Properties

Label 100.7.b.d.51.1
Level $100$
Weight $7$
Character 100.51
Analytic conductor $23.005$
Analytic rank $0$
Dimension $2$
CM discriminant -20
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [100,7,Mod(51,100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(100, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 7, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("100.51"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Level: \( N \) \(=\) \( 100 = 2^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 100.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.0054083620\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 51.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 100.51
Dual form 100.7.b.d.51.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000i q^{2} +44.0000i q^{3} -64.0000 q^{4} +352.000 q^{6} +524.000i q^{7} +512.000i q^{8} -1207.00 q^{9} -2816.00i q^{12} +4192.00 q^{14} +4096.00 q^{16} +9656.00i q^{18} -23056.0 q^{21} -15356.0i q^{23} -22528.0 q^{24} -21032.0i q^{27} -33536.0i q^{28} -44858.0 q^{29} -32768.0i q^{32} +77248.0 q^{36} -74338.0 q^{41} +184448. i q^{42} +17404.0i q^{43} -122848. q^{46} +26444.0i q^{47} +180224. i q^{48} -156927. q^{49} -168256. q^{54} -268288. q^{56} +358864. i q^{58} +452342. q^{61} -632468. i q^{63} -262144. q^{64} -1276.00i q^{67} +675664. q^{69} -617984. i q^{72} +45505.0 q^{81} +594704. i q^{82} -1.13172e6i q^{83} +1.47558e6 q^{84} +139232. q^{86} -1.97375e6i q^{87} -511058. q^{89} +982784. i q^{92} +211552. q^{94} +1.44179e6 q^{96} +1.25542e6i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 128 q^{4} + 704 q^{6} - 2414 q^{9} + 8384 q^{14} + 8192 q^{16} - 46112 q^{21} - 45056 q^{24} - 89716 q^{29} + 154496 q^{36} - 148676 q^{41} - 245696 q^{46} - 313854 q^{49} - 336512 q^{54} - 536576 q^{56}+ \cdots + 2883584 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/100\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(77\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 8.00000i − 1.00000i
\(3\) 44.0000i 1.62963i 0.579721 + 0.814815i \(0.303161\pi\)
−0.579721 + 0.814815i \(0.696839\pi\)
\(4\) −64.0000 −1.00000
\(5\) 0 0
\(6\) 352.000 1.62963
\(7\) 524.000i 1.52770i 0.645396 + 0.763848i \(0.276692\pi\)
−0.645396 + 0.763848i \(0.723308\pi\)
\(8\) 512.000i 1.00000i
\(9\) −1207.00 −1.65569
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) − 2816.00i − 1.62963i
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 4192.00 1.52770
\(15\) 0 0
\(16\) 4096.00 1.00000
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 9656.00i 1.65569i
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) −23056.0 −2.48958
\(22\) 0 0
\(23\) − 15356.0i − 1.26210i −0.775741 0.631051i \(-0.782624\pi\)
0.775741 0.631051i \(-0.217376\pi\)
\(24\) −22528.0 −1.62963
\(25\) 0 0
\(26\) 0 0
\(27\) − 21032.0i − 1.06854i
\(28\) − 33536.0i − 1.52770i
\(29\) −44858.0 −1.83927 −0.919636 0.392772i \(-0.871516\pi\)
−0.919636 + 0.392772i \(0.871516\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) − 32768.0i − 1.00000i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 77248.0 1.65569
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −74338.0 −1.07860 −0.539299 0.842115i \(-0.681311\pi\)
−0.539299 + 0.842115i \(0.681311\pi\)
\(42\) 184448.i 2.48958i
\(43\) 17404.0i 0.218899i 0.993992 + 0.109449i \(0.0349088\pi\)
−0.993992 + 0.109449i \(0.965091\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −122848. −1.26210
\(47\) 26444.0i 0.254703i 0.991858 + 0.127351i \(0.0406476\pi\)
−0.991858 + 0.127351i \(0.959352\pi\)
\(48\) 180224.i 1.62963i
\(49\) −156927. −1.33386
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) −168256. −1.06854
\(55\) 0 0
\(56\) −268288. −1.52770
\(57\) 0 0
\(58\) 358864.i 1.83927i
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 452342. 1.99286 0.996431 0.0844063i \(-0.0268994\pi\)
0.996431 + 0.0844063i \(0.0268994\pi\)
\(62\) 0 0
\(63\) − 632468.i − 2.52940i
\(64\) −262144. −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) − 1276.00i − 0.00424254i −0.999998 0.00212127i \(-0.999325\pi\)
0.999998 0.00212127i \(-0.000675222\pi\)
\(68\) 0 0
\(69\) 675664. 2.05676
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) − 617984.i − 1.65569i
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 45505.0 0.0856257
\(82\) 594704.i 1.07860i
\(83\) − 1.13172e6i − 1.97926i −0.143635 0.989631i \(-0.545879\pi\)
0.143635 0.989631i \(-0.454121\pi\)
\(84\) 1.47558e6 2.48958
\(85\) 0 0
\(86\) 139232. 0.218899
\(87\) − 1.97375e6i − 2.99733i
\(88\) 0 0
\(89\) −511058. −0.724937 −0.362468 0.931996i \(-0.618066\pi\)
−0.362468 + 0.931996i \(0.618066\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 982784.i 1.26210i
\(93\) 0 0
\(94\) 211552. 0.254703
\(95\) 0 0
\(96\) 1.44179e6 1.62963
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 1.25542e6i 1.33386i
\(99\) 0 0
\(100\) 0 0
\(101\) −1.91772e6 −1.86132 −0.930659 0.365887i \(-0.880766\pi\)
−0.930659 + 0.365887i \(0.880766\pi\)
\(102\) 0 0
\(103\) 1.31520e6i 1.20360i 0.798648 + 0.601799i \(0.205549\pi\)
−0.798648 + 0.601799i \(0.794451\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.35240e6i 1.92026i 0.279550 + 0.960131i \(0.409815\pi\)
−0.279550 + 0.960131i \(0.590185\pi\)
\(108\) 1.34605e6i 1.06854i
\(109\) 1.29956e6 1.00350 0.501750 0.865013i \(-0.332690\pi\)
0.501750 + 0.865013i \(0.332690\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 2.14630e6i 1.52770i
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 2.87091e6 1.83927
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.77156e6 1.00000
\(122\) − 3.61874e6i − 1.99286i
\(123\) − 3.27087e6i − 1.75771i
\(124\) 0 0
\(125\) 0 0
\(126\) −5.05974e6 −2.52940
\(127\) 1.72492e6i 0.842091i 0.907040 + 0.421045i \(0.138337\pi\)
−0.907040 + 0.421045i \(0.861663\pi\)
\(128\) 2.09715e6i 1.00000i
\(129\) −765776. −0.356724
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −10208.0 −0.00424254
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) − 5.40531e6i − 2.05676i
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) −1.16354e6 −0.415071
\(142\) 0 0
\(143\) 0 0
\(144\) −4.94387e6 −1.65569
\(145\) 0 0
\(146\) 0 0
\(147\) − 6.90479e6i − 2.17369i
\(148\) 0 0
\(149\) −2.96932e6 −0.897631 −0.448816 0.893624i \(-0.648154\pi\)
−0.448816 + 0.893624i \(0.648154\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 8.04654e6 1.92811
\(162\) − 364040.i − 0.0856257i
\(163\) 8.66100e6i 1.99989i 0.0106368 + 0.999943i \(0.496614\pi\)
−0.0106368 + 0.999943i \(0.503386\pi\)
\(164\) 4.75763e6 1.07860
\(165\) 0 0
\(166\) −9.05373e6 −1.97926
\(167\) 5.88796e6i 1.26420i 0.774887 + 0.632100i \(0.217807\pi\)
−0.774887 + 0.632100i \(0.782193\pi\)
\(168\) − 1.18047e7i − 2.48958i
\(169\) −4.82681e6 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) − 1.11386e6i − 0.218899i
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) −1.57900e7 −2.99733
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 4.08846e6i 0.724937i
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) −1.06974e7 −1.80402 −0.902012 0.431710i \(-0.857910\pi\)
−0.902012 + 0.431710i \(0.857910\pi\)
\(182\) 0 0
\(183\) 1.99030e7i 3.24763i
\(184\) 7.86227e6 1.26210
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) − 1.69242e6i − 0.254703i
\(189\) 1.10208e7 1.63240
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) − 1.15343e7i − 1.62963i
\(193\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 1.00433e7 1.33386
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) 56144.0 0.00691377
\(202\) 1.53417e7i 1.86132i
\(203\) − 2.35056e7i − 2.80985i
\(204\) 0 0
\(205\) 0 0
\(206\) 1.05216e7 1.20360
\(207\) 1.85347e7i 2.08965i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 1.88192e7 1.92026
\(215\) 0 0
\(216\) 1.07684e7 1.06854
\(217\) 0 0
\(218\) − 1.03965e7i − 1.00350i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 1.78363e7i 1.60839i 0.594367 + 0.804194i \(0.297403\pi\)
−0.594367 + 0.804194i \(0.702597\pi\)
\(224\) 1.71704e7 1.52770
\(225\) 0 0
\(226\) 0 0
\(227\) − 9.91496e6i − 0.847643i −0.905746 0.423822i \(-0.860688\pi\)
0.905746 0.423822i \(-0.139312\pi\)
\(228\) 0 0
\(229\) −2.32339e7 −1.93471 −0.967354 0.253427i \(-0.918442\pi\)
−0.967354 + 0.253427i \(0.918442\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) − 2.29673e7i − 1.83927i
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) −2.50778e7 −1.79159 −0.895794 0.444470i \(-0.853392\pi\)
−0.895794 + 0.444470i \(0.853392\pi\)
\(242\) − 1.41725e7i − 1.00000i
\(243\) − 1.33301e7i − 0.928998i
\(244\) −2.89499e7 −1.99286
\(245\) 0 0
\(246\) −2.61670e7 −1.75771
\(247\) 0 0
\(248\) 0 0
\(249\) 4.97955e7 3.22546
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 4.04780e7i 2.52940i
\(253\) 0 0
\(254\) 1.37994e7 0.842091
\(255\) 0 0
\(256\) 1.67772e7 1.00000
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 6.12621e6i 0.356724i
\(259\) 0 0
\(260\) 0 0
\(261\) 5.41436e7 3.04527
\(262\) 0 0
\(263\) 3.60257e7i 1.98036i 0.139785 + 0.990182i \(0.455359\pi\)
−0.139785 + 0.990182i \(0.544641\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 2.24866e7i − 1.18138i
\(268\) 81664.0i 0.00424254i
\(269\) 8.19428e6 0.420973 0.210486 0.977597i \(-0.432495\pi\)
0.210486 + 0.977597i \(0.432495\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) −4.32425e7 −2.05676
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2.59825e7 1.17101 0.585506 0.810668i \(-0.300896\pi\)
0.585506 + 0.810668i \(0.300896\pi\)
\(282\) 9.30829e6i 0.415071i
\(283\) − 4.43699e7i − 1.95762i −0.204765 0.978811i \(-0.565643\pi\)
0.204765 0.978811i \(-0.434357\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 3.89531e7i − 1.64777i
\(288\) 3.95510e7i 1.65569i
\(289\) −2.41376e7 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) −5.52383e7 −2.17369
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 2.37545e7i 0.897631i
\(299\) 0 0
\(300\) 0 0
\(301\) −9.11970e6 −0.334411
\(302\) 0 0
\(303\) − 8.43796e7i − 3.03326i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 4.31915e7i 1.49274i 0.665533 + 0.746369i \(0.268204\pi\)
−0.665533 + 0.746369i \(0.731796\pi\)
\(308\) 0 0
\(309\) −5.78690e7 −1.96142
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −1.03506e8 −3.12932
\(322\) − 6.43724e7i − 1.92811i
\(323\) 0 0
\(324\) −2.91232e6 −0.0856257
\(325\) 0 0
\(326\) 6.92880e7 1.99989
\(327\) 5.71807e7i 1.63533i
\(328\) − 3.80611e7i − 1.07860i
\(329\) −1.38567e7 −0.389109
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 7.24298e7i 1.97926i
\(333\) 0 0
\(334\) 4.71037e7 1.26420
\(335\) 0 0
\(336\) −9.44374e7 −2.48958
\(337\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(338\) 3.86145e7i 1.00000i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) − 2.05817e7i − 0.510033i
\(344\) −8.91085e6 −0.218899
\(345\) 0 0
\(346\) 0 0
\(347\) − 4.03414e7i − 0.965524i −0.875752 0.482762i \(-0.839634\pi\)
0.875752 0.482762i \(-0.160366\pi\)
\(348\) 1.26320e8i 2.99733i
\(349\) −8.02822e6 −0.188861 −0.0944306 0.995531i \(-0.530103\pi\)
−0.0944306 + 0.995531i \(0.530103\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 3.27077e7 0.724937
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) 4.70459e7 1.00000
\(362\) 8.55792e7i 1.80402i
\(363\) 7.79487e7i 1.62963i
\(364\) 0 0
\(365\) 0 0
\(366\) 1.59224e8 3.24763
\(367\) − 8.69589e7i − 1.75920i −0.475711 0.879601i \(-0.657809\pi\)
0.475711 0.879601i \(-0.342191\pi\)
\(368\) − 6.28982e7i − 1.26210i
\(369\) 8.97260e7 1.78583
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −1.35393e7 −0.254703
\(377\) 0 0
\(378\) − 8.81661e7i − 1.63240i
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) −7.58967e7 −1.37230
\(382\) 0 0
\(383\) 1.92778e7i 0.343131i 0.985173 + 0.171566i \(0.0548826\pi\)
−0.985173 + 0.171566i \(0.945117\pi\)
\(384\) −9.22747e7 −1.62963
\(385\) 0 0
\(386\) 0 0
\(387\) − 2.10066e7i − 0.362429i
\(388\) 0 0
\(389\) −8.34581e7 −1.41782 −0.708908 0.705301i \(-0.750812\pi\)
−0.708908 + 0.705301i \(0.750812\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) − 8.03466e7i − 1.33386i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.21373e8 1.88230 0.941152 0.337982i \(-0.109744\pi\)
0.941152 + 0.337982i \(0.109744\pi\)
\(402\) − 449152.i − 0.00691377i
\(403\) 0 0
\(404\) 1.22734e8 1.86132
\(405\) 0 0
\(406\) −1.88045e8 −2.80985
\(407\) 0 0
\(408\) 0 0
\(409\) 1.13372e8 1.65704 0.828522 0.559956i \(-0.189182\pi\)
0.828522 + 0.559956i \(0.189182\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) − 8.41731e7i − 1.20360i
\(413\) 0 0
\(414\) 1.48278e8 2.08965
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) −5.72305e7 −0.766975 −0.383487 0.923546i \(-0.625277\pi\)
−0.383487 + 0.923546i \(0.625277\pi\)
\(422\) 0 0
\(423\) − 3.19179e7i − 0.421709i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 2.37027e8i 3.04449i
\(428\) − 1.50554e8i − 1.92026i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) − 8.61471e7i − 1.06854i
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −8.31720e7 −1.00350
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 1.89411e8 2.20846
\(442\) 0 0
\(443\) 3.57157e7i 0.410817i 0.978676 + 0.205408i \(0.0658523\pi\)
−0.978676 + 0.205408i \(0.934148\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 1.42691e8 1.60839
\(447\) − 1.30650e8i − 1.46281i
\(448\) − 1.37363e8i − 1.52770i
\(449\) 1.77667e8 1.96276 0.981380 0.192076i \(-0.0615219\pi\)
0.981380 + 0.192076i \(0.0615219\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) −7.93196e7 −0.847643
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 1.85871e8i 1.93471i
\(459\) 0 0
\(460\) 0 0
\(461\) 6.01196e7 0.613640 0.306820 0.951768i \(-0.400735\pi\)
0.306820 + 0.951768i \(0.400735\pi\)
\(462\) 0 0
\(463\) 4.53900e7i 0.457317i 0.973507 + 0.228658i \(0.0734339\pi\)
−0.973507 + 0.228658i \(0.926566\pi\)
\(464\) −1.83738e8 −1.83927
\(465\) 0 0
\(466\) 0 0
\(467\) 7.92225e7i 0.777854i 0.921269 + 0.388927i \(0.127154\pi\)
−0.921269 + 0.388927i \(0.872846\pi\)
\(468\) 0 0
\(469\) 668624. 0.00648132
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 2.00622e8i 1.79159i
\(483\) 3.54048e8i 3.14210i
\(484\) −1.13380e8 −1.00000
\(485\) 0 0
\(486\) −1.06641e8 −0.928998
\(487\) 2.30989e8i 1.99989i 0.0106586 + 0.999943i \(0.496607\pi\)
−0.0106586 + 0.999943i \(0.503393\pi\)
\(488\) 2.31599e8i 1.99286i
\(489\) −3.81084e8 −3.25907
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 2.09336e8i 1.75771i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) − 3.98364e8i − 3.22546i
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0 0
\(501\) −2.59070e8 −2.06018
\(502\) 0 0
\(503\) 7.33066e7i 0.576022i 0.957627 + 0.288011i \(0.0929939\pi\)
−0.957627 + 0.288011i \(0.907006\pi\)
\(504\) 3.23824e8 2.52940
\(505\) 0 0
\(506\) 0 0
\(507\) − 2.12380e8i − 1.62963i
\(508\) − 1.10395e8i − 0.842091i
\(509\) 1.83714e8 1.39312 0.696559 0.717500i \(-0.254714\pi\)
0.696559 + 0.717500i \(0.254714\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) − 1.34218e8i − 1.00000i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 4.90097e7 0.356724
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −2.11574e8 −1.49606 −0.748031 0.663664i \(-0.769000\pi\)
−0.748031 + 0.663664i \(0.769000\pi\)
\(522\) − 4.33149e8i − 3.04527i
\(523\) 1.30165e8i 0.909893i 0.890519 + 0.454946i \(0.150342\pi\)
−0.890519 + 0.454946i \(0.849658\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 2.88205e8 1.98036
\(527\) 0 0
\(528\) 0 0
\(529\) −8.77708e7 −0.592902
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) −1.79892e8 −1.18138
\(535\) 0 0
\(536\) 653312. 0.00424254
\(537\) 0 0
\(538\) − 6.55543e7i − 0.420973i
\(539\) 0 0
\(540\) 0 0
\(541\) −2.70414e8 −1.70780 −0.853900 0.520438i \(-0.825769\pi\)
−0.853900 + 0.520438i \(0.825769\pi\)
\(542\) 0 0
\(543\) − 4.70686e8i − 2.93989i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 3.00733e8i − 1.83747i −0.394880 0.918733i \(-0.629214\pi\)
0.394880 0.918733i \(-0.370786\pi\)
\(548\) 0 0
\(549\) −5.45977e8 −3.29957
\(550\) 0 0
\(551\) 0 0
\(552\) 3.45940e8i 2.05676i
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) − 2.07860e8i − 1.17101i
\(563\) − 3.51215e8i − 1.96810i −0.177881 0.984052i \(-0.556924\pi\)
0.177881 0.984052i \(-0.443076\pi\)
\(564\) 7.44663e7 0.415071
\(565\) 0 0
\(566\) −3.54959e8 −1.95762
\(567\) 2.38446e7i 0.130810i
\(568\) 0 0
\(569\) 1.49518e8 0.811630 0.405815 0.913955i \(-0.366988\pi\)
0.405815 + 0.913955i \(0.366988\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −3.11625e8 −1.64777
\(575\) 0 0
\(576\) 3.16408e8 1.65569
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) 1.93101e8i 1.00000i
\(579\) 0 0
\(580\) 0 0
\(581\) 5.93019e8 3.02371
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.33498e8i 0.660026i 0.943976 + 0.330013i \(0.107053\pi\)
−0.943976 + 0.330013i \(0.892947\pi\)
\(588\) 4.41906e8i 2.17369i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 1.90036e8 0.897631
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 3.79911e8 1.75008 0.875042 0.484047i \(-0.160834\pi\)
0.875042 + 0.484047i \(0.160834\pi\)
\(602\) 7.29576e7i 0.334411i
\(603\) 1.54013e6i 0.00702435i
\(604\) 0 0
\(605\) 0 0
\(606\) −6.75037e8 −3.03326
\(607\) 1.69713e8i 0.758839i 0.925225 + 0.379419i \(0.123876\pi\)
−0.925225 + 0.379419i \(0.876124\pi\)
\(608\) 0 0
\(609\) 1.03425e9 4.57901
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 3.45532e8 1.49274
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 4.62952e8i 1.96142i
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) −3.22967e8 −1.34860
\(622\) 0 0
\(623\) − 2.67794e8i − 1.10748i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −7.10123e7 −0.269625 −0.134812 0.990871i \(-0.543043\pi\)
−0.134812 + 0.990871i \(0.543043\pi\)
\(642\) 8.28046e8i 3.12932i
\(643\) 4.35161e8i 1.63688i 0.574592 + 0.818440i \(0.305161\pi\)
−0.574592 + 0.818440i \(0.694839\pi\)
\(644\) −5.14979e8 −1.92811
\(645\) 0 0
\(646\) 0 0
\(647\) − 3.26848e8i − 1.20679i −0.797441 0.603396i \(-0.793814\pi\)
0.797441 0.603396i \(-0.206186\pi\)
\(648\) 2.32986e7i 0.0856257i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) − 5.54304e8i − 1.99989i
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 4.57446e8 1.63533
\(655\) 0 0
\(656\) −3.04488e8 −1.07860
\(657\) 0 0
\(658\) 1.10853e8i 0.389109i
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 3.64144e8 1.26086 0.630432 0.776244i \(-0.282878\pi\)
0.630432 + 0.776244i \(0.282878\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 5.79439e8 1.97926
\(665\) 0 0
\(666\) 0 0
\(667\) 6.88839e8i 2.32135i
\(668\) − 3.76830e8i − 1.26420i
\(669\) −7.84798e8 −2.62108
\(670\) 0 0
\(671\) 0 0
\(672\) 7.55499e8i 2.48958i
\(673\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 3.08916e8 1.00000
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 4.36258e8 1.38134
\(682\) 0 0
\(683\) − 6.06224e8i − 1.90270i −0.308107 0.951352i \(-0.599696\pi\)
0.308107 0.951352i \(-0.400304\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −1.64653e8 −0.510033
\(687\) − 1.02229e9i − 3.15286i
\(688\) 7.12868e7i 0.218899i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −3.22731e8 −0.965524
\(695\) 0 0
\(696\) 1.01056e9 2.99733
\(697\) 0 0
\(698\) 6.42257e7i 0.188861i
\(699\) 0 0
\(700\) 0 0
\(701\) −5.95860e8 −1.72978 −0.864889 0.501963i \(-0.832611\pi\)
−0.864889 + 0.501963i \(0.832611\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 1.00488e9i − 2.84353i
\(708\) 0 0
\(709\) 7.12546e8 1.99928 0.999641 0.0268005i \(-0.00853187\pi\)
0.999641 + 0.0268005i \(0.00853187\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) − 2.61662e8i − 0.724937i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) −6.89167e8 −1.83873
\(722\) − 3.76367e8i − 1.00000i
\(723\) − 1.10342e9i − 2.91962i
\(724\) 6.84633e8 1.80402
\(725\) 0 0
\(726\) 6.23589e8 1.62963
\(727\) 6.84267e8i 1.78083i 0.455150 + 0.890415i \(0.349586\pi\)
−0.455150 + 0.890415i \(0.650414\pi\)
\(728\) 0 0
\(729\) 6.19698e8 1.59955
\(730\) 0 0
\(731\) 0 0
\(732\) − 1.27380e9i − 3.24763i
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) −6.95671e8 −1.75920
\(735\) 0 0
\(736\) −5.03185e8 −1.26210
\(737\) 0 0
\(738\) − 7.17808e8i − 1.78583i
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 8.19353e8i 1.99758i 0.0491695 + 0.998790i \(0.484343\pi\)
−0.0491695 + 0.998790i \(0.515657\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 1.36598e9i 3.27705i
\(748\) 0 0
\(749\) −1.23266e9 −2.93358
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 1.08315e8i 0.254703i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) −7.05329e8 −1.63240
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −4.06269e8 −0.921850 −0.460925 0.887439i \(-0.652482\pi\)
−0.460925 + 0.887439i \(0.652482\pi\)
\(762\) 6.07173e8i 1.37230i
\(763\) 6.80970e8i 1.53304i
\(764\) 0 0
\(765\) 0 0
\(766\) 1.54222e8 0.343131
\(767\) 0 0
\(768\) 7.38198e8i 1.62963i
\(769\) 3.60743e7 0.0793266 0.0396633 0.999213i \(-0.487371\pi\)
0.0396633 + 0.999213i \(0.487371\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) −1.68053e8 −0.362429
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 6.67665e8i 1.41782i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 9.43453e8i 1.96533i
\(784\) −6.42773e8 −1.33386
\(785\) 0 0
\(786\) 0 0
\(787\) − 2.13980e8i − 0.438983i −0.975614 0.219492i \(-0.929560\pi\)
0.975614 0.219492i \(-0.0704399\pi\)
\(788\) 0 0
\(789\) −1.58513e9 −3.22726
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 6.16847e8 1.20027
\(802\) − 9.70986e8i − 1.88230i
\(803\) 0 0
\(804\) −3.59322e6 −0.00691377
\(805\) 0 0
\(806\) 0 0
\(807\) 3.60548e8i 0.686030i
\(808\) − 9.81872e8i − 1.86132i
\(809\) 3.61673e8 0.683079 0.341540 0.939867i \(-0.389052\pi\)
0.341540 + 0.939867i \(0.389052\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 1.50436e9i 2.80985i
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) − 9.06972e8i − 1.65704i
\(819\) 0 0
\(820\) 0 0
\(821\) −1.04853e9 −1.89474 −0.947372 0.320135i \(-0.896272\pi\)
−0.947372 + 0.320135i \(0.896272\pi\)
\(822\) 0 0
\(823\) − 1.16107e8i − 0.208285i −0.994562 0.104142i \(-0.966790\pi\)
0.994562 0.104142i \(-0.0332098\pi\)
\(824\) −6.73384e8 −1.20360
\(825\) 0 0
\(826\) 0 0
\(827\) − 1.01116e9i − 1.78773i −0.448337 0.893865i \(-0.647983\pi\)
0.448337 0.893865i \(-0.352017\pi\)
\(828\) − 1.18622e9i − 2.08965i
\(829\) −1.81441e8 −0.318472 −0.159236 0.987241i \(-0.550903\pi\)
−0.159236 + 0.987241i \(0.550903\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 1.41742e9 2.38292
\(842\) 4.57844e8i 0.766975i
\(843\) 1.14323e9i 1.90832i
\(844\) 0 0
\(845\) 0 0
\(846\) −2.55343e8 −0.421709
\(847\) 9.28298e8i 1.52770i
\(848\) 0 0
\(849\) 1.95227e9 3.19020
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 1.89622e9 3.04449
\(855\) 0 0
\(856\) −1.20443e9 −1.92026
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 1.71394e9 2.68525
\(862\) 0 0
\(863\) 7.23421e8i 1.12553i 0.826615 + 0.562767i \(0.190263\pi\)
−0.826615 + 0.562767i \(0.809737\pi\)
\(864\) −6.89177e8 −1.06854
\(865\) 0 0
\(866\) 0 0
\(867\) − 1.06205e9i − 1.62963i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 6.65376e8i 1.00350i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −4.68316e8 −0.684874 −0.342437 0.939541i \(-0.611252\pi\)
−0.342437 + 0.939541i \(0.611252\pi\)
\(882\) − 1.51529e9i − 2.20846i
\(883\) − 9.07097e8i − 1.31756i −0.752334 0.658782i \(-0.771072\pi\)
0.752334 0.658782i \(-0.228928\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 2.85726e8 0.410817
\(887\) 1.37949e9i 1.97674i 0.152074 + 0.988369i \(0.451405\pi\)
−0.152074 + 0.988369i \(0.548595\pi\)
\(888\) 0 0
\(889\) −9.03860e8 −1.28646
\(890\) 0 0
\(891\) 0 0
\(892\) − 1.14152e9i − 1.60839i
\(893\) 0 0
\(894\) −1.04520e9 −1.46281
\(895\) 0 0
\(896\) −1.09891e9 −1.52770
\(897\) 0 0
\(898\) − 1.42133e9i − 1.96276i
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) − 4.01267e8i − 0.544966i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1.36077e9i 1.82374i 0.410474 + 0.911872i \(0.365363\pi\)
−0.410474 + 0.911872i \(0.634637\pi\)
\(908\) 6.34557e8i 0.847643i
\(909\) 2.31469e9 3.08177
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 1.48697e9 1.93471
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) −1.90043e9 −2.43261
\(922\) − 4.80957e8i − 0.613640i
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 3.63120e8 0.457317
\(927\) − 1.58745e9i − 1.99279i
\(928\) 1.46991e9i 1.83927i
\(929\) −1.27758e9 −1.59346 −0.796731 0.604334i \(-0.793439\pi\)
−0.796731 + 0.604334i \(0.793439\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 6.33780e8 0.777854
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) − 5.34899e6i − 0.00648132i
\(939\) 0 0
\(940\) 0 0
\(941\) 3.11817e8 0.374224 0.187112 0.982339i \(-0.440087\pi\)
0.187112 + 0.982339i \(0.440087\pi\)
\(942\) 0 0
\(943\) 1.14153e9i 1.36130i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 1.01744e9i − 1.19800i −0.800749 0.599001i \(-0.795565\pi\)
0.800749 0.599001i \(-0.204435\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 8.87504e8 1.00000
\(962\) 0 0
\(963\) − 2.83935e9i − 3.17936i
\(964\) 1.60498e9 1.79159
\(965\) 0 0
\(966\) 2.83238e9 3.14210
\(967\) 6.69958e8i 0.740915i 0.928849 + 0.370458i \(0.120799\pi\)
−0.928849 + 0.370458i \(0.879201\pi\)
\(968\) 9.07039e8i 1.00000i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 8.53127e8i 0.928998i
\(973\) 0 0
\(974\) 1.84792e9 1.99989
\(975\) 0 0
\(976\) 1.85279e9 1.99286
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 3.04867e9i 3.25907i
\(979\) 0 0
\(980\) 0 0
\(981\) −1.56857e9 −1.66149
\(982\) 0 0
\(983\) 8.00372e8i 0.842619i 0.906917 + 0.421310i \(0.138429\pi\)
−0.906917 + 0.421310i \(0.861571\pi\)
\(984\) 1.67469e9 1.75771
\(985\) 0 0
\(986\) 0 0
\(987\) − 6.09693e8i − 0.634103i
\(988\) 0 0
\(989\) 2.67256e8 0.276273
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) −3.18691e9 −3.22546
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 100.7.b.d.51.1 2
4.3 odd 2 inner 100.7.b.d.51.2 2
5.2 odd 4 20.7.d.b.19.1 yes 1
5.3 odd 4 20.7.d.a.19.1 1
5.4 even 2 inner 100.7.b.d.51.2 2
15.2 even 4 180.7.f.a.19.1 1
15.8 even 4 180.7.f.b.19.1 1
20.3 even 4 20.7.d.b.19.1 yes 1
20.7 even 4 20.7.d.a.19.1 1
20.19 odd 2 CM 100.7.b.d.51.1 2
40.3 even 4 320.7.h.a.319.1 1
40.13 odd 4 320.7.h.b.319.1 1
40.27 even 4 320.7.h.b.319.1 1
40.37 odd 4 320.7.h.a.319.1 1
60.23 odd 4 180.7.f.a.19.1 1
60.47 odd 4 180.7.f.b.19.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
20.7.d.a.19.1 1 5.3 odd 4
20.7.d.a.19.1 1 20.7 even 4
20.7.d.b.19.1 yes 1 5.2 odd 4
20.7.d.b.19.1 yes 1 20.3 even 4
100.7.b.d.51.1 2 1.1 even 1 trivial
100.7.b.d.51.1 2 20.19 odd 2 CM
100.7.b.d.51.2 2 4.3 odd 2 inner
100.7.b.d.51.2 2 5.4 even 2 inner
180.7.f.a.19.1 1 15.2 even 4
180.7.f.a.19.1 1 60.23 odd 4
180.7.f.b.19.1 1 15.8 even 4
180.7.f.b.19.1 1 60.47 odd 4
320.7.h.a.319.1 1 40.3 even 4
320.7.h.a.319.1 1 40.37 odd 4
320.7.h.b.319.1 1 40.13 odd 4
320.7.h.b.319.1 1 40.27 even 4