506022\pi\)
−0.0189172 + 0.999821i \(0.506022\pi\)
\(108\) −4.65098 + 8.77700i −0.447541 + 0.844567i
\(109\) 5.07531 + 6.98557i 0.486127 + 0.669096i 0.979668 0.200626i \(-0.0642977\pi\)
−0.493541 + 0.869723i \(0.664298\pi\)
\(110\) 0 0
\(111\) 2.95917 + 2.14996i 0.280872 + 0.204066i
\(112\) −4.09846 14.1427i −0.387268 1.33636i
\(113\) 1.59983 + 2.20198i 0.150500 + 0.207145i 0.877610 0.479376i \(-0.159137\pi\)
−0.727110 + 0.686521i \(0.759137\pi\)
\(114\) 3.72177 + 3.23069i 0.348576 + 0.302582i
\(115\) 0 0
\(116\) −5.41357 11.0599i −0.502637 1.02689i
\(117\) 3.84262 11.8264i 0.355250 1.09335i
\(118\) −1.88047 0.163187i −0.173111 0.0150225i
\(119\) 4.42702 13.6250i 0.405824 1.24900i
\(120\) 0 0
\(121\) −1.67215 5.14634i −0.152013 0.467849i
\(122\) 0.541835 + 2.33943i 0.0490554 + 0.211802i
\(123\) 3.31784 + 2.41055i 0.299159 + 0.217352i
\(124\) −8.64157 1.51121i −0.776036 0.135710i
\(125\) 0 0
\(126\) 10.4865 + 0.910018i 0.934215 + 0.0810709i
\(127\) 2.19692 3.02379i 0.194945 0.268318i −0.700343 0.713806i \(-0.746970\pi\)
0.895288 + 0.445488i \(0.146970\pi\)
\(128\) 10.8355 + 3.25447i 0.957733 + 0.287658i
\(129\) −0.532615 1.63922i −0.0468941 0.144325i
\(130\) 0 0
\(131\) 14.6559 + 4.76200i 1.28049 + 0.416058i 0.868754 0.495243i \(-0.164921\pi\)
0.411740 + 0.911301i \(0.364921\pi\)
\(132\) −1.38031 + 7.89306i −0.120140 + 0.687003i
\(133\) 4.00836 12.3365i 0.347569 1.06971i
\(134\) 10.6205 + 17.6473i 0.917467 + 1.52449i
\(135\) 0 0
\(136\) 6.94534 + 8.53985i 0.595558 + 0.732286i
\(137\) −4.78116 6.58071i −0.408482 0.562228i 0.554365 0.832274i \(-0.312961\pi\)
−0.962847 + 0.270046i \(0.912961\pi\)
\(138\) 3.06551 1.84488i 0.260953 0.157047i
\(139\) 0.476853 0.656333i 0.0404462 0.0556694i −0.788315 0.615272i \(-0.789046\pi\)
0.828761 + 0.559603i \(0.189046\pi\)
\(140\) 0 0
\(141\) −2.97351 4.09268i −0.250415 0.344666i
\(142\) 5.22641 + 2.21414i 0.438591 + 0.185807i
\(143\) 24.9144i 2.08345i
\(144\) −4.96132 + 6.38717i −0.413443 + 0.532264i
\(145\) 0 0
\(146\) −3.09358 13.3569i −0.256026 1.10542i
\(147\) 2.00199 + 6.16149i 0.165121 + 0.508192i
\(148\) 5.14587 + 5.31372i 0.422988 + 0.436785i
\(149\) 2.79356i 0.228857i 0.993431 + 0.114429i \(0.0365037\pi\)
−0.993431 + 0.114429i \(0.963496\pi\)
\(150\) 0 0
\(151\) −4.41781 −0.359516 −0.179758 0.983711i \(-0.557531\pi\)
−0.179758 + 0.983711i \(0.557531\pi\)
\(152\) 6.28853 + 7.73225i 0.510067 + 0.627169i
\(153\) −7.48372 + 2.43161i −0.605023 + 0.196584i
\(154\) 20.5457 4.75857i 1.65562 0.383457i
\(155\) 0 0
\(156\) −5.69580 + 10.7487i −0.456029 + 0.860586i
\(157\) 13.1399 1.04867 0.524337 0.851511i \(-0.324313\pi\)
0.524337 + 0.851511i \(0.324313\pi\)
\(158\) 20.0960 + 8.51355i 1.59875 + 0.677302i
\(159\) −10.2376 + 7.43803i −0.811892 + 0.589874i
\(160\) 0 0
\(161\) −7.61831 5.53502i −0.600407 0.436221i
\(162\) −0.841477 1.39822i −0.0661127 0.109855i
\(163\) −0.389815 + 0.283217i −0.0305327 + 0.0221833i −0.602947 0.797781i \(-0.706007\pi\)
0.572414 + 0.819965i \(0.306007\pi\)
\(164\) 5.76957 + 5.95777i 0.450528 + 0.465223i
\(165\) 0 0
\(166\) −1.22798 2.04045i −0.0953100 0.158370i
\(167\) 9.62622 + 3.12775i 0.744899 + 0.242032i 0.656785 0.754078i \(-0.271916\pi\)
0.0881142 + 0.996110i \(0.471916\pi\)
\(168\) −9.95182 2.64408i −0.767799 0.203995i
\(169\) 7.67086 23.6085i 0.590066 1.81604i
\(170\) 0 0
\(171\) −6.77600 + 2.20165i −0.518173 + 0.168365i
\(172\) −0.489955 3.45096i −0.0373587 0.263133i
\(173\) −1.25123 0.909073i −0.0951293 0.0691155i 0.539204 0.842175i \(-0.318725\pi\)
−0.634333 + 0.773060i \(0.718725\pi\)
\(174\) −8.57893 0.744477i −0.650367 0.0564386i
\(175\) 0 0
\(176\) −5.49931 + 15.2426i −0.414526 + 1.14895i
\(177\) −0.775865 + 1.06789i −0.0583176 + 0.0802673i
\(178\) 11.2594 2.60778i 0.843928 0.195462i
\(179\) 2.90435 0.943680i 0.217081 0.0705340i −0.198457 0.980110i \(-0.563593\pi\)
0.415539 + 0.909576i \(0.363593\pi\)
\(180\) 0 0
\(181\) 0.859346 + 0.279218i 0.0638747 + 0.0207541i 0.340780 0.940143i \(-0.389309\pi\)
−0.276905 + 0.960897i \(0.589309\pi\)
\(182\) 31.8969 + 2.76800i 2.36435 + 0.205178i
\(183\) 1.59711 + 0.518934i 0.118062 + 0.0383607i
\(184\) 6.74936 2.60720i 0.497569 0.192205i
\(185\) 0 0
\(186\) −4.02158 + 4.63288i −0.294877 + 0.339699i
\(187\) −12.7548 + 9.26692i −0.932725 + 0.677664i
\(188\) −4.49766 9.18872i −0.328025 0.670156i
\(189\) 10.7463 14.7910i 0.781676 1.07588i
\(190\) 0 0
\(191\) 2.13116 1.54838i 0.154205 0.112037i −0.508007 0.861353i \(-0.669618\pi\)
0.662212 + 0.749316i \(0.269618\pi\)
\(192\) 5.85723 5.31882i 0.422709 0.383853i
\(193\) 22.0562i 1.58764i 0.608154 + 0.793819i \(0.291910\pi\)
−0.608154 + 0.793819i \(0.708090\pi\)
\(194\) 4.00541 9.45465i 0.287572 0.678804i
\(195\) 0 0
\(196\) 1.84164 + 12.9715i 0.131546 + 0.926534i
\(197\) 2.80194 + 8.62350i 0.199630 + 0.614399i 0.999891 + 0.0147469i \(0.00469424\pi\)
−0.800261 + 0.599652i \(0.795306\pi\)
\(198\) −8.74771 7.59347i −0.621673 0.539645i
\(199\) 6.18489 0.438435 0.219217 0.975676i \(-0.429650\pi\)
0.219217 + 0.975676i \(0.429650\pi\)
\(200\) 0 0
\(201\) 14.4035 1.01594
\(202\) −9.65675 8.38256i −0.679447 0.589795i
\(203\) 7.00366 + 21.5550i 0.491561 + 1.51287i
\(204\) 7.62132 1.08205i 0.533599 0.0757584i
\(205\) 0 0
\(206\) −5.84426 + 13.7952i −0.407189 + 0.961157i
\(207\) 5.17229i 0.359499i
\(208\) −15.0908 + 19.4279i −1.04636 + 1.34708i
\(209\) −11.5486 + 8.39056i −0.798835 + 0.580387i
\(210\) 0 0
\(211\) −11.9734 + 16.4800i −0.824283 + 1.13453i 0.164677 + 0.986348i \(0.447342\pi\)
−0.988960 + 0.148181i \(0.952658\pi\)
\(212\) −22.9850 + 11.2506i −1.57861 + 0.772693i
\(213\) 3.21128 2.33313i 0.220033 0.159863i
\(214\) −0.362814 + 0.417964i −0.0248015 + 0.0285714i
\(215\) 0 0
\(216\) 5.06188 + 13.1039i 0.344417 + 0.891607i
\(217\) 15.3565 + 4.98963i 1.04247 + 0.338718i
\(218\) 12.1655 + 1.05572i 0.823952 + 0.0715022i
\(219\) −9.11863 2.96282i −0.616180 0.200209i
\(220\) 0 0
\(221\) −22.7632 + 7.39621i −1.53122 + 0.497523i
\(222\) 5.03942 1.16718i 0.338224 0.0783359i
\(223\) 6.21151 8.54941i 0.415953 0.572511i −0.548705 0.836016i \(-0.684879\pi\)
0.964658 + 0.263506i \(0.0848788\pi\)
\(224\) −18.9035 8.73400i −1.26304 0.583565i
\(225\) 0 0
\(226\) 3.83479 + 0.332782i 0.255086 + 0.0221363i
\(227\) −7.62995 5.54348i −0.506418 0.367934i 0.305045 0.952338i \(-0.401328\pi\)
−0.811463 + 0.584404i \(0.801328\pi\)
\(228\) 6.90058 0.979719i 0.457002 0.0648835i
\(229\) 9.67686 3.14420i 0.639465 0.207775i 0.0287017 0.999588i \(-0.490863\pi\)
0.610763 + 0.791813i \(0.290863\pi\)
\(230\) 0 0
\(231\) 4.55744 14.0264i 0.299858 0.922867i
\(232\) −16.8304 4.47163i −1.10497 0.293577i
\(233\) −4.61735 1.50027i −0.302493 0.0982858i 0.153838 0.988096i \(-0.450837\pi\)
−0.456331 + 0.889810i \(0.650837\pi\)
\(234\) −9.06791 15.0675i −0.592788 0.984994i
\(235\) 0 0
\(236\) −1.91758 + 1.85701i −0.124824 + 0.120881i
\(237\) 12.3476 8.97106i 0.802063 0.582733i
\(238\) −10.4470 17.3590i −0.677178 1.12522i
\(239\) 7.15100 + 5.19551i 0.462560 + 0.336069i 0.794535 0.607219i \(-0.207715\pi\)
−0.331975 + 0.943288i \(0.607715\pi\)
\(240\) 0 0
\(241\) 2.81129 2.04252i 0.181091 0.131571i −0.493547 0.869719i \(-0.664300\pi\)
0.674638 + 0.738149i \(0.264300\pi\)
\(242\) −7.04633 2.98514i −0.452955 0.191892i
\(243\) −16.0409 −1.02903
\(244\) 3.00076 + 1.59012i 0.192104 + 0.101797i
\(245\) 0 0
\(246\) 5.65022 1.30865i 0.360245 0.0834362i
\(247\) −20.6105 + 6.69677i −1.31142 + 0.426105i
\(248\) −9.62515 + 7.82799i −0.611198 + 0.497078i
\(249\) −1.66539 −0.105540
\(250\) 0 0
\(251\) 10.6028i 0.669245i −0.942352 0.334622i \(-0.891391\pi\)
0.942352 0.334622i \(-0.108609\pi\)
\(252\) 10.6935 10.3557i 0.673626 0.652348i
\(253\) 3.20237 + 9.85587i 0.201331 + 0.619633i
\(254\) −1.19267 5.14947i −0.0748346 0.323107i
\(255\) 0 0
\(256\) 13.5208 8.55496i 0.845052 0.534685i
\(257\) 7.56452i 0.471862i 0.971770 + 0.235931i \(0.0758139\pi\)
−0.971770 + 0.235931i \(0.924186\pi\)
\(258\) −2.24441 0.950830i −0.139731 0.0591961i
\(259\) −8.00252 11.0145i −0.497252 0.684409i
\(260\) 0 0
\(261\) 7.31718 10.0712i 0.452922 0.623393i
\(262\) 18.6726 11.2375i 1.15359 0.694255i
\(263\) 17.5706 + 24.1838i 1.08345 + 1.49124i 0.855668 + 0.517526i \(0.173147\pi\)
0.227780 + 0.973713i \(0.426853\pi\)
\(264\) 7.14996 + 8.79145i 0.440049 + 0.541076i
\(265\) 0 0
\(266\) −9.45904 15.7174i −0.579971 0.963697i
\(267\) 2.49756 7.68670i 0.152848 0.470419i
\(268\) 28.6926 + 5.01764i 1.75268 + 0.306501i
\(269\) 21.8536 + 7.10065i 1.33244 + 0.432934i 0.886748 0.462254i \(-0.152959\pi\)
0.445688 + 0.895188i \(0.352959\pi\)
\(270\) 0 0
\(271\) 7.44078 + 22.9004i 0.451995 + 1.39110i 0.874627 + 0.484796i \(0.161106\pi\)
−0.422632 + 0.906301i \(0.638894\pi\)
\(272\) 15.5590 + 0.499490i 0.943406 + 0.0302860i
\(273\) 13.1604 18.1137i 0.796502 1.09629i
\(274\) −11.4604 0.994531i −0.692350 0.0600818i
\(275\) 0 0
\(276\) 0.871616 4.98419i 0.0524651 0.300013i
\(277\) −2.35420 1.71043i −0.141450 0.102770i 0.514810 0.857304i \(-0.327863\pi\)
−0.656260 + 0.754535i \(0.727863\pi\)
\(278\) −0.258875 1.11772i −0.0155263 0.0670366i
\(279\) −2.74063 8.43480i −0.164077 0.504978i
\(280\) 0 0
\(281\) −7.31490 + 22.5130i −0.436371 + 1.34301i 0.455305 + 0.890335i \(0.349530\pi\)
−0.891676 + 0.452675i \(0.850470\pi\)
\(282\) −7.12748 0.618521i −0.424436 0.0368324i
\(283\) −8.95835 + 27.5710i −0.532518 + 1.63892i 0.216432 + 0.976298i \(0.430558\pi\)
−0.748951 + 0.662626i \(0.769442\pi\)
\(284\) 7.20982 3.52904i 0.427824 0.209410i
\(285\) 0 0
\(286\) −26.6079 23.0970i −1.57336 1.36576i
\(287\) −8.97245 12.3495i −0.529627 0.728969i
\(288\) 2.22191 + 11.2198i 0.130927 + 0.661134i
\(289\) −1.50005 1.08985i −0.0882381 0.0641087i
\(290\) 0 0
\(291\) −4.22066 5.80924i −0.247419 0.340544i
\(292\) −17.1327 9.07871i −1.00262 0.531292i
\(293\) 13.8184 0.807281 0.403640 0.914918i \(-0.367745\pi\)
0.403640 + 0.914918i \(0.367745\pi\)
\(294\) 8.43627 + 3.57398i 0.492013 + 0.208439i
\(295\) 0 0
\(296\) 10.4454 0.569535i 0.607128 0.0331036i
\(297\) −19.1352 + 6.21740i −1.11034 + 0.360770i
\(298\) 2.98345 + 2.58979i 0.172826 + 0.150022i
\(299\) 15.7325i 0.909837i
\(300\) 0 0
\(301\) 6.41543i 0.369779i
\(302\) −4.09556 + 4.71810i −0.235673 + 0.271496i
\(303\) −8.50480 + 2.76338i −0.488588 + 0.158752i
\(304\) 14.0877 + 0.452254i 0.807983 + 0.0259386i
\(305\) 0 0
\(306\) −4.34094 + 10.2466i −0.248155 + 0.585762i
\(307\) 7.71657 0.440408 0.220204 0.975454i \(-0.429328\pi\)
0.220204 + 0.975454i \(0.429328\pi\)
\(308\) 13.9650 26.3537i 0.795728 1.50164i
\(309\) 6.15833 + 8.47621i 0.350335 + 0.482195i
\(310\) 0 0
\(311\) −8.02122 5.82776i −0.454842 0.330462i 0.336663 0.941625i \(-0.390702\pi\)
−0.791504 + 0.611163i \(0.790702\pi\)
\(312\) 6.19901 + 16.0476i 0.350950 + 0.908518i
\(313\) 1.13921 + 1.56798i 0.0643917 + 0.0886276i 0.839998 0.542589i \(-0.182556\pi\)
−0.775607 + 0.631217i \(0.782556\pi\)
\(314\) 12.1814 14.0330i 0.687435 0.791929i
\(315\) 0 0
\(316\) 27.7223 13.5694i 1.55950 0.763339i
\(317\) −0.587317 + 1.80758i −0.0329870 + 0.101524i −0.966194 0.257815i \(-0.916998\pi\)
0.933207 + 0.359338i \(0.116998\pi\)
\(318\) −1.54719 + 17.8289i −0.0867619 + 0.999796i
\(319\) 7.70749 23.7212i 0.431537 1.32813i
\(320\) 0 0
\(321\) 0.119604 + 0.368105i 0.00667567 + 0.0205456i
\(322\) −12.9739 + 3.00487i −0.723005 + 0.167455i
\(323\) 11.0945 + 8.06061i 0.617313 + 0.448504i
\(324\) −2.27336 0.397557i −0.126298 0.0220865i
\(325\) 0 0
\(326\) −0.0589121 + 0.678870i −0.00326284 + 0.0375991i
\(327\) 5.01938 6.90858i 0.277572 0.382045i
\(328\) 11.7115 0.638565i 0.646657 0.0352589i
\(329\) 5.81873 + 17.9082i 0.320797 + 0.987311i
\(330\) 0 0
\(331\) −28.5960 9.29140i −1.57178 0.510702i −0.611856 0.790969i \(-0.709577\pi\)
−0.959922 + 0.280267i \(0.909577\pi\)
\(332\) −3.31756 0.580162i −0.182075 0.0318406i
\(333\) −2.31085 + 7.11208i −0.126634 + 0.389739i
\(334\) 12.2644 7.38094i 0.671078 0.403867i
\(335\) 0 0
\(336\) −12.0497 + 8.17706i −0.657365 + 0.446095i
\(337\) −2.92944 4.03203i −0.159577 0.219639i 0.721740 0.692164i \(-0.243342\pi\)
−0.881317 + 0.472525i \(0.843342\pi\)
\(338\) −18.1019 30.0786i −0.984613 1.63606i
\(339\) 1.58220 2.17771i 0.0859333 0.118277i
\(340\) 0 0
\(341\) −10.4446 14.3758i −0.565608 0.778492i
\(342\) −3.93042 + 9.27764i −0.212533 + 0.501677i
\(343\) 1.65365i 0.0892886i
\(344\) −4.13975 2.67598i −0.223200 0.144279i
\(345\) 0 0
\(346\) −2.13083 + 0.493520i −0.114554 + 0.0265318i
\(347\) −6.67727 20.5505i −0.358455 1.10321i −0.953979 0.299873i \(-0.903056\pi\)
0.595525 0.803337i \(-0.296944\pi\)
\(348\) −8.74824 + 8.47190i −0.468955 + 0.454141i
\(349\) 3.79138i 0.202948i 0.994838 + 0.101474i \(0.0323558\pi\)
−0.994838 + 0.101474i \(0.967644\pi\)
\(350\) 0 0
\(351\) −30.5448 −1.63036
\(352\) 11.1805 + 20.0039i 0.595923 + 1.06621i
\(353\) −23.7877 + 7.72909i −1.26609 + 0.411378i −0.863661 0.504072i \(-0.831834\pi\)
−0.402430 + 0.915451i \(0.631834\pi\)
\(354\) 0.421204 + 1.81859i 0.0223867 + 0.0966572i
\(355\) 0 0
\(356\) 7.65305 14.4423i 0.405611 0.765440i
\(357\) −14.1682 −0.749862
\(358\) 1.68467 3.97661i 0.0890376 0.210170i
\(359\) −18.7926 + 13.6536i −0.991834 + 0.720609i −0.960322 0.278894i \(-0.910032\pi\)
−0.0315118 + 0.999503i \(0.510032\pi\)
\(360\) 0 0
\(361\) −5.32603 3.86959i −0.280317 0.203662i
\(362\) 1.09486 0.658907i 0.0575446 0.0346314i
\(363\) −4.32949 + 3.14556i −0.227239 + 0.165099i
\(364\) 32.5264 31.4989i 1.70484 1.65099i
\(365\) 0 0
\(366\) 2.03482 1.22459i 0.106362 0.0640105i
\(367\) −3.79273 1.23233i −0.197979 0.0643272i 0.208349 0.978054i \(-0.433191\pi\)
−0.406328 + 0.913727i \(0.633191\pi\)
\(368\) 3.47262 9.62515i 0.181023 0.501746i
\(369\) −2.59094 + 7.97409i −0.134879 + 0.415114i
\(370\) 0 0
\(371\) 44.7961 14.5551i 2.32570 0.755666i
\(372\) 1.21956 + 8.58988i 0.0632312 + 0.445365i
\(373\) −16.6167 12.0728i −0.860382 0.625104i 0.0676065 0.997712i \(-0.478464\pi\)
−0.927989 + 0.372608i \(0.878464\pi\)
\(374\) −1.92762 + 22.2128i −0.0996746 + 1.14859i
\(375\) 0 0
\(376\) −13.9829 3.71508i −0.721113 0.191591i
\(377\) 22.2566 30.6336i 1.14628 1.57771i
\(378\) −5.83396 25.1888i −0.300067 1.29557i
\(379\) −27.2341 + 8.84890i −1.39892 + 0.454538i −0.908843 0.417139i \(-0.863033\pi\)
−0.490081 + 0.871677i \(0.663033\pi\)
\(380\) 0 0
\(381\) −3.51551 1.14226i −0.180105 0.0585196i
\(382\) 0.322079 3.71146i 0.0164790 0.189895i
\(383\) −11.6284 3.77828i −0.594181 0.193061i −0.00353757 0.999994i \(-0.501126\pi\)
−0.590644 + 0.806933i \(0.701126\pi\)
\(384\) −0.250379 11.1862i −0.0127771 0.570844i
\(385\) 0 0
\(386\) 23.5554 + 20.4473i 1.19894 + 1.04074i
\(387\) 2.85079 2.07122i 0.144914 0.105286i
\(388\) −6.38407 13.0427i −0.324102 0.662141i
\(389\) −16.6269 + 22.8849i −0.843015 + 1.16031i 0.142344 + 0.989817i \(0.454536\pi\)
−0.985359 + 0.170494i \(0.945464\pi\)
\(390\) 0 0
\(391\) 8.05421 5.85173i 0.407319 0.295935i
\(392\) 15.5605 + 10.0585i 0.785923 + 0.508029i
\(393\) 15.2403i 0.768772i
\(394\) 11.8072 + 5.00207i 0.594839 + 0.252000i
\(395\) 0 0
\(396\) −16.2192 + 2.30275i −0.815048 + 0.115717i
\(397\) −2.11608 6.51261i −0.106203 0.326859i 0.883808 0.467850i \(-0.154971\pi\)
−0.990011 + 0.140991i \(0.954971\pi\)
\(398\) 5.73374 6.60529i 0.287406 0.331093i
\(399\) −12.8284 −0.642222
\(400\) 0 0
\(401\) 34.1131 1.70352 0.851762 0.523929i \(-0.175534\pi\)
0.851762 + 0.523929i \(0.175534\pi\)
\(402\) 13.3528 15.3825i 0.665979 0.767211i
\(403\) −8.33617 25.6561i −0.415254 1.27802i
\(404\) −17.9047 + 2.54204i −0.890793 + 0.126471i
\(405\) 0 0
\(406\) 29.5130 + 12.5030i 1.46471 + 0.620515i
\(407\) 14.9829i 0.742675i
\(408\) 5.90979 9.14248i 0.292578 0.452620i
\(409\) −21.8970 + 15.9091i −1.08274 + 0.786655i −0.978158 0.207861i \(-0.933350\pi\)
−0.104580 + 0.994516i \(0.533350\pi\)
\(410\) 0 0
\(411\) −4.72847 + 6.50818i −0.233238 + 0.321025i
\(412\) 9.31494 + 19.0304i 0.458914 + 0.937563i
\(413\) 3.97485 2.88790i 0.195589 0.142104i
\(414\) 5.52387 + 4.79500i 0.271483 + 0.235662i
\(415\) 0 0
\(416\) 6.75837 + 34.1273i 0.331357 + 1.67323i
\(417\) −0.763061 0.247934i −0.0373673 0.0121414i
\(418\) −1.74532 + 20.1121i −0.0853666 + 0.983717i
\(419\) −19.6287 6.37775i −0.958925 0.311573i −0.212588 0.977142i \(-0.568189\pi\)
−0.746337 + 0.665568i \(0.768189\pi\)
\(420\) 0 0
\(421\) −8.92197 + 2.89892i −0.434830 + 0.141285i −0.518249 0.855230i \(-0.673416\pi\)
0.0834190 + 0.996515i \(0.473416\pi\)
\(422\) 6.50015 + 28.0651i 0.316423 + 1.36619i
\(423\) 6.07920 8.36730i 0.295581 0.406832i
\(424\) −9.29303 + 34.9772i −0.451309 + 1.69864i
\(425\) 0 0
\(426\) 0.485315 5.59250i 0.0235136 0.270957i
\(427\) −5.05688 3.67404i −0.244719 0.177799i
\(428\) 0.110025 + 0.774952i 0.00531825 + 0.0374587i
\(429\) −23.4338 + 7.61412i −1.13140 + 0.367613i
\(430\) 0 0
\(431\) 0.317339 0.976670i 0.0152857 0.0470446i −0.943123 0.332445i \(-0.892127\pi\)
0.958408 + 0.285400i \(0.0921265\pi\)
\(432\) 18.6873 + 6.74210i 0.899091 + 0.324379i
\(433\) 25.6115 + 8.32169i 1.23081 + 0.399915i 0.851008 0.525152i \(-0.175992\pi\)
0.379803 + 0.925067i \(0.375992\pi\)
\(434\) 19.5651 11.7747i 0.939157 0.565202i
\(435\) 0 0
\(436\) 12.4056 12.0137i 0.594120 0.575353i
\(437\) 7.29254 5.29834i 0.348850 0.253454i
\(438\) −11.6177 + 6.99175i −0.555115 + 0.334079i
\(439\) 1.22399 + 0.889282i 0.0584179 + 0.0424431i 0.616611 0.787268i \(-0.288505\pi\)
−0.558193 + 0.829711i \(0.688505\pi\)
\(440\) 0 0
\(441\) −10.7156 + 7.78531i −0.510265 + 0.370729i
\(442\) −13.2038 + 31.1672i −0.628041 + 1.48247i
\(443\) 15.1085 0.717828 0.358914 0.933371i \(-0.383147\pi\)
0.358914 + 0.933371i \(0.383147\pi\)
\(444\) 3.42531 6.46401i 0.162558 0.306768i
\(445\) 0 0
\(446\) −3.37212 14.5595i −0.159674 0.689412i
\(447\) 2.62755 0.853743i 0.124279 0.0403807i
\(448\) −26.8523 + 12.0915i −1.26865 + 0.571270i
\(449\) 32.5044 1.53398 0.766988 0.641661i \(-0.221755\pi\)
0.766988 + 0.641661i \(0.221755\pi\)
\(450\) 0 0
\(451\) 16.7989i 0.791029i
\(452\) 3.91047 3.78694i 0.183933 0.178123i
\(453\) 1.35013 + 4.15528i 0.0634347 + 0.195232i
\(454\) −12.9937 + 3.00946i −0.609824 + 0.141241i
\(455\) 0 0
\(456\) 5.35092 8.27789i 0.250580 0.387648i
\(457\) 0.743713i 0.0347894i 0.999849 + 0.0173947i \(0.00553719\pi\)
−0.999849 + 0.0173947i \(0.994463\pi\)
\(458\) 5.61307 13.2495i 0.262282 0.619108i
\(459\) 11.3611 + 15.6373i 0.530293 + 0.729886i
\(460\) 0 0
\(461\) 16.2261 22.3333i 0.755723 1.04016i −0.241834 0.970318i \(-0.577749\pi\)
0.997558 0.0698465i \(-0.0222509\pi\)
\(462\) −10.7548 17.8705i −0.500358 0.831409i
\(463\) 10.5034 + 14.4567i 0.488133 + 0.671858i 0.980042 0.198789i \(-0.0637008\pi\)
−0.491909 + 0.870646i \(0.663701\pi\)
\(464\) −20.3783 + 13.8289i −0.946038 + 0.641993i
\(465\) 0 0
\(466\) −5.88279 + 3.54037i −0.272515 + 0.164005i
\(467\) 2.08094 6.40448i 0.0962945 0.296364i −0.891294 0.453425i \(-0.850202\pi\)
0.987589 + 0.157061i \(0.0502020\pi\)
\(468\) −24.4982 4.28415i −1.13243 0.198035i
\(469\) −50.9881 16.5670i −2.35441 0.764995i
\(470\) 0 0
\(471\) −4.01569 12.3590i −0.185033 0.569473i
\(472\) 0.205530 + 3.76948i 0.00946029 + 0.173504i
\(473\) 4.14985 5.71178i 0.190810 0.262628i
\(474\) 1.86607 21.5036i 0.0857116 0.987693i
\(475\) 0 0
\(476\) −28.2239 4.93570i −1.29364 0.226227i
\(477\) −20.9302 15.2067i −0.958329 0.696267i
\(478\) 12.1780 2.82055i 0.557011 0.129009i
\(479\) 1.53203 + 4.71509i 0.0700001 + 0.215438i 0.979937 0.199309i \(-0.0638699\pi\)
−0.909937 + 0.414748i \(0.863870\pi\)
\(480\) 0 0
\(481\) −7.02892 + 21.6328i −0.320491 + 0.986370i
\(482\) 0.424866 4.89592i 0.0193521 0.223003i
\(483\) −2.87786 + 8.85715i −0.130947 + 0.403014i
\(484\) −9.72039 + 4.75790i −0.441836 + 0.216268i
\(485\) 0 0
\(486\) −14.8708 + 17.1313i −0.674555 + 0.777091i
\(487\) 22.3423 + 30.7515i 1.01243 + 1.39349i 0.917380 + 0.398012i \(0.130300\pi\)
0.0950461 + 0.995473i \(0.469700\pi\)
\(488\) 4.48008 1.73060i 0.202804 0.0783407i
\(489\) 0.385518 + 0.280096i 0.0174337 + 0.0126664i
\(490\) 0 0
\(491\) −9.39398 12.9297i −0.423944 0.583509i 0.542606 0.839988i \(-0.317438\pi\)
−0.966550 + 0.256478i \(0.917438\pi\)
\(492\) 3.84048 7.24747i 0.173142 0.326741i
\(493\) −23.9611 −1.07915
\(494\) −11.9552 + 28.2198i −0.537888 + 1.26967i
\(495\) 0 0
\(496\) −0.562969 + 17.5364i −0.0252780 + 0.787407i
\(497\) −14.0515 + 4.56560i −0.630294 + 0.204795i
\(498\) −1.54391 + 1.77860i −0.0691844 + 0.0797008i
\(499\) 8.08744i 0.362044i −0.983479 0.181022i \(-0.942060\pi\)
0.983479 0.181022i \(-0.0579405\pi\)
\(500\) 0 0
\(501\) 10.0100i 0.447216i
\(502\) −11.3235 9.82942i −0.505394 0.438709i
\(503\) 24.0791 7.82378i 1.07364 0.348845i 0.281733 0.959493i \(-0.409091\pi\)
0.791903 + 0.610648i \(0.209091\pi\)
\(504\) −1.14615 21.0207i −0.0510536 0.936336i
\(505\) 0 0
\(506\) 13.4946 + 5.71690i 0.599907 + 0.254147i
\(507\) −24.5498 −1.09030
\(508\) −6.60517 3.50012i −0.293057 0.155293i
\(509\) −8.31244 11.4411i −0.368442 0.507117i 0.584034 0.811729i \(-0.301473\pi\)
−0.952477 + 0.304612i \(0.901473\pi\)
\(510\) 0 0
\(511\) 28.8720 + 20.9767i 1.27722 + 0.927955i
\(512\) 3.39810 22.3708i 0.150176 0.988659i
\(513\) 10.2867 + 14.1585i 0.454171 + 0.625113i
\(514\) 8.07870 + 7.01274i 0.356336 + 0.309319i
\(515\) 0 0
\(516\) −3.09615 + 1.51549i −0.136300 + 0.0667158i
\(517\) 6.40348 19.7079i 0.281625 0.866752i
\(518\) −19.1820 1.66461i −0.842808 0.0731386i
\(519\) −0.472660 + 1.45470i −0.0207475 + 0.0638542i
\(520\) 0 0
\(521\) −12.1780 37.4801i −0.533530 1.64204i −0.746805 0.665043i \(-0.768413\pi\)
0.213275 0.976992i \(-0.431587\pi\)
\(522\) −3.97237 17.1511i −0.173866 0.750685i
\(523\) −26.6792 19.3836i −1.16660 0.847586i −0.176003 0.984390i \(-0.556317\pi\)
−0.990598 + 0.136804i \(0.956317\pi\)
\(524\) 5.30917 30.3596i 0.231932 1.32627i
\(525\) 0 0
\(526\) 42.1166 + 3.65486i 1.83637 + 0.159360i
\(527\) −10.0339 + 13.8105i −0.437083 + 0.601593i
\(528\) 16.0174 + 0.514206i 0.697070 + 0.0223779i
\(529\) 5.08521 + 15.6507i 0.221096 + 0.680464i
\(530\) 0 0
\(531\) −2.56656 0.833926i −0.111379 0.0361893i
\(532\) −25.5549 4.46894i −1.10794 0.193753i
\(533\) −7.88085 + 24.2548i −0.341358 + 1.05059i
\(534\) −5.89381 9.79333i −0.255050 0.423799i
\(535\) 0 0
\(536\) 31.9583 25.9912i 1.38039 1.12265i
\(537\) −1.77520 2.44336i −0.0766057 0.105439i
\(538\) 27.8428 16.7563i 1.20039 0.722416i
\(539\) −15.5985 + 21.4694i −0.671873 + 0.924754i
\(540\) 0 0
\(541\) 1.48837 + 2.04857i 0.0639902 + 0.0880749i 0.839813 0.542876i \(-0.182665\pi\)
−0.775822 + 0.630951i \(0.782665\pi\)
\(542\) 31.3550 + 13.2834i 1.34681 + 0.570570i
\(543\) 0.893611i 0.0383485i
\(544\) 14.9576 16.1536i 0.641300 0.692579i
\(545\) 0 0
\(546\) −7.14454 30.8473i −0.305758 1.32014i
\(547\) 1.55043 + 4.77172i 0.0662915 + 0.204024i 0.978715 0.205222i \(-0.0657917\pi\)
−0.912424 + 0.409246i \(0.865792\pi\)
\(548\) −11.6866 + 11.3174i −0.499226 + 0.483457i
\(549\) 3.43326i 0.146528i
\(550\) 0 0
\(551\) −21.6952 −0.924245
\(552\) −4.51494 5.55148i −0.192169 0.236287i
\(553\) −54.0290 + 17.5551i −2.29755 + 0.746518i
\(554\) −4.00917 + 0.928561i −0.170333 + 0.0394508i
\(555\) 0 0
\(556\) −1.43369 0.759721i −0.0608021 0.0322193i
\(557\) −12.1514 −0.514869 −0.257435 0.966296i \(-0.582877\pi\)
−0.257435 + 0.966296i \(0.582877\pi\)
\(558\) −11.5489 4.89261i −0.488902 0.207121i
\(559\) 8.67125 6.30003i 0.366755 0.266463i
\(560\) 0 0
\(561\) 12.6142 + 9.16478i 0.532574 + 0.386937i
\(562\) 17.2619 + 28.6829i 0.728150 + 1.20991i
\(563\) 28.4313 20.6565i 1.19824 0.870569i 0.204126 0.978945i \(-0.434565\pi\)
0.994110 + 0.108375i \(0.0345648\pi\)
\(564\) −7.26814 + 7.03856i −0.306044 + 0.296377i
\(565\) 0 0
\(566\) 21.1402 + 35.1271i 0.888587 + 1.47650i
\(567\) 4.03988 + 1.31264i 0.169659 + 0.0551255i
\(568\) 2.91500 10.9715i 0.122311 0.460354i
\(569\) 11.1973 34.4618i 0.469415 1.44471i −0.383928 0.923363i \(-0.625429\pi\)
0.853344 0.521349i \(-0.174571\pi\)
\(570\) 0 0
\(571\) −34.0692 + 11.0697i −1.42575 + 0.463255i −0.917425 0.397910i \(-0.869736\pi\)
−0.508327 + 0.861164i \(0.669736\pi\)
\(572\) −49.3340 + 7.00426i −2.06276 + 0.292863i
\(573\) −2.10767 1.53131i −0.0880492 0.0639715i
\(574\) −21.5069 1.86636i −0.897682 0.0779005i
\(575\) 0 0
\(576\) 14.0423 + 8.02847i 0.585096 + 0.334520i
\(577\) −22.3615 + 30.7780i −0.930922 + 1.28130i 0.0285774 + 0.999592i \(0.490902\pi\)
−0.959499 + 0.281712i \(0.909098\pi\)
\(578\) −2.55456 + 0.591660i −0.106256 + 0.0246098i
\(579\) 20.7455 6.74061i 0.862152 0.280130i
\(580\) 0 0
\(581\) 5.89547 + 1.91555i 0.244585 + 0.0794706i
\(582\) −10.1169 0.877941i −0.419359 0.0363918i
\(583\) −49.2979 16.0179i −2.04171 0.663392i
\(584\) −25.5788 + 9.88079i −1.05846 + 0.408870i
\(585\) 0 0
\(586\) 12.8105 14.7577i 0.529195 0.609635i
\(587\) 12.8092 9.30640i 0.528690 0.384116i −0.291177 0.956669i \(-0.594047\pi\)
0.819868 + 0.572553i \(0.194047\pi\)
\(588\) 11.6378 5.69643i 0.479935 0.234917i
\(589\) −9.08500 + 12.5044i −0.374341 + 0.515236i
\(590\) 0 0
\(591\) 7.25474 5.27087i 0.298420 0.216815i
\(592\) 9.07525 11.6834i 0.372990 0.480186i
\(593\) 31.5299i 1.29478i −0.762160 0.647389i \(-0.775861\pi\)
0.762160 0.647389i \(-0.224139\pi\)
\(594\) −11.0994 + 26.1998i −0.455413 + 1.07499i
\(595\) 0 0
\(596\) 5.53165 0.785363i 0.226585 0.0321697i
\(597\) −1.89017 5.81735i −0.0773595 0.238088i
\(598\) 16.8019 + 14.5850i 0.687082 + 0.596423i
\(599\) 28.8872 1.18030 0.590149 0.807294i \(-0.299069\pi\)
0.590149 + 0.807294i \(0.299069\pi\)
\(600\) 0 0
\(601\) −16.6170 −0.677822 −0.338911 0.940818i \(-0.610059\pi\)
−0.338911 + 0.940818i \(0.610059\pi\)
\(602\) 6.85151 + 5.94747i 0.279247 + 0.242401i
\(603\) 9.09970 + 28.0060i 0.370568 + 1.14049i
\(604\) 1.24199 + 8.74789i 0.0505360 + 0.355947i
\(605\) 0 0
\(606\) −4.93321 + 11.6447i −0.200398 + 0.473034i
\(607\) 46.4232i 1.88426i −0.335249 0.942129i \(-0.608821\pi\)
0.335249 0.942129i \(-0.391179\pi\)
\(608\) 13.5430 14.6260i 0.549243 0.593162i
\(609\) 18.1337 13.1749i 0.734816 0.533875i
\(610\) 0 0
\(611\) 18.4911 25.4508i 0.748070 1.02963i
\(612\) 6.91885 + 14.1352i 0.279678 + 0.571382i
\(613\) −29.1219 + 21.1583i −1.17622 + 0.854576i −0.991741 0.128259i \(-0.959061\pi\)
−0.184483 + 0.982836i \(0.559061\pi\)
\(614\) 7.15369 8.24109i 0.288700 0.332583i
\(615\) 0 0
\(616\) −15.1987 39.3456i −0.612374 1.58528i
\(617\) −8.45602 2.74753i −0.340427 0.110611i 0.133814 0.991006i \(-0.457277\pi\)
−0.474241 + 0.880395i \(0.657277\pi\)
\(618\) 14.7615 + 1.28100i 0.593794 + 0.0515292i
\(619\) 24.2453 + 7.87779i 0.974503 + 0.316635i 0.752632 0.658441i \(-0.228784\pi\)
0.221870 + 0.975076i \(0.428784\pi\)
\(620\) 0 0
\(621\) 12.0832 3.92607i 0.484882 0.157548i
\(622\) −13.6600 + 3.16379i −0.547717 + 0.126856i
\(623\) −17.6827 + 24.3381i −0.708441 + 0.975085i
\(624\) 22.8853 + 8.25668i 0.916144 + 0.330532i
\(625\) 0 0
\(626\) 2.73067 + 0.236967i 0.109140 + 0.00947109i
\(627\) 11.4213 + 8.29809i 0.456124 + 0.331394i
\(628\) −3.69405 26.0188i −0.147409 1.03826i
\(629\) 13.6892 4.44790i 0.545825 0.177349i
\(630\) 0 0
\(631\) 11.0609 34.0420i 0.440328 1.35519i −0.447199 0.894435i \(-0.647578\pi\)
0.887527 0.460756i \(-0.152422\pi\)
\(632\) 11.2084 42.1863i 0.445846 1.67808i
\(633\) 19.1599 + 6.22541i 0.761536 + 0.247438i
\(634\) 1.38597 + 2.30296i 0.0550438 + 0.0914624i
\(635\) 0 0
\(636\) 17.6065 + 18.1808i 0.698142 + 0.720914i
\(637\) −32.5935 + 23.6806i −1.29140 + 0.938258i
\(638\) −18.1883 30.2223i −0.720083 1.19651i
\(639\) 6.56531 + 4.76997i 0.259720 + 0.188697i
\(640\) 0 0
\(641\) −1.61137 + 1.17073i −0.0636453 + 0.0462410i −0.619153 0.785270i \(-0.712524\pi\)
0.555508 + 0.831511i \(0.312524\pi\)
\(642\) 0.504006 + 0.213519i 0.0198915 + 0.00842694i
\(643\) −14.4169 −0.568548 −0.284274 0.958743i \(-0.591752\pi\)
−0.284274 + 0.958743i \(0.591752\pi\)
\(644\) −8.81838 + 16.6414i −0.347493 + 0.655763i
\(645\) 0 0
\(646\) 18.8937 4.37597i 0.743363 0.172170i
\(647\) 3.84494 1.24930i 0.151160 0.0491149i −0.232460 0.972606i \(-0.574677\pi\)
0.383620 + 0.923491i \(0.374677\pi\)
\(648\) −2.53211 + 2.05933i −0.0994709 + 0.0808982i
\(649\) −5.40693 −0.212240
\(650\) 0 0
\(651\) 15.9688i 0.625868i
\(652\) 0.670400 + 0.692267i 0.0262549 + 0.0271113i
\(653\) 10.5252 + 32.3932i 0.411882 + 1.26764i 0.915010 + 0.403431i \(0.132183\pi\)
−0.503128 + 0.864212i \(0.667817\pi\)
\(654\) −2.72493 11.7652i −0.106553 0.460056i
\(655\) 0 0
\(656\) 10.1752 13.0995i 0.397275 0.511450i
\(657\) 19.6020i 0.764748i
\(658\) 24.5198 + 10.3877i 0.955880 + 0.404953i
\(659\) 6.87300 + 9.45988i 0.267734 + 0.368504i 0.921623 0.388086i \(-0.126864\pi\)
−0.653889 + 0.756591i \(0.726864\pi\)
\(660\) 0 0
\(661\) −23.0527 + 31.7294i −0.896647 + 1.23413i 0.0748777 + 0.997193i \(0.476143\pi\)
−0.971525 + 0.236937i \(0.923857\pi\)
\(662\) −36.4331 + 21.9261i −1.41601 + 0.852182i
\(663\) 13.9134 + 19.1501i 0.540351 + 0.743729i
\(664\) −3.69516 + 3.00522i −0.143400 + 0.116625i
\(665\) 0 0
\(666\) 5.45321 + 9.06122i 0.211308 + 0.351115i
\(667\) −4.86700 + 14.9791i −0.188451 + 0.579993i
\(668\) 3.48714 19.9406i 0.134921 0.771525i
\(669\) −9.93966 3.22959i −0.384289 0.124863i
\(670\) 0 0
\(671\) 2.12567 + 6.54212i 0.0820604 + 0.252556i
\(672\) −2.43786 + 20.4494i −0.0940426 + 0.788851i
\(673\) 19.4849 26.8187i 0.751088 1.03378i −0.246816 0.969062i \(-0.579384\pi\)
0.997903 0.0647213i \(-0.0206158\pi\)
\(674\) −7.02185 0.609354i −0.270472 0.0234714i
\(675\) 0 0
\(676\) −48.9047 8.55226i −1.88095 0.328933i
\(677\) 11.1735 + 8.11803i 0.429433 + 0.312001i 0.781422 0.624003i \(-0.214495\pi\)
−0.351989 + 0.936004i \(0.614495\pi\)
\(678\) −0.858948 3.70861i −0.0329877 0.142428i
\(679\) 8.25922 + 25.4193i 0.316960 + 0.975502i
\(680\) 0 0
\(681\) −2.88226 + 8.87069i −0.110448 + 0.339925i
\(682\) −25.0357 2.17259i −0.958666 0.0831927i
\(683\) 15.0801 46.4117i 0.577023 1.77589i −0.0521629 0.998639i \(-0.516611\pi\)
0.629186 0.777255i \(-0.283389\pi\)
\(684\) 6.26455 + 12.7985i 0.239531 + 0.489362i
\(685\) 0 0
\(686\) 1.76605 + 1.53302i 0.0674282 + 0.0585311i
\(687\) −5.91471 8.14090i −0.225660 0.310595i
\(688\) −6.69566 + 1.94036i −0.255269 + 0.0739756i
\(689\) −63.6634 46.2542i −2.42538 1.76214i
\(690\) 0 0
\(691\) −18.4219 25.3556i −0.700803 0.964573i −0.999946 0.0103648i \(-0.996701\pi\)
0.299143 0.954208i \(-0.403299\pi\)
\(692\) −1.44833 + 2.73319i −0.0550573 + 0.103900i
\(693\) 30.1520 1.14538
\(694\) −28.1376 11.9203i −1.06809 0.452490i
\(695\) 0 0
\(696\) 0.937654 + 17.1968i 0.0355417 + 0.651843i
\(697\) 15.3484 4.98700i 0.581363 0.188896i
\(698\) 4.04909 + 3.51482i 0.153260 + 0.133038i
\(699\) 4.80146i 0.181608i
\(700\) 0 0
\(701\) 10.0510i 0.379622i 0.981821 + 0.189811i \(0.0607875\pi\)
−0.981821 + 0.189811i \(0.939212\pi\)
\(702\) −28.3167 + 32.6210i −1.06875 + 1.23120i
\(703\) 12.3947 4.02727i 0.467473 0.151891i
\(704\) 31.7285 + 6.60422i 1.19581 + 0.248906i
\(705\) 0 0
\(706\) −13.7981 + 32.5699i −0.519298 + 1.22579i
\(707\) 33.2853 1.25182
\(708\) 2.33269 + 1.23610i 0.0876678 + 0.0464557i
\(709\) −10.3892 14.2995i −0.390175 0.537030i 0.568069 0.822981i \(-0.307691\pi\)
−0.958244 + 0.285951i \(0.907691\pi\)
\(710\) 0 0
\(711\) 25.2441 + 18.3409i 0.946729 + 0.687839i
\(712\) −8.32917 21.5621i −0.312149 0.808073i
\(713\) 6.59540 + 9.07779i 0.247000 + 0.339966i
\(714\) −13.1347 + 15.1313i −0.491556 + 0.566274i
\(715\) 0 0
\(716\) −2.68513 5.48573i −0.100348 0.205011i
\(717\) 2.70134 8.31386i 0.100883 0.310487i
\(718\) −2.84009 + 32.7276i −0.105991 + 1.22138i
\(719\) −6.84341 + 21.0618i −0.255216 + 0.785474i 0.738571 + 0.674176i \(0.235501\pi\)
−0.993787 + 0.111298i \(0.964499\pi\)
\(720\) 0 0
\(721\) −12.0510 37.0891i −0.448801 1.38127i
\(722\) −9.07014 + 2.10073i −0.337556 + 0.0781811i
\(723\) −2.78031 2.02001i −0.103401 0.0751251i
\(724\) 0.311302 1.78013i 0.0115694 0.0661578i
\(725\) 0 0
\(726\) −0.654309 + 7.53989i −0.0242837 + 0.279832i
\(727\) 6.64344 9.14391i 0.246392 0.339129i −0.667852 0.744294i \(-0.732786\pi\)
0.914243 + 0.405165i \(0.132786\pi\)
\(728\) −3.48624 63.9386i −0.129209 2.36972i
\(729\) 3.83253 + 11.7953i 0.141946 + 0.436864i
\(730\) 0 0
\(731\) −6.45055 2.09591i −0.238582 0.0775201i
\(732\) 0.578561 3.30840i 0.0213842 0.122282i
\(733\) 10.8888 33.5122i 0.402186 1.23780i −0.521036 0.853535i \(-0.674454\pi\)
0.923222 0.384267i \(-0.125546\pi\)
\(734\) −4.83217 + 2.90809i −0.178359 + 0.107340i
\(735\) 0 0
\(736\) −7.06009 12.6317i −0.260238 0.465611i
\(737\) 34.6792 + 47.7318i 1.27742 + 1.75822i
\(738\) 6.11417 + 10.1595i 0.225066 + 0.373976i
\(739\) 11.1878 15.3987i 0.411549 0.566449i −0.552046 0.833814i \(-0.686153\pi\)
0.963595 + 0.267365i \(0.0861528\pi\)
\(740\) 0 0
\(741\) 12.5976 + 17.3391i 0.462785 + 0.636969i
\(742\) 25.9840 61.3345i 0.953904 2.25166i
\(743\) 11.0416i 0.405078i −0.979274 0.202539i \(-0.935081\pi\)
0.979274 0.202539i \(-0.0649193\pi\)
\(744\) 10.3044 + 6.66085i 0.377776 + 0.244199i
\(745\) 0 0
\(746\) −28.2981 + 6.55410i −1.03607 + 0.239963i
\(747\) −1.05215 3.23818i −0.0384961 0.118479i
\(748\) 21.9356 + 22.6511i 0.802046 + 0.828207i
\(749\) 1.44066i 0.0526404i
\(750\) 0 0
\(751\) −40.7628 −1.48746 −0.743728 0.668483i \(-0.766944\pi\)
−0.743728 + 0.668483i \(0.766944\pi\)
\(752\) −16.9305 + 11.4893i −0.617393 + 0.418970i
\(753\) −9.97275 + 3.24034i −0.363427 + 0.118085i
\(754\) −12.0827 52.1686i −0.440028 1.89987i
\(755\) 0 0
\(756\) −32.3094 17.1209i −1.17508 0.622681i
\(757\) −15.9064 −0.578128 −0.289064 0.957310i \(-0.593344\pi\)
−0.289064 + 0.957310i \(0.593344\pi\)
\(758\) −15.7972 + 37.2888i −0.573779 + 1.35439i
\(759\) 8.29150 6.02413i 0.300962 0.218662i
\(760\) 0 0
\(761\) −28.7709 20.9033i −1.04294 0.757743i −0.0720855 0.997398i \(-0.522965\pi\)
−0.970858 + 0.239656i \(0.922965\pi\)
\(762\) −4.47897 + 2.69553i −0.162256 + 0.0976487i
\(763\) −25.7148 + 18.6829i −0.930940 + 0.676368i
\(764\) −3.66515 3.78470i −0.132600 0.136926i
\(765\) 0 0
\(766\) −14.8152 + 8.91609i −0.535296 + 0.322151i
\(767\) −7.80670 2.53655i −0.281883 0.0915895i
\(768\) −12.1787 10.1029i −0.439461 0.364555i
\(769\) −11.6054 + 35.7176i −0.418500 + 1.28801i 0.490582 + 0.871395i \(0.336784\pi\)
−0.909082 + 0.416616i \(0.863216\pi\)
\(770\) 0 0
\(771\) 7.11499 2.31180i 0.256240 0.0832575i
\(772\) 43.6744 6.20072i 1.57187 0.223169i
\(773\) 32.1938 + 23.3902i 1.15793 + 0.841287i 0.989515 0.144429i \(-0.0461347\pi\)
0.168416 + 0.985716i \(0.446135\pi\)
\(774\) 0.430836 4.96471i 0.0154861 0.178453i
\(775\) 0 0
\(776\) −19.8476 5.27327i −0.712488 0.189299i
\(777\) −7.91432 + 10.8931i −0.283925 + 0.390789i
\(778\) 9.02643 + 38.9726i 0.323613 + 1.39724i
\(779\) 13.8969 4.51539i 0.497910 0.161781i
\(780\) 0 0
\(781\) 15.4636 + 5.02441i 0.553330 + 0.179788i
\(782\) 1.21722 14.0266i 0.0435277 0.501589i
\(783\) −29.0820 9.44930i −1.03930 0.337690i
\(784\) 25.1676 7.29343i 0.898844 0.260479i
\(785\) 0 0
\(786\) −16.2763 14.1286i −0.580555 0.503952i
\(787\) 37.0424 26.9129i 1.32042 0.959341i 0.320492 0.947251i \(-0.396152\pi\)
0.999927 0.0120896i \(-0.00384833\pi\)
\(788\) 16.2880 7.97260i 0.580237 0.284012i
\(789\) 17.3769 23.9173i 0.618635 0.851478i
\(790\) 0 0
\(791\) −8.10579 + 5.88920i −0.288209 + 0.209396i
\(792\) −12.5769 + 19.4565i −0.446900 + 0.691357i
\(793\) 10.4429i 0.370840i
\(794\) −8.91701 3.77764i −0.316453 0.134064i
\(795\) 0 0
\(796\) −1.73878 12.2470i −0.0616293 0.434082i
\(797\) 1.61885 + 4.98230i 0.0573425 + 0.176482i 0.975625 0.219443i \(-0.0704240\pi\)
−0.918283 + 0.395925i \(0.870424\pi\)
\(798\) −11.8926 + 13.7004i −0.420994 + 0.484987i
\(799\) −19.9072 −0.704266
\(800\) 0 0
\(801\) 16.5238 0.583841
\(802\) 31.6247 36.4318i 1.11671 1.28645i
\(803\) −12.1364 37.3519i −0.428283 1.31812i
\(804\) −4.04930 28.5209i −0.142808 1.00586i
\(805\) 0 0
\(806\) −35.1281 14.8818i −1.23734 0.524190i
\(807\) 22.7249i 0.799956i
\(808\) −13.8838 + 21.4784i −0.488432 + 0.755606i
\(809\) 8.37189 6.08254i 0.294340 0.213851i −0.430808 0.902444i \(-0.641771\pi\)
0.725148 + 0.688593i \(0.241771\pi\)
\(810\) 0 0
\(811\) 7.75245 10.6703i 0.272225 0.374686i −0.650914 0.759151i \(-0.725614\pi\)
0.923139 + 0.384465i \(0.125614\pi\)
\(812\) 40.7131 19.9281i 1.42875 0.699339i
\(813\) 19.2655 13.9972i 0.675671 0.490904i
\(814\) 16.0013 + 13.8900i 0.560846 + 0.486844i
\(815\) 0 0
\(816\) −4.28521 14.7871i −0.150012 0.517652i
\(817\) −5.84054 1.89771i −0.204334 0.0663923i
\(818\) −3.30926 + 38.1341i −0.115706 + 1.33333i
\(819\) 43.5345 + 14.1452i 1.52122 + 0.494273i
\(820\) 0 0
\(821\) 22.3506 7.26213i 0.780040 0.253450i 0.108183 0.994131i \(-0.465497\pi\)
0.671857 + 0.740681i \(0.265497\pi\)
\(822\) 2.56700 + 11.0833i 0.0895345 + 0.386575i
\(823\) 13.8810 19.1055i 0.483861 0.665977i −0.495380 0.868676i \(-0.664971\pi\)
0.979241 + 0.202699i \(0.0649713\pi\)
\(824\) 28.9595 + 7.69418i 1.00885 + 0.268040i
\(825\) 0 0
\(826\) 0.600712 6.92227i 0.0209015 0.240857i
\(827\) −35.9043 26.0860i −1.24852 0.907100i −0.250381 0.968147i \(-0.580556\pi\)
−0.998135 + 0.0610478i \(0.980556\pi\)
\(828\) 10.2419 1.45410i 0.355930 0.0505336i
\(829\) −19.4026 + 6.30430i −0.673881 + 0.218957i −0.625915 0.779892i \(-0.715274\pi\)
−0.0479668 + 0.998849i \(0.515274\pi\)
\(830\) 0 0
\(831\) −0.889314 + 2.73703i −0.0308499 + 0.0949464i
\(832\) 42.7124 + 24.4202i 1.48079 + 0.846617i
\(833\) 24.2463 + 7.87811i 0.840085 + 0.272960i
\(834\) −0.972187 + 0.585081i −0.0336641 + 0.0202597i
\(835\) 0 0
\(836\) 19.8612 + 20.5090i 0.686914 + 0.709320i
\(837\) −17.6246 + 12.8050i −0.609194 + 0.442605i
\(838\) −25.0082 + 15.0504i −0.863893 + 0.519907i
\(839\) −36.5182 26.5320i −1.26075 0.915988i −0.261955 0.965080i \(-0.584367\pi\)
−0.998794 + 0.0490920i \(0.984367\pi\)
\(840\) 0 0
\(841\) 7.20604 5.23549i 0.248484 0.180534i
\(842\) −5.17519 + 12.2159i −0.178349 + 0.420987i
\(843\) 23.4106 0.806305
\(844\) 35.9988 + 19.0760i 1.23913 + 0.656622i
\(845\) 0 0
\(846\) −3.30029 14.2494i −0.113466 0.489904i
\(847\) 18.9444 6.15541i 0.650937 0.211502i
\(848\) 28.7396 + 42.3506i 0.986922 + 1.45432i
\(849\) 28.6703 0.983963
\(850\) 0 0
\(851\) 9.46116i 0.324324i
\(852\) −5.52272 5.70286i −0.189205 0.195377i
\(853\) −0.692652 2.13176i −0.0237160 0.0729902i 0.938498 0.345285i \(-0.112218\pi\)
−0.962214 + 0.272294i \(0.912218\pi\)
\(854\) −8.61178 + 1.99457i −0.294689 + 0.0682528i
\(855\) 0 0
\(856\) 0.929627 + 0.600920i 0.0317740 + 0.0205390i
\(857\) 2.14330i 0.0732138i −0.999330 0.0366069i \(-0.988345\pi\)
0.999330 0.0366069i \(-0.0116549\pi\)
\(858\) −13.5928 + 32.0854i −0.464051 + 1.09538i
\(859\) −5.15215 7.09132i −0.175789 0.241953i 0.712026 0.702153i \(-0.247778\pi\)
−0.887815 + 0.460200i \(0.847778\pi\)
\(860\) 0 0
\(861\) −8.87356 + 12.2134i −0.302410 + 0.416232i
\(862\) −0.748866 1.24434i −0.0255065 0.0423823i
\(863\) 1.54670 + 2.12885i 0.0526504 + 0.0724670i 0.834530 0.550962i \(-0.185739\pi\)
−0.781880 + 0.623429i \(0.785739\pi\)
\(864\) 24.5245 13.7072i 0.834341 0.466328i
\(865\) 0 0
\(866\) 32.6307 19.6378i 1.10884 0.667318i
\(867\) −0.566652 + 1.74398i −0.0192445 + 0.0592285i
\(868\) 5.56296 31.8108i 0.188819 1.07973i
\(869\) 59.4586 + 19.3193i 2.01699 + 0.655361i
\(870\) 0 0
\(871\) 27.6785 + 85.1858i 0.937851 + 2.88641i
\(872\) −1.32966 24.3862i −0.0450278 0.825822i
\(873\) 8.62895 11.8767i 0.292046 0.401966i
\(874\) 1.10211 12.7001i 0.0372794 0.429587i
\(875\) 0 0
\(876\) −3.30326 + 18.8891i −0.111607 + 0.638205i
\(877\) 17.1035 + 12.4265i 0.577546 + 0.419611i 0.837838 0.545918i \(-0.183819\pi\)
−0.260293 + 0.965530i \(0.583819\pi\)
\(878\) 2.08444 0.482776i 0.0703464 0.0162929i
\(879\) −4.22306 12.9973i −0.142440 0.438387i
\(880\) 0 0
\(881\) −9.15253 + 28.1686i −0.308357 + 0.949024i 0.670047 + 0.742319i \(0.266274\pi\)
−0.978403 + 0.206705i \(0.933726\pi\)
\(882\) −1.61943 + 18.6613i −0.0545289 + 0.628360i
\(883\) 9.33779 28.7388i 0.314242 0.967137i −0.661824 0.749660i \(-0.730217\pi\)
0.976065 0.217477i \(-0.0697827\pi\)
\(884\) 21.0450 + 42.9951i 0.707822 + 1.44608i
\(885\) 0 0
\(886\) 14.0065 16.1355i 0.470556 0.542083i
\(887\) −0.435322 0.599169i −0.0146167 0.0201181i 0.801646 0.597799i \(-0.203958\pi\)
−0.816263 + 0.577681i \(0.803958\pi\)
\(888\) −3.72793 9.65064i −0.125101 0.323854i
\(889\) 11.1310 + 8.08715i 0.373322 + 0.271234i
\(890\) 0 0
\(891\) −2.74769 3.78188i −0.0920512 0.126698i
\(892\) −18.6753 9.89615i −0.625295 0.331347i
\(893\) −18.0246 −0.603171
\(894\) 1.52411 3.59762i 0.0509740 0.120322i
\(895\) 0 0
\(896\) −11.9802 + 39.8870i −0.400229 + 1.33253i
\(897\) 14.7976 4.80804i 0.494079 0.160536i
\(898\) 30.1334 34.7138i 1.00556 1.15841i
\(899\) 27.0063i 0.900709i
\(900\) 0 0
\(901\) 49.7965i 1.65896i
\(902\) 17.9408 + 15.5735i 0.597362 + 0.518541i
\(903\) 6.03419 1.96063i 0.200805 0.0652456i
\(904\) −0.419132 7.68698i −0.0139401 0.255665i
\(905\) 0 0
\(906\) 5.68937 + 2.41027i 0.189017 + 0.0800759i
\(907\) 25.0444 0.831586 0.415793 0.909459i \(-0.363504\pi\)
0.415793 + 0.909459i \(0.363504\pi\)
\(908\) −8.83185 + 16.6668i −0.293095 + 0.553109i
\(909\) −10.7462 14.7908i −0.356428 0.490581i
\(910\) 0 0
\(911\) −10.3682 7.53297i −0.343515 0.249579i 0.402628 0.915364i \(-0.368097\pi\)
−0.746144 + 0.665785i \(0.768097\pi\)
\(912\) −3.87997 13.3887i −0.128479 0.443344i
\(913\) −4.00976 5.51897i −0.132704 0.182651i
\(914\) 0.794266 + 0.689464i 0.0262720 + 0.0228054i
\(915\) 0 0
\(916\) −8.94646 18.2776i −0.295599 0.603910i
\(917\) −17.5296 + 53.9505i −0.578878 + 1.78160i
\(918\) 27.2326 + 2.36324i 0.898810 + 0.0779984i
\(919\) −9.20989 + 28.3451i −0.303806 + 0.935019i 0.676314 + 0.736613i \(0.263576\pi\)
−0.980120 + 0.198405i \(0.936424\pi\)
\(920\) 0 0
\(921\) −2.35827 7.25801i −0.0777076 0.239159i
\(922\) −8.80885 38.0332i −0.290104 1.25256i
\(923\) 19.9697 + 14.5088i 0.657310 + 0.477564i
\(924\) −29.0555 5.08111i −0.955854 0.167156i
\(925\) 0 0
\(926\) 25.1765 + 2.18481i 0.827352 + 0.0717973i
\(927\) −12.5904 + 17.3292i −0.413524 + 0.569167i
\(928\) −4.12288 + 34.5837i −0.135340 + 1.13526i
\(929\) −1.45324 4.47263i −0.0476794 0.146742i 0.924382 0.381467i \(-0.124581\pi\)
−0.972062 + 0.234725i \(0.924581\pi\)
\(930\) 0 0
\(931\) 21.9534 + 7.13309i 0.719494 + 0.233778i
\(932\) −1.67265 + 9.56478i −0.0547896 + 0.313305i
\(933\) −3.03007 + 9.32559i −0.0991999 + 0.305306i
\(934\) −4.91066 8.15970i −0.160682 0.266994i
\(935\) 0 0
\(936\) −27.2865 + 22.1917i −0.891888 + 0.725359i
\(937\) −26.5112 36.4895i −0.866083 1.19206i −0.980085 0.198581i \(-0.936367\pi\)
0.114001 0.993481i \(-0.463633\pi\)
\(938\) −64.9620 + 39.0953i −2.12108 + 1.27651i
\(939\) 1.12665 1.55070i 0.0367668 0.0506052i
\(940\) 0 0
\(941\) 19.7024 + 27.1181i 0.642281 + 0.884024i 0.998735 0.0502890i \(-0.0160142\pi\)
−0.356454 + 0.934313i \(0.616014\pi\)
\(942\) −16.9219 7.16885i −0.551344 0.233574i
\(943\) 10.6079i 0.345441i
\(944\) 4.21624 + 3.27502i 0.137227 + 0.106593i
\(945\) 0 0
\(946\) −2.25288 9.72707i −0.0732475 0.316254i
\(947\) 13.5036 + 41.5598i 0.438808 + 1.35051i 0.889133 + 0.457648i \(0.151308\pi\)
−0.450325 + 0.892865i \(0.648692\pi\)
\(948\) −21.2353 21.9280i −0.689691 0.712187i
\(949\) 59.6234i 1.93546i
\(950\) 0 0
\(951\) 1.87965 0.0609518
\(952\) −31.4364 + 25.5667i −1.01886 + 0.828623i
\(953\) 18.8268 6.11721i 0.609861 0.198156i 0.0122276 0.999925i \(-0.496108\pi\)
0.597634 + 0.801769i \(0.296108\pi\)
\(954\) −35.6439 + 8.25546i −1.15401 + 0.267280i
\(955\) 0 0
\(956\) 8.27746 15.6206i 0.267712 0.505207i
\(957\) −24.6671 −0.797373
\(958\) 6.45587 + 2.73499i 0.208580 + 0.0883636i
\(959\) 24.2245 17.6001i 0.782249 0.568338i
\(960\) 0 0
\(961\) 9.51394 + 6.91228i 0.306901 + 0.222977i
\(962\) 16.5870 + 27.5615i 0.534787 + 0.888619i
\(963\) −0.640177 + 0.465116i −0.0206294 + 0.0149882i
\(964\) −4.83484 4.99254i −0.155720 0.160799i
\(965\) 0 0
\(966\) 6.79126 + 11.2846i 0.218505 + 0.363075i
\(967\) −26.8836 8.73502i −0.864519 0.280899i −0.157004 0.987598i \(-0.550184\pi\)
−0.707515 + 0.706699i \(0.750184\pi\)
\(968\) −3.93004 + 14.7920i −0.126316 + 0.475432i
\(969\) 4.19101 12.8986i 0.134635 0.414363i
\(970\) 0 0
\(971\) −43.8882 + 14.2601i −1.40844 + 0.457629i −0.911910 0.410391i \(-0.865392\pi\)
−0.496528 + 0.868021i \(0.665392\pi\)
\(972\) 4.50964 + 31.7633i 0.144647 + 1.01881i
\(973\) 2.41605 + 1.75536i 0.0774550 + 0.0562744i
\(974\) 53.5544 + 4.64743i 1.71599 + 0.148913i
\(975\) 0 0
\(976\) 2.30505 6.38898i 0.0737829 0.204506i
\(977\) 2.24013 3.08328i 0.0716682 0.0986428i −0.771678 0.636013i \(-0.780582\pi\)
0.843346 + 0.537371i \(0.180582\pi\)
\(978\) 0.656532 0.152059i 0.0209936 0.00486231i
\(979\) 31.4864 10.2306i 1.00631 0.326970i
\(980\) 0 0
\(981\) 16.6041 + 5.39499i 0.530127 + 0.172249i
\(982\) −22.5173 1.95404i −0.718557 0.0623561i
\(983\) −20.2704 6.58625i −0.646525 0.210069i −0.0326438 0.999467i \(-0.510393\pi\)
−0.613881 + 0.789398i \(0.710393\pi\)
\(984\) −4.17977 10.8203i −0.133246 0.344940i
\(985\) 0 0
\(986\) −22.2133 + 25.5898i −0.707416 + 0.814947i
\(987\) 15.0657 10.9459i 0.479548 0.348412i
\(988\) 19.0549 + 38.9291i 0.606216 + 1.23850i
\(989\) −2.62048 + 3.60678i −0.0833265 + 0.114689i
\(990\) 0 0
\(991\) 18.4326 13.3921i 0.585532 0.425414i −0.255182 0.966893i \(-0.582135\pi\)
0.840714 + 0.541479i \(0.182135\pi\)
\(992\) 18.2065 + 16.8585i 0.578057 + 0.535257i
\(993\) 29.7362i 0.943651i
\(994\) −8.15056 + 19.2392i −0.258520 + 0.610229i
\(995\) 0 0
\(996\) 0.468198 + 3.29772i 0.0148354 + 0.104492i
\(997\) 5.01908 + 15.4471i 0.158956 + 0.489216i 0.998540 0.0540134i \(-0.0172014\pi\)
−0.839584 + 0.543229i \(0.817201\pi\)
\(998\) −8.63717 7.49751i −0.273405 0.237330i
\(999\) 18.3689 0.581165
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1000.2.o.a.549.20 112
5.2 odd 4 1000.2.t.b.701.45 224
5.3 odd 4 1000.2.t.b.701.12 224
5.4 even 2 200.2.o.a.109.9 112
8.5 even 2 inner 1000.2.o.a.549.19 112
20.19 odd 2 800.2.be.a.209.11 112
25.2 odd 20 1000.2.t.b.301.47 224
25.11 even 5 200.2.o.a.189.10 yes 112
25.14 even 10 inner 1000.2.o.a.949.19 112
25.23 odd 20 1000.2.t.b.301.10 224
40.13 odd 4 1000.2.t.b.701.10 224
40.19 odd 2 800.2.be.a.209.18 112
40.29 even 2 200.2.o.a.109.10 yes 112
40.37 odd 4 1000.2.t.b.701.47 224
100.11 odd 10 800.2.be.a.689.18 112
200.11 odd 10 800.2.be.a.689.11 112
200.61 even 10 200.2.o.a.189.9 yes 112
200.77 odd 20 1000.2.t.b.301.45 224
200.173 odd 20 1000.2.t.b.301.12 224
200.189 even 10 inner 1000.2.o.a.949.20 112
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.2.o.a.109.9 112 5.4 even 2
200.2.o.a.109.10 yes 112 40.29 even 2
200.2.o.a.189.9 yes 112 200.61 even 10
200.2.o.a.189.10 yes 112 25.11 even 5
800.2.be.a.209.11 112 20.19 odd 2
800.2.be.a.209.18 112 40.19 odd 2
800.2.be.a.689.11 112 200.11 odd 10
800.2.be.a.689.18 112 100.11 odd 10
1000.2.o.a.549.19 112 8.5 even 2 inner
1000.2.o.a.549.20 112 1.1 even 1 trivial
1000.2.o.a.949.19 112 25.14 even 10 inner
1000.2.o.a.949.20 112 200.189 even 10 inner
1000.2.t.b.301.10 224 25.23 odd 20
1000.2.t.b.301.12 224 200.173 odd 20
1000.2.t.b.301.45 224 200.77 odd 20
1000.2.t.b.301.47 224 25.2 odd 20
1000.2.t.b.701.10 224 40.13 odd 4
1000.2.t.b.701.12 224 5.3 odd 4
1000.2.t.b.701.45 224 5.2 odd 4
1000.2.t.b.701.47 224 40.37 odd 4