Properties

Label 100.9.b.g.51.6
Level $100$
Weight $9$
Character 100.51
Analytic conductor $40.738$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [100,9,Mod(51,100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(100, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 9, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("100.51"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Level: \( N \) \(=\) \( 100 = 2^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 100.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(40.7378610061\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 94 x^{18} + 5343 x^{16} - 172772 x^{14} + 36131456 x^{12} - 3044563968 x^{10} + \cdots + 11\!\cdots\!76 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{75}\cdot 3^{4}\cdot 5^{14} \)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 51.6
Root \(-7.13604 + 3.61621i\) of defining polynomial
Character \(\chi\) \(=\) 100.51
Dual form 100.9.b.g.51.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-14.2721 + 7.23243i) q^{2} +44.3270i q^{3} +(151.384 - 206.443i) q^{4} +(-320.592 - 632.638i) q^{6} -2826.75i q^{7} +(-667.476 + 4041.25i) q^{8} +4596.11 q^{9} -18327.2i q^{11} +(9151.02 + 6710.40i) q^{12} +13946.9 q^{13} +(20444.3 + 40343.6i) q^{14} +(-19701.8 - 62504.5i) q^{16} -96189.1 q^{17} +(-65596.1 + 33241.1i) q^{18} -153485. i q^{19} +125301. q^{21} +(132550. + 261567. i) q^{22} +339368. i q^{23} +(-179137. - 29587.2i) q^{24} +(-199051. + 100870. i) q^{26} +494562. i q^{27} +(-583564. - 427925. i) q^{28} -758065. q^{29} +1.01418e6i q^{31} +(733244. + 749577. i) q^{32} +812389. q^{33} +(1.37282e6 - 695681. i) q^{34} +(695778. - 948838. i) q^{36} -135354. q^{37} +(1.11007e6 + 2.19055e6i) q^{38} +618224. i q^{39} -2.56309e6 q^{41} +(-1.78831e6 + 906233. i) q^{42} -852539. i q^{43} +(-3.78352e6 - 2.77444e6i) q^{44} +(-2.45445e6 - 4.84348e6i) q^{46} +1.25626e6i q^{47} +(2.77064e6 - 873321. i) q^{48} -2.22572e6 q^{49} -4.26378e6i q^{51} +(2.11134e6 - 2.87925e6i) q^{52} -1.00203e7 q^{53} +(-3.57688e6 - 7.05842e6i) q^{54} +(1.14236e7 + 1.88679e6i) q^{56} +6.80354e6 q^{57} +(1.08192e7 - 5.48265e6i) q^{58} -2.35908e7i q^{59} -5.69128e6 q^{61} +(-7.33498e6 - 1.44744e7i) q^{62} -1.29921e7i q^{63} +(-1.58862e7 - 5.39488e6i) q^{64} +(-1.15945e7 + 5.87554e6i) q^{66} -1.76526e7i q^{67} +(-1.45615e7 + 1.98576e7i) q^{68} -1.50432e7 q^{69} -3.89940e6i q^{71} +(-3.06780e6 + 1.85740e7i) q^{72} -9.62921e6 q^{73} +(1.93178e6 - 978938. i) q^{74} +(-3.16860e7 - 2.32352e7i) q^{76} -5.18063e7 q^{77} +(-4.47126e6 - 8.82334e6i) q^{78} +2.34959e6i q^{79} +8.23266e6 q^{81} +(3.65806e7 - 1.85374e7i) q^{82} +1.26930e7i q^{83} +(1.89686e7 - 2.58677e7i) q^{84} +(6.16593e6 + 1.21675e7i) q^{86} -3.36028e7i q^{87} +(7.40646e7 + 1.22330e7i) q^{88} -6.42709e7 q^{89} -3.94244e7i q^{91} +(7.00603e7 + 5.13749e7i) q^{92} -4.49555e7 q^{93} +(-9.08579e6 - 1.79294e7i) q^{94} +(-3.32265e7 + 3.25025e7i) q^{96} -6.62485e6 q^{97} +(3.17656e7 - 1.60973e7i) q^{98} -8.42338e7i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 752 q^{4} + 3408 q^{6} - 2556 q^{9} - 8848 q^{14} - 59200 q^{16} + 410256 q^{21} + 156672 q^{24} - 440448 q^{26} - 660136 q^{29} - 4342528 q^{34} - 7191312 q^{36} + 7068520 q^{41} - 2666880 q^{44}+ \cdots + 28850688 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/100\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(77\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −14.2721 + 7.23243i −0.892004 + 0.452027i
\(3\) 44.3270i 0.547247i 0.961837 + 0.273624i \(0.0882223\pi\)
−0.961837 + 0.273624i \(0.911778\pi\)
\(4\) 151.384 206.443i 0.591344 0.806420i
\(5\) 0 0
\(6\) −320.592 632.638i −0.247370 0.488147i
\(7\) 2826.75i 1.17732i −0.808380 0.588661i \(-0.799655\pi\)
0.808380 0.588661i \(-0.200345\pi\)
\(8\) −667.476 + 4041.25i −0.162958 + 0.986633i
\(9\) 4596.11 0.700520
\(10\) 0 0
\(11\) 18327.2i 1.25177i −0.779915 0.625885i \(-0.784738\pi\)
0.779915 0.625885i \(-0.215262\pi\)
\(12\) 9151.02 + 6710.40i 0.441311 + 0.323611i
\(13\) 13946.9 0.488320 0.244160 0.969735i \(-0.421488\pi\)
0.244160 + 0.969735i \(0.421488\pi\)
\(14\) 20444.3 + 40343.6i 0.532181 + 1.05018i
\(15\) 0 0
\(16\) −19701.8 62504.5i −0.300625 0.953742i
\(17\) −96189.1 −1.15168 −0.575838 0.817564i \(-0.695324\pi\)
−0.575838 + 0.817564i \(0.695324\pi\)
\(18\) −65596.1 + 33241.1i −0.624867 + 0.316654i
\(19\) 153485.i 1.17775i −0.808225 0.588873i \(-0.799572\pi\)
0.808225 0.588873i \(-0.200428\pi\)
\(20\) 0 0
\(21\) 125301. 0.644286
\(22\) 132550. + 261567.i 0.565833 + 1.11658i
\(23\) 339368.i 1.21272i 0.795191 + 0.606358i \(0.207370\pi\)
−0.795191 + 0.606358i \(0.792630\pi\)
\(24\) −179137. 29587.2i −0.539932 0.0891784i
\(25\) 0 0
\(26\) −199051. + 100870.i −0.435583 + 0.220734i
\(27\) 494562.i 0.930605i
\(28\) −583564. 427925.i −0.949416 0.696202i
\(29\) −758065. −1.07180 −0.535901 0.844281i \(-0.680028\pi\)
−0.535901 + 0.844281i \(0.680028\pi\)
\(30\) 0 0
\(31\) 1.01418e6i 1.09817i 0.835768 + 0.549083i \(0.185023\pi\)
−0.835768 + 0.549083i \(0.814977\pi\)
\(32\) 733244. + 749577.i 0.699276 + 0.714852i
\(33\) 812389. 0.685028
\(34\) 1.37282e6 695681.i 1.02730 0.520588i
\(35\) 0 0
\(36\) 695778. 948838.i 0.414248 0.564913i
\(37\) −135354. −0.0722211 −0.0361106 0.999348i \(-0.511497\pi\)
−0.0361106 + 0.999348i \(0.511497\pi\)
\(38\) 1.11007e6 + 2.19055e6i 0.532373 + 1.05056i
\(39\) 618224.i 0.267232i
\(40\) 0 0
\(41\) −2.56309e6 −0.907045 −0.453523 0.891245i \(-0.649833\pi\)
−0.453523 + 0.891245i \(0.649833\pi\)
\(42\) −1.78831e6 + 906233.i −0.574706 + 0.291235i
\(43\) 852539.i 0.249368i −0.992197 0.124684i \(-0.960208\pi\)
0.992197 0.124684i \(-0.0397917\pi\)
\(44\) −3.78352e6 2.77444e6i −1.00945 0.740226i
\(45\) 0 0
\(46\) −2.45445e6 4.84348e6i −0.548180 1.08175i
\(47\) 1.25626e6i 0.257447i 0.991681 + 0.128723i \(0.0410879\pi\)
−0.991681 + 0.128723i \(0.958912\pi\)
\(48\) 2.77064e6 873321.i 0.521933 0.164516i
\(49\) −2.22572e6 −0.386087
\(50\) 0 0
\(51\) 4.26378e6i 0.630251i
\(52\) 2.11134e6 2.87925e6i 0.288765 0.393791i
\(53\) −1.00203e7 −1.26993 −0.634963 0.772542i \(-0.718985\pi\)
−0.634963 + 0.772542i \(0.718985\pi\)
\(54\) −3.57688e6 7.05842e6i −0.420658 0.830104i
\(55\) 0 0
\(56\) 1.14236e7 + 1.88679e6i 1.16158 + 0.191854i
\(57\) 6.80354e6 0.644519
\(58\) 1.08192e7 5.48265e6i 0.956052 0.484483i
\(59\) 2.35908e7i 1.94686i −0.228979 0.973431i \(-0.573539\pi\)
0.228979 0.973431i \(-0.426461\pi\)
\(60\) 0 0
\(61\) −5.69128e6 −0.411046 −0.205523 0.978652i \(-0.565890\pi\)
−0.205523 + 0.978652i \(0.565890\pi\)
\(62\) −7.33498e6 1.44744e7i −0.496400 0.979569i
\(63\) 1.29921e7i 0.824738i
\(64\) −1.58862e7 5.39488e6i −0.946889 0.321560i
\(65\) 0 0
\(66\) −1.15945e7 + 5.87554e6i −0.611048 + 0.309651i
\(67\) 1.76526e7i 0.876010i −0.898973 0.438005i \(-0.855685\pi\)
0.898973 0.438005i \(-0.144315\pi\)
\(68\) −1.45615e7 + 1.98576e7i −0.681036 + 0.928734i
\(69\) −1.50432e7 −0.663656
\(70\) 0 0
\(71\) 3.89940e6i 0.153449i −0.997052 0.0767246i \(-0.975554\pi\)
0.997052 0.0767246i \(-0.0244462\pi\)
\(72\) −3.06780e6 + 1.85740e7i −0.114156 + 0.691157i
\(73\) −9.62921e6 −0.339078 −0.169539 0.985523i \(-0.554228\pi\)
−0.169539 + 0.985523i \(0.554228\pi\)
\(74\) 1.93178e6 978938.i 0.0644216 0.0326459i
\(75\) 0 0
\(76\) −3.16860e7 2.32352e7i −0.949758 0.696453i
\(77\) −5.18063e7 −1.47374
\(78\) −4.47126e6 8.82334e6i −0.120796 0.238372i
\(79\) 2.34959e6i 0.0603232i 0.999545 + 0.0301616i \(0.00960220\pi\)
−0.999545 + 0.0301616i \(0.990398\pi\)
\(80\) 0 0
\(81\) 8.23266e6 0.191249
\(82\) 3.65806e7 1.85374e7i 0.809088 0.410009i
\(83\) 1.26930e7i 0.267456i 0.991018 + 0.133728i \(0.0426948\pi\)
−0.991018 + 0.133728i \(0.957305\pi\)
\(84\) 1.89686e7 2.58677e7i 0.380995 0.519565i
\(85\) 0 0
\(86\) 6.16593e6 + 1.21675e7i 0.112721 + 0.222437i
\(87\) 3.36028e7i 0.586541i
\(88\) 7.40646e7 + 1.22330e7i 1.23504 + 0.203986i
\(89\) −6.42709e7 −1.02436 −0.512182 0.858877i \(-0.671163\pi\)
−0.512182 + 0.858877i \(0.671163\pi\)
\(90\) 0 0
\(91\) 3.94244e7i 0.574910i
\(92\) 7.00603e7 + 5.13749e7i 0.977959 + 0.717133i
\(93\) −4.49555e7 −0.600968
\(94\) −9.08579e6 1.79294e7i −0.116373 0.229643i
\(95\) 0 0
\(96\) −3.32265e7 + 3.25025e7i −0.391201 + 0.382677i
\(97\) −6.62485e6 −0.0748323 −0.0374161 0.999300i \(-0.511913\pi\)
−0.0374161 + 0.999300i \(0.511913\pi\)
\(98\) 3.17656e7 1.60973e7i 0.344392 0.174522i
\(99\) 8.42338e7i 0.876891i
\(100\) 0 0
\(101\) 5.22160e7 0.501786 0.250893 0.968015i \(-0.419276\pi\)
0.250893 + 0.968015i \(0.419276\pi\)
\(102\) 3.08374e7 + 6.08529e7i 0.284890 + 0.562187i
\(103\) 1.19619e8i 1.06280i −0.847120 0.531401i \(-0.821666\pi\)
0.847120 0.531401i \(-0.178334\pi\)
\(104\) −9.30923e6 + 5.63629e7i −0.0795757 + 0.481792i
\(105\) 0 0
\(106\) 1.43011e8 7.24713e7i 1.13278 0.574041i
\(107\) 1.97409e8i 1.50602i 0.658008 + 0.753011i \(0.271399\pi\)
−0.658008 + 0.753011i \(0.728601\pi\)
\(108\) 1.02099e8 + 7.48687e7i 0.750458 + 0.550308i
\(109\) 2.24099e8 1.58758 0.793788 0.608195i \(-0.208106\pi\)
0.793788 + 0.608195i \(0.208106\pi\)
\(110\) 0 0
\(111\) 5.99984e6i 0.0395228i
\(112\) −1.76685e8 + 5.56920e7i −1.12286 + 0.353933i
\(113\) −3.24514e8 −1.99031 −0.995153 0.0983370i \(-0.968648\pi\)
−0.995153 + 0.0983370i \(0.968648\pi\)
\(114\) −9.71006e7 + 4.92061e7i −0.574913 + 0.291340i
\(115\) 0 0
\(116\) −1.14759e8 + 1.56498e8i −0.633804 + 0.864322i
\(117\) 6.41015e7 0.342078
\(118\) 1.70619e8 + 3.36690e8i 0.880034 + 1.73661i
\(119\) 2.71903e8i 1.35589i
\(120\) 0 0
\(121\) −1.21526e8 −0.566928
\(122\) 8.12264e7 4.11618e7i 0.366655 0.185804i
\(123\) 1.13614e8i 0.496378i
\(124\) 2.09371e8 + 1.53530e8i 0.885582 + 0.649393i
\(125\) 0 0
\(126\) 9.39642e7 + 1.85424e8i 0.372804 + 0.735670i
\(127\) 3.41089e8i 1.31115i −0.755129 0.655576i \(-0.772426\pi\)
0.755129 0.655576i \(-0.227574\pi\)
\(128\) 2.65747e8 3.78995e7i 0.989983 0.141187i
\(129\) 3.77905e7 0.136466
\(130\) 0 0
\(131\) 2.72281e8i 0.924553i 0.886736 + 0.462277i \(0.152967\pi\)
−0.886736 + 0.462277i \(0.847033\pi\)
\(132\) 1.22983e8 1.67712e8i 0.405087 0.552420i
\(133\) −4.33864e8 −1.38659
\(134\) 1.27671e8 + 2.51939e8i 0.395980 + 0.781404i
\(135\) 0 0
\(136\) 6.42040e7 3.88724e8i 0.187675 1.13628i
\(137\) −3.75590e8 −1.06618 −0.533092 0.846057i \(-0.678970\pi\)
−0.533092 + 0.846057i \(0.678970\pi\)
\(138\) 2.14697e8 1.08799e8i 0.591984 0.299990i
\(139\) 5.07197e8i 1.35868i 0.733823 + 0.679340i \(0.237734\pi\)
−0.733823 + 0.679340i \(0.762266\pi\)
\(140\) 0 0
\(141\) −5.56861e7 −0.140887
\(142\) 2.82022e7 + 5.56526e7i 0.0693632 + 0.136877i
\(143\) 2.55607e8i 0.611264i
\(144\) −9.05516e7 2.87278e8i −0.210594 0.668116i
\(145\) 0 0
\(146\) 1.37429e8 6.96426e7i 0.302459 0.153272i
\(147\) 9.86594e7i 0.211285i
\(148\) −2.04904e7 + 2.79429e7i −0.0427075 + 0.0582405i
\(149\) 7.01900e7 0.142407 0.0712033 0.997462i \(-0.477316\pi\)
0.0712033 + 0.997462i \(0.477316\pi\)
\(150\) 0 0
\(151\) 3.99910e8i 0.769228i 0.923078 + 0.384614i \(0.125665\pi\)
−0.923078 + 0.384614i \(0.874335\pi\)
\(152\) 6.20272e8 + 1.02448e8i 1.16200 + 0.191923i
\(153\) −4.42096e8 −0.806772
\(154\) 7.39383e8 3.74685e8i 1.31458 0.666168i
\(155\) 0 0
\(156\) 1.27628e8 + 9.35893e7i 0.215501 + 0.158026i
\(157\) −6.98489e8 −1.14964 −0.574819 0.818281i \(-0.694927\pi\)
−0.574819 + 0.818281i \(0.694927\pi\)
\(158\) −1.69933e7 3.35336e7i −0.0272677 0.0538086i
\(159\) 4.44171e8i 0.694964i
\(160\) 0 0
\(161\) 9.59308e8 1.42776
\(162\) −1.17497e8 + 5.95421e7i −0.170595 + 0.0864498i
\(163\) 3.45753e8i 0.489796i −0.969549 0.244898i \(-0.921245\pi\)
0.969549 0.244898i \(-0.0787545\pi\)
\(164\) −3.88011e8 + 5.29134e8i −0.536375 + 0.731459i
\(165\) 0 0
\(166\) −9.18013e7 1.81156e8i −0.120897 0.238572i
\(167\) 9.80032e8i 1.26001i −0.776591 0.630006i \(-0.783053\pi\)
0.776591 0.630006i \(-0.216947\pi\)
\(168\) −8.36358e7 + 5.06374e8i −0.104992 + 0.635674i
\(169\) −6.21215e8 −0.761544
\(170\) 0 0
\(171\) 7.05435e8i 0.825036i
\(172\) −1.76001e8 1.29061e8i −0.201095 0.147462i
\(173\) 9.30284e8 1.03856 0.519280 0.854604i \(-0.326200\pi\)
0.519280 + 0.854604i \(0.326200\pi\)
\(174\) 2.43030e8 + 4.79581e8i 0.265132 + 0.523197i
\(175\) 0 0
\(176\) −1.14553e9 + 3.61077e8i −1.19387 + 0.376313i
\(177\) 1.04571e9 1.06542
\(178\) 9.17279e8 4.64835e8i 0.913737 0.463040i
\(179\) 3.62399e8i 0.353000i −0.984301 0.176500i \(-0.943522\pi\)
0.984301 0.176500i \(-0.0564776\pi\)
\(180\) 0 0
\(181\) −1.52080e9 −1.41696 −0.708479 0.705732i \(-0.750618\pi\)
−0.708479 + 0.705732i \(0.750618\pi\)
\(182\) 2.85134e8 + 5.62668e8i 0.259874 + 0.512822i
\(183\) 2.52278e8i 0.224944i
\(184\) −1.37147e9 2.26520e8i −1.19651 0.197622i
\(185\) 0 0
\(186\) 6.41609e8 3.25138e8i 0.536066 0.271654i
\(187\) 1.76287e9i 1.44163i
\(188\) 2.59346e8 + 1.90177e8i 0.207610 + 0.152239i
\(189\) 1.39800e9 1.09562
\(190\) 0 0
\(191\) 8.08221e8i 0.607290i −0.952785 0.303645i \(-0.901796\pi\)
0.952785 0.303645i \(-0.0982037\pi\)
\(192\) 2.39139e8 7.04186e8i 0.175973 0.518183i
\(193\) −2.18420e9 −1.57421 −0.787107 0.616817i \(-0.788422\pi\)
−0.787107 + 0.616817i \(0.788422\pi\)
\(194\) 9.45503e7 4.79137e7i 0.0667507 0.0338262i
\(195\) 0 0
\(196\) −3.36938e8 + 4.59485e8i −0.228310 + 0.311348i
\(197\) −1.02380e9 −0.679751 −0.339875 0.940470i \(-0.610385\pi\)
−0.339875 + 0.940470i \(0.610385\pi\)
\(198\) 6.09214e8 + 1.20219e9i 0.396378 + 0.782190i
\(199\) 1.22571e9i 0.781585i −0.920479 0.390792i \(-0.872201\pi\)
0.920479 0.390792i \(-0.127799\pi\)
\(200\) 0 0
\(201\) 7.82486e8 0.479394
\(202\) −7.45231e8 + 3.77649e8i −0.447595 + 0.226820i
\(203\) 2.14286e9i 1.26186i
\(204\) −8.80229e8 6.45468e8i −0.508247 0.372695i
\(205\) 0 0
\(206\) 8.65138e8 + 1.70722e9i 0.480415 + 0.948025i
\(207\) 1.55977e9i 0.849533i
\(208\) −2.74778e8 8.71743e8i −0.146801 0.465731i
\(209\) −2.81295e9 −1.47427
\(210\) 0 0
\(211\) 2.22607e8i 0.112307i 0.998422 + 0.0561537i \(0.0178837\pi\)
−0.998422 + 0.0561537i \(0.982116\pi\)
\(212\) −1.51692e9 + 2.06863e9i −0.750963 + 1.02409i
\(213\) 1.72849e8 0.0839747
\(214\) −1.42774e9 2.81743e9i −0.680762 1.34338i
\(215\) 0 0
\(216\) −1.99865e9 3.30108e8i −0.918166 0.151650i
\(217\) 2.86683e9 1.29289
\(218\) −3.19836e9 + 1.62078e9i −1.41612 + 0.717626i
\(219\) 4.26834e8i 0.185559i
\(220\) 0 0
\(221\) −1.34154e9 −0.562386
\(222\) 4.33934e7 + 8.56302e7i 0.0178654 + 0.0352545i
\(223\) 2.66616e9i 1.07812i −0.842268 0.539059i \(-0.818780\pi\)
0.842268 0.539059i \(-0.181220\pi\)
\(224\) 2.11887e9 2.07270e9i 0.841611 0.823273i
\(225\) 0 0
\(226\) 4.63149e9 2.34703e9i 1.77536 0.899672i
\(227\) 1.45410e9i 0.547636i −0.961782 0.273818i \(-0.911713\pi\)
0.961782 0.273818i \(-0.0882866\pi\)
\(228\) 1.02995e9 1.40455e9i 0.381132 0.519752i
\(229\) −1.32962e7 −0.00483488 −0.00241744 0.999997i \(-0.500769\pi\)
−0.00241744 + 0.999997i \(0.500769\pi\)
\(230\) 0 0
\(231\) 2.29642e9i 0.806498i
\(232\) 5.05991e8 3.06353e9i 0.174659 1.05748i
\(233\) 5.53873e9 1.87926 0.939628 0.342196i \(-0.111171\pi\)
0.939628 + 0.342196i \(0.111171\pi\)
\(234\) −9.14862e8 + 4.63610e8i −0.305135 + 0.154628i
\(235\) 0 0
\(236\) −4.87017e9 3.57128e9i −1.56999 1.15127i
\(237\) −1.04151e8 −0.0330117
\(238\) −1.96652e9 3.88061e9i −0.612900 1.20946i
\(239\) 7.06175e8i 0.216432i −0.994127 0.108216i \(-0.965486\pi\)
0.994127 0.108216i \(-0.0345137\pi\)
\(240\) 0 0
\(241\) 2.23345e9 0.662075 0.331038 0.943618i \(-0.392601\pi\)
0.331038 + 0.943618i \(0.392601\pi\)
\(242\) 1.73443e9 8.78928e8i 0.505702 0.256267i
\(243\) 3.60975e9i 1.03527i
\(244\) −8.61569e8 + 1.17493e9i −0.243070 + 0.331476i
\(245\) 0 0
\(246\) 8.21707e8 + 1.62151e9i 0.224376 + 0.442771i
\(247\) 2.14064e9i 0.575117i
\(248\) −4.09855e9 6.76941e8i −1.08349 0.178955i
\(249\) −5.62643e8 −0.146365
\(250\) 0 0
\(251\) 3.22973e9i 0.813713i 0.913492 + 0.406857i \(0.133375\pi\)
−0.913492 + 0.406857i \(0.866625\pi\)
\(252\) −2.68213e9 1.96679e9i −0.665085 0.487704i
\(253\) 6.21965e9 1.51804
\(254\) 2.46690e9 + 4.86805e9i 0.592676 + 1.16955i
\(255\) 0 0
\(256\) −3.51865e9 + 2.46290e9i −0.819249 + 0.573438i
\(257\) −3.73492e9 −0.856148 −0.428074 0.903744i \(-0.640808\pi\)
−0.428074 + 0.903744i \(0.640808\pi\)
\(258\) −5.39349e8 + 2.73317e8i −0.121728 + 0.0616862i
\(259\) 3.82612e8i 0.0850275i
\(260\) 0 0
\(261\) −3.48416e9 −0.750819
\(262\) −1.96925e9 3.88601e9i −0.417923 0.824706i
\(263\) 5.87828e9i 1.22865i 0.789054 + 0.614324i \(0.210571\pi\)
−0.789054 + 0.614324i \(0.789429\pi\)
\(264\) −5.42250e8 + 3.28306e9i −0.111631 + 0.675871i
\(265\) 0 0
\(266\) 6.19214e9 3.13789e9i 1.23684 0.626774i
\(267\) 2.84894e9i 0.560580i
\(268\) −3.64426e9 2.67232e9i −0.706431 0.518023i
\(269\) 2.61826e9 0.500039 0.250019 0.968241i \(-0.419563\pi\)
0.250019 + 0.968241i \(0.419563\pi\)
\(270\) 0 0
\(271\) 4.66174e9i 0.864312i 0.901799 + 0.432156i \(0.142247\pi\)
−0.901799 + 0.432156i \(0.857753\pi\)
\(272\) 1.89509e9 + 6.01225e9i 0.346223 + 1.09840i
\(273\) 1.74757e9 0.314618
\(274\) 5.36045e9 2.71643e9i 0.951041 0.481944i
\(275\) 0 0
\(276\) −2.27730e9 + 3.10556e9i −0.392449 + 0.535185i
\(277\) 3.79455e9 0.644526 0.322263 0.946650i \(-0.395556\pi\)
0.322263 + 0.946650i \(0.395556\pi\)
\(278\) −3.66826e9 7.23875e9i −0.614160 1.21195i
\(279\) 4.66128e9i 0.769288i
\(280\) 0 0
\(281\) 5.95287e9 0.954776 0.477388 0.878693i \(-0.341584\pi\)
0.477388 + 0.878693i \(0.341584\pi\)
\(282\) 7.94756e8 4.02746e8i 0.125672 0.0636846i
\(283\) 6.09829e9i 0.950742i −0.879785 0.475371i \(-0.842314\pi\)
0.879785 0.475371i \(-0.157686\pi\)
\(284\) −8.05006e8 5.90307e8i −0.123744 0.0907413i
\(285\) 0 0
\(286\) 1.84866e9 + 3.64804e9i 0.276308 + 0.545250i
\(287\) 7.24522e9i 1.06788i
\(288\) 3.37007e9 + 3.44514e9i 0.489857 + 0.500768i
\(289\) 2.27658e9 0.326357
\(290\) 0 0
\(291\) 2.93660e8i 0.0409517i
\(292\) −1.45771e9 + 1.98789e9i −0.200512 + 0.273439i
\(293\) 3.58577e9 0.486533 0.243266 0.969960i \(-0.421781\pi\)
0.243266 + 0.969960i \(0.421781\pi\)
\(294\) 7.13547e8 + 1.40807e9i 0.0955066 + 0.188467i
\(295\) 0 0
\(296\) 9.03456e7 5.46999e8i 0.0117690 0.0712557i
\(297\) 9.06391e9 1.16490
\(298\) −1.00176e9 + 5.07644e8i −0.127027 + 0.0643716i
\(299\) 4.73313e9i 0.592194i
\(300\) 0 0
\(301\) −2.40992e9 −0.293586
\(302\) −2.89232e9 5.70755e9i −0.347711 0.686155i
\(303\) 2.31458e9i 0.274601i
\(304\) −9.59351e9 + 3.02393e9i −1.12327 + 0.354060i
\(305\) 0 0
\(306\) 6.30963e9 3.19743e9i 0.719644 0.364683i
\(307\) 5.11579e9i 0.575917i 0.957643 + 0.287958i \(0.0929765\pi\)
−0.957643 + 0.287958i \(0.907024\pi\)
\(308\) −7.84265e9 + 1.06951e10i −0.871485 + 1.18845i
\(309\) 5.30237e9 0.581616
\(310\) 0 0
\(311\) 2.80934e9i 0.300305i 0.988663 + 0.150152i \(0.0479764\pi\)
−0.988663 + 0.150152i \(0.952024\pi\)
\(312\) −2.49840e9 4.12650e8i −0.263659 0.0435476i
\(313\) −4.69101e9 −0.488753 −0.244376 0.969680i \(-0.578583\pi\)
−0.244376 + 0.969680i \(0.578583\pi\)
\(314\) 9.96888e9 5.05177e9i 1.02548 0.519667i
\(315\) 0 0
\(316\) 4.85058e8 + 3.55691e8i 0.0486458 + 0.0356718i
\(317\) 2.44480e9 0.242107 0.121053 0.992646i \(-0.461373\pi\)
0.121053 + 0.992646i \(0.461373\pi\)
\(318\) 3.21244e9 + 6.33925e9i 0.314142 + 0.619911i
\(319\) 1.38932e10i 1.34165i
\(320\) 0 0
\(321\) −8.75054e9 −0.824166
\(322\) −1.36913e10 + 6.93813e9i −1.27357 + 0.645385i
\(323\) 1.47636e10i 1.35638i
\(324\) 1.24629e9 1.69958e9i 0.113094 0.154227i
\(325\) 0 0
\(326\) 2.50063e9 + 4.93461e9i 0.221401 + 0.436900i
\(327\) 9.93365e9i 0.868796i
\(328\) 1.71080e9 1.03581e10i 0.147810 0.894921i
\(329\) 3.55112e9 0.303097
\(330\) 0 0
\(331\) 2.14898e10i 1.79028i −0.445786 0.895139i \(-0.647076\pi\)
0.445786 0.895139i \(-0.352924\pi\)
\(332\) 2.62039e9 + 1.92152e9i 0.215682 + 0.158158i
\(333\) −6.22103e8 −0.0505924
\(334\) 7.08801e9 + 1.39871e10i 0.569559 + 1.12394i
\(335\) 0 0
\(336\) −2.46866e9 7.83190e9i −0.193689 0.614483i
\(337\) −4.77773e9 −0.370426 −0.185213 0.982698i \(-0.559298\pi\)
−0.185213 + 0.982698i \(0.559298\pi\)
\(338\) 8.86602e9 4.49289e9i 0.679301 0.344238i
\(339\) 1.43847e10i 1.08919i
\(340\) 0 0
\(341\) 1.85870e10 1.37465
\(342\) 5.10201e9 + 1.00680e10i 0.372938 + 0.735936i
\(343\) 1.00041e10i 0.722773i
\(344\) 3.44532e9 + 5.69050e8i 0.246035 + 0.0406365i
\(345\) 0 0
\(346\) −1.32771e10 + 6.72821e9i −0.926399 + 0.469456i
\(347\) 7.28826e9i 0.502696i −0.967897 0.251348i \(-0.919126\pi\)
0.967897 0.251348i \(-0.0808739\pi\)
\(348\) −6.93707e9 5.08692e9i −0.472998 0.346847i
\(349\) −2.60410e9 −0.175532 −0.0877660 0.996141i \(-0.527973\pi\)
−0.0877660 + 0.996141i \(0.527973\pi\)
\(350\) 0 0
\(351\) 6.89760e9i 0.454433i
\(352\) 1.37376e10 1.34383e10i 0.894830 0.875333i
\(353\) 7.30914e9 0.470725 0.235363 0.971908i \(-0.424372\pi\)
0.235363 + 0.971908i \(0.424372\pi\)
\(354\) −1.49245e10 + 7.56303e9i −0.950355 + 0.481596i
\(355\) 0 0
\(356\) −9.72959e9 + 1.32683e10i −0.605751 + 0.826067i
\(357\) −1.20526e10 −0.742009
\(358\) 2.62102e9 + 5.17218e9i 0.159565 + 0.314878i
\(359\) 1.69103e10i 1.01806i −0.860749 0.509029i \(-0.830004\pi\)
0.860749 0.509029i \(-0.169996\pi\)
\(360\) 0 0
\(361\) −6.57413e9 −0.387088
\(362\) 2.17049e10 1.09991e10i 1.26393 0.640503i
\(363\) 5.38689e9i 0.310250i
\(364\) −8.13891e9 5.96822e9i −0.463618 0.339969i
\(365\) 0 0
\(366\) 1.82458e9 + 3.60052e9i 0.101681 + 0.200651i
\(367\) 3.03452e10i 1.67273i −0.548174 0.836364i \(-0.684677\pi\)
0.548174 0.836364i \(-0.315323\pi\)
\(368\) 2.12120e10 6.68615e9i 1.15662 0.364573i
\(369\) −1.17803e10 −0.635404
\(370\) 0 0
\(371\) 2.83250e10i 1.49511i
\(372\) −6.80555e9 + 9.28077e9i −0.355379 + 0.484632i
\(373\) −9.46195e9 −0.488816 −0.244408 0.969673i \(-0.578594\pi\)
−0.244408 + 0.969673i \(0.578594\pi\)
\(374\) −1.27499e10 2.51599e10i −0.651657 1.28594i
\(375\) 0 0
\(376\) −5.07685e9 8.38522e8i −0.254005 0.0419530i
\(377\) −1.05727e10 −0.523382
\(378\) −1.99524e10 + 1.01110e10i −0.977300 + 0.495250i
\(379\) 1.10814e10i 0.537078i −0.963269 0.268539i \(-0.913459\pi\)
0.963269 0.268539i \(-0.0865409\pi\)
\(380\) 0 0
\(381\) 1.51195e10 0.717525
\(382\) 5.84540e9 + 1.15350e10i 0.274511 + 0.541706i
\(383\) 3.17801e10i 1.47693i −0.674292 0.738465i \(-0.735551\pi\)
0.674292 0.738465i \(-0.264449\pi\)
\(384\) 1.67997e9 + 1.17798e10i 0.0772639 + 0.541765i
\(385\) 0 0
\(386\) 3.11731e10 1.57971e10i 1.40421 0.711586i
\(387\) 3.91837e9i 0.174687i
\(388\) −1.00290e9 + 1.36766e9i −0.0442516 + 0.0603462i
\(389\) −2.63166e10 −1.14929 −0.574647 0.818402i \(-0.694860\pi\)
−0.574647 + 0.818402i \(0.694860\pi\)
\(390\) 0 0
\(391\) 3.26435e10i 1.39666i
\(392\) 1.48561e9 8.99468e9i 0.0629161 0.380927i
\(393\) −1.20694e10 −0.505959
\(394\) 1.46117e10 7.40455e9i 0.606341 0.307266i
\(395\) 0 0
\(396\) −1.73895e10 1.27516e10i −0.707142 0.518544i
\(397\) −1.18226e9 −0.0475937 −0.0237969 0.999717i \(-0.507575\pi\)
−0.0237969 + 0.999717i \(0.507575\pi\)
\(398\) 8.86487e9 + 1.74934e10i 0.353297 + 0.697177i
\(399\) 1.92319e10i 0.758806i
\(400\) 0 0
\(401\) −4.04552e10 −1.56458 −0.782289 0.622916i \(-0.785948\pi\)
−0.782289 + 0.622916i \(0.785948\pi\)
\(402\) −1.11677e10 + 5.65927e9i −0.427621 + 0.216699i
\(403\) 1.41447e10i 0.536256i
\(404\) 7.90467e9 1.07797e10i 0.296728 0.404650i
\(405\) 0 0
\(406\) −1.54981e10 3.05831e10i −0.570393 1.12558i
\(407\) 2.48066e9i 0.0904042i
\(408\) 1.72310e10 + 2.84597e9i 0.621827 + 0.102705i
\(409\) 2.26640e9 0.0809921 0.0404960 0.999180i \(-0.487106\pi\)
0.0404960 + 0.999180i \(0.487106\pi\)
\(410\) 0 0
\(411\) 1.66488e10i 0.583466i
\(412\) −2.46946e10 1.81085e10i −0.857065 0.628482i
\(413\) −6.66854e10 −2.29208
\(414\) −1.12810e10 2.22612e10i −0.384012 0.757787i
\(415\) 0 0
\(416\) 1.02265e10 + 1.04543e10i 0.341470 + 0.349076i
\(417\) −2.24825e10 −0.743534
\(418\) 4.01466e10 2.03444e10i 1.31505 0.666408i
\(419\) 5.97866e10i 1.93976i 0.243587 + 0.969879i \(0.421676\pi\)
−0.243587 + 0.969879i \(0.578324\pi\)
\(420\) 0 0
\(421\) 1.37859e8 0.00438841 0.00219421 0.999998i \(-0.499302\pi\)
0.00219421 + 0.999998i \(0.499302\pi\)
\(422\) −1.60999e9 3.17706e9i −0.0507659 0.100179i
\(423\) 5.77390e9i 0.180347i
\(424\) 6.68834e9 4.04947e10i 0.206945 1.25295i
\(425\) 0 0
\(426\) −2.46691e9 + 1.25012e9i −0.0749058 + 0.0379588i
\(427\) 1.60878e10i 0.483934i
\(428\) 4.07537e10 + 2.98845e10i 1.21449 + 0.890577i
\(429\) 1.13303e10 0.334512
\(430\) 0 0
\(431\) 1.87046e10i 0.542051i 0.962572 + 0.271026i \(0.0873628\pi\)
−0.962572 + 0.271026i \(0.912637\pi\)
\(432\) 3.09123e10 9.74374e9i 0.887558 0.279763i
\(433\) −1.46857e10 −0.417776 −0.208888 0.977940i \(-0.566984\pi\)
−0.208888 + 0.977940i \(0.566984\pi\)
\(434\) −4.09156e10 + 2.07341e10i −1.15327 + 0.584423i
\(435\) 0 0
\(436\) 3.39250e10 4.62638e10i 0.938803 1.28025i
\(437\) 5.20879e10 1.42827
\(438\) 3.08705e9 + 6.09181e9i 0.0838778 + 0.165520i
\(439\) 2.58143e10i 0.695029i −0.937675 0.347514i \(-0.887026\pi\)
0.937675 0.347514i \(-0.112974\pi\)
\(440\) 0 0
\(441\) −1.02297e10 −0.270462
\(442\) 1.91465e10 9.70259e9i 0.501651 0.254213i
\(443\) 3.46551e10i 0.899813i −0.893076 0.449906i \(-0.851457\pi\)
0.893076 0.449906i \(-0.148543\pi\)
\(444\) −1.23863e9 9.08280e8i −0.0318720 0.0233716i
\(445\) 0 0
\(446\) 1.92828e10 + 3.80516e10i 0.487338 + 0.961686i
\(447\) 3.11131e9i 0.0779316i
\(448\) −1.52500e10 + 4.49062e10i −0.378579 + 1.11479i
\(449\) 3.50756e10 0.863018 0.431509 0.902109i \(-0.357981\pi\)
0.431509 + 0.902109i \(0.357981\pi\)
\(450\) 0 0
\(451\) 4.69742e10i 1.13541i
\(452\) −4.91263e10 + 6.69938e10i −1.17696 + 1.60502i
\(453\) −1.77268e10 −0.420958
\(454\) 1.05167e10 + 2.07531e10i 0.247546 + 0.488494i
\(455\) 0 0
\(456\) −4.54120e9 + 2.74948e10i −0.105030 + 0.635903i
\(457\) −1.80923e10 −0.414791 −0.207395 0.978257i \(-0.566499\pi\)
−0.207395 + 0.978257i \(0.566499\pi\)
\(458\) 1.89764e8 9.61638e7i 0.00431274 0.00218550i
\(459\) 4.75714e10i 1.07176i
\(460\) 0 0
\(461\) 2.22531e10 0.492704 0.246352 0.969180i \(-0.420768\pi\)
0.246352 + 0.969180i \(0.420768\pi\)
\(462\) 1.66087e10 + 3.27747e10i 0.364559 + 0.719400i
\(463\) 4.13307e10i 0.899391i −0.893182 0.449695i \(-0.851533\pi\)
0.893182 0.449695i \(-0.148467\pi\)
\(464\) 1.49352e10 + 4.73825e10i 0.322211 + 1.02222i
\(465\) 0 0
\(466\) −7.90491e10 + 4.00584e10i −1.67631 + 0.849474i
\(467\) 3.60193e10i 0.757300i 0.925540 + 0.378650i \(0.123612\pi\)
−0.925540 + 0.378650i \(0.876388\pi\)
\(468\) 9.70395e9 1.32333e10i 0.202286 0.275858i
\(469\) −4.98994e10 −1.03135
\(470\) 0 0
\(471\) 3.09619e10i 0.629136i
\(472\) 9.53365e10 + 1.57463e10i 1.92084 + 0.317257i
\(473\) −1.56246e10 −0.312151
\(474\) 1.48644e9 7.53261e8i 0.0294466 0.0149222i
\(475\) 0 0
\(476\) 5.61325e10 + 4.11617e10i 1.09342 + 0.801799i
\(477\) −4.60546e10 −0.889610
\(478\) 5.10736e9 + 1.00786e10i 0.0978328 + 0.193058i
\(479\) 5.31999e10i 1.01058i 0.862951 + 0.505288i \(0.168614\pi\)
−0.862951 + 0.505288i \(0.831386\pi\)
\(480\) 0 0
\(481\) −1.88777e9 −0.0352670
\(482\) −3.18759e10 + 1.61532e10i −0.590574 + 0.299276i
\(483\) 4.25233e10i 0.781337i
\(484\) −1.83971e10 + 2.50883e10i −0.335249 + 0.457182i
\(485\) 0 0
\(486\) −2.61072e10 5.15186e10i −0.467968 0.923462i
\(487\) 2.16155e10i 0.384281i −0.981367 0.192140i \(-0.938457\pi\)
0.981367 0.192140i \(-0.0615429\pi\)
\(488\) 3.79880e9 2.29999e10i 0.0669833 0.405552i
\(489\) 1.53262e10 0.268040
\(490\) 0 0
\(491\) 6.94657e9i 0.119521i −0.998213 0.0597606i \(-0.980966\pi\)
0.998213 0.0597606i \(-0.0190337\pi\)
\(492\) −2.34549e10 1.71994e10i −0.400289 0.293530i
\(493\) 7.29176e10 1.23437
\(494\) 1.54820e10 + 3.05514e10i 0.259968 + 0.513007i
\(495\) 0 0
\(496\) 6.33907e10 1.99811e10i 1.04737 0.330136i
\(497\) −1.10226e10 −0.180659
\(498\) 8.03009e9 4.06928e9i 0.130558 0.0661607i
\(499\) 3.04616e10i 0.491304i 0.969358 + 0.245652i \(0.0790021\pi\)
−0.969358 + 0.245652i \(0.920998\pi\)
\(500\) 0 0
\(501\) 4.34419e10 0.689538
\(502\) −2.33588e10 4.60949e10i −0.367820 0.725836i
\(503\) 2.80844e10i 0.438725i 0.975643 + 0.219363i \(0.0703978\pi\)
−0.975643 + 0.219363i \(0.929602\pi\)
\(504\) 5.25042e10 + 8.67190e9i 0.813714 + 0.134398i
\(505\) 0 0
\(506\) −8.87673e10 + 4.49832e10i −1.35410 + 0.686196i
\(507\) 2.75366e10i 0.416753i
\(508\) −7.04157e10 5.16355e10i −1.05734 0.775342i
\(509\) 1.09246e11 1.62755 0.813773 0.581183i \(-0.197410\pi\)
0.813773 + 0.581183i \(0.197410\pi\)
\(510\) 0 0
\(511\) 2.72194e10i 0.399204i
\(512\) 3.24057e10 6.05990e10i 0.471565 0.881831i
\(513\) 7.59079e10 1.09602
\(514\) 5.33051e10 2.70126e10i 0.763688 0.387002i
\(515\) 0 0
\(516\) 5.72088e9 7.80160e9i 0.0806982 0.110049i
\(517\) 2.30236e10 0.322264
\(518\) −2.76721e9 5.46067e9i −0.0384347 0.0758449i
\(519\) 4.12367e10i 0.568349i
\(520\) 0 0
\(521\) 7.86075e10 1.06687 0.533437 0.845840i \(-0.320900\pi\)
0.533437 + 0.845840i \(0.320900\pi\)
\(522\) 4.97261e10 2.51989e10i 0.669734 0.339390i
\(523\) 7.29827e10i 0.975468i 0.872992 + 0.487734i \(0.162176\pi\)
−0.872992 + 0.487734i \(0.837824\pi\)
\(524\) 5.62106e10 + 4.12190e10i 0.745578 + 0.546729i
\(525\) 0 0
\(526\) −4.25143e10 8.38953e10i −0.555382 1.09596i
\(527\) 9.75530e10i 1.26473i
\(528\) −1.60055e10 5.07779e10i −0.205936 0.653340i
\(529\) −3.68596e10 −0.470682
\(530\) 0 0
\(531\) 1.08426e11i 1.36382i
\(532\) −6.56801e10 + 8.95684e10i −0.819950 + 1.11817i
\(533\) −3.57472e10 −0.442928
\(534\) 2.06047e10 + 4.06602e10i 0.253397 + 0.500040i
\(535\) 0 0
\(536\) 7.13385e10 + 1.17827e10i 0.864300 + 0.142753i
\(537\) 1.60641e10 0.193178
\(538\) −3.73680e10 + 1.89364e10i −0.446037 + 0.226031i
\(539\) 4.07911e10i 0.483293i
\(540\) 0 0
\(541\) −6.69135e10 −0.781133 −0.390566 0.920575i \(-0.627721\pi\)
−0.390566 + 0.920575i \(0.627721\pi\)
\(542\) −3.37157e10 6.65327e10i −0.390692 0.770970i
\(543\) 6.74124e10i 0.775426i
\(544\) −7.05301e10 7.21011e10i −0.805339 0.823277i
\(545\) 0 0
\(546\) −2.49414e10 + 1.26391e10i −0.280640 + 0.142216i
\(547\) 1.11865e11i 1.24953i 0.780813 + 0.624765i \(0.214805\pi\)
−0.780813 + 0.624765i \(0.785195\pi\)
\(548\) −5.68584e10 + 7.75382e10i −0.630481 + 0.859792i
\(549\) −2.61578e10 −0.287946
\(550\) 0 0
\(551\) 1.16352e11i 1.26231i
\(552\) 1.00410e10 6.07932e10i 0.108148 0.654785i
\(553\) 6.64172e9 0.0710199
\(554\) −5.41560e10 + 2.74438e10i −0.574920 + 0.291343i
\(555\) 0 0
\(556\) 1.04707e11 + 7.67815e10i 1.09567 + 0.803447i
\(557\) 2.01090e8 0.00208915 0.00104458 0.999999i \(-0.499668\pi\)
0.00104458 + 0.999999i \(0.499668\pi\)
\(558\) −3.37124e10 6.65262e10i −0.347738 0.686208i
\(559\) 1.18903e10i 0.121771i
\(560\) 0 0
\(561\) −7.81429e10 −0.788930
\(562\) −8.49598e10 + 4.30537e10i −0.851664 + 0.431584i
\(563\) 7.36627e10i 0.733185i −0.930382 0.366593i \(-0.880524\pi\)
0.930382 0.366593i \(-0.119476\pi\)
\(564\) −8.42999e9 + 1.14960e10i −0.0833126 + 0.113614i
\(565\) 0 0
\(566\) 4.41055e10 + 8.70353e10i 0.429761 + 0.848066i
\(567\) 2.32717e10i 0.225162i
\(568\) 1.57585e10 + 2.60276e9i 0.151398 + 0.0250058i
\(569\) −5.53549e10 −0.528089 −0.264045 0.964510i \(-0.585057\pi\)
−0.264045 + 0.964510i \(0.585057\pi\)
\(570\) 0 0
\(571\) 2.98777e10i 0.281063i 0.990076 + 0.140531i \(0.0448811\pi\)
−0.990076 + 0.140531i \(0.955119\pi\)
\(572\) −5.27684e10 3.86948e10i −0.492935 0.361467i
\(573\) 3.58260e10 0.332338
\(574\) −5.24005e10 1.03404e11i −0.482712 0.952557i
\(575\) 0 0
\(576\) −7.30146e10 2.47955e10i −0.663315 0.225259i
\(577\) 1.20418e11 1.08640 0.543200 0.839603i \(-0.317212\pi\)
0.543200 + 0.839603i \(0.317212\pi\)
\(578\) −3.24916e10 + 1.64652e10i −0.291112 + 0.147522i
\(579\) 9.68192e10i 0.861484i
\(580\) 0 0
\(581\) 3.58800e10 0.314882
\(582\) 2.12387e9 + 4.19113e9i 0.0185113 + 0.0365291i
\(583\) 1.83644e11i 1.58966i
\(584\) 6.42727e9 3.89141e10i 0.0552555 0.334545i
\(585\) 0 0
\(586\) −5.11764e10 + 2.59338e10i −0.433989 + 0.219926i
\(587\) 1.26290e10i 0.106369i −0.998585 0.0531845i \(-0.983063\pi\)
0.998585 0.0531845i \(-0.0169371\pi\)
\(588\) −2.03676e10 1.49355e10i −0.170385 0.124942i
\(589\) 1.55661e11 1.29336
\(590\) 0 0
\(591\) 4.53820e10i 0.371992i
\(592\) 2.66671e9 + 8.46023e9i 0.0217115 + 0.0688804i
\(593\) 9.56312e10 0.773359 0.386679 0.922214i \(-0.373622\pi\)
0.386679 + 0.922214i \(0.373622\pi\)
\(594\) −1.29361e11 + 6.55541e10i −1.03910 + 0.526567i
\(595\) 0 0
\(596\) 1.06256e10 1.44903e10i 0.0842113 0.114839i
\(597\) 5.43322e10 0.427720
\(598\) −3.42320e10 6.75516e10i −0.267687 0.528239i
\(599\) 5.13440e9i 0.0398825i −0.999801 0.0199413i \(-0.993652\pi\)
0.999801 0.0199413i \(-0.00634792\pi\)
\(600\) 0 0
\(601\) −9.84800e8 −0.00754832 −0.00377416 0.999993i \(-0.501201\pi\)
−0.00377416 + 0.999993i \(0.501201\pi\)
\(602\) 3.43945e10 1.74295e10i 0.261880 0.132709i
\(603\) 8.11333e10i 0.613663i
\(604\) 8.25589e10 + 6.05400e10i 0.620320 + 0.454878i
\(605\) 0 0
\(606\) −1.67400e10 3.30339e10i −0.124127 0.244945i
\(607\) 2.29100e11i 1.68760i 0.536654 + 0.843802i \(0.319688\pi\)
−0.536654 + 0.843802i \(0.680312\pi\)
\(608\) 1.15049e11 1.12542e11i 0.841915 0.823570i
\(609\) −9.49867e10 −0.690547
\(610\) 0 0
\(611\) 1.75209e10i 0.125716i
\(612\) −6.69263e10 + 9.12678e10i −0.477080 + 0.650597i
\(613\) 1.82859e11 1.29502 0.647508 0.762058i \(-0.275811\pi\)
0.647508 + 0.762058i \(0.275811\pi\)
\(614\) −3.69996e10 7.30130e10i −0.260330 0.513720i
\(615\) 0 0
\(616\) 3.45795e10 2.09362e11i 0.240157 1.45404i
\(617\) 4.78934e10 0.330472 0.165236 0.986254i \(-0.447161\pi\)
0.165236 + 0.986254i \(0.447161\pi\)
\(618\) −7.56758e10 + 3.83490e10i −0.518804 + 0.262906i
\(619\) 8.75787e10i 0.596535i −0.954482 0.298267i \(-0.903591\pi\)
0.954482 0.298267i \(-0.0964087\pi\)
\(620\) 0 0
\(621\) −1.67838e11 −1.12856
\(622\) −2.03183e10 4.00951e10i −0.135746 0.267873i
\(623\) 1.81678e11i 1.20601i
\(624\) 3.86418e10 1.21801e10i 0.254870 0.0803365i
\(625\) 0 0
\(626\) 6.69505e10 3.39274e10i 0.435970 0.220929i
\(627\) 1.24690e11i 0.806789i
\(628\) −1.05740e11 + 1.44198e11i −0.679831 + 0.927090i
\(629\) 1.30196e10 0.0831753
\(630\) 0 0
\(631\) 1.79020e11i 1.12923i −0.825354 0.564616i \(-0.809024\pi\)
0.825354 0.564616i \(-0.190976\pi\)
\(632\) −9.49530e9 1.56830e9i −0.0595169 0.00983016i
\(633\) −9.86749e9 −0.0614599
\(634\) −3.48924e10 + 1.76819e10i −0.215960 + 0.109439i
\(635\) 0 0
\(636\) −9.16963e10 6.72405e10i −0.560432 0.410963i
\(637\) −3.10418e10 −0.188534
\(638\) −1.00481e11 1.98285e11i −0.606462 1.19676i
\(639\) 1.79221e10i 0.107494i
\(640\) 0 0
\(641\) 9.29527e10 0.550592 0.275296 0.961360i \(-0.411224\pi\)
0.275296 + 0.961360i \(0.411224\pi\)
\(642\) 1.24888e11 6.32877e10i 0.735160 0.372545i
\(643\) 1.76187e11i 1.03069i 0.856982 + 0.515347i \(0.172337\pi\)
−0.856982 + 0.515347i \(0.827663\pi\)
\(644\) 1.45224e11 1.98043e11i 0.844296 1.15137i
\(645\) 0 0
\(646\) −1.06777e11 2.10707e11i −0.613121 1.20990i
\(647\) 2.37613e11i 1.35598i 0.735071 + 0.677990i \(0.237149\pi\)
−0.735071 + 0.677990i \(0.762851\pi\)
\(648\) −5.49511e9 + 3.32702e10i −0.0311657 + 0.188693i
\(649\) −4.32353e11 −2.43702
\(650\) 0 0
\(651\) 1.27078e11i 0.707533i
\(652\) −7.13784e10 5.23415e10i −0.394981 0.289638i
\(653\) 2.96902e11 1.63290 0.816451 0.577415i \(-0.195938\pi\)
0.816451 + 0.577415i \(0.195938\pi\)
\(654\) −7.18444e10 1.41774e11i −0.392719 0.774970i
\(655\) 0 0
\(656\) 5.04974e10 + 1.60205e11i 0.272680 + 0.865087i
\(657\) −4.42570e10 −0.237531
\(658\) −5.06819e10 + 2.56832e10i −0.270364 + 0.137008i
\(659\) 1.31179e11i 0.695541i −0.937580 0.347771i \(-0.886939\pi\)
0.937580 0.347771i \(-0.113061\pi\)
\(660\) 0 0
\(661\) 5.54817e10 0.290632 0.145316 0.989385i \(-0.453580\pi\)
0.145316 + 0.989385i \(0.453580\pi\)
\(662\) 1.55423e11 + 3.06704e11i 0.809254 + 1.59694i
\(663\) 5.94665e10i 0.307764i
\(664\) −5.12956e10 8.47229e9i −0.263881 0.0435841i
\(665\) 0 0
\(666\) 8.87869e9 4.49931e9i 0.0451286 0.0228691i
\(667\) 2.57263e11i 1.29979i
\(668\) −2.02321e11 1.48361e11i −1.01610 0.745100i
\(669\) 1.18183e11 0.589997
\(670\) 0 0
\(671\) 1.04305e11i 0.514535i
\(672\) 9.18765e10 + 9.39230e10i 0.450534 + 0.460569i
\(673\) −5.91921e10 −0.288538 −0.144269 0.989538i \(-0.546083\pi\)
−0.144269 + 0.989538i \(0.546083\pi\)
\(674\) 6.81881e10 3.45546e10i 0.330422 0.167443i
\(675\) 0 0
\(676\) −9.40420e10 + 1.28246e11i −0.450334 + 0.614124i
\(677\) −2.84457e11 −1.35413 −0.677066 0.735922i \(-0.736749\pi\)
−0.677066 + 0.735922i \(0.736749\pi\)
\(678\) 1.04037e11 + 2.05300e11i 0.492343 + 0.971562i
\(679\) 1.87268e10i 0.0881017i
\(680\) 0 0
\(681\) 6.44561e10 0.299692
\(682\) −2.65275e11 + 1.34429e11i −1.22619 + 0.621379i
\(683\) 3.01776e11i 1.38676i −0.720571 0.693381i \(-0.756120\pi\)
0.720571 0.693381i \(-0.243880\pi\)
\(684\) −1.45632e11 1.06792e11i −0.665325 0.487880i
\(685\) 0 0
\(686\) 7.23540e10 + 1.42779e11i 0.326713 + 0.644717i
\(687\) 5.89381e8i 0.00264588i
\(688\) −5.32875e10 + 1.67965e10i −0.237833 + 0.0749662i
\(689\) −1.39753e11 −0.620130
\(690\) 0 0
\(691\) 1.07258e11i 0.470455i −0.971940 0.235227i \(-0.924417\pi\)
0.971940 0.235227i \(-0.0755835\pi\)
\(692\) 1.40830e11 1.92051e11i 0.614145 0.837514i
\(693\) −2.38108e11 −1.03238
\(694\) 5.27118e10 + 1.04019e11i 0.227232 + 0.448407i
\(695\) 0 0
\(696\) 1.35797e11 + 2.24291e10i 0.578701 + 0.0955816i
\(697\) 2.46542e11 1.04462
\(698\) 3.71659e10 1.88340e10i 0.156575 0.0793452i
\(699\) 2.45515e11i 1.02842i
\(700\) 0 0
\(701\) 1.01471e11 0.420213 0.210107 0.977678i \(-0.432619\pi\)
0.210107 + 0.977678i \(0.432619\pi\)
\(702\) −4.98864e10 9.84431e10i −0.205416 0.405356i
\(703\) 2.07748e10i 0.0850582i
\(704\) −9.88728e10 + 2.91148e11i −0.402519 + 1.18529i
\(705\) 0 0
\(706\) −1.04317e11 + 5.28628e10i −0.419889 + 0.212780i
\(707\) 1.47602e11i 0.590763i
\(708\) 1.58304e11 2.15880e11i 0.630027 0.859172i
\(709\) 4.73489e11 1.87381 0.936904 0.349587i \(-0.113678\pi\)
0.936904 + 0.349587i \(0.113678\pi\)
\(710\) 0 0
\(711\) 1.07990e10i 0.0422577i
\(712\) 4.28993e10 2.59735e11i 0.166928 1.01067i
\(713\) −3.44180e11 −1.33176
\(714\) 1.72016e11 8.71698e10i 0.661875 0.335408i
\(715\) 0 0
\(716\) −7.48149e10 5.48614e10i −0.284666 0.208744i
\(717\) 3.13026e10 0.118442
\(718\) 1.22302e11 + 2.41345e11i 0.460190 + 0.908113i
\(719\) 3.14505e11i 1.17683i −0.808561 0.588413i \(-0.799753\pi\)
0.808561 0.588413i \(-0.200247\pi\)
\(720\) 0 0
\(721\) −3.38134e11 −1.25126
\(722\) 9.38264e10 4.75469e10i 0.345284 0.174974i
\(723\) 9.90021e10i 0.362319i
\(724\) −2.30224e11 + 3.13959e11i −0.837909 + 1.14266i
\(725\) 0 0
\(726\) 3.89603e10 + 7.68821e10i 0.140241 + 0.276744i
\(727\) 3.23780e10i 0.115908i −0.998319 0.0579538i \(-0.981542\pi\)
0.998319 0.0579538i \(-0.0184576\pi\)
\(728\) 1.59324e11 + 2.63149e10i 0.567225 + 0.0936862i
\(729\) −1.05995e11 −0.375297
\(730\) 0 0
\(731\) 8.20050e10i 0.287191i
\(732\) −5.20810e10 3.81908e10i −0.181399 0.133019i
\(733\) −9.11504e10 −0.315749 −0.157875 0.987459i \(-0.550464\pi\)
−0.157875 + 0.987459i \(0.550464\pi\)
\(734\) 2.19469e11 + 4.33088e11i 0.756118 + 1.49208i
\(735\) 0 0
\(736\) −2.54382e11 + 2.48839e11i −0.866913 + 0.848024i
\(737\) −3.23522e11 −1.09656
\(738\) 1.68129e11 8.51999e10i 0.566783 0.287219i
\(739\) 2.00083e11i 0.670860i 0.942065 + 0.335430i \(0.108882\pi\)
−0.942065 + 0.335430i \(0.891118\pi\)
\(740\) 0 0
\(741\) 9.48883e10 0.314731
\(742\) −2.04858e11 4.04256e11i −0.675831 1.33365i
\(743\) 5.50175e10i 0.180528i 0.995918 + 0.0902642i \(0.0287712\pi\)
−0.995918 + 0.0902642i \(0.971229\pi\)
\(744\) 3.00068e10 1.81677e11i 0.0979326 0.592935i
\(745\) 0 0
\(746\) 1.35042e11 6.84329e10i 0.436026 0.220958i
\(747\) 5.83385e10i 0.187358i
\(748\) 3.63934e11 + 2.66871e11i 1.16256 + 0.852501i
\(749\) 5.58025e11 1.77307
\(750\) 0 0
\(751\) 5.26277e11i 1.65445i −0.561869 0.827226i \(-0.689917\pi\)
0.561869 0.827226i \(-0.310083\pi\)
\(752\) 7.85217e10 2.47505e10i 0.245538 0.0773949i
\(753\) −1.43164e11 −0.445302
\(754\) 1.50894e11 7.64660e10i 0.466859 0.236583i
\(755\) 0 0
\(756\) 2.11635e11 2.88608e11i 0.647889 0.883531i
\(757\) 4.33728e11 1.32079 0.660395 0.750919i \(-0.270389\pi\)
0.660395 + 0.750919i \(0.270389\pi\)
\(758\) 8.01454e10 + 1.58154e11i 0.242774 + 0.479076i
\(759\) 2.75699e11i 0.830745i
\(760\) 0 0
\(761\) 3.18871e11 0.950771 0.475385 0.879778i \(-0.342309\pi\)
0.475385 + 0.879778i \(0.342309\pi\)
\(762\) −2.15786e11 + 1.09351e11i −0.640035 + 0.324340i
\(763\) 6.33472e11i 1.86909i
\(764\) −1.66852e11 1.22352e11i −0.489731 0.359117i
\(765\) 0 0
\(766\) 2.29847e11 + 4.53567e11i 0.667611 + 1.31743i
\(767\) 3.29019e11i 0.950691i
\(768\) −1.09173e11 1.55971e11i −0.313812 0.448332i
\(769\) 1.36365e11 0.389941 0.194970 0.980809i \(-0.437539\pi\)
0.194970 + 0.980809i \(0.437539\pi\)
\(770\) 0 0
\(771\) 1.65558e11i 0.468525i
\(772\) −3.30653e11 + 4.50914e11i −0.930901 + 1.26948i
\(773\) −2.93754e11 −0.822746 −0.411373 0.911467i \(-0.634951\pi\)
−0.411373 + 0.911467i \(0.634951\pi\)
\(774\) 2.83393e10 + 5.59232e10i 0.0789633 + 0.155822i
\(775\) 0 0
\(776\) 4.42193e9 2.67727e10i 0.0121945 0.0738320i
\(777\) −1.69601e10 −0.0465311
\(778\) 3.75592e11 1.90333e11i 1.02517 0.519511i
\(779\) 3.93397e11i 1.06827i
\(780\) 0 0
\(781\) −7.14650e10 −0.192083
\(782\) 2.36092e11 + 4.65890e11i 0.631326 + 1.24582i
\(783\) 3.74910e11i 0.997425i
\(784\) 4.38505e10 + 1.39117e11i 0.116068 + 0.368228i
\(785\) 0 0
\(786\) 1.72255e11 8.72911e10i 0.451318 0.228707i
\(787\) 4.49406e11i 1.17149i 0.810494 + 0.585747i \(0.199199\pi\)
−0.810494 + 0.585747i \(0.800801\pi\)
\(788\) −1.54987e11 + 2.11357e11i −0.401966 + 0.548164i
\(789\) −2.60567e11 −0.672374
\(790\) 0 0
\(791\) 9.17321e11i 2.34323i
\(792\) 3.40410e11 + 5.62240e10i 0.865169 + 0.142896i
\(793\) −7.93757e10 −0.200722
\(794\) 1.68732e10 8.55058e9i 0.0424538 0.0215136i
\(795\) 0 0
\(796\) −2.53040e11 1.85553e11i −0.630285 0.462185i
\(797\) −4.56927e11 −1.13244 −0.566218 0.824256i \(-0.691594\pi\)
−0.566218 + 0.824256i \(0.691594\pi\)
\(798\) 1.39093e11 + 2.74479e11i 0.343001 + 0.676858i
\(799\) 1.20838e11i 0.296495i
\(800\) 0 0
\(801\) −2.95396e11 −0.717588
\(802\) 5.77380e11 2.92589e11i 1.39561 0.707231i
\(803\) 1.76476e11i 0.424447i
\(804\) 1.18456e11 1.61539e11i 0.283487 0.386593i
\(805\) 0 0
\(806\) −1.02300e11 2.01873e11i −0.242402 0.478343i
\(807\) 1.16060e11i 0.273645i
\(808\) −3.48530e10 + 2.11018e11i −0.0817700 + 0.495078i
\(809\) −7.90117e11 −1.84458 −0.922289 0.386500i \(-0.873684\pi\)
−0.922289 + 0.386500i \(0.873684\pi\)
\(810\) 0 0
\(811\) 1.98385e11i 0.458590i 0.973357 + 0.229295i \(0.0736420\pi\)
−0.973357 + 0.229295i \(0.926358\pi\)
\(812\) 4.42380e11 + 3.24395e11i 1.01759 + 0.746191i
\(813\) −2.06641e11 −0.472993
\(814\) −1.79412e10 3.54041e10i −0.0408651 0.0806410i
\(815\) 0 0
\(816\) −2.66505e11 + 8.40039e10i −0.601097 + 0.189469i
\(817\) −1.30852e11 −0.293692
\(818\) −3.23462e10 + 1.63915e10i −0.0722453 + 0.0366106i
\(819\) 1.81199e11i 0.402736i
\(820\) 0 0
\(821\) 4.89572e11 1.07757 0.538783 0.842445i \(-0.318884\pi\)
0.538783 + 0.842445i \(0.318884\pi\)
\(822\) 1.20411e11 + 2.37613e11i 0.263742 + 0.520455i
\(823\) 4.10873e11i 0.895587i 0.894137 + 0.447793i \(0.147790\pi\)
−0.894137 + 0.447793i \(0.852210\pi\)
\(824\) 4.83412e11 + 7.98431e10i 1.04860 + 0.173192i
\(825\) 0 0
\(826\) 9.51739e11 4.82297e11i 2.04455 1.03608i
\(827\) 4.15118e11i 0.887461i −0.896160 0.443731i \(-0.853655\pi\)
0.896160 0.443731i \(-0.146345\pi\)
\(828\) 3.22005e11 + 2.36125e11i 0.685080 + 0.502366i
\(829\) 4.32301e11 0.915310 0.457655 0.889130i \(-0.348690\pi\)
0.457655 + 0.889130i \(0.348690\pi\)
\(830\) 0 0
\(831\) 1.68201e11i 0.352715i
\(832\) −2.21563e11 7.52418e10i −0.462385 0.157024i
\(833\) 2.14090e11 0.444647
\(834\) 3.20872e11 1.62603e11i 0.663236 0.336097i
\(835\) 0 0
\(836\) −4.25835e11 + 5.80714e11i −0.871799 + 1.18888i
\(837\) −5.01574e11 −1.02196
\(838\) −4.32402e11 8.53278e11i −0.876822 1.73027i
\(839\) 4.22053e11i 0.851764i 0.904779 + 0.425882i \(0.140036\pi\)
−0.904779 + 0.425882i \(0.859964\pi\)
\(840\) 0 0
\(841\) 7.44167e10 0.148760
\(842\) −1.96754e9 + 9.97057e8i −0.00391448 + 0.00198368i
\(843\) 2.63873e11i 0.522498i
\(844\) 4.59557e10 + 3.36991e10i 0.0905668 + 0.0664122i
\(845\) 0 0
\(846\) −4.17593e10 8.24055e10i −0.0815215 0.160870i
\(847\) 3.43524e11i 0.667457i
\(848\) 1.97418e11 + 6.26315e11i 0.381772 + 1.21118i
\(849\) 2.70319e11 0.520291
\(850\) 0 0
\(851\) 4.59348e10i 0.0875838i
\(852\) 2.61666e10 3.56835e10i 0.0496579 0.0677188i
\(853\) −4.91131e11 −0.927687 −0.463843 0.885917i \(-0.653530\pi\)
−0.463843 + 0.885917i \(0.653530\pi\)
\(854\) −1.16354e11 2.29607e11i −0.218751 0.431671i
\(855\) 0 0
\(856\) −7.97778e11 1.31766e11i −1.48589 0.245419i
\(857\) −2.87979e10 −0.0533873 −0.0266936 0.999644i \(-0.508498\pi\)
−0.0266936 + 0.999644i \(0.508498\pi\)
\(858\) −1.61707e11 + 8.19456e10i −0.298387 + 0.151209i
\(859\) 3.71560e11i 0.682428i −0.939986 0.341214i \(-0.889162\pi\)
0.939986 0.341214i \(-0.110838\pi\)
\(860\) 0 0
\(861\) −3.21159e11 −0.584397
\(862\) −1.35280e11 2.66954e11i −0.245022 0.483512i
\(863\) 8.63937e10i 0.155754i 0.996963 + 0.0778769i \(0.0248141\pi\)
−0.996963 + 0.0778769i \(0.975186\pi\)
\(864\) −3.70712e11 + 3.62634e11i −0.665245 + 0.650750i
\(865\) 0 0
\(866\) 2.09596e11 1.06213e11i 0.372658 0.188846i
\(867\) 1.00914e11i 0.178598i
\(868\) 4.33992e11 5.91838e11i 0.764545 1.04262i
\(869\) 4.30614e10 0.0755108
\(870\) 0 0
\(871\) 2.46199e11i 0.427773i
\(872\) −1.49581e11 + 9.05641e11i −0.258708 + 1.56635i
\(873\) −3.04486e10 −0.0524215
\(874\) −7.43403e11 + 3.76722e11i −1.27403 + 0.645618i
\(875\) 0 0
\(876\) −8.81172e10 6.46159e10i −0.149639 0.109729i
\(877\) 3.79999e11 0.642369 0.321184 0.947017i \(-0.395919\pi\)
0.321184 + 0.947017i \(0.395919\pi\)
\(878\) 1.86700e11 + 3.68424e11i 0.314172 + 0.619969i
\(879\) 1.58946e11i 0.266254i
\(880\) 0 0
\(881\) −9.51956e11 −1.58020 −0.790102 0.612975i \(-0.789973\pi\)
−0.790102 + 0.612975i \(0.789973\pi\)
\(882\) 1.45998e11 7.39852e10i 0.241253 0.122256i
\(883\) 5.76893e11i 0.948971i −0.880263 0.474485i \(-0.842634\pi\)
0.880263 0.474485i \(-0.157366\pi\)
\(884\) −2.03088e11 + 2.76952e11i −0.332563 + 0.453519i
\(885\) 0 0
\(886\) 2.50640e11 + 4.94600e11i 0.406739 + 0.802637i
\(887\) 6.27370e11i 1.01351i −0.862089 0.506756i \(-0.830844\pi\)
0.862089 0.506756i \(-0.169156\pi\)
\(888\) 2.42469e10 + 4.00475e9i 0.0389945 + 0.00644056i
\(889\) −9.64175e11 −1.54365
\(890\) 0 0
\(891\) 1.50881e11i 0.239400i
\(892\) −5.50410e11 4.03613e11i −0.869415 0.637538i
\(893\) 1.92817e11 0.303207
\(894\) −2.25023e10 4.44049e10i −0.0352272 0.0695153i
\(895\) 0 0
\(896\) −1.07132e11 7.51199e11i −0.166222 1.16553i
\(897\) −2.09806e11 −0.324076
\(898\) −5.00602e11 + 2.53682e11i −0.769816 + 0.390107i
\(899\) 7.68814e11i 1.17702i
\(900\) 0 0
\(901\) 9.63847e11 1.46254
\(902\) −3.39738e11 6.70419e11i −0.513236 1.01279i
\(903\) 1.06824e11i 0.160664i
\(904\) 2.16606e11 1.31144e12i 0.324337 1.96370i
\(905\) 0 0
\(906\) 2.52999e11 1.28208e11i 0.375496 0.190284i
\(907\) 3.89597e11i 0.575688i 0.957677 + 0.287844i \(0.0929384\pi\)
−0.957677 + 0.287844i \(0.907062\pi\)
\(908\) −3.00190e11 2.20128e11i −0.441624 0.323841i
\(909\) 2.39991e11 0.351511
\(910\) 0 0
\(911\) 1.13330e12i 1.64540i −0.568475 0.822700i \(-0.692467\pi\)
0.568475 0.822700i \(-0.307533\pi\)
\(912\) −1.34042e11 4.25252e11i −0.193758 0.614705i
\(913\) 2.32627e11 0.334793
\(914\) 2.58215e11 1.30851e11i 0.369995 0.187497i
\(915\) 0 0
\(916\) −2.01283e9 + 2.74491e9i −0.00285908 + 0.00389894i
\(917\) 7.69670e11 1.08850
\(918\) 3.44057e11 + 6.78943e11i 0.484462 + 0.956010i
\(919\) 1.35023e12i 1.89298i −0.322739 0.946488i \(-0.604604\pi\)
0.322739 0.946488i \(-0.395396\pi\)
\(920\) 0 0
\(921\) −2.26768e11 −0.315169
\(922\) −3.17597e11 + 1.60944e11i −0.439494 + 0.222715i
\(923\) 5.43846e10i 0.0749323i
\(924\) −4.74081e11 3.47641e11i −0.650376 0.476918i
\(925\) 0 0
\(926\) 2.98921e11 + 5.89874e11i 0.406549 + 0.802260i
\(927\) 5.49784e11i 0.744515i
\(928\) −5.55847e11 5.68228e11i −0.749485 0.766180i
\(929\) 3.18334e11 0.427387 0.213693 0.976901i \(-0.431451\pi\)
0.213693 + 0.976901i \(0.431451\pi\)
\(930\) 0 0
\(931\) 3.41614e11i 0.454713i
\(932\) 8.38474e11 1.14343e12i 1.11129 1.51547i
\(933\) −1.24530e11 −0.164341
\(934\) −2.60507e11 5.14070e11i −0.342320 0.675515i
\(935\) 0 0
\(936\) −4.27863e10 + 2.59050e11i −0.0557444 + 0.337505i
\(937\) 1.14781e12 1.48906 0.744532 0.667587i \(-0.232673\pi\)
0.744532 + 0.667587i \(0.232673\pi\)
\(938\) 7.12168e11 3.60894e11i 0.919965 0.466196i
\(939\) 2.07939e11i 0.267469i
\(940\) 0 0
\(941\) −2.67245e11 −0.340840 −0.170420 0.985372i \(-0.554512\pi\)
−0.170420 + 0.985372i \(0.554512\pi\)
\(942\) 2.23930e11 + 4.41891e11i 0.284386 + 0.561192i
\(943\) 8.69831e11i 1.09999i
\(944\) −1.47453e12 + 4.64781e11i −1.85681 + 0.585276i
\(945\) 0 0
\(946\) 2.22996e11 1.13004e11i 0.278440 0.141101i
\(947\) 5.74285e11i 0.714049i 0.934095 + 0.357024i \(0.116209\pi\)
−0.934095 + 0.357024i \(0.883791\pi\)
\(948\) −1.57667e10 + 2.15012e10i −0.0195213 + 0.0266213i
\(949\) −1.34298e11 −0.165578
\(950\) 0 0
\(951\) 1.08371e11i 0.132492i
\(952\) −1.09883e12 1.81489e11i −1.33777 0.220954i
\(953\) −1.67118e11 −0.202605 −0.101303 0.994856i \(-0.532301\pi\)
−0.101303 + 0.994856i \(0.532301\pi\)
\(954\) 6.57294e11 3.33086e11i 0.793536 0.402127i
\(955\) 0 0
\(956\) −1.45785e11 1.06904e11i −0.174535 0.127985i
\(957\) −6.15844e11 −0.734214
\(958\) −3.84764e11 7.59273e11i −0.456807 0.901438i
\(959\) 1.06170e12i 1.25524i
\(960\) 0 0
\(961\) −1.75668e11 −0.205968
\(962\) 2.69424e10 1.36531e10i 0.0314583 0.0159416i
\(963\) 9.07313e11i 1.05500i
\(964\) 3.38108e11 4.61080e11i 0.391514 0.533911i
\(965\) 0 0
\(966\) −3.07547e11 6.06895e11i −0.353185 0.696956i
\(967\) 8.24444e11i 0.942877i −0.881899 0.471439i \(-0.843735\pi\)
0.881899 0.471439i \(-0.156265\pi\)
\(968\) 8.11158e10 4.91117e11i 0.0923855 0.559350i
\(969\) −6.54426e11 −0.742276
\(970\) 0 0
\(971\) 8.36736e11i 0.941264i −0.882330 0.470632i \(-0.844026\pi\)
0.882330 0.470632i \(-0.155974\pi\)
\(972\) 7.45209e11 + 5.46458e11i 0.834859 + 0.612198i
\(973\) 1.43372e12 1.59960
\(974\) 1.56332e11 + 3.08498e11i 0.173705 + 0.342780i
\(975\) 0 0
\(976\) 1.12128e11 + 3.55730e11i 0.123571 + 0.392032i
\(977\) −1.09033e12 −1.19669 −0.598344 0.801239i \(-0.704174\pi\)
−0.598344 + 0.801239i \(0.704174\pi\)
\(978\) −2.18737e11 + 1.10846e11i −0.239093 + 0.121161i
\(979\) 1.17790e12i 1.28227i
\(980\) 0 0
\(981\) 1.02999e12 1.11213
\(982\) 5.02406e10 + 9.91420e10i 0.0540267 + 0.106613i
\(983\) 1.28853e11i 0.138000i 0.997617 + 0.0690001i \(0.0219809\pi\)
−0.997617 + 0.0690001i \(0.978019\pi\)
\(984\) 4.59143e11 + 7.58348e10i 0.489743 + 0.0808888i
\(985\) 0 0
\(986\) −1.04069e12 + 5.27371e11i −1.10106 + 0.557967i
\(987\) 1.57411e11i 0.165869i
\(988\) −4.41921e11 3.24059e11i −0.463786 0.340092i
\(989\) 2.89324e11 0.302413
\(990\) 0 0
\(991\) 1.29472e12i 1.34240i 0.741276 + 0.671201i \(0.234221\pi\)
−0.741276 + 0.671201i \(0.765779\pi\)
\(992\) −7.60205e11 + 7.43641e11i −0.785026 + 0.767921i
\(993\) 9.52579e11 0.979725
\(994\) 1.57316e11 7.97204e10i 0.161149 0.0816628i
\(995\) 0 0
\(996\) −8.51752e10 + 1.16154e11i −0.0865518 + 0.118031i
\(997\) 1.46628e12 1.48401 0.742006 0.670393i \(-0.233875\pi\)
0.742006 + 0.670393i \(0.233875\pi\)
\(998\) −2.20311e11 4.34750e11i −0.222083 0.438246i
\(999\) 6.69409e10i 0.0672094i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 100.9.b.g.51.6 20
4.3 odd 2 inner 100.9.b.g.51.5 20
5.2 odd 4 20.9.d.c.19.5 20
5.3 odd 4 20.9.d.c.19.16 yes 20
5.4 even 2 inner 100.9.b.g.51.15 20
20.3 even 4 20.9.d.c.19.6 yes 20
20.7 even 4 20.9.d.c.19.15 yes 20
20.19 odd 2 inner 100.9.b.g.51.16 20
40.3 even 4 320.9.h.g.319.7 20
40.13 odd 4 320.9.h.g.319.13 20
40.27 even 4 320.9.h.g.319.14 20
40.37 odd 4 320.9.h.g.319.8 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
20.9.d.c.19.5 20 5.2 odd 4
20.9.d.c.19.6 yes 20 20.3 even 4
20.9.d.c.19.15 yes 20 20.7 even 4
20.9.d.c.19.16 yes 20 5.3 odd 4
100.9.b.g.51.5 20 4.3 odd 2 inner
100.9.b.g.51.6 20 1.1 even 1 trivial
100.9.b.g.51.15 20 5.4 even 2 inner
100.9.b.g.51.16 20 20.19 odd 2 inner
320.9.h.g.319.7 20 40.3 even 4
320.9.h.g.319.8 20 40.37 odd 4
320.9.h.g.319.13 20 40.13 odd 4
320.9.h.g.319.14 20 40.27 even 4