Properties

Label 1.18.a
Level $1$
Weight $18$
Character orbit 1.a
Rep. character $\chi_{1}(1,\cdot)$
Character field $\Q$
Dimension $1$
Newform subspaces $1$
Sturm bound $1$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1 \)
Weight: \( k \) \(=\) \( 18 \)
Character orbit: \([\chi]\) \(=\) 1.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(1\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{18}(\Gamma_0(1))\).

Total New Old
Modular forms 2 2 0
Cusp forms 1 1 0
Eisenstein series 1 1 0

Trace form

\( q - 528 q^{2} - 4284 q^{3} + 147712 q^{4} - 1025850 q^{5} + 2261952 q^{6} + 3225992 q^{7} - 8785920 q^{8} - 110787507 q^{9} + 541648800 q^{10} - 753618228 q^{11} - 632798208 q^{12} + 2541064526 q^{13}+ \cdots + 83\!\cdots\!96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{18}^{\mathrm{new}}(\Gamma_0(1))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Fricke sign Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1.18.a.a 1.a 1.a $1$ $1.832$ \(\Q\) None 1.18.a.a \(-528\) \(-4284\) \(-1025850\) \(3225992\) $+$ $\mathrm{SU}(2)$ \(q-528q^{2}-4284q^{3}+147712q^{4}+\cdots\)