Properties

Label 1000.2.o.a.549.21
Level $1000$
Weight $2$
Character 1000.549
Analytic conductor $7.985$
Analytic rank $0$
Dimension $112$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1000,2,Mod(149,1000)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1000.149"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1000, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1000 = 2^{3} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1000.o (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [112] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.98504020213\)
Analytic rank: \(0\)
Dimension: \(112\)
Relative dimension: \(28\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 200)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 549.21
Character \(\chi\) \(=\) 1000.549
Dual form 1000.2.o.a.949.21

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.950798 - 1.04689i) q^{2} +(-0.853735 - 2.62753i) q^{3} +(-0.191967 - 1.99077i) q^{4} +(-3.56247 - 1.60448i) q^{6} -2.67391i q^{7} +(-2.26664 - 1.69185i) q^{8} +(-3.74798 + 2.72307i) q^{9} +(0.305554 - 0.420559i) q^{11} +(-5.06690 + 2.20399i) q^{12} +(-4.26356 + 3.09766i) q^{13} +(-2.79930 - 2.54235i) q^{14} +(-3.92630 + 0.764324i) q^{16} +(6.80346 + 2.21058i) q^{17} +(-0.712813 + 6.51282i) q^{18} +(-3.74715 - 1.21752i) q^{19} +(-7.02577 + 2.28281i) q^{21} +(-0.149760 - 0.719749i) q^{22} +(2.11996 - 2.91788i) q^{23} +(-2.51026 + 7.40004i) q^{24} +(-0.810869 + 7.40873i) q^{26} +(3.64939 + 2.65144i) q^{27} +(-5.32313 + 0.513303i) q^{28} +(3.63988 - 1.18267i) q^{29} +(2.54168 - 7.82249i) q^{31} +(-2.93295 + 4.83713i) q^{32} +(-1.36589 - 0.443805i) q^{33} +(8.78295 - 5.02068i) q^{34} +(6.14048 + 6.93861i) q^{36} +(1.62286 - 1.17908i) q^{37} +(-4.83739 + 2.76524i) q^{38} +(11.7791 + 8.55804i) q^{39} +(-5.16753 + 3.75443i) q^{41} +(-4.29023 + 9.52572i) q^{42} -5.41659 q^{43} +(-0.895891 - 0.527553i) q^{44} +(-1.03905 - 4.99369i) q^{46} +(-0.748265 + 0.243126i) q^{47} +(5.36030 + 9.66392i) q^{48} -0.149804 q^{49} -19.7635i q^{51} +(6.98517 + 7.89310i) q^{52} +(-1.71792 - 5.28721i) q^{53} +(6.24561 - 1.29954i) q^{54} +(-4.52385 + 6.06079i) q^{56} +10.8852i q^{57} +(2.22267 - 4.93505i) q^{58} +(3.67423 + 5.05715i) q^{59} +(4.51387 - 6.21281i) q^{61} +(-5.77268 - 10.0985i) q^{62} +(7.28124 + 10.0218i) q^{63} +(2.27531 + 7.66961i) q^{64} +(-1.76330 + 1.00797i) q^{66} +(-1.98087 + 6.09648i) q^{67} +(3.09470 - 13.9685i) q^{68} +(-9.47669 - 3.07916i) q^{69} +(0.885245 + 2.72450i) q^{71} +(13.1023 + 0.168797i) q^{72} +(0.839035 - 1.15483i) q^{73} +(0.308646 - 2.82003i) q^{74} +(-1.70447 + 7.69341i) q^{76} +(-1.12454 - 0.817024i) q^{77} +(20.1589 - 4.19452i) q^{78} +(-2.10919 - 6.49143i) q^{79} +(-0.443692 + 1.36554i) q^{81} +(-0.982791 + 8.97955i) q^{82} +(-0.170500 + 0.524746i) q^{83} +(5.89326 + 13.5484i) q^{84} +(-5.15008 + 5.67058i) q^{86} +(-6.21499 - 8.55421i) q^{87} +(-1.40410 + 0.436305i) q^{88} +(-11.0001 - 7.99206i) q^{89} +(8.28286 + 11.4004i) q^{91} +(-6.21578 - 3.66021i) q^{92} -22.7237 q^{93} +(-0.456922 + 1.01452i) q^{94} +(15.2136 + 3.57678i) q^{96} +(-4.85400 + 1.57716i) q^{97} +(-0.142433 + 0.156829i) q^{98} +2.40829i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 112 q + 5 q^{2} - 3 q^{4} + q^{6} - 10 q^{8} - 30 q^{9} + 5 q^{12} - 3 q^{14} - 15 q^{16} + 10 q^{17} + 30 q^{22} + 10 q^{23} - 16 q^{24} - 14 q^{26} - 15 q^{28} - 18 q^{31} + 10 q^{33} + 9 q^{34} + 41 q^{36}+ \cdots - 90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1000\mathbb{Z}\right)^\times\).

\(n\) \(377\) \(501\) \(751\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.950798 1.04689i 0.672316 0.740265i
\(3\) −0.853735 2.62753i −0.492904 1.51700i −0.820198 0.572080i \(-0.806137\pi\)
0.327293 0.944923i \(-0.393863\pi\)
\(4\) −0.191967 1.99077i −0.0959836 0.995383i
\(5\) 0 0
\(6\) −3.56247 1.60448i −1.45437 0.655025i
\(7\) 2.67391i 1.01064i −0.862931 0.505322i \(-0.831374\pi\)
0.862931 0.505322i \(-0.168626\pi\)
\(8\) −2.26664 1.69185i −0.801378 0.598158i
\(9\) −3.74798 + 2.72307i −1.24933 + 0.907689i
\(10\) 0 0
\(11\) 0.305554 0.420559i 0.0921280 0.126803i −0.760465 0.649379i \(-0.775029\pi\)
0.852593 + 0.522576i \(0.175029\pi\)
\(12\) −5.06690 + 2.20399i −1.46269 + 0.636236i
\(13\) −4.26356 + 3.09766i −1.18250 + 0.859136i −0.992451 0.122639i \(-0.960864\pi\)
−0.190047 + 0.981775i \(0.560864\pi\)
\(14\) −2.79930 2.54235i −0.748144 0.679471i
\(15\) 0 0
\(16\) −3.92630 + 0.764324i −0.981574 + 0.191081i
\(17\) 6.80346 + 2.21058i 1.65008 + 0.536144i 0.978758 0.205020i \(-0.0657259\pi\)
0.671324 + 0.741164i \(0.265726\pi\)
\(18\) −0.712813 + 6.51282i −0.168012 + 1.53509i
\(19\) −3.74715 1.21752i −0.859654 0.279319i −0.154170 0.988044i \(-0.549270\pi\)
−0.705484 + 0.708726i \(0.749270\pi\)
\(20\) 0 0
\(21\) −7.02577 + 2.28281i −1.53315 + 0.498151i
\(22\) −0.149760 0.719749i −0.0319289 0.153451i
\(23\) 2.11996 2.91788i 0.442043 0.608420i −0.528622 0.848858i \(-0.677291\pi\)
0.970665 + 0.240438i \(0.0772910\pi\)
\(24\) −2.51026 + 7.40004i −0.512405 + 1.51053i
\(25\) 0 0
\(26\) −0.810869 + 7.40873i −0.159025 + 1.45297i
\(27\) 3.64939 + 2.65144i 0.702326 + 0.510270i
\(28\) −5.32313 + 0.513303i −1.00598 + 0.0970052i
\(29\) 3.63988 1.18267i 0.675910 0.219616i 0.0491059 0.998794i \(-0.484363\pi\)
0.626804 + 0.779177i \(0.284363\pi\)
\(30\) 0 0
\(31\) 2.54168 7.82249i 0.456499 1.40496i −0.412867 0.910791i \(-0.635473\pi\)
0.869366 0.494168i \(-0.164527\pi\)
\(32\) −2.93295 + 4.83713i −0.518477 + 0.855091i
\(33\) −1.36589 0.443805i −0.237771 0.0772566i
\(34\) 8.78295 5.02068i 1.50626 0.861039i
\(35\) 0 0
\(36\) 6.14048 + 6.93861i 1.02341 + 1.15644i
\(37\) 1.62286 1.17908i 0.266797 0.193839i −0.446341 0.894863i \(-0.647273\pi\)
0.713138 + 0.701024i \(0.247273\pi\)
\(38\) −4.83739 + 2.76524i −0.784729 + 0.448581i
\(39\) 11.7791 + 8.55804i 1.88617 + 1.37038i
\(40\) 0 0
\(41\) −5.16753 + 3.75443i −0.807032 + 0.586343i −0.912969 0.408030i \(-0.866216\pi\)
0.105936 + 0.994373i \(0.466216\pi\)
\(42\) −4.29023 + 9.52572i −0.661997 + 1.46985i
\(43\) −5.41659 −0.826022 −0.413011 0.910726i \(-0.635523\pi\)
−0.413011 + 0.910726i \(0.635523\pi\)
\(44\) −0.895891 0.527553i −0.135061 0.0795316i
\(45\) 0 0
\(46\) −1.03905 4.99369i −0.153199 0.736279i
\(47\) −0.748265 + 0.243126i −0.109146 + 0.0354636i −0.363081 0.931758i \(-0.618275\pi\)
0.253935 + 0.967221i \(0.418275\pi\)
\(48\) 5.36030 + 9.66392i 0.773692 + 1.39487i
\(49\) −0.149804 −0.0214006
\(50\) 0 0
\(51\) 19.7635i 2.76745i
\(52\) 6.98517 + 7.89310i 0.968669 + 1.09458i
\(53\) −1.71792 5.28721i −0.235974 0.726254i −0.996991 0.0775214i \(-0.975299\pi\)
0.761016 0.648733i \(-0.224701\pi\)
\(54\) 6.24561 1.29954i 0.849919 0.176845i
\(55\) 0 0
\(56\) −4.52385 + 6.06079i −0.604525 + 0.809908i
\(57\) 10.8852i 1.44178i
\(58\) 2.22267 4.93505i 0.291850 0.648003i
\(59\) 3.67423 + 5.05715i 0.478344 + 0.658385i 0.978186 0.207732i \(-0.0666083\pi\)
−0.499841 + 0.866117i \(0.666608\pi\)
\(60\) 0 0
\(61\) 4.51387 6.21281i 0.577941 0.795468i −0.415526 0.909581i \(-0.636403\pi\)
0.993468 + 0.114113i \(0.0364026\pi\)
\(62\) −5.77268 10.0985i −0.733131 1.28251i
\(63\) 7.28124 + 10.0218i 0.917350 + 1.26262i
\(64\) 2.27531 + 7.66961i 0.284414 + 0.958702i
\(65\) 0 0
\(66\) −1.76330 + 1.00797i −0.217048 + 0.124073i
\(67\) −1.98087 + 6.09648i −0.242001 + 0.744804i 0.754114 + 0.656744i \(0.228067\pi\)
−0.996115 + 0.0880600i \(0.971933\pi\)
\(68\) 3.09470 13.9685i 0.375288 1.69392i
\(69\) −9.47669 3.07916i −1.14086 0.370688i
\(70\) 0 0
\(71\) 0.885245 + 2.72450i 0.105059 + 0.323339i 0.989744 0.142850i \(-0.0456266\pi\)
−0.884685 + 0.466189i \(0.845627\pi\)
\(72\) 13.1023 + 0.168797i 1.54413 + 0.0198929i
\(73\) 0.839035 1.15483i 0.0982017 0.135163i −0.757089 0.653312i \(-0.773379\pi\)
0.855290 + 0.518149i \(0.173379\pi\)
\(74\) 0.308646 2.82003i 0.0358793 0.327822i
\(75\) 0 0
\(76\) −1.70447 + 7.69341i −0.195516 + 0.882495i
\(77\) −1.12454 0.817024i −0.128153 0.0931086i
\(78\) 20.1589 4.19452i 2.28255 0.474935i
\(79\) −2.10919 6.49143i −0.237303 0.730342i −0.996808 0.0798409i \(-0.974559\pi\)
0.759505 0.650501i \(-0.225441\pi\)
\(80\) 0 0
\(81\) −0.443692 + 1.36554i −0.0492991 + 0.151727i
\(82\) −0.982791 + 8.97955i −0.108531 + 0.991625i
\(83\) −0.170500 + 0.524746i −0.0187148 + 0.0575984i −0.959978 0.280076i \(-0.909640\pi\)
0.941263 + 0.337674i \(0.109640\pi\)
\(84\) 5.89326 + 13.5484i 0.643008 + 1.47826i
\(85\) 0 0
\(86\) −5.15008 + 5.67058i −0.555347 + 0.611475i
\(87\) −6.21499 8.55421i −0.666317 0.917107i
\(88\) −1.40410 + 0.436305i −0.149678 + 0.0465103i
\(89\) −11.0001 7.99206i −1.16601 0.847156i −0.175485 0.984482i \(-0.556149\pi\)
−0.990526 + 0.137326i \(0.956149\pi\)
\(90\) 0 0
\(91\) 8.28286 + 11.4004i 0.868280 + 1.19508i
\(92\) −6.21578 3.66021i −0.648040 0.381604i
\(93\) −22.7237 −2.35634
\(94\) −0.456922 + 1.01452i −0.0471279 + 0.104639i
\(95\) 0 0
\(96\) 15.2136 + 3.57678i 1.55274 + 0.365053i
\(97\) −4.85400 + 1.57716i −0.492849 + 0.160136i −0.544888 0.838509i \(-0.683428\pi\)
0.0520390 + 0.998645i \(0.483428\pi\)
\(98\) −0.142433 + 0.156829i −0.0143879 + 0.0158421i
\(99\) 2.40829i 0.242042i
\(100\) 0 0
\(101\) 1.77393i 0.176513i −0.996098 0.0882565i \(-0.971870\pi\)
0.996098 0.0882565i \(-0.0281295\pi\)
\(102\) −20.6903 18.7911i −2.04864 1.86060i
\(103\) 0.666003 0.216398i 0.0656233 0.0213223i −0.276021 0.961151i \(-0.589016\pi\)
0.341645 + 0.939829i \(0.389016\pi\)
\(104\) 14.9047 + 0.192017i 1.46153 + 0.0188288i
\(105\) 0 0
\(106\) −7.16853 3.22859i −0.696269 0.313588i
\(107\) 20.2036 1.95315 0.976576 0.215171i \(-0.0690310\pi\)
0.976576 + 0.215171i \(0.0690310\pi\)
\(108\) 4.57783 7.77408i 0.440502 0.748061i
\(109\) −3.68500 5.07197i −0.352959 0.485807i 0.595211 0.803569i \(-0.297068\pi\)
−0.948170 + 0.317763i \(0.897068\pi\)
\(110\) 0 0
\(111\) −4.48355 3.25749i −0.425560 0.309188i
\(112\) 2.04373 + 10.4986i 0.193115 + 0.992022i
\(113\) 2.03808 + 2.80517i 0.191726 + 0.263888i 0.894048 0.447971i \(-0.147853\pi\)
−0.702322 + 0.711859i \(0.747853\pi\)
\(114\) 11.3956 + 10.3496i 1.06730 + 0.969328i
\(115\) 0 0
\(116\) −3.05316 7.01912i −0.283479 0.651709i
\(117\) 7.54461 23.2199i 0.697499 2.14668i
\(118\) 8.78774 + 0.961798i 0.808977 + 0.0885407i
\(119\) 5.91089 18.1919i 0.541851 1.66764i
\(120\) 0 0
\(121\) 3.31568 + 10.2046i 0.301425 + 0.927692i
\(122\) −2.21236 10.6327i −0.200298 0.962635i
\(123\) 14.2766 + 10.3725i 1.28727 + 0.935260i
\(124\) −16.0607 3.55823i −1.44229 0.319538i
\(125\) 0 0
\(126\) 17.4147 + 1.90600i 1.55143 + 0.169800i
\(127\) 1.99694 2.74856i 0.177200 0.243895i −0.711173 0.703017i \(-0.751836\pi\)
0.888373 + 0.459122i \(0.151836\pi\)
\(128\) 10.1926 + 4.91025i 0.900909 + 0.434009i
\(129\) 4.62433 + 14.2322i 0.407150 + 1.25308i
\(130\) 0 0
\(131\) −6.90619 2.24396i −0.603397 0.196055i −0.00864194 0.999963i \(-0.502751\pi\)
−0.594755 + 0.803907i \(0.702751\pi\)
\(132\) −0.621306 + 2.80437i −0.0540777 + 0.244089i
\(133\) −3.25555 + 10.0195i −0.282292 + 0.868804i
\(134\) 4.49896 + 7.87028i 0.388651 + 0.679888i
\(135\) 0 0
\(136\) −11.6810 16.5210i −1.00164 1.41666i
\(137\) −10.8418 14.9224i −0.926276 1.27491i −0.961295 0.275522i \(-0.911149\pi\)
0.0350190 0.999387i \(-0.488851\pi\)
\(138\) −12.2340 + 6.99341i −1.04142 + 0.595319i
\(139\) −5.88707 + 8.10286i −0.499335 + 0.687275i −0.982076 0.188488i \(-0.939641\pi\)
0.482741 + 0.875763i \(0.339641\pi\)
\(140\) 0 0
\(141\) 1.27764 + 1.75852i 0.107597 + 0.148094i
\(142\) 3.69395 + 1.66370i 0.309990 + 0.139614i
\(143\) 2.73958i 0.229095i
\(144\) 12.6344 13.5562i 1.05287 1.12969i
\(145\) 0 0
\(146\) −0.411233 1.97639i −0.0340339 0.163567i
\(147\) 0.127893 + 0.393614i 0.0105484 + 0.0324647i
\(148\) −2.65881 3.00439i −0.218552 0.246960i
\(149\) 22.4904i 1.84249i −0.388984 0.921245i \(-0.627174\pi\)
0.388984 0.921245i \(-0.372826\pi\)
\(150\) 0 0
\(151\) −13.2680 −1.07974 −0.539869 0.841749i \(-0.681526\pi\)
−0.539869 + 0.841749i \(0.681526\pi\)
\(152\) 6.43357 + 9.09928i 0.521831 + 0.738049i
\(153\) −31.5188 + 10.2411i −2.54814 + 0.827942i
\(154\) −1.92454 + 0.400445i −0.155084 + 0.0322688i
\(155\) 0 0
\(156\) 14.7758 25.0923i 1.18301 2.00900i
\(157\) −6.77950 −0.541063 −0.270531 0.962711i \(-0.587199\pi\)
−0.270531 + 0.962711i \(0.587199\pi\)
\(158\) −8.80124 3.96394i −0.700189 0.315354i
\(159\) −12.4256 + 9.02775i −0.985417 + 0.715947i
\(160\) 0 0
\(161\) −7.80215 5.66859i −0.614896 0.446748i
\(162\) 1.00772 + 1.76285i 0.0791736 + 0.138503i
\(163\) 11.6472 8.46217i 0.912277 0.662808i −0.0293124 0.999570i \(-0.509332\pi\)
0.941590 + 0.336762i \(0.109332\pi\)
\(164\) 8.46619 + 9.56661i 0.661098 + 0.747027i
\(165\) 0 0
\(166\) 0.387241 + 0.677423i 0.0300558 + 0.0525782i
\(167\) −3.69785 1.20150i −0.286148 0.0929752i 0.162426 0.986721i \(-0.448068\pi\)
−0.448574 + 0.893746i \(0.648068\pi\)
\(168\) 19.7871 + 6.71222i 1.52661 + 0.517859i
\(169\) 4.56524 14.0504i 0.351172 1.08080i
\(170\) 0 0
\(171\) 17.3596 5.64048i 1.32752 0.431339i
\(172\) 1.03981 + 10.7832i 0.0792846 + 0.822208i
\(173\) 1.77044 + 1.28630i 0.134604 + 0.0977957i 0.653050 0.757315i \(-0.273489\pi\)
−0.518446 + 0.855111i \(0.673489\pi\)
\(174\) −14.8645 1.62689i −1.12688 0.123334i
\(175\) 0 0
\(176\) −0.878253 + 1.88478i −0.0662008 + 0.142071i
\(177\) 10.1510 13.9716i 0.762994 1.05017i
\(178\) −18.8257 + 3.91712i −1.41105 + 0.293600i
\(179\) −8.52431 + 2.76971i −0.637137 + 0.207018i −0.609734 0.792606i \(-0.708724\pi\)
−0.0274027 + 0.999624i \(0.508724\pi\)
\(180\) 0 0
\(181\) 20.6836 + 6.72051i 1.53740 + 0.499531i 0.950657 0.310243i \(-0.100410\pi\)
0.586742 + 0.809774i \(0.300410\pi\)
\(182\) 19.8103 + 2.16819i 1.46844 + 0.160717i
\(183\) −20.1780 6.55622i −1.49160 0.484649i
\(184\) −9.74180 + 3.02713i −0.718175 + 0.223163i
\(185\) 0 0
\(186\) −21.6057 + 23.7893i −1.58420 + 1.74431i
\(187\) 3.00850 2.18581i 0.220004 0.159842i
\(188\) 0.627649 + 1.44295i 0.0457760 + 0.105238i
\(189\) 7.08972 9.75816i 0.515701 0.709801i
\(190\) 0 0
\(191\) 1.35201 0.982290i 0.0978277 0.0710760i −0.537796 0.843075i \(-0.680743\pi\)
0.635624 + 0.771999i \(0.280743\pi\)
\(192\) 18.2096 12.5263i 1.31416 0.904005i
\(193\) 8.56535i 0.616548i −0.951298 0.308274i \(-0.900249\pi\)
0.951298 0.308274i \(-0.0997513\pi\)
\(194\) −2.96406 + 6.58118i −0.212807 + 0.472501i
\(195\) 0 0
\(196\) 0.0287574 + 0.298225i 0.00205410 + 0.0213018i
\(197\) −3.12786 9.62655i −0.222851 0.685864i −0.998503 0.0547029i \(-0.982579\pi\)
0.775652 0.631161i \(-0.217421\pi\)
\(198\) 2.52122 + 2.28980i 0.179175 + 0.162729i
\(199\) −17.2203 −1.22071 −0.610356 0.792127i \(-0.708974\pi\)
−0.610356 + 0.792127i \(0.708974\pi\)
\(200\) 0 0
\(201\) 17.7098 1.24915
\(202\) −1.85712 1.68665i −0.130666 0.118672i
\(203\) −3.16236 9.73273i −0.221954 0.683104i
\(204\) −39.3445 + 3.79395i −2.75467 + 0.265630i
\(205\) 0 0
\(206\) 0.406690 0.902984i 0.0283354 0.0629139i
\(207\) 16.7090i 1.16135i
\(208\) 14.3724 15.4211i 0.996546 1.06926i
\(209\) −1.65700 + 1.20388i −0.114617 + 0.0832739i
\(210\) 0 0
\(211\) 10.5323 14.4965i 0.725075 0.997980i −0.274265 0.961654i \(-0.588435\pi\)
0.999340 0.0363260i \(-0.0115655\pi\)
\(212\) −10.1958 + 4.43494i −0.700251 + 0.304593i
\(213\) 6.40294 4.65201i 0.438722 0.318751i
\(214\) 19.2095 21.1510i 1.31313 1.44585i
\(215\) 0 0
\(216\) −3.78603 12.1841i −0.257607 0.829021i
\(217\) −20.9166 6.79623i −1.41991 0.461358i
\(218\) −8.81350 0.964618i −0.596926 0.0653322i
\(219\) −3.75067 1.21867i −0.253447 0.0823498i
\(220\) 0 0
\(221\) −35.8546 + 11.6499i −2.41184 + 0.783654i
\(222\) −7.67320 + 1.59658i −0.514991 + 0.107156i
\(223\) 3.76665 5.18435i 0.252233 0.347170i −0.664058 0.747681i \(-0.731167\pi\)
0.916292 + 0.400511i \(0.131167\pi\)
\(224\) 12.9341 + 7.84245i 0.864193 + 0.523996i
\(225\) 0 0
\(226\) 4.87451 + 0.533504i 0.324248 + 0.0354882i
\(227\) −21.6339 15.7179i −1.43589 1.04324i −0.988881 0.148706i \(-0.952489\pi\)
−0.447009 0.894529i \(-0.647511\pi\)
\(228\) 21.6698 2.08960i 1.43512 0.138387i
\(229\) −1.64026 + 0.532952i −0.108391 + 0.0352185i −0.362711 0.931902i \(-0.618149\pi\)
0.254319 + 0.967120i \(0.418149\pi\)
\(230\) 0 0
\(231\) −1.18670 + 3.65228i −0.0780789 + 0.240302i
\(232\) −10.2512 3.47744i −0.673024 0.228305i
\(233\) 25.2733 + 8.21180i 1.65571 + 0.537973i 0.979966 0.199164i \(-0.0638228\pi\)
0.675743 + 0.737137i \(0.263823\pi\)
\(234\) −17.1354 29.9758i −1.12017 1.95958i
\(235\) 0 0
\(236\) 9.36226 8.28534i 0.609432 0.539330i
\(237\) −15.2557 + 11.0839i −0.990964 + 0.719978i
\(238\) −13.4249 23.4848i −0.870204 1.52230i
\(239\) −10.8304 7.86871i −0.700557 0.508985i 0.179556 0.983748i \(-0.442534\pi\)
−0.880114 + 0.474763i \(0.842534\pi\)
\(240\) 0 0
\(241\) 9.29368 6.75225i 0.598658 0.434951i −0.246744 0.969081i \(-0.579361\pi\)
0.845402 + 0.534130i \(0.179361\pi\)
\(242\) 13.8357 + 6.23136i 0.889391 + 0.400567i
\(243\) 17.4995 1.12259
\(244\) −13.2348 7.79340i −0.847268 0.498921i
\(245\) 0 0
\(246\) 24.4330 5.08385i 1.55779 0.324134i
\(247\) 19.7476 6.41640i 1.25651 0.408266i
\(248\) −18.9955 + 13.4306i −1.20622 + 0.852845i
\(249\) 1.52435 0.0966015
\(250\) 0 0
\(251\) 10.3951i 0.656130i −0.944655 0.328065i \(-0.893603\pi\)
0.944655 0.328065i \(-0.106397\pi\)
\(252\) 18.5532 16.4191i 1.16874 1.03431i
\(253\) −0.579377 1.78314i −0.0364251 0.112105i
\(254\) −0.978753 4.70390i −0.0614124 0.295149i
\(255\) 0 0
\(256\) 14.8316 6.00192i 0.926976 0.375120i
\(257\) 5.90778i 0.368517i 0.982878 + 0.184258i \(0.0589884\pi\)
−0.982878 + 0.184258i \(0.941012\pi\)
\(258\) 19.2964 + 8.69079i 1.20134 + 0.541065i
\(259\) −3.15275 4.33939i −0.195902 0.269637i
\(260\) 0 0
\(261\) −10.4217 + 14.3443i −0.645089 + 0.887889i
\(262\) −8.91557 + 5.09649i −0.550806 + 0.314862i
\(263\) −3.28152 4.51662i −0.202347 0.278507i 0.695769 0.718266i \(-0.255064\pi\)
−0.898116 + 0.439759i \(0.855064\pi\)
\(264\) 2.34513 + 3.31683i 0.144333 + 0.204137i
\(265\) 0 0
\(266\) 7.39401 + 12.9348i 0.453356 + 0.793081i
\(267\) −11.6082 + 35.7262i −0.710407 + 2.18641i
\(268\) 12.5169 + 2.77312i 0.764593 + 0.169395i
\(269\) 2.00902 + 0.652770i 0.122492 + 0.0398001i 0.369622 0.929182i \(-0.379487\pi\)
−0.247130 + 0.968982i \(0.579487\pi\)
\(270\) 0 0
\(271\) 5.94944 + 18.3105i 0.361403 + 1.11228i 0.952203 + 0.305466i \(0.0988121\pi\)
−0.590800 + 0.806818i \(0.701188\pi\)
\(272\) −28.4020 3.47934i −1.72212 0.210966i
\(273\) 22.8834 31.4963i 1.38497 1.90625i
\(274\) −25.9305 2.83804i −1.56652 0.171452i
\(275\) 0 0
\(276\) −4.31068 + 19.4570i −0.259472 + 1.17117i
\(277\) 16.0691 + 11.6749i 0.965498 + 0.701476i 0.954421 0.298463i \(-0.0964739\pi\)
0.0110772 + 0.999939i \(0.496474\pi\)
\(278\) 2.88541 + 13.8673i 0.173055 + 0.831706i
\(279\) 11.7750 + 36.2397i 0.704950 + 2.16961i
\(280\) 0 0
\(281\) −3.83866 + 11.8142i −0.228995 + 0.704775i 0.768866 + 0.639410i \(0.220821\pi\)
−0.997861 + 0.0653651i \(0.979179\pi\)
\(282\) 3.05576 + 0.334446i 0.181968 + 0.0199160i
\(283\) 0.0965181 0.297052i 0.00573740 0.0176579i −0.948147 0.317833i \(-0.897045\pi\)
0.953884 + 0.300175i \(0.0970450\pi\)
\(284\) 5.25391 2.28533i 0.311762 0.135609i
\(285\) 0 0
\(286\) 2.86805 + 2.60479i 0.169591 + 0.154024i
\(287\) 10.0390 + 13.8175i 0.592584 + 0.815622i
\(288\) −2.17918 26.1161i −0.128410 1.53891i
\(289\) 27.6471 + 20.0868i 1.62630 + 1.18158i
\(290\) 0 0
\(291\) 8.28807 + 11.4075i 0.485855 + 0.668722i
\(292\) −2.46007 1.44863i −0.143965 0.0847748i
\(293\) 10.1550 0.593262 0.296631 0.954992i \(-0.404137\pi\)
0.296631 + 0.954992i \(0.404137\pi\)
\(294\) 0.533672 + 0.240357i 0.0311244 + 0.0140179i
\(295\) 0 0
\(296\) −5.67326 0.0730883i −0.329752 0.00424817i
\(297\) 2.23017 0.724627i 0.129408 0.0420471i
\(298\) −23.5451 21.3839i −1.36393 1.23873i
\(299\) 19.0075i 1.09923i
\(300\) 0 0
\(301\) 14.4835i 0.834814i
\(302\) −12.6152 + 13.8902i −0.725925 + 0.799292i
\(303\) −4.66106 + 1.51447i −0.267771 + 0.0870040i
\(304\) 15.6430 + 1.91632i 0.897187 + 0.109908i
\(305\) 0 0
\(306\) −19.2467 + 42.7340i −1.10026 + 2.44294i
\(307\) 30.2858 1.72850 0.864250 0.503062i \(-0.167793\pi\)
0.864250 + 0.503062i \(0.167793\pi\)
\(308\) −1.41063 + 2.39553i −0.0803781 + 0.136498i
\(309\) −1.13718 1.56520i −0.0646920 0.0890408i
\(310\) 0 0
\(311\) 20.4723 + 14.8740i 1.16088 + 0.843426i 0.989889 0.141847i \(-0.0453041\pi\)
0.170988 + 0.985273i \(0.445304\pi\)
\(312\) −12.2201 39.3265i −0.691830 2.22642i
\(313\) 15.0000 + 20.6458i 0.847852 + 1.16697i 0.984332 + 0.176325i \(0.0564211\pi\)
−0.136480 + 0.990643i \(0.543579\pi\)
\(314\) −6.44593 + 7.09741i −0.363765 + 0.400530i
\(315\) 0 0
\(316\) −12.5180 + 5.44505i −0.704193 + 0.306308i
\(317\) 8.30209 25.5512i 0.466292 1.43510i −0.391059 0.920366i \(-0.627891\pi\)
0.857351 0.514733i \(-0.172109\pi\)
\(318\) −2.36318 + 21.5919i −0.132521 + 1.21081i
\(319\) 0.614799 1.89216i 0.0344221 0.105940i
\(320\) 0 0
\(321\) −17.2485 53.0854i −0.962717 2.96294i
\(322\) −13.3527 + 2.77832i −0.744115 + 0.154830i
\(323\) −22.8021 16.5667i −1.26874 0.921797i
\(324\) 2.80365 + 0.621147i 0.155758 + 0.0345082i
\(325\) 0 0
\(326\) 2.21513 20.2392i 0.122685 1.12094i
\(327\) −10.1807 + 14.0126i −0.562995 + 0.774897i
\(328\) 18.0648 + 0.232728i 0.997464 + 0.0128503i
\(329\) 0.650098 + 2.00079i 0.0358410 + 0.110307i
\(330\) 0 0
\(331\) 11.4630 + 3.72455i 0.630063 + 0.204720i 0.606603 0.795005i \(-0.292532\pi\)
0.0234603 + 0.999725i \(0.492532\pi\)
\(332\) 1.07738 + 0.238692i 0.0591288 + 0.0130999i
\(333\) −2.87175 + 8.83833i −0.157371 + 0.484337i
\(334\) −4.77375 + 2.72886i −0.261208 + 0.149317i
\(335\) 0 0
\(336\) 25.8405 14.3330i 1.40971 0.781927i
\(337\) 8.18324 + 11.2633i 0.445769 + 0.613549i 0.971482 0.237113i \(-0.0762013\pi\)
−0.525713 + 0.850662i \(0.676201\pi\)
\(338\) −10.3686 18.1384i −0.563977 0.986597i
\(339\) 5.63068 7.74997i 0.305817 0.420921i
\(340\) 0 0
\(341\) −2.51320 3.45912i −0.136097 0.187322i
\(342\) 10.6005 23.5366i 0.573210 1.27271i
\(343\) 18.3168i 0.989015i
\(344\) 12.2775 + 9.16404i 0.661956 + 0.494092i
\(345\) 0 0
\(346\) 3.02995 0.630450i 0.162891 0.0338932i
\(347\) 4.69862 + 14.4609i 0.252235 + 0.776300i 0.994362 + 0.106041i \(0.0338173\pi\)
−0.742127 + 0.670260i \(0.766183\pi\)
\(348\) −15.8363 + 14.0147i −0.848917 + 0.751268i
\(349\) 23.4212i 1.25371i 0.779136 + 0.626854i \(0.215658\pi\)
−0.779136 + 0.626854i \(0.784342\pi\)
\(350\) 0 0
\(351\) −23.7727 −1.26889
\(352\) 1.13812 + 2.71148i 0.0606622 + 0.144522i
\(353\) 4.26001 1.38416i 0.226738 0.0736715i −0.193445 0.981111i \(-0.561966\pi\)
0.420182 + 0.907440i \(0.361966\pi\)
\(354\) −4.97525 23.9111i −0.264432 1.27086i
\(355\) 0 0
\(356\) −13.7987 + 23.4329i −0.731327 + 1.24194i
\(357\) −52.8459 −2.79690
\(358\) −5.20530 + 11.5575i −0.275109 + 0.610831i
\(359\) −7.45656 + 5.41751i −0.393542 + 0.285925i −0.766906 0.641760i \(-0.778205\pi\)
0.373363 + 0.927685i \(0.378205\pi\)
\(360\) 0 0
\(361\) −2.81258 2.04346i −0.148030 0.107550i
\(362\) 26.7016 15.2636i 1.40340 0.802240i
\(363\) 23.9822 17.4241i 1.25874 0.914527i
\(364\) 21.1055 18.6777i 1.10623 0.978979i
\(365\) 0 0
\(366\) −26.0488 + 14.8905i −1.36159 + 0.778340i
\(367\) 32.3311 + 10.5050i 1.68767 + 0.548357i 0.986375 0.164513i \(-0.0526053\pi\)
0.701296 + 0.712871i \(0.252605\pi\)
\(368\) −6.09340 + 13.0768i −0.317641 + 0.681675i
\(369\) 9.14424 28.1431i 0.476030 1.46507i
\(370\) 0 0
\(371\) −14.1375 + 4.59356i −0.733984 + 0.238486i
\(372\) 4.36221 + 45.2376i 0.226170 + 2.34546i
\(373\) −20.7909 15.1054i −1.07651 0.782130i −0.0994385 0.995044i \(-0.531705\pi\)
−0.977071 + 0.212914i \(0.931705\pi\)
\(374\) 0.572175 5.22784i 0.0295865 0.270325i
\(375\) 0 0
\(376\) 2.10738 + 0.714871i 0.108680 + 0.0368666i
\(377\) −11.8554 + 16.3175i −0.610582 + 0.840394i
\(378\) −3.47485 16.7002i −0.178727 0.858966i
\(379\) 23.6500 7.68435i 1.21482 0.394719i 0.369627 0.929180i \(-0.379486\pi\)
0.845193 + 0.534462i \(0.179486\pi\)
\(380\) 0 0
\(381\) −8.92676 2.90048i −0.457332 0.148596i
\(382\) 0.257132 2.34936i 0.0131560 0.120204i
\(383\) −5.06647 1.64620i −0.258885 0.0841167i 0.176699 0.984265i \(-0.443458\pi\)
−0.435584 + 0.900148i \(0.643458\pi\)
\(384\) 4.20001 30.9734i 0.214331 1.58061i
\(385\) 0 0
\(386\) −8.96700 8.14392i −0.456408 0.414515i
\(387\) 20.3013 14.7497i 1.03197 0.749771i
\(388\) 4.07157 + 9.36042i 0.206703 + 0.475203i
\(389\) 6.84259 9.41801i 0.346933 0.477512i −0.599517 0.800362i \(-0.704641\pi\)
0.946450 + 0.322850i \(0.104641\pi\)
\(390\) 0 0
\(391\) 20.8733 15.1653i 1.05561 0.766944i
\(392\) 0.339552 + 0.253445i 0.0171499 + 0.0128009i
\(393\) 20.0619i 1.01199i
\(394\) −13.0519 5.87838i −0.657547 0.296148i
\(395\) 0 0
\(396\) 4.79434 0.462313i 0.240925 0.0232321i
\(397\) 1.22834 + 3.78044i 0.0616486 + 0.189735i 0.977137 0.212608i \(-0.0681958\pi\)
−0.915489 + 0.402343i \(0.868196\pi\)
\(398\) −16.3730 + 18.0278i −0.820704 + 0.903650i
\(399\) 29.1060 1.45712
\(400\) 0 0
\(401\) 14.8970 0.743920 0.371960 0.928249i \(-0.378686\pi\)
0.371960 + 0.928249i \(0.378686\pi\)
\(402\) 16.8384 18.5403i 0.839825 0.924704i
\(403\) 13.3948 + 41.2249i 0.667241 + 2.05356i
\(404\) −3.53149 + 0.340537i −0.175698 + 0.0169424i
\(405\) 0 0
\(406\) −13.1959 5.94321i −0.654901 0.294957i
\(407\) 1.04278i 0.0516888i
\(408\) −33.4369 + 44.7968i −1.65537 + 2.21777i
\(409\) −9.86001 + 7.16371i −0.487546 + 0.354223i −0.804240 0.594305i \(-0.797427\pi\)
0.316694 + 0.948528i \(0.397427\pi\)
\(410\) 0 0
\(411\) −29.9531 + 41.2269i −1.47748 + 2.03357i
\(412\) −0.558648 1.28432i −0.0275226 0.0632737i
\(413\) 13.5224 9.82457i 0.665392 0.483436i
\(414\) 17.4925 + 15.8868i 0.859709 + 0.780796i
\(415\) 0 0
\(416\) −2.47896 29.7087i −0.121541 1.45659i
\(417\) 26.3165 + 8.55074i 1.28872 + 0.418732i
\(418\) −0.315137 + 2.87934i −0.0154139 + 0.140833i
\(419\) 11.9484 + 3.88226i 0.583716 + 0.189661i 0.585965 0.810337i \(-0.300716\pi\)
−0.00224856 + 0.999997i \(0.500716\pi\)
\(420\) 0 0
\(421\) 6.83134 2.21964i 0.332939 0.108179i −0.137777 0.990463i \(-0.543996\pi\)
0.470716 + 0.882285i \(0.343996\pi\)
\(422\) −5.16216 24.8094i −0.251290 1.20770i
\(423\) 2.14243 2.94881i 0.104169 0.143376i
\(424\) −5.05125 + 14.8907i −0.245310 + 0.723154i
\(425\) 0 0
\(426\) 1.21775 11.1263i 0.0590002 0.539072i
\(427\) −16.6125 12.0697i −0.803935 0.584093i
\(428\) −3.87842 40.2206i −0.187471 1.94413i
\(429\) 7.19832 2.33888i 0.347538 0.112922i
\(430\) 0 0
\(431\) 7.56243 23.2748i 0.364269 1.12111i −0.586168 0.810190i \(-0.699364\pi\)
0.950437 0.310916i \(-0.100636\pi\)
\(432\) −16.3552 7.62102i −0.786888 0.366667i
\(433\) 0.422614 + 0.137316i 0.0203095 + 0.00659896i 0.319154 0.947703i \(-0.396601\pi\)
−0.298845 + 0.954302i \(0.596601\pi\)
\(434\) −27.0024 + 15.4356i −1.29616 + 0.740934i
\(435\) 0 0
\(436\) −9.38971 + 8.30963i −0.449686 + 0.397959i
\(437\) −11.4964 + 8.35262i −0.549947 + 0.399560i
\(438\) −4.84194 + 2.76784i −0.231357 + 0.132253i
\(439\) −20.5740 14.9479i −0.981941 0.713422i −0.0237998 0.999717i \(-0.507576\pi\)
−0.958142 + 0.286295i \(0.907576\pi\)
\(440\) 0 0
\(441\) 0.561462 0.407926i 0.0267363 0.0194251i
\(442\) −21.8943 + 48.6125i −1.04141 + 2.31226i
\(443\) 1.21860 0.0578973 0.0289486 0.999581i \(-0.490784\pi\)
0.0289486 + 0.999581i \(0.490784\pi\)
\(444\) −5.62421 + 9.55104i −0.266913 + 0.453272i
\(445\) 0 0
\(446\) −1.84613 8.87254i −0.0874169 0.420127i
\(447\) −59.0943 + 19.2009i −2.79506 + 0.908171i
\(448\) 20.5079 6.08398i 0.968906 0.287441i
\(449\) 5.21381 0.246055 0.123027 0.992403i \(-0.460740\pi\)
0.123027 + 0.992403i \(0.460740\pi\)
\(450\) 0 0
\(451\) 3.32043i 0.156353i
\(452\) 5.19319 4.59583i 0.244267 0.216170i
\(453\) 11.3274 + 34.8622i 0.532208 + 1.63797i
\(454\) −37.0244 + 7.70377i −1.73764 + 0.361556i
\(455\) 0 0
\(456\) 18.4160 24.6727i 0.862410 1.15541i
\(457\) 29.9606i 1.40150i −0.713408 0.700749i \(-0.752849\pi\)
0.713408 0.700749i \(-0.247151\pi\)
\(458\) −1.00161 + 2.22390i −0.0468022 + 0.103916i
\(459\) 18.9673 + 26.1062i 0.885317 + 1.21853i
\(460\) 0 0
\(461\) 14.3867 19.8016i 0.670055 0.922251i −0.329707 0.944083i \(-0.606950\pi\)
0.999762 + 0.0218322i \(0.00694996\pi\)
\(462\) 2.69523 + 4.71492i 0.125393 + 0.219358i
\(463\) 19.5394 + 26.8937i 0.908072 + 1.24985i 0.967821 + 0.251641i \(0.0809702\pi\)
−0.0597482 + 0.998213i \(0.519030\pi\)
\(464\) −13.3873 + 7.42556i −0.621491 + 0.344723i
\(465\) 0 0
\(466\) 32.6267 18.6507i 1.51140 0.863976i
\(467\) −6.61921 + 20.3718i −0.306301 + 0.942697i 0.672888 + 0.739744i \(0.265054\pi\)
−0.979189 + 0.202952i \(0.934946\pi\)
\(468\) −47.6737 10.5621i −2.20372 0.488233i
\(469\) 16.3015 + 5.29666i 0.752731 + 0.244577i
\(470\) 0 0
\(471\) 5.78790 + 17.8133i 0.266692 + 0.820794i
\(472\) 0.227757 17.6790i 0.0104834 0.813741i
\(473\) −1.65506 + 2.27799i −0.0760997 + 0.104742i
\(474\) −2.90142 + 26.5096i −0.133267 + 1.21763i
\(475\) 0 0
\(476\) −37.3504 8.27496i −1.71195 0.379282i
\(477\) 20.8362 + 15.1384i 0.954022 + 0.693138i
\(478\) −18.5352 + 3.85666i −0.847779 + 0.176400i
\(479\) −2.03109 6.25104i −0.0928026 0.285617i 0.893872 0.448322i \(-0.147978\pi\)
−0.986675 + 0.162705i \(0.947978\pi\)
\(480\) 0 0
\(481\) −3.26679 + 10.0541i −0.148953 + 0.458429i
\(482\) 1.76753 16.1495i 0.0805086 0.735590i
\(483\) −8.23341 + 25.3398i −0.374633 + 1.15300i
\(484\) 19.6785 8.55969i 0.894477 0.389077i
\(485\) 0 0
\(486\) 16.6385 18.3201i 0.754737 0.831016i
\(487\) −13.2598 18.2506i −0.600860 0.827013i 0.394927 0.918713i \(-0.370770\pi\)
−0.995787 + 0.0917000i \(0.970770\pi\)
\(488\) −20.7424 + 6.44542i −0.938965 + 0.291770i
\(489\) −32.1782 23.3788i −1.45515 1.05723i
\(490\) 0 0
\(491\) −16.2270 22.3345i −0.732313 1.00794i −0.999024 0.0441661i \(-0.985937\pi\)
0.266711 0.963777i \(-0.414063\pi\)
\(492\) 17.9086 30.4125i 0.807384 1.37110i
\(493\) 27.3782 1.23305
\(494\) 12.0587 26.7744i 0.542548 1.20464i
\(495\) 0 0
\(496\) −4.00048 + 32.6561i −0.179627 + 1.46630i
\(497\) 7.28509 2.36707i 0.326781 0.106177i
\(498\) 1.44935 1.59583i 0.0649467 0.0715107i
\(499\) 15.6614i 0.701101i 0.936544 + 0.350551i \(0.114006\pi\)
−0.936544 + 0.350551i \(0.885994\pi\)
\(500\) 0 0
\(501\) 10.7420i 0.479916i
\(502\) −10.8825 9.88360i −0.485710 0.441127i
\(503\) −15.7968 + 5.13269i −0.704344 + 0.228855i −0.639222 0.769022i \(-0.720744\pi\)
−0.0651216 + 0.997877i \(0.520744\pi\)
\(504\) 0.451347 35.0345i 0.0201046 1.56056i
\(505\) 0 0
\(506\) −2.41763 1.08886i −0.107477 0.0484057i
\(507\) −40.8152 −1.81267
\(508\) −5.85508 3.44781i −0.259777 0.152972i
\(509\) 7.12293 + 9.80387i 0.315718 + 0.434549i 0.937154 0.348916i \(-0.113450\pi\)
−0.621436 + 0.783465i \(0.713450\pi\)
\(510\) 0 0
\(511\) −3.08792 2.24351i −0.136602 0.0992469i
\(512\) 7.81850 21.2337i 0.345532 0.938407i
\(513\) −10.4466 14.3785i −0.461230 0.634828i
\(514\) 6.18481 + 5.61710i 0.272800 + 0.247760i
\(515\) 0 0
\(516\) 27.4453 11.9381i 1.20821 0.525545i
\(517\) −0.126387 + 0.388978i −0.00555847 + 0.0171072i
\(518\) −7.54050 0.825291i −0.331311 0.0362612i
\(519\) 1.86830 5.75005i 0.0820094 0.252399i
\(520\) 0 0
\(521\) 6.53479 + 20.1120i 0.286294 + 0.881123i 0.986008 + 0.166700i \(0.0533110\pi\)
−0.699713 + 0.714424i \(0.746689\pi\)
\(522\) 5.10796 + 24.5489i 0.223569 + 1.07448i
\(523\) 19.5338 + 14.1922i 0.854155 + 0.620580i 0.926289 0.376815i \(-0.122981\pi\)
−0.0721334 + 0.997395i \(0.522981\pi\)
\(524\) −3.14143 + 14.1794i −0.137234 + 0.619429i
\(525\) 0 0
\(526\) −7.84848 0.858998i −0.342210 0.0374541i
\(527\) 34.5844 47.6014i 1.50652 2.07355i
\(528\) 5.70211 + 0.698528i 0.248152 + 0.0303995i
\(529\) 3.08762 + 9.50271i 0.134244 + 0.413161i
\(530\) 0 0
\(531\) −27.5419 8.94891i −1.19522 0.388350i
\(532\) 20.5715 + 4.55761i 0.891888 + 0.197597i
\(533\) 10.4021 32.0145i 0.450566 1.38670i
\(534\) 26.3645 + 46.1209i 1.14090 + 1.99585i
\(535\) 0 0
\(536\) 14.8042 10.4672i 0.639445 0.452114i
\(537\) 14.5550 + 20.0332i 0.628095 + 0.864498i
\(538\) 2.59355 1.48257i 0.111816 0.0639183i
\(539\) −0.0457732 + 0.0630014i −0.00197159 + 0.00271366i
\(540\) 0 0
\(541\) −4.93039 6.78610i −0.211974 0.291757i 0.689769 0.724029i \(-0.257712\pi\)
−0.901743 + 0.432272i \(0.857712\pi\)
\(542\) 24.8258 + 11.1812i 1.06636 + 0.480272i
\(543\) 60.0842i 2.57846i
\(544\) −30.6471 + 26.4257i −1.31398 + 1.13299i
\(545\) 0 0
\(546\) −11.2158 53.9031i −0.479990 2.30684i
\(547\) −6.01158 18.5017i −0.257037 0.791077i −0.993422 0.114514i \(-0.963469\pi\)
0.736385 0.676563i \(-0.236531\pi\)
\(548\) −27.6258 + 24.4481i −1.18012 + 1.04437i
\(549\) 35.5770i 1.51839i
\(550\) 0 0
\(551\) −15.0791 −0.642391
\(552\) 16.2708 + 23.0125i 0.692530 + 0.979475i
\(553\) −17.3575 + 5.63979i −0.738116 + 0.239828i
\(554\) 27.5008 5.72216i 1.16840 0.243111i
\(555\) 0 0
\(556\) 17.2610 + 10.1643i 0.732030 + 0.431062i
\(557\) 16.0914 0.681815 0.340907 0.940097i \(-0.389266\pi\)
0.340907 + 0.940097i \(0.389266\pi\)
\(558\) 49.1347 + 22.1295i 2.08004 + 0.936815i
\(559\) 23.0939 16.7787i 0.976770 0.709665i
\(560\) 0 0
\(561\) −8.31173 6.03882i −0.350921 0.254959i
\(562\) 8.71838 + 15.2516i 0.367763 + 0.643348i
\(563\) −21.5684 + 15.6704i −0.909000 + 0.660427i −0.940762 0.339068i \(-0.889888\pi\)
0.0317617 + 0.999495i \(0.489888\pi\)
\(564\) 3.25554 2.88106i 0.137083 0.121315i
\(565\) 0 0
\(566\) −0.219212 0.383480i −0.00921418 0.0161189i
\(567\) 3.65134 + 1.18639i 0.153342 + 0.0498238i
\(568\) 2.60291 7.67317i 0.109216 0.321959i
\(569\) 0.701887 2.16018i 0.0294246 0.0905597i −0.935266 0.353946i \(-0.884840\pi\)
0.964690 + 0.263387i \(0.0848395\pi\)
\(570\) 0 0
\(571\) 26.3024 8.54617i 1.10072 0.357646i 0.298342 0.954459i \(-0.403567\pi\)
0.802380 + 0.596813i \(0.203567\pi\)
\(572\) 5.45386 0.525910i 0.228037 0.0219894i
\(573\) −3.73525 2.71382i −0.156042 0.113371i
\(574\) 24.0105 + 2.62790i 1.00218 + 0.109686i
\(575\) 0 0
\(576\) −29.4127 22.5497i −1.22553 0.939573i
\(577\) 7.01351 9.65326i 0.291976 0.401871i −0.637679 0.770302i \(-0.720105\pi\)
0.929655 + 0.368432i \(0.120105\pi\)
\(578\) 47.3156 9.84507i 1.96807 0.409501i
\(579\) −22.5057 + 7.31254i −0.935305 + 0.303899i
\(580\) 0 0
\(581\) 1.40312 + 0.455903i 0.0582114 + 0.0189140i
\(582\) 19.8227 + 2.16955i 0.821679 + 0.0899309i
\(583\) −2.74850 0.893042i −0.113831 0.0369860i
\(584\) −3.85559 + 1.19807i −0.159545 + 0.0495765i
\(585\) 0 0
\(586\) 9.65535 10.6312i 0.398859 0.439171i
\(587\) −32.6376 + 23.7126i −1.34710 + 0.978723i −0.347946 + 0.937515i \(0.613121\pi\)
−0.999151 + 0.0412086i \(0.986879\pi\)
\(588\) 0.759042 0.330166i 0.0313024 0.0136158i
\(589\) −19.0481 + 26.2174i −0.784863 + 1.08027i
\(590\) 0 0
\(591\) −22.6237 + 16.4371i −0.930613 + 0.676130i
\(592\) −5.47064 + 5.86980i −0.224842 + 0.241247i
\(593\) 5.46839i 0.224560i 0.993677 + 0.112280i \(0.0358153\pi\)
−0.993677 + 0.112280i \(0.964185\pi\)
\(594\) 1.36184 3.02373i 0.0558769 0.124065i
\(595\) 0 0
\(596\) −44.7732 + 4.31743i −1.83398 + 0.176849i
\(597\) 14.7015 + 45.2467i 0.601694 + 1.85182i
\(598\) 19.8988 + 18.0723i 0.813721 + 0.739030i
\(599\) 27.9052 1.14017 0.570087 0.821584i \(-0.306909\pi\)
0.570087 + 0.821584i \(0.306909\pi\)
\(600\) 0 0
\(601\) 13.3613 0.545018 0.272509 0.962153i \(-0.412146\pi\)
0.272509 + 0.962153i \(0.412146\pi\)
\(602\) 15.1626 + 13.7709i 0.617983 + 0.561258i
\(603\) −9.17688 28.2435i −0.373712 1.15017i
\(604\) 2.54703 + 26.4136i 0.103637 + 1.07475i
\(605\) 0 0
\(606\) −2.84624 + 6.31958i −0.115621 + 0.256716i
\(607\) 31.7630i 1.28922i −0.764511 0.644611i \(-0.777019\pi\)
0.764511 0.644611i \(-0.222981\pi\)
\(608\) 16.8795 14.5545i 0.684554 0.590263i
\(609\) −22.8732 + 16.6183i −0.926869 + 0.673409i
\(610\) 0 0
\(611\) 2.43715 3.35445i 0.0985966 0.135707i
\(612\) 26.4382 + 60.7806i 1.06870 + 2.45691i
\(613\) −31.8620 + 23.1491i −1.28690 + 0.934985i −0.999738 0.0228985i \(-0.992711\pi\)
−0.287158 + 0.957883i \(0.592711\pi\)
\(614\) 28.7956 31.7059i 1.16210 1.27955i
\(615\) 0 0
\(616\) 1.16664 + 3.75445i 0.0470053 + 0.151271i
\(617\) −16.4548 5.34648i −0.662445 0.215241i −0.0415512 0.999136i \(-0.513230\pi\)
−0.620893 + 0.783895i \(0.713230\pi\)
\(618\) −2.71982 0.297678i −0.109407 0.0119744i
\(619\) 19.9635 + 6.48655i 0.802402 + 0.260716i 0.681377 0.731933i \(-0.261382\pi\)
0.121026 + 0.992649i \(0.461382\pi\)
\(620\) 0 0
\(621\) 15.4732 5.02753i 0.620916 0.201748i
\(622\) 35.0365 7.29012i 1.40483 0.292307i
\(623\) −21.3701 + 29.4134i −0.856173 + 1.17842i
\(624\) −52.7895 24.5983i −2.11327 0.984721i
\(625\) 0 0
\(626\) 35.8759 + 3.92654i 1.43389 + 0.156936i
\(627\) 4.57786 + 3.32601i 0.182822 + 0.132828i
\(628\) 1.30144 + 13.4964i 0.0519332 + 0.538565i
\(629\) 13.6475 4.43435i 0.544163 0.176809i
\(630\) 0 0
\(631\) 4.33588 13.3445i 0.172609 0.531235i −0.826907 0.562338i \(-0.809902\pi\)
0.999516 + 0.0311029i \(0.00990195\pi\)
\(632\) −6.20172 + 18.2822i −0.246691 + 0.727225i
\(633\) −47.0818 15.2978i −1.87133 0.608032i
\(634\) −18.8558 32.9854i −0.748858 1.31002i
\(635\) 0 0
\(636\) 20.3575 + 23.0035i 0.807226 + 0.912148i
\(637\) 0.638698 0.464041i 0.0253061 0.0183860i
\(638\) −1.39633 2.44269i −0.0552814 0.0967069i
\(639\) −10.7369 7.80081i −0.424745 0.308595i
\(640\) 0 0
\(641\) −38.2200 + 27.7684i −1.50960 + 1.09679i −0.543242 + 0.839576i \(0.682803\pi\)
−0.966355 + 0.257210i \(0.917197\pi\)
\(642\) −71.9745 32.4162i −2.84061 1.27936i
\(643\) −35.9924 −1.41940 −0.709702 0.704502i \(-0.751170\pi\)
−0.709702 + 0.704502i \(0.751170\pi\)
\(644\) −9.78709 + 16.6204i −0.385665 + 0.654937i
\(645\) 0 0
\(646\) −39.0238 + 8.11978i −1.53537 + 0.319468i
\(647\) 0.591058 0.192046i 0.0232369 0.00755012i −0.297375 0.954761i \(-0.596111\pi\)
0.320612 + 0.947210i \(0.396111\pi\)
\(648\) 3.31598 2.34454i 0.130264 0.0921020i
\(649\) 3.24951 0.127554
\(650\) 0 0
\(651\) 60.7612i 2.38142i
\(652\) −19.0821 21.5623i −0.747312 0.844447i
\(653\) −2.23277 6.87175i −0.0873749 0.268912i 0.897817 0.440369i \(-0.145152\pi\)
−0.985192 + 0.171457i \(0.945152\pi\)
\(654\) 4.98984 + 23.9812i 0.195118 + 0.937741i
\(655\) 0 0
\(656\) 17.4197 18.6907i 0.680123 0.729748i
\(657\) 6.61304i 0.257999i
\(658\) 2.71273 + 1.22177i 0.105753 + 0.0476295i
\(659\) −14.7715 20.3312i −0.575415 0.791991i 0.417768 0.908554i \(-0.362812\pi\)
−0.993183 + 0.116563i \(0.962812\pi\)
\(660\) 0 0
\(661\) −1.96163 + 2.69996i −0.0762987 + 0.105016i −0.845461 0.534038i \(-0.820674\pi\)
0.769162 + 0.639054i \(0.220674\pi\)
\(662\) 14.7982 8.45923i 0.575149 0.328777i
\(663\) 61.2206 + 84.2630i 2.37761 + 3.27250i
\(664\) 1.27425 0.900950i 0.0494506 0.0349636i
\(665\) 0 0
\(666\) 6.52233 + 11.4099i 0.252735 + 0.442124i
\(667\) 4.26553 13.1280i 0.165162 0.508317i
\(668\) −1.68205 + 7.59220i −0.0650804 + 0.293751i
\(669\) −16.8377 5.47091i −0.650984 0.211518i
\(670\) 0 0
\(671\) −1.23362 3.79670i −0.0476234 0.146570i
\(672\) 9.56399 40.6799i 0.368939 1.56926i
\(673\) 19.4876 26.8224i 0.751191 1.03393i −0.246705 0.969091i \(-0.579348\pi\)
0.997896 0.0648353i \(-0.0206522\pi\)
\(674\) 19.5720 + 2.14211i 0.753886 + 0.0825111i
\(675\) 0 0
\(676\) −28.8473 6.39111i −1.10951 0.245812i
\(677\) −9.80817 7.12605i −0.376959 0.273876i 0.383132 0.923694i \(-0.374845\pi\)
−0.760091 + 0.649817i \(0.774845\pi\)
\(678\) −2.75974 13.2634i −0.105987 0.509377i
\(679\) 4.21719 + 12.9792i 0.161841 + 0.498095i
\(680\) 0 0
\(681\) −22.8297 + 70.2625i −0.874835 + 2.69247i
\(682\) −6.01087 0.657876i −0.230168 0.0251914i
\(683\) 12.5862 38.7363i 0.481597 1.48220i −0.355253 0.934770i \(-0.615605\pi\)
0.836850 0.547432i \(-0.184395\pi\)
\(684\) −14.5614 33.4762i −0.556768 1.27999i
\(685\) 0 0
\(686\) −19.1757 17.4156i −0.732133 0.664930i
\(687\) 2.80069 + 3.85482i 0.106853 + 0.147071i
\(688\) 21.2671 4.14003i 0.810802 0.157837i
\(689\) 23.7024 + 17.2208i 0.902990 + 0.656061i
\(690\) 0 0
\(691\) 4.49348 + 6.18474i 0.170940 + 0.235279i 0.885888 0.463899i \(-0.153550\pi\)
−0.714948 + 0.699177i \(0.753550\pi\)
\(692\) 2.22086 3.77146i 0.0844244 0.143370i
\(693\) 6.43956 0.244619
\(694\) 19.6064 + 8.83041i 0.744249 + 0.335198i
\(695\) 0 0
\(696\) −0.385253 + 29.9041i −0.0146030 + 1.13351i
\(697\) −43.4565 + 14.1199i −1.64603 + 0.534829i
\(698\) 24.5195 + 22.2688i 0.928076 + 0.842888i
\(699\) 73.4170i 2.77689i
\(700\) 0 0
\(701\) 41.0013i 1.54860i 0.632820 + 0.774299i \(0.281897\pi\)
−0.632820 + 0.774299i \(0.718103\pi\)
\(702\) −22.6030 + 24.8874i −0.853095 + 0.939315i
\(703\) −7.51666 + 2.44231i −0.283496 + 0.0921135i
\(704\) 3.92075 + 1.38658i 0.147769 + 0.0522587i
\(705\) 0 0
\(706\) 2.60134 5.77583i 0.0979028 0.217376i
\(707\) −4.74334 −0.178392
\(708\) −29.7629 17.5261i −1.11856 0.658672i
\(709\) 18.4825 + 25.4390i 0.694125 + 0.955382i 0.999995 + 0.00330817i \(0.00105303\pi\)
−0.305869 + 0.952074i \(0.598947\pi\)
\(710\) 0 0
\(711\) 25.5818 + 18.5863i 0.959393 + 0.697040i
\(712\) 11.4120 + 36.7256i 0.427682 + 1.37635i
\(713\) −17.4368 23.9997i −0.653013 0.898796i
\(714\) −50.2458 + 55.3240i −1.88040 + 2.07045i
\(715\) 0 0
\(716\) 7.15024 + 16.4382i 0.267217 + 0.614324i
\(717\) −11.4290 + 35.1748i −0.426824 + 1.31363i
\(718\) −1.41813 + 12.9572i −0.0529243 + 0.483558i
\(719\) −0.494184 + 1.52094i −0.0184300 + 0.0567216i −0.959849 0.280519i \(-0.909494\pi\)
0.941419 + 0.337240i \(0.109494\pi\)
\(720\) 0 0
\(721\) −0.578628 1.78083i −0.0215492 0.0663217i
\(722\) −4.81347 + 1.00155i −0.179139 + 0.0372739i
\(723\) −25.6761 18.6548i −0.954903 0.693778i
\(724\) 9.40838 42.4663i 0.349660 1.57825i
\(725\) 0 0
\(726\) 4.56107 41.6735i 0.169277 1.54665i
\(727\) −29.8436 + 41.0762i −1.10684 + 1.52343i −0.280843 + 0.959754i \(0.590614\pi\)
−0.825995 + 0.563678i \(0.809386\pi\)
\(728\) 0.513435 39.8539i 0.0190292 1.47708i
\(729\) −13.6089 41.8837i −0.504032 1.55125i
\(730\) 0 0
\(731\) −36.8515 11.9738i −1.36300 0.442867i
\(732\) −9.17838 + 41.4282i −0.339243 + 1.53123i
\(733\) −6.55606 + 20.1775i −0.242154 + 0.745272i 0.753938 + 0.656946i \(0.228152\pi\)
−0.996092 + 0.0883266i \(0.971848\pi\)
\(734\) 41.7380 23.8591i 1.54058 0.880654i
\(735\) 0 0
\(736\) 7.89641 + 18.8125i 0.291065 + 0.693439i
\(737\) 1.95867 + 2.69588i 0.0721485 + 0.0993039i
\(738\) −20.7684 36.3314i −0.764497 1.33738i
\(739\) −14.2869 + 19.6642i −0.525551 + 0.723358i −0.986444 0.164097i \(-0.947529\pi\)
0.460894 + 0.887455i \(0.347529\pi\)
\(740\) 0 0
\(741\) −33.7185 46.4096i −1.23868 1.70490i
\(742\) −8.63297 + 19.1680i −0.316926 + 0.703680i
\(743\) 11.2680i 0.413384i −0.978406 0.206692i \(-0.933730\pi\)
0.978406 0.206692i \(-0.0662698\pi\)
\(744\) 51.5065 + 38.4450i 1.88832 + 1.40946i
\(745\) 0 0
\(746\) −35.5817 + 7.40357i −1.30274 + 0.271064i
\(747\) −0.789887 2.43102i −0.0289005 0.0889465i
\(748\) −4.92896 5.56962i −0.180221 0.203646i
\(749\) 54.0226i 1.97394i
\(750\) 0 0
\(751\) −8.71647 −0.318068 −0.159034 0.987273i \(-0.550838\pi\)
−0.159034 + 0.987273i \(0.550838\pi\)
\(752\) 2.75208 1.52650i 0.100358 0.0556658i
\(753\) −27.3133 + 8.87463i −0.995352 + 0.323409i
\(754\) 5.81062 + 27.9259i 0.211610 + 1.01700i
\(755\) 0 0
\(756\) −20.7872 12.2407i −0.756023 0.445191i
\(757\) 38.5500 1.40112 0.700562 0.713592i \(-0.252933\pi\)
0.700562 + 0.713592i \(0.252933\pi\)
\(758\) 14.4417 32.0653i 0.524546 1.16466i
\(759\) −4.19061 + 3.04466i −0.152110 + 0.110514i
\(760\) 0 0
\(761\) 22.7571 + 16.5340i 0.824944 + 0.599357i 0.918124 0.396292i \(-0.129703\pi\)
−0.0931801 + 0.995649i \(0.529703\pi\)
\(762\) −11.5240 + 6.58759i −0.417472 + 0.238643i
\(763\) −13.5620 + 9.85338i −0.490978 + 0.356716i
\(764\) −2.21505 2.50296i −0.0801377 0.0905539i
\(765\) 0 0
\(766\) −6.54058 + 3.73885i −0.236321 + 0.135090i
\(767\) −31.3306 10.1799i −1.13128 0.367576i
\(768\) −28.4325 33.8464i −1.02597 1.22133i
\(769\) −1.71576 + 5.28055i −0.0618717 + 0.190422i −0.977215 0.212254i \(-0.931920\pi\)
0.915343 + 0.402675i \(0.131920\pi\)
\(770\) 0 0
\(771\) 15.5228 5.04368i 0.559041 0.181644i
\(772\) −17.0516 + 1.64427i −0.613701 + 0.0591785i
\(773\) 26.9230 + 19.5607i 0.968353 + 0.703549i 0.955076 0.296362i \(-0.0957736\pi\)
0.0132772 + 0.999912i \(0.495774\pi\)
\(774\) 3.86102 35.2773i 0.138781 1.26801i
\(775\) 0 0
\(776\) 13.6706 + 4.63737i 0.490746 + 0.166472i
\(777\) −8.71025 + 11.9886i −0.312478 + 0.430090i
\(778\) −3.35373 16.1181i −0.120237 0.577861i
\(779\) 23.9346 7.77682i 0.857545 0.278633i
\(780\) 0 0
\(781\) 1.41631 + 0.460185i 0.0506794 + 0.0164667i
\(782\) 3.96981 36.2712i 0.141960 1.29706i
\(783\) 16.4191 + 5.33491i 0.586773 + 0.190654i
\(784\) 0.588175 0.114499i 0.0210062 0.00408924i
\(785\) 0 0
\(786\) 21.0027 + 19.0749i 0.749141 + 0.680377i
\(787\) 17.2535 12.5354i 0.615021 0.446839i −0.236158 0.971715i \(-0.575888\pi\)
0.851179 + 0.524876i \(0.175888\pi\)
\(788\) −18.5638 + 8.07481i −0.661307 + 0.287653i
\(789\) −9.06600 + 12.4783i −0.322758 + 0.444239i
\(790\) 0 0
\(791\) 7.50078 5.44963i 0.266697 0.193767i
\(792\) 4.07446 5.45873i 0.144780 0.193967i
\(793\) 40.4711i 1.43717i
\(794\) 5.12562 + 2.30850i 0.181901 + 0.0819254i
\(795\) 0 0
\(796\) 3.30573 + 34.2815i 0.117168 + 1.21508i
\(797\) 0.373055 + 1.14814i 0.0132143 + 0.0406694i 0.957446 0.288612i \(-0.0931937\pi\)
−0.944232 + 0.329281i \(0.893194\pi\)
\(798\) 27.6739 30.4708i 0.979645 1.07866i
\(799\) −5.62824 −0.199113
\(800\) 0 0
\(801\) 62.9912 2.22568
\(802\) 14.1640 15.5955i 0.500149 0.550697i
\(803\) −0.229305 0.705728i −0.00809199 0.0249046i
\(804\) −3.39970 35.2561i −0.119898 1.24339i
\(805\) 0 0
\(806\) 55.8937 + 25.1736i 1.96877 + 0.886704i
\(807\) 5.83604i 0.205438i
\(808\) −3.00123 + 4.02087i −0.105583 + 0.141454i
\(809\) −8.23313 + 5.98172i −0.289462 + 0.210306i −0.723034 0.690813i \(-0.757253\pi\)
0.433572 + 0.901119i \(0.357253\pi\)
\(810\) 0 0
\(811\) −9.04159 + 12.4447i −0.317493 + 0.436992i −0.937700 0.347447i \(-0.887049\pi\)
0.620206 + 0.784439i \(0.287049\pi\)
\(812\) −18.7685 + 8.16387i −0.658646 + 0.286496i
\(813\) 43.0321 31.2646i 1.50920 1.09650i
\(814\) −1.09168 0.991474i −0.0382634 0.0347512i
\(815\) 0 0
\(816\) 15.1057 + 77.5975i 0.528806 + 2.71645i
\(817\) 20.2967 + 6.59481i 0.710093 + 0.230723i
\(818\) −1.87523 + 17.1336i −0.0655660 + 0.599063i
\(819\) −62.0880 20.1736i −2.16953 0.704923i
\(820\) 0 0
\(821\) 49.2854 16.0138i 1.72007 0.558885i 0.728115 0.685455i \(-0.240397\pi\)
0.991958 + 0.126570i \(0.0403968\pi\)
\(822\) 14.6808 + 70.5560i 0.512051 + 2.46092i
\(823\) 15.1546 20.8585i 0.528256 0.727082i −0.458607 0.888639i \(-0.651651\pi\)
0.986863 + 0.161557i \(0.0516515\pi\)
\(824\) −1.87570 0.636280i −0.0653431 0.0221659i
\(825\) 0 0
\(826\) 2.57176 23.4976i 0.0894831 0.817588i
\(827\) −2.88316 2.09474i −0.100257 0.0728411i 0.536527 0.843883i \(-0.319736\pi\)
−0.636784 + 0.771042i \(0.719736\pi\)
\(828\) 33.2636 3.20757i 1.15599 0.111471i
\(829\) −25.3530 + 8.23770i −0.880547 + 0.286107i −0.714184 0.699958i \(-0.753202\pi\)
−0.166362 + 0.986065i \(0.553202\pi\)
\(830\) 0 0
\(831\) 16.9573 52.1892i 0.588243 1.81042i
\(832\) −33.4588 25.6517i −1.15997 0.889313i
\(833\) −1.01919 0.331153i −0.0353127 0.0114738i
\(834\) 33.9733 19.4205i 1.17640 0.672477i
\(835\) 0 0
\(836\) 2.71473 + 3.06758i 0.0938908 + 0.106095i
\(837\) 30.0164 21.8082i 1.03752 0.753802i
\(838\) 15.4248 8.81741i 0.532841 0.304592i
\(839\) −2.07141 1.50497i −0.0715131 0.0519573i 0.551454 0.834205i \(-0.314073\pi\)
−0.622967 + 0.782248i \(0.714073\pi\)
\(840\) 0 0
\(841\) −11.6114 + 8.43621i −0.400395 + 0.290904i
\(842\) 4.17150 9.26211i 0.143760 0.319193i
\(843\) 34.3193 1.18202
\(844\) −30.8810 18.1845i −1.06297 0.625938i
\(845\) 0 0
\(846\) −1.05006 5.04662i −0.0361019 0.173506i
\(847\) 27.2862 8.86584i 0.937566 0.304634i
\(848\) 10.7862 + 19.4461i 0.370399 + 0.667782i
\(849\) −0.862913 −0.0296151
\(850\) 0 0
\(851\) 7.23492i 0.248010i
\(852\) −10.4902 11.8537i −0.359389 0.406102i
\(853\) −0.926669 2.85199i −0.0317285 0.0976504i 0.933938 0.357435i \(-0.116349\pi\)
−0.965667 + 0.259784i \(0.916349\pi\)
\(854\) −28.4308 + 5.91566i −0.972881 + 0.202430i
\(855\) 0 0
\(856\) −45.7942 34.1813i −1.56521 1.16829i
\(857\) 6.92518i 0.236560i −0.992980 0.118280i \(-0.962262\pi\)
0.992980 0.118280i \(-0.0377380\pi\)
\(858\) 4.39559 9.75966i 0.150063 0.333189i
\(859\) −15.0901 20.7697i −0.514866 0.708653i 0.469864 0.882739i \(-0.344303\pi\)
−0.984730 + 0.174086i \(0.944303\pi\)
\(860\) 0 0
\(861\) 27.7352 38.1743i 0.945214 1.30098i
\(862\) −17.1758 30.0466i −0.585011 1.02339i
\(863\) −8.57489 11.8023i −0.291893 0.401756i 0.637735 0.770256i \(-0.279871\pi\)
−0.929628 + 0.368500i \(0.879871\pi\)
\(864\) −23.5288 + 9.87604i −0.800467 + 0.335990i
\(865\) 0 0
\(866\) 0.545575 0.311872i 0.0185394 0.0105978i
\(867\) 29.1753 89.7924i 0.990846 3.04951i
\(868\) −9.51439 + 42.9448i −0.322939 + 1.45764i
\(869\) −3.37450 1.09644i −0.114472 0.0371942i
\(870\) 0 0
\(871\) −10.4393 32.1288i −0.353721 1.08864i
\(872\) −0.228425 + 17.7308i −0.00773544 + 0.600440i
\(873\) 13.8980 19.1289i 0.470376 0.647417i
\(874\) −2.18645 + 19.9771i −0.0739578 + 0.675737i
\(875\) 0 0
\(876\) −1.70607 + 7.70065i −0.0576429 + 0.260181i
\(877\) −29.6831 21.5661i −1.00233 0.728234i −0.0397424 0.999210i \(-0.512654\pi\)
−0.962586 + 0.270976i \(0.912654\pi\)
\(878\) −35.2105 + 7.32633i −1.18830 + 0.247252i
\(879\) −8.66968 26.6825i −0.292421 0.899980i
\(880\) 0 0
\(881\) 7.66494 23.5903i 0.258238 0.794776i −0.734936 0.678137i \(-0.762788\pi\)
0.993174 0.116639i \(-0.0372122\pi\)
\(882\) 0.106782 0.975646i 0.00359555 0.0328517i
\(883\) 3.12800 9.62701i 0.105266 0.323975i −0.884527 0.466489i \(-0.845519\pi\)
0.989793 + 0.142514i \(0.0455187\pi\)
\(884\) 30.0750 + 69.1417i 1.01153 + 2.32549i
\(885\) 0 0
\(886\) 1.15864 1.27574i 0.0389252 0.0428593i
\(887\) 6.68404 + 9.19979i 0.224428 + 0.308899i 0.906351 0.422525i \(-0.138856\pi\)
−0.681923 + 0.731424i \(0.738856\pi\)
\(888\) 4.65142 + 14.9691i 0.156092 + 0.502328i
\(889\) −7.34939 5.33965i −0.246491 0.179086i
\(890\) 0 0
\(891\) 0.438720 + 0.603846i 0.0146977 + 0.0202296i
\(892\) −11.0439 6.50329i −0.369777 0.217746i
\(893\) 3.09987 0.103733
\(894\) −36.0854 + 80.1215i −1.20688 + 2.67966i
\(895\) 0 0
\(896\) 13.1296 27.2542i 0.438628 0.910498i
\(897\) 49.9426 16.2273i 1.66754 0.541815i
\(898\) 4.95728 5.45830i 0.165426 0.182146i
\(899\) 31.4789i 1.04988i
\(900\) 0 0
\(901\) 39.7689i 1.32489i
\(902\) 3.47613 + 3.15706i 0.115743 + 0.105119i
\(903\) 38.0557 12.3651i 1.26642 0.411483i
\(904\) 0.126336 9.80642i 0.00420186 0.326157i
\(905\) 0 0
\(906\) 47.2670 + 21.2883i 1.57034 + 0.707256i
\(907\) 16.5101 0.548207 0.274104 0.961700i \(-0.411619\pi\)
0.274104 + 0.961700i \(0.411619\pi\)
\(908\) −27.1377 + 46.0853i −0.900597 + 1.52939i
\(909\) 4.83054 + 6.64867i 0.160219 + 0.220523i
\(910\) 0 0
\(911\) −10.4321 7.57935i −0.345630 0.251115i 0.401403 0.915901i \(-0.368523\pi\)
−0.747033 + 0.664786i \(0.768523\pi\)
\(912\) −8.31979 42.7384i −0.275496 1.41521i
\(913\) 0.168590 + 0.232044i 0.00557950 + 0.00767953i
\(914\) −31.3655 28.4865i −1.03748 0.942249i
\(915\) 0 0
\(916\) 1.37586 + 3.16306i 0.0454597 + 0.104510i
\(917\) −6.00014 + 18.4665i −0.198142 + 0.609819i
\(918\) 45.3645 + 4.96504i 1.49725 + 0.163871i
\(919\) 6.83471 21.0351i 0.225456 0.693883i −0.772789 0.634663i \(-0.781139\pi\)
0.998245 0.0592194i \(-0.0188612\pi\)
\(920\) 0 0
\(921\) −25.8560 79.5767i −0.851985 2.62214i
\(922\) −7.05129 33.8886i −0.232222 1.11606i
\(923\) −12.2139 8.87390i −0.402025 0.292088i
\(924\) 7.49863 + 1.66132i 0.246687 + 0.0546533i
\(925\) 0 0
\(926\) 46.7328 + 5.11480i 1.53573 + 0.168083i
\(927\) −1.90690 + 2.62463i −0.0626309 + 0.0862040i
\(928\) −4.95487 + 21.0753i −0.162652 + 0.691831i
\(929\) 11.8169 + 36.3687i 0.387701 + 1.19322i 0.934502 + 0.355958i \(0.115845\pi\)
−0.546801 + 0.837262i \(0.684155\pi\)
\(930\) 0 0
\(931\) 0.561337 + 0.182390i 0.0183971 + 0.00597758i
\(932\) 11.4961 51.8896i 0.376568 1.69970i
\(933\) 21.6039 66.4899i 0.707279 2.17678i
\(934\) 15.0336 + 26.2991i 0.491914 + 0.860533i
\(935\) 0 0
\(936\) −56.3855 + 39.8669i −1.84302 + 1.30309i
\(937\) 8.14697 + 11.2133i 0.266150 + 0.366324i 0.921085 0.389361i \(-0.127304\pi\)
−0.654935 + 0.755685i \(0.727304\pi\)
\(938\) 21.0444 12.0298i 0.687125 0.392787i
\(939\) 41.4413 57.0390i 1.35238 1.86140i
\(940\) 0 0
\(941\) 23.3206 + 32.0981i 0.760230 + 1.04637i 0.997195 + 0.0748487i \(0.0238474\pi\)
−0.236965 + 0.971518i \(0.576153\pi\)
\(942\) 24.1517 + 10.8776i 0.786906 + 0.354410i
\(943\) 23.0375i 0.750203i
\(944\) −18.2914 17.0476i −0.595335 0.554851i
\(945\) 0 0
\(946\) 0.811188 + 3.89858i 0.0263740 + 0.126754i
\(947\) −9.93611 30.5802i −0.322880 0.993724i −0.972388 0.233369i \(-0.925025\pi\)
0.649508 0.760355i \(-0.274975\pi\)
\(948\) 24.9941 + 28.2428i 0.811770 + 0.917283i
\(949\) 7.52274i 0.244199i
\(950\) 0 0
\(951\) −74.2243 −2.40689
\(952\) −44.1757 + 31.2341i −1.43174 + 1.01230i
\(953\) −2.59539 + 0.843293i −0.0840729 + 0.0273169i −0.350751 0.936469i \(-0.614074\pi\)
0.266679 + 0.963786i \(0.414074\pi\)
\(954\) 35.6592 7.41970i 1.15451 0.240222i
\(955\) 0 0
\(956\) −13.5857 + 23.0712i −0.439393 + 0.746177i
\(957\) −5.49657 −0.177679
\(958\) −8.47531 3.81714i −0.273825 0.123326i
\(959\) −39.9013 + 28.9900i −1.28848 + 0.936135i
\(960\) 0 0
\(961\) −29.6516 21.5432i −0.956504 0.694941i
\(962\) 7.41955 + 12.9794i 0.239216 + 0.418474i
\(963\) −75.7226 + 55.0157i −2.44013 + 1.77286i
\(964\) −15.2262 17.2053i −0.490404 0.554146i
\(965\) 0 0
\(966\) 18.6998 + 32.7126i 0.601655 + 1.05251i
\(967\) −18.5861 6.03899i −0.597689 0.194201i −0.00547963 0.999985i \(-0.501744\pi\)
−0.592210 + 0.805784i \(0.701744\pi\)
\(968\) 9.74919 28.7398i 0.313351 0.923732i
\(969\) −24.0625 + 74.0568i −0.772999 + 2.37905i
\(970\) 0 0
\(971\) −5.24830 + 1.70528i −0.168426 + 0.0547250i −0.392016 0.919958i \(-0.628222\pi\)
0.223590 + 0.974683i \(0.428222\pi\)
\(972\) −3.35933 34.8374i −0.107751 1.11741i
\(973\) 21.6663 + 15.7415i 0.694591 + 0.504650i
\(974\) −31.7138 3.47100i −1.01618 0.111218i
\(975\) 0 0
\(976\) −12.9742 + 27.8434i −0.415294 + 0.891245i
\(977\) 0.133245 0.183396i 0.00426289 0.00586736i −0.806880 0.590715i \(-0.798846\pi\)
0.811143 + 0.584848i \(0.198846\pi\)
\(978\) −55.0701 + 11.4586i −1.76095 + 0.366405i
\(979\) −6.72226 + 2.18420i −0.214844 + 0.0698072i
\(980\) 0 0
\(981\) 27.6227 + 8.97514i 0.881923 + 0.286554i
\(982\) −38.8104 4.24771i −1.23849 0.135550i
\(983\) −36.7510 11.9411i −1.17217 0.380862i −0.342720 0.939438i \(-0.611348\pi\)
−0.829454 + 0.558575i \(0.811348\pi\)
\(984\) −14.8111 47.6645i −0.472160 1.51949i
\(985\) 0 0
\(986\) 26.0311 28.6620i 0.829000 0.912785i
\(987\) 4.70213 3.41630i 0.149670 0.108742i
\(988\) −16.5644 38.0812i −0.526985 1.21152i
\(989\) −11.4830 + 15.8049i −0.365137 + 0.502568i
\(990\) 0 0
\(991\) 41.5262 30.1706i 1.31912 0.958400i 0.319181 0.947694i \(-0.396592\pi\)
0.999943 0.0107060i \(-0.00340790\pi\)
\(992\) 30.3837 + 35.2374i 0.964685 + 1.11879i
\(993\) 33.2991i 1.05672i
\(994\) 4.44858 9.87730i 0.141100 0.313289i
\(995\) 0 0
\(996\) −0.292625 3.03462i −0.00927216 0.0961555i
\(997\) −6.00849 18.4922i −0.190291 0.585655i 0.809709 0.586832i \(-0.199625\pi\)
−0.999999 + 0.00117756i \(0.999625\pi\)
\(998\) 16.3958 + 14.8908i 0.519001 + 0.471361i
\(999\) 9.04872 0.286289
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1000.2.o.a.549.21 112
5.2 odd 4 1000.2.t.b.701.44 224
5.3 odd 4 1000.2.t.b.701.13 224
5.4 even 2 200.2.o.a.109.8 112
8.5 even 2 inner 1000.2.o.a.549.18 112
20.19 odd 2 800.2.be.a.209.4 112
25.2 odd 20 1000.2.t.b.301.48 224
25.11 even 5 200.2.o.a.189.11 yes 112
25.14 even 10 inner 1000.2.o.a.949.18 112
25.23 odd 20 1000.2.t.b.301.9 224
40.13 odd 4 1000.2.t.b.701.9 224
40.19 odd 2 800.2.be.a.209.25 112
40.29 even 2 200.2.o.a.109.11 yes 112
40.37 odd 4 1000.2.t.b.701.48 224
100.11 odd 10 800.2.be.a.689.25 112
200.11 odd 10 800.2.be.a.689.4 112
200.61 even 10 200.2.o.a.189.8 yes 112
200.77 odd 20 1000.2.t.b.301.44 224
200.173 odd 20 1000.2.t.b.301.13 224
200.189 even 10 inner 1000.2.o.a.949.21 112
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
200.2.o.a.109.8 112 5.4 even 2
200.2.o.a.109.11 yes 112 40.29 even 2
200.2.o.a.189.8 yes 112 200.61 even 10
200.2.o.a.189.11 yes 112 25.11 even 5
800.2.be.a.209.4 112 20.19 odd 2
800.2.be.a.209.25 112 40.19 odd 2
800.2.be.a.689.4 112 200.11 odd 10
800.2.be.a.689.25 112 100.11 odd 10
1000.2.o.a.549.18 112 8.5 even 2 inner
1000.2.o.a.549.21 112 1.1 even 1 trivial
1000.2.o.a.949.18 112 25.14 even 10 inner
1000.2.o.a.949.21 112 200.189 even 10 inner
1000.2.t.b.301.9 224 25.23 odd 20
1000.2.t.b.301.13 224 200.173 odd 20
1000.2.t.b.301.44 224 200.77 odd 20
1000.2.t.b.301.48 224 25.2 odd 20
1000.2.t.b.701.9 224 40.13 odd 4
1000.2.t.b.701.13 224 5.3 odd 4
1000.2.t.b.701.44 224 5.2 odd 4
1000.2.t.b.701.48 224 40.37 odd 4