Properties

Label 10.8.b
Level $10$
Weight $8$
Character orbit 10.b
Rep. character $\chi_{10}(9,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $1$
Sturm bound $12$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 10.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(12\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(10, [\chi])\).

Total New Old
Modular forms 12 4 8
Cusp forms 8 4 4
Eisenstein series 4 0 4

Trace form

\( 4 q - 256 q^{4} + 60 q^{5} + 896 q^{6} - 6788 q^{9} - 640 q^{10} + 17808 q^{11} - 6528 q^{14} - 34960 q^{15} + 16384 q^{16} + 63600 q^{19} - 3840 q^{20} - 63952 q^{21} - 57344 q^{24} + 86100 q^{25} - 56064 q^{26}+ \cdots - 19109776 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(10, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
10.8.b.a 10.b 5.b $4$ $3.124$ \(\Q(i, \sqrt{31})\) None 10.8.b.a \(0\) \(0\) \(60\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{2}+(3\beta _{1}-\beta _{3})q^{3}-2^{6}q^{4}+(15+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(10, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(10, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 2}\)