Maass form invariants
Level: | \( 6 = 2 \cdot 3 \) |
Weight: | \( 0 \) |
Character: | 6.1 |
Symmetry: | even |
Fricke sign: | $+1$ |
Spectral parameter: | \(9.66046617806916288172996862068 \pm 2 \cdot 10^{-11}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +0.70710678 \pm 1.0 \cdot 10^{-8} \) | \(a_{3}= +0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= +0.5 \) | \(a_{5}= +1.02032171 \pm 1 \cdot 10^{-8} \) | \(a_{6}= +0.40824829 \pm 1.0 \cdot 10^{-8} \) |
\(a_{7}= -0.67912023 \pm 1 \cdot 10^{-8} \) | \(a_{8}= +0.35355339 \pm 4.2 \cdot 10^{-8} \) | \(a_{9}= +0.33333333 \pm 4.2 \cdot 10^{-8} \) |
\(a_{10}= +0.72147640 \pm 1.1 \cdot 10^{-8} \) | \(a_{11}= +0.90161109 \pm 1 \cdot 10^{-8} \) | \(a_{12}= +0.28867513 \pm 5.2 \cdot 10^{-8} \) |
\(a_{13}= +0.98054509 \pm 1 \cdot 10^{-8} \) | \(a_{14}= -0.48021052 \pm 1.1 \cdot 10^{-8} \) | \(a_{15}= +0.58908302 \pm 1.1 \cdot 10^{-8} \) |
\(a_{16}= +0.25 \) | \(a_{17}= +1.66778128 \pm 1 \cdot 10^{-8} \) | \(a_{18}= +0.23570226 \pm 7.3 \cdot 10^{-8} \) |
\(a_{19}= -1.85536574 \pm 1 \cdot 10^{-8} \) | \(a_{20}= +0.51016086 \pm 1.1 \cdot 10^{-8} \) | \(a_{21}= -0.39209025 \pm 1.1 \cdot 10^{-8} \) |
\(a_{22}= +0.63753531 \pm 1.1 \cdot 10^{-8} \) | \(a_{23}= +0.06994107 \pm 1 \cdot 10^{-8} \) | \(a_{24}= +0.20412415 \pm 9.4 \cdot 10^{-8} \) |
\(a_{25}= +0.04105640 \pm 1 \cdot 10^{-8} \) | \(a_{26}= +0.69335008 \pm 1.1 \cdot 10^{-8} \) | \(a_{27}= +0.19245009 \pm 9.4 \cdot 10^{-8} \) |
\(a_{28}= -0.33956011 \pm 1.1 \cdot 10^{-8} \) | \(a_{29}= -1.48109664 \pm 1 \cdot 10^{-8} \) | \(a_{30}= +0.41654460 \pm 1.1 \cdot 10^{-8} \) |
\(a_{31}= -0.57792906 \pm 1 \cdot 10^{-8} \) | \(a_{32}= +0.17677670 \pm 1.1 \cdot 10^{-7} \) | \(a_{33}= +0.52054540 \pm 1.1 \cdot 10^{-8} \) |
\(a_{34}= +1.17929945 \pm 1.1 \cdot 10^{-8} \) | \(a_{35}= -0.69292111 \pm 1 \cdot 10^{-8} \) | \(a_{36}= +0.16666667 \pm 1.0 \cdot 10^{-7} \) |
\(a_{37}= +0.80865412 \pm 1 \cdot 10^{-8} \) | \(a_{38}= -1.31194170 \pm 1.1 \cdot 10^{-8} \) | \(a_{39}= +0.56611797 \pm 1.1 \cdot 10^{-8} \) |
\(a_{40}= +0.36073820 \pm 1.1 \cdot 10^{-8} \) | \(a_{41}= -1.17678338 \pm 1 \cdot 10^{-8} \) | \(a_{42}= -0.27724967 \pm 1.1 \cdot 10^{-8} \) |
\(a_{43}= -0.14867385 \pm 1 \cdot 10^{-8} \) | \(a_{44}= +0.45080554 \pm 1.1 \cdot 10^{-8} \) | \(a_{45}= +0.34010724 \pm 1.1 \cdot 10^{-8} \) |
\(a_{46}= +0.04945581 \pm 1.1 \cdot 10^{-8} \) | \(a_{47}= -0.03748592 \pm 1 \cdot 10^{-8} \) | \(a_{48}= +0.14433757 \pm 1.5 \cdot 10^{-7} \) |
\(a_{49}= -0.53879572 \pm 1 \cdot 10^{-8} \) | \(a_{50}= +0.02903126 \pm 1.1 \cdot 10^{-8} \) | \(a_{51}= +0.96289397 \pm 1.1 \cdot 10^{-8} \) |
\(a_{52}= +0.49027255 \pm 1.1 \cdot 10^{-8} \) | \(a_{53}= -0.75647717 \pm 1 \cdot 10^{-8} \) | \(a_{54}= +0.13608276 \pm 1.6 \cdot 10^{-7} \) |
\(a_{55}= +0.91993337 \pm 1 \cdot 10^{-8} \) | \(a_{56}= -0.24010526 \pm 1.1 \cdot 10^{-8} \) | \(a_{57}= -1.07119591 \pm 1.1 \cdot 10^{-8} \) |
\(a_{58}= -1.04729348 \pm 1.1 \cdot 10^{-8} \) | \(a_{59}= -0.49223916 \pm 1 \cdot 10^{-8} \) | \(a_{60}= +0.29454151 \pm 1.1 \cdot 10^{-8} \) |
\(a_{61}= +0.84541633 \pm 1 \cdot 10^{-8} \) | \(a_{62}= -0.40865755 \pm 1.1 \cdot 10^{-8} \) | \(a_{63}= -0.22637341 \pm 1.1 \cdot 10^{-8} \) |
\(a_{64}= +0.125 \) | \(a_{65}= +1.00047145 \pm 1 \cdot 10^{-8} \) | \(a_{66}= +0.36808118 \pm 1.1 \cdot 10^{-8} \) |
\(a_{67}= +0.57926812 \pm 1 \cdot 10^{-8} \) | \(a_{68}= +0.83389064 \pm 1.1 \cdot 10^{-8} \) | \(a_{69}= +0.04038050 \pm 1.1 \cdot 10^{-8} \) |
\(a_{70}= -0.48996922 \pm 1.2 \cdot 10^{-8} \) | \(a_{71}= -1.55828993 \pm 1 \cdot 10^{-8} \) | \(a_{72}= +0.11785113 \pm 1.9 \cdot 10^{-7} \) |
\(a_{73}= -0.65286232 \pm 1 \cdot 10^{-8} \) | \(a_{74}= +0.57180481 \pm 1.2 \cdot 10^{-8} \) | \(a_{75}= +0.02370392 \pm 1.1 \cdot 10^{-8} \) |
\(a_{76}= -0.92768287 \pm 1.1 \cdot 10^{-8} \) | \(a_{77}= -0.61230232 \pm 1 \cdot 10^{-8} \) | \(a_{78}= +0.40030586 \pm 1.1 \cdot 10^{-8} \) |
\(a_{79}= +0.86072063 \pm 1 \cdot 10^{-8} \) | \(a_{80}= +0.25508043 \pm 1.1 \cdot 10^{-8} \) | \(a_{81}= +0.11111111 \pm 2.3 \cdot 10^{-7} \) |
\(a_{82}= -0.83211151 \pm 1.1 \cdot 10^{-8} \) | \(a_{83}= +0.41092622 \pm 1 \cdot 10^{-8} \) | \(a_{84}= -0.19604512 \pm 1.1 \cdot 10^{-8} \) |
\(a_{85}= +1.70167345 \pm 1 \cdot 10^{-8} \) | \(a_{86}= -0.10512829 \pm 1.2 \cdot 10^{-8} \) | \(a_{87}= -0.85511154 \pm 1.1 \cdot 10^{-8} \) |
\(a_{88}= +0.31876766 \pm 1.1 \cdot 10^{-8} \) | \(a_{89}= +0.68277638 \pm 1 \cdot 10^{-8} \) | \(a_{90}= +0.24049213 \pm 1.1 \cdot 10^{-8} \) |
\(a_{91}= -0.66590800 \pm 1 \cdot 10^{-8} \) | \(a_{92}= +0.03497054 \pm 1.1 \cdot 10^{-8} \) | \(a_{93}= -0.33366750 \pm 1.1 \cdot 10^{-8} \) |
\(a_{94}= -0.02650655 \pm 1.1 \cdot 10^{-8} \) | \(a_{95}= -1.89306995 \pm 1 \cdot 10^{-8} \) | \(a_{96}= +0.10206207 \pm 2.5 \cdot 10^{-7} \) |
\(a_{97}= +0.81842217 \pm 1 \cdot 10^{-8} \) | \(a_{98}= -0.38098611 \pm 1.1 \cdot 10^{-8} \) | \(a_{99}= +0.30053703 \pm 1.1 \cdot 10^{-8} \) |
\(a_{100}= +0.02052820 \pm 1.1 \cdot 10^{-8} \) | \(a_{101}= +0.92220690 \pm 1 \cdot 10^{-8} \) | \(a_{102}= +0.68086886 \pm 1.1 \cdot 10^{-8} \) |
\(a_{103}= -1.55206436 \pm 1 \cdot 10^{-8} \) | \(a_{104}= +0.34667504 \pm 1.1 \cdot 10^{-8} \) | \(a_{105}= -0.40005819 \pm 1.2 \cdot 10^{-8} \) |
\(a_{106}= -0.53491014 \pm 1.1 \cdot 10^{-8} \) | \(a_{107}= +0.20345355 \pm 1 \cdot 10^{-8} \) | \(a_{108}= +0.09622504 \pm 2.8 \cdot 10^{-7} \) |
\(a_{109}= +1.04915693 \pm 1 \cdot 10^{-8} \) | \(a_{110}= +0.65049112 \pm 1.3 \cdot 10^{-8} \) | \(a_{111}= +0.46687667 \pm 1.2 \cdot 10^{-8} \) |
\(a_{112}= -0.16978006 \pm 1.1 \cdot 10^{-8} \) | \(a_{113}= +0.81071574 \pm 1 \cdot 10^{-8} \) | \(a_{114}= -0.75744989 \pm 1.1 \cdot 10^{-8} \) |
\(a_{115}= +0.07136239 \pm 1 \cdot 10^{-8} \) | \(a_{116}= -0.74054832 \pm 1.1 \cdot 10^{-8} \) | \(a_{117}= +0.32684836 \pm 1.1 \cdot 10^{-8} \) |
\(a_{118}= -0.34806565 \pm 1.1 \cdot 10^{-8} \) | \(a_{119}= -1.13262400 \pm 1 \cdot 10^{-8} \) | \(a_{120}= +0.20827230 \pm 1.1 \cdot 10^{-8} \) |
\(a_{121}= -0.18709745 \pm 1 \cdot 10^{-8} \) | \(a_{122}= +0.59779962 \pm 1.1 \cdot 10^{-8} \) | \(a_{123}= -0.67941620 \pm 1.1 \cdot 10^{-8} \) |
\(a_{124}= -0.28896453 \pm 1.1 \cdot 10^{-8} \) | \(a_{125}= -0.97843098 \pm 1 \cdot 10^{-8} \) | \(a_{126}= -0.16007017 \pm 1.1 \cdot 10^{-8} \) |
\(a_{127}= +0.84710861 \pm 1 \cdot 10^{-8} \) | \(a_{128}= +0.08838835 \pm 3.2 \cdot 10^{-7} \) | \(a_{129}= -0.08583689 \pm 1.2 \cdot 10^{-8} \) |
\(a_{130}= +0.70744014 \pm 1.3 \cdot 10^{-8} \) | \(a_{131}= +0.08967914 \pm 1 \cdot 10^{-8} \) | \(a_{132}= +0.26027270 \pm 1.1 \cdot 10^{-8} \) |
\(a_{133}= +1.26001640 \pm 1 \cdot 10^{-8} \) | \(a_{134}= +0.40960442 \pm 1.1 \cdot 10^{-8} \) | \(a_{135}= +0.19636101 \pm 1.1 \cdot 10^{-8} \) |
\(a_{136}= +0.58964973 \pm 1.1 \cdot 10^{-8} \) | \(a_{137}= -0.11511786 \pm 1 \cdot 10^{-8} \) | \(a_{138}= +0.02855332 \pm 1.1 \cdot 10^{-8} \) |
\(a_{139}= -1.20116249 \pm 1 \cdot 10^{-8} \) | \(a_{140}= -0.34646056 \pm 1.2 \cdot 10^{-8} \) | \(a_{141}= -0.02164251 \pm 1.1 \cdot 10^{-8} \) |
\(a_{142}= -1.10187737 \pm 1.2 \cdot 10^{-8} \) | \(a_{143}= +0.88407032 \pm 1 \cdot 10^{-8} \) | \(a_{144}= +0.08333333 \pm 3.4 \cdot 10^{-7} \) |
\(a_{145}= -1.51119506 \pm 1 \cdot 10^{-8} \) | \(a_{146}= -0.46164337 \pm 1.1 \cdot 10^{-8} \) | \(a_{147}= -0.31107385 \pm 1.1 \cdot 10^{-8} \) |
\(a_{148}= +0.40432706 \pm 1.2 \cdot 10^{-8} \) | \(a_{149}= +1.39467424 \pm 1 \cdot 10^{-8} \) | \(a_{150}= +0.01676120 \pm 1.1 \cdot 10^{-8} \) |
\(a_{151}= -0.14857300 \pm 1 \cdot 10^{-8} \) | \(a_{152}= -0.65597085 \pm 1.1 \cdot 10^{-8} \) | \(a_{153}= +0.55592709 \pm 1.1 \cdot 10^{-8} \) |
\(a_{154}= -0.43296313 \pm 1.2 \cdot 10^{-8} \) | \(a_{155}= -0.58967356 \pm 1 \cdot 10^{-8} \) | \(a_{156}= +0.28305899 \pm 1.1 \cdot 10^{-8} \) |
\(a_{157}= +0.70870097 \pm 1 \cdot 10^{-8} \) | \(a_{158}= +0.60862139 \pm 1.1 \cdot 10^{-8} \) | \(a_{159}= -0.43675230 \pm 1.1 \cdot 10^{-8} \) |
\(a_{160}= +0.18036910 \pm 1.1 \cdot 10^{-8} \) | \(a_{161}= -0.04749840 \pm 1 \cdot 10^{-8} \) | \(a_{162}= +0.07856742 \pm 3.8 \cdot 10^{-7} \) |
\(a_{163}= +1.05346721 \pm 1 \cdot 10^{-8} \) | \(a_{164}= -0.58839169 \pm 1.1 \cdot 10^{-8} \) | \(a_{165}= +0.53112378 \pm 1.3 \cdot 10^{-8} \) |
\(a_{166}= +0.29056872 \pm 1.1 \cdot 10^{-8} \) | \(a_{167}= -0.91823791 \pm 1 \cdot 10^{-8} \) | \(a_{168}= -0.13862484 \pm 1.1 \cdot 10^{-8} \) |
\(a_{169}= -0.03853132 \pm 1 \cdot 10^{-8} \) | \(a_{170}= +1.20326484 \pm 1.2 \cdot 10^{-8} \) | \(a_{171}= -0.61845525 \pm 1.1 \cdot 10^{-8} \) |
\(a_{172}= -0.07433693 \pm 1.2 \cdot 10^{-8} \) | \(a_{173}= -0.16955826 \pm 1 \cdot 10^{-8} \) | \(a_{174}= -0.60465517 \pm 1.1 \cdot 10^{-8} \) |
\(a_{175}= -0.02788223 \pm 1 \cdot 10^{-8} \) | \(a_{176}= +0.22540277 \pm 1.1 \cdot 10^{-8} \) | \(a_{177}= -0.28419441 \pm 1.1 \cdot 10^{-8} \) |
\(a_{178}= +0.48279581 \pm 1.2 \cdot 10^{-8} \) | \(a_{179}= -1.04551051 \pm 1 \cdot 10^{-8} \) | \(a_{180}= +0.17005362 \pm 1.1 \cdot 10^{-8} \) |
\(a_{181}= -1.26706571 \pm 1 \cdot 10^{-8} \) | \(a_{182}= -0.47086807 \pm 1.2 \cdot 10^{-8} \) | \(a_{183}= +0.48810134 \pm 1.1 \cdot 10^{-8} \) |
\(a_{184}= +0.02472790 \pm 1.1 \cdot 10^{-8} \) | \(a_{185}= +0.82508735 \pm 1 \cdot 10^{-8} \) | \(a_{186}= -0.23593855 \pm 1.1 \cdot 10^{-8} \) |
\(a_{187}= +1.50369009 \pm 1 \cdot 10^{-8} \) | \(a_{188}= -0.01874296 \pm 1.1 \cdot 10^{-8} \) | \(a_{189}= -0.13069675 \pm 1.1 \cdot 10^{-8} \) |
\(a_{190}= -1.33860260 \pm 1.2 \cdot 10^{-8} \) | \(a_{191}= +0.27471482 \pm 1 \cdot 10^{-8} \) | \(a_{192}= +0.07216878 \pm 4.5 \cdot 10^{-7} \) |
\(a_{193}= +0.63580307 \pm 1 \cdot 10^{-8} \) | \(a_{194}= +0.57871186 \pm 1.1 \cdot 10^{-8} \) | \(a_{195}= +0.57762246 \pm 1.3 \cdot 10^{-8} \) |
\(a_{196}= -0.26939786 \pm 1.1 \cdot 10^{-8} \) | \(a_{197}= +0.41382802 \pm 1 \cdot 10^{-8} \) | \(a_{198}= +0.21251177 \pm 1.1 \cdot 10^{-8} \) |
\(a_{199}= -0.93379291 \pm 1 \cdot 10^{-8} \) | \(a_{200}= +0.01451563 \pm 1.1 \cdot 10^{-8} \) | \(a_{201}= +0.33444061 \pm 1.1 \cdot 10^{-8} \) |
\(a_{202}= +0.65209875 \pm 1.1 \cdot 10^{-8} \) | \(a_{203}= +1.00584268 \pm 1 \cdot 10^{-8} \) | \(a_{204}= +0.48144699 \pm 1.1 \cdot 10^{-8} \) |
\(a_{205}= -1.20069763 \pm 1 \cdot 10^{-8} \) | \(a_{206}= -1.09747523 \pm 1.1 \cdot 10^{-8} \) | \(a_{207}= +0.02331369 \pm 1.1 \cdot 10^{-8} \) |
\(a_{208}= +0.24513627 \pm 1.1 \cdot 10^{-8} \) | \(a_{209}= -1.67281832 \pm 1 \cdot 10^{-8} \) | \(a_{210}= -0.28288386 \pm 1.2 \cdot 10^{-8} \) |
\(a_{211}= -0.22954428 \pm 1 \cdot 10^{-8} \) | \(a_{212}= -0.37823858 \pm 1.1 \cdot 10^{-8} \) | \(a_{213}= -0.89967911 \pm 1.2 \cdot 10^{-8} \) |
\(a_{214}= +0.14386338 \pm 1.1 \cdot 10^{-8} \) | \(a_{215}= -0.15169516 \pm 1 \cdot 10^{-8} \) | \(a_{216}= +0.06804138 \pm 4.8 \cdot 10^{-7} \) |
\(a_{217}= +0.39248331 \pm 1 \cdot 10^{-8} \) | \(a_{218}= +0.74186598 \pm 1.2 \cdot 10^{-8} \) | \(a_{219}= -0.37693023 \pm 1.1 \cdot 10^{-8} \) |
\(a_{220}= +0.45996668 \pm 1.3 \cdot 10^{-8} \) | \(a_{221}= +1.63533475 \pm 1 \cdot 10^{-8} \) | \(a_{222}= +0.33013166 \pm 1.2 \cdot 10^{-8} \) |
\(a_{223}= -0.28693813 \pm 1 \cdot 10^{-8} \) | \(a_{224}= -0.12005263 \pm 1.1 \cdot 10^{-8} \) | \(a_{225}= +0.01368547 \pm 1.1 \cdot 10^{-8} \) |
\(a_{226}= +0.57326260 \pm 1.1 \cdot 10^{-8} \) | \(a_{227}= +0.23097836 \pm 1 \cdot 10^{-8} \) | \(a_{228}= -0.53559796 \pm 1.1 \cdot 10^{-8} \) |
\(a_{229}= +1.55276713 \pm 1 \cdot 10^{-8} \) | \(a_{230}= +0.05046083 \pm 1.2 \cdot 10^{-8} \) | \(a_{231}= -0.35351291 \pm 1.2 \cdot 10^{-8} \) |
\(a_{232}= -0.52364674 \pm 1.1 \cdot 10^{-8} \) | \(a_{233}= -0.97696038 \pm 1 \cdot 10^{-8} \) | \(a_{234}= +0.23111669 \pm 1.1 \cdot 10^{-8} \) |
\(a_{235}= -0.03824770 \pm 1 \cdot 10^{-8} \) | \(a_{236}= -0.24611958 \pm 1.1 \cdot 10^{-8} \) | \(a_{237}= +0.49693729 \pm 1.1 \cdot 10^{-8} \) |
\(a_{238}= -0.80088611 \pm 1.1 \cdot 10^{-8} \) | \(a_{239}= -0.66147104 \pm 1 \cdot 10^{-8} \) | \(a_{240}= +0.14727075 \pm 1.1 \cdot 10^{-8} \) |
\(a_{241}= +1.25461471 \pm 1 \cdot 10^{-8} \) | \(a_{242}= -0.13229788 \pm 1.1 \cdot 10^{-8} \) | \(a_{243}= +0.06415003 \pm 5.5 \cdot 10^{-7} \) |
\(a_{244}= +0.42270816 \pm 1.1 \cdot 10^{-8} \) | \(a_{245}= -0.54974497 \pm 1 \cdot 10^{-8} \) | \(a_{246}= -0.48041980 \pm 1.1 \cdot 10^{-8} \) |
\(a_{247}= -1.81926977 \pm 1 \cdot 10^{-8} \) | \(a_{248}= -0.20432878 \pm 1.1 \cdot 10^{-8} \) | \(a_{249}= +0.23724836 \pm 1.1 \cdot 10^{-8} \) |
\(a_{250}= -0.69185518 \pm 1.1 \cdot 10^{-8} \) | \(a_{251}= +1.49444045 \pm 1 \cdot 10^{-8} \) | \(a_{252}= -0.11318670 \pm 1.1 \cdot 10^{-8} \) |
\(a_{253}= +0.06305965 \pm 1 \cdot 10^{-8} \) | \(a_{254}= +0.59899624 \pm 1.1 \cdot 10^{-8} \) | \(a_{255}= +0.98246163 \pm 1.2 \cdot 10^{-8} \) |
\(a_{256}= +0.0625 \) | \(a_{257}= -0.72326202 \pm 1 \cdot 10^{-8} \) | \(a_{258}= -0.06069585 \pm 1.2 \cdot 10^{-8} \) |
\(a_{259}= -0.54917337 \pm 1 \cdot 10^{-8} \) | \(a_{260}= +0.50023572 \pm 1.3 \cdot 10^{-8} \) | \(a_{261}= -0.49369888 \pm 1.1 \cdot 10^{-8} \) |
\(a_{262}= +0.06341273 \pm 1.1 \cdot 10^{-8} \) | \(a_{263}= -0.10265037 \pm 1 \cdot 10^{-8} \) | \(a_{264}= +0.18404059 \pm 1.1 \cdot 10^{-8} \) |
\(a_{265}= -0.77185008 \pm 1 \cdot 10^{-8} \) | \(a_{266}= +0.89096614 \pm 1.1 \cdot 10^{-8} \) | \(a_{267}= +0.39420113 \pm 1.2 \cdot 10^{-8} \) |
\(a_{268}= +0.28963406 \pm 1.1 \cdot 10^{-8} \) | \(a_{269}= +0.34088544 \pm 1 \cdot 10^{-8} \) | \(a_{270}= +0.13884820 \pm 1.1 \cdot 10^{-8} \) |
\(a_{271}= +0.94202770 \pm 1 \cdot 10^{-8} \) | \(a_{272}= +0.41694532 \pm 1.1 \cdot 10^{-8} \) | \(a_{273}= -0.38446217 \pm 1.2 \cdot 10^{-8} \) |
\(a_{274}= -0.08140062 \pm 1.1 \cdot 10^{-8} \) | \(a_{275}= +0.03701690 \pm 1 \cdot 10^{-8} \) | \(a_{276}= +0.02019025 \pm 1.1 \cdot 10^{-8} \) |
\(a_{277}= +0.98355323 \pm 1 \cdot 10^{-8} \) | \(a_{278}= -0.84935014 \pm 1.1 \cdot 10^{-8} \) | \(a_{279}= -0.19264302 \pm 1.1 \cdot 10^{-8} \) |
\(a_{280}= -0.24498461 \pm 1.2 \cdot 10^{-8} \) | \(a_{281}= -0.79126565 \pm 1 \cdot 10^{-8} \) | \(a_{282}= -0.01530356 \pm 1.1 \cdot 10^{-8} \) |
\(a_{283}= -1.66015611 \pm 1 \cdot 10^{-8} \) | \(a_{284}= -0.77914496 \pm 1.2 \cdot 10^{-8} \) | \(a_{285}= -1.09296445 \pm 1.2 \cdot 10^{-8} \) |
\(a_{286}= +0.62513212 \pm 1.2 \cdot 10^{-8} \) | \(a_{287}= +0.79917740 \pm 1 \cdot 10^{-8} \) | \(a_{288}= +0.05892557 \pm 6.3 \cdot 10^{-7} \) |
\(a_{289}= +1.78149440 \pm 1 \cdot 10^{-8} \) | \(a_{290}= -1.06857627 \pm 1.2 \cdot 10^{-8} \) | \(a_{291}= +0.47251626 \pm 1.1 \cdot 10^{-8} \) |
\(a_{292}= -0.32643116 \pm 1.1 \cdot 10^{-8} \) | \(a_{293}= -0.82593512 \pm 1 \cdot 10^{-8} \) | \(a_{294}= -0.21996243 \pm 1.1 \cdot 10^{-8} \) |
\(a_{295}= -0.50224231 \pm 1 \cdot 10^{-8} \) | \(a_{296}= +0.28590240 \pm 1.2 \cdot 10^{-8} \) | \(a_{297}= +0.17351513 \pm 1.1 \cdot 10^{-8} \) |
\(a_{298}= +0.98618361 \pm 1.2 \cdot 10^{-8} \) | \(a_{299}= +0.06858038 \pm 1 \cdot 10^{-8} \) | \(a_{300}= +0.01185196 \pm 1.1 \cdot 10^{-8} \) |
\(a_{301}= +0.10096742 \pm 1 \cdot 10^{-8} \) | \(a_{302}= -0.10505698 \pm 1.1 \cdot 10^{-8} \) | \(a_{303}= +0.53243640 \pm 1.1 \cdot 10^{-8} \) |
\(a_{304}= -0.46384144 \pm 1.1 \cdot 10^{-8} \) | \(a_{305}= +0.86259663 \pm 1 \cdot 10^{-8} \) | \(a_{306}= +0.39309982 \pm 1.1 \cdot 10^{-8} \) |
\(a_{307}= +1.60979345 \pm 1 \cdot 10^{-8} \) | \(a_{308}= -0.30615116 \pm 1.2 \cdot 10^{-8} \) | \(a_{309}= -0.89608478 \pm 1.1 \cdot 10^{-8} \) |
\(a_{310}= -0.41696218 \pm 1.2 \cdot 10^{-8} \) | \(a_{311}= +1.60766001 \pm 1 \cdot 10^{-8} \) | \(a_{312}= +0.20015293 \pm 1.1 \cdot 10^{-8} \) |
\(a_{313}= -1.50896939 \pm 1 \cdot 10^{-8} \) | \(a_{314}= +0.50112726 \pm 1.1 \cdot 10^{-8} \) | \(a_{315}= -0.23097370 \pm 1.2 \cdot 10^{-8} \) |
\(a_{316}= +0.43036031 \pm 1.1 \cdot 10^{-8} \) | \(a_{317}= +0.82192660 \pm 1 \cdot 10^{-8} \) | \(a_{318}= -0.30883051 \pm 1.1 \cdot 10^{-8} \) |
\(a_{319}= -1.33537315 \pm 1 \cdot 10^{-8} \) | \(a_{320}= +0.12754021 \pm 1.1 \cdot 10^{-8} \) | \(a_{321}= +0.11746396 \pm 1.1 \cdot 10^{-8} \) |
\(a_{322}= -0.03358644 \pm 1.1 \cdot 10^{-8} \) | \(a_{323}= -3.09434426 \pm 1 \cdot 10^{-8} \) | \(a_{324}= +0.05555556 \pm 6.8 \cdot 10^{-7} \) |
\(a_{325}= +0.04025765 \pm 1 \cdot 10^{-8} \) | \(a_{326}= +0.74491381 \pm 1.1 \cdot 10^{-8} \) | \(a_{327}= +0.60573104 \pm 1.2 \cdot 10^{-8} \) |
\(a_{328}= -0.41605575 \pm 1.1 \cdot 10^{-8} \) | \(a_{329}= +0.02545745 \pm 1 \cdot 10^{-8} \) | \(a_{330}= +0.37556122 \pm 1.3 \cdot 10^{-8} \) |
\(a_{331}= -1.73120867 \pm 1 \cdot 10^{-8} \) | \(a_{332}= +0.20546311 \pm 1.1 \cdot 10^{-8} \) | \(a_{333}= +0.26955137 \pm 1.2 \cdot 10^{-8} \) |
\(a_{334}= -0.64929225 \pm 1.1 \cdot 10^{-8} \) | \(a_{335}= +0.59103984 \pm 1 \cdot 10^{-8} \) | \(a_{336}= -0.09802256 \pm 1.1 \cdot 10^{-8} \) |
\(a_{337}= +1.15804446 \pm 1 \cdot 10^{-8} \) | \(a_{338}= -0.02724576 \pm 1.0 \cdot 10^{-8} \) | \(a_{339}= +0.46806695 \pm 1.1 \cdot 10^{-8} \) |
\(a_{340}= +0.85083673 \pm 1.2 \cdot 10^{-8} \) | \(a_{341}= -0.52106724 \pm 1 \cdot 10^{-8} \) | \(a_{342}= -0.43731390 \pm 1.1 \cdot 10^{-8} \) |
\(a_{343}= +1.04502730 \pm 1 \cdot 10^{-8} \) | \(a_{344}= -0.05256414 \pm 1.2 \cdot 10^{-8} \) | \(a_{345}= +0.04120110 \pm 1.2 \cdot 10^{-8} \) |
\(a_{346}= -0.11989580 \pm 1.1 \cdot 10^{-8} \) | \(a_{347}= +0.23896998 \pm 1 \cdot 10^{-8} \) | \(a_{348}= -0.42755577 \pm 1.1 \cdot 10^{-8} \) |
\(a_{349}= +1.43243917 \pm 1 \cdot 10^{-8} \) | \(a_{350}= -0.01971571 \pm 1.1 \cdot 10^{-8} \) | \(a_{351}= +0.18870599 \pm 1.1 \cdot 10^{-8} \) |
\(a_{352}= +0.15938383 \pm 1.1 \cdot 10^{-8} \) | \(a_{353}= -0.28521056 \pm 1 \cdot 10^{-8} \) | \(a_{354}= -0.20095580 \pm 1.1 \cdot 10^{-8} \) |
\(a_{355}= -1.58995705 \pm 1 \cdot 10^{-8} \) | \(a_{356}= +0.34138819 \pm 1.2 \cdot 10^{-8} \) | \(a_{357}= -0.65392077 \pm 1.1 \cdot 10^{-8} \) |
\(a_{358}= -0.73928757 \pm 1.1 \cdot 10^{-8} \) | \(a_{359}= +0.37206145 \pm 1 \cdot 10^{-8} \) | \(a_{360}= +0.12024607 \pm 1.1 \cdot 10^{-8} \) |
\(a_{361}= +2.44238204 \pm 1 \cdot 10^{-8} \) | \(a_{362}= -0.89595075 \pm 1.1 \cdot 10^{-8} \) | \(a_{363}= -0.10802076 \pm 1.1 \cdot 10^{-8} \) |
\(a_{364}= -0.33295400 \pm 1.2 \cdot 10^{-8} \) | \(a_{365}= -0.66612960 \pm 1 \cdot 10^{-8} \) | \(a_{366}= +0.34513977 \pm 1.1 \cdot 10^{-8} \) |
\(a_{367}= +0.65027466 \pm 1 \cdot 10^{-8} \) | \(a_{368}= +0.01748527 \pm 1.1 \cdot 10^{-8} \) | \(a_{369}= -0.39226113 \pm 1.1 \cdot 10^{-8} \) |
\(a_{370}= +0.58342486 \pm 1.3 \cdot 10^{-8} \) | \(a_{371}= +0.51373895 \pm 1 \cdot 10^{-8} \) | \(a_{372}= -0.16683375 \pm 1.1 \cdot 10^{-8} \) |
\(a_{373}= -1.63267895 \pm 1 \cdot 10^{-8} \) | \(a_{374}= +1.06326946 \pm 1.2 \cdot 10^{-8} \) | \(a_{375}= -0.56489739 \pm 1.1 \cdot 10^{-8} \) |
\(a_{376}= -0.01325327 \pm 1.1 \cdot 10^{-8} \) | \(a_{377}= -1.45228204 \pm 1 \cdot 10^{-8} \) | \(a_{378}= -0.09241656 \pm 1.1 \cdot 10^{-8} \) |
\(a_{379}= -0.91531793 \pm 1 \cdot 10^{-8} \) | \(a_{380}= -0.94653498 \pm 1.2 \cdot 10^{-8} \) | \(a_{381}= +0.48907838 \pm 1.1 \cdot 10^{-8} \) |
\(a_{382}= +0.19425271 \pm 1.1 \cdot 10^{-8} \) | \(a_{383}= +0.94278540 \pm 1 \cdot 10^{-8} \) | \(a_{384}= +0.05103104 \pm 7.9 \cdot 10^{-7} \) |
\(a_{385}= -0.62474536 \pm 1 \cdot 10^{-8} \) | \(a_{386}= +0.44958066 \pm 1.1 \cdot 10^{-8} \) | \(a_{387}= -0.04955795 \pm 1.2 \cdot 10^{-8} \) |
\(a_{388}= +0.40921108 \pm 1.1 \cdot 10^{-8} \) | \(a_{389}= +0.72584255 \pm 1 \cdot 10^{-8} \) | \(a_{390}= +0.40844076 \pm 1.3 \cdot 10^{-8} \) |
\(a_{391}= +0.11664641 \pm 1 \cdot 10^{-8} \) | \(a_{392}= -0.19049305 \pm 1.1 \cdot 10^{-8} \) | \(a_{393}= +0.05177628 \pm 1.1 \cdot 10^{-8} \) |
\(a_{394}= +0.29262060 \pm 1.1 \cdot 10^{-8} \) | \(a_{395}= +0.87821194 \pm 1 \cdot 10^{-8} \) | \(a_{396}= +0.15026851 \pm 1.1 \cdot 10^{-8} \) |
\(a_{397}= +0.69304807 \pm 1 \cdot 10^{-8} \) | \(a_{398}= -0.66029130 \pm 1.1 \cdot 10^{-8} \) | \(a_{399}= +0.72747081 \pm 1.1 \cdot 10^{-8} \) |
\(a_{400}= +0.01026410 \pm 1.1 \cdot 10^{-8} \) | \(a_{401}= -0.71448969 \pm 1 \cdot 10^{-8} \) | \(a_{402}= +0.23648522 \pm 1.1 \cdot 10^{-8} \) |
\(a_{403}= -0.56668550 \pm 1 \cdot 10^{-8} \) | \(a_{404}= +0.46110345 \pm 1.1 \cdot 10^{-8} \) | \(a_{405}= +0.11336908 \pm 1.1 \cdot 10^{-8} \) |
\(a_{406}= +0.71123818 \pm 1.2 \cdot 10^{-8} \) | \(a_{407}= +0.72909152 \pm 1 \cdot 10^{-8} \) | \(a_{408}= +0.34043443 \pm 1.1 \cdot 10^{-8} \) |
\(a_{409}= -1.32428696 \pm 1 \cdot 10^{-8} \) | \(a_{410}= -0.84902144 \pm 1.3 \cdot 10^{-8} \) | \(a_{411}= -0.06646333 \pm 1.1 \cdot 10^{-8} \) |
\(a_{412}= -0.77603218 \pm 1.1 \cdot 10^{-8} \) | \(a_{413}= +0.33428957 \pm 1 \cdot 10^{-8} \) | \(a_{414}= +0.01648527 \pm 1.1 \cdot 10^{-8} \) |
\(a_{415}= +0.41927695 \pm 1 \cdot 10^{-8} \) | \(a_{416}= +0.17333752 \pm 1.1 \cdot 10^{-8} \) | \(a_{417}= -0.69349149 \pm 1.1 \cdot 10^{-8} \) |
\(a_{418}= -1.18286118 \pm 1.2 \cdot 10^{-8} \) | \(a_{419}= -0.66594875 \pm 1 \cdot 10^{-8} \) | \(a_{420}= -0.20002910 \pm 1.2 \cdot 10^{-8} \) |
\(a_{421}= +0.26770866 \pm 1 \cdot 10^{-8} \) | \(a_{422}= -0.16231232 \pm 1.1 \cdot 10^{-8} \) | \(a_{423}= -0.01249531 \pm 1.1 \cdot 10^{-8} \) |
\(a_{424}= -0.26745507 \pm 1.1 \cdot 10^{-8} \) | \(a_{425}= +0.06847309 \pm 1 \cdot 10^{-8} \) | \(a_{426}= -0.63616920 \pm 1.2 \cdot 10^{-8} \) |
\(a_{427}= -0.57413933 \pm 1 \cdot 10^{-8} \) | \(a_{428}= +0.10172677 \pm 1.1 \cdot 10^{-8} \) | \(a_{429}= +0.51041824 \pm 1.2 \cdot 10^{-8} \) |
\(a_{430}= -0.10726468 \pm 1.3 \cdot 10^{-8} \) | \(a_{431}= +0.76079110 \pm 1 \cdot 10^{-8} \) | \(a_{432}= +0.04811252 \pm 8.6 \cdot 10^{-7} \) |
\(a_{433}= +1.42277873 \pm 1 \cdot 10^{-8} \) | \(a_{434}= +0.27752761 \pm 1.1 \cdot 10^{-8} \) | \(a_{435}= -0.87248887 \pm 1.2 \cdot 10^{-8} \) |
\(a_{436}= +0.52457847 \pm 1.2 \cdot 10^{-8} \) | \(a_{437}= -0.12976627 \pm 1 \cdot 10^{-8} \) | \(a_{438}= -0.26652992 \pm 1.1 \cdot 10^{-8} \) |
\(a_{439}= +1.26587301 \pm 1 \cdot 10^{-8} \) | \(a_{440}= +0.32524556 \pm 1.3 \cdot 10^{-8} \) | \(a_{441}= -0.17959857 \pm 1.1 \cdot 10^{-8} \) |
\(a_{442}= +1.15635629 \pm 1.2 \cdot 10^{-8} \) | \(a_{443}= -1.50488895 \pm 1 \cdot 10^{-8} \) | \(a_{444}= +0.23343834 \pm 1.2 \cdot 10^{-8} \) |
\(a_{445}= +0.69665156 \pm 1 \cdot 10^{-8} \) | \(a_{446}= -0.20289590 \pm 1.1 \cdot 10^{-8} \) | \(a_{447}= +0.80521555 \pm 1.2 \cdot 10^{-8} \) |
\(a_{448}= -0.08489003 \pm 1.1 \cdot 10^{-8} \) | \(a_{449}= -0.21299458 \pm 1 \cdot 10^{-8} \) | \(a_{450}= +0.00967709 \pm 1.1 \cdot 10^{-8} \) |
\(a_{451}= -1.06100094 \pm 1 \cdot 10^{-8} \) | \(a_{452}= +0.40535787 \pm 1.1 \cdot 10^{-8} \) | \(a_{453}= -0.08577866 \pm 1.1 \cdot 10^{-8} \) |
\(a_{454}= +0.16332637 \pm 1.1 \cdot 10^{-8} \) | \(a_{455}= -0.67944040 \pm 1 \cdot 10^{-8} \) | \(a_{456}= -0.37872495 \pm 1.1 \cdot 10^{-8} \) |
\(a_{457}= +0.36379903 \pm 1 \cdot 10^{-8} \) | \(a_{458}= +1.09797217 \pm 1.2 \cdot 10^{-8} \) | \(a_{459}= +0.32096466 \pm 1.1 \cdot 10^{-8} \) |
\(a_{460}= +0.03568120 \pm 1.2 \cdot 10^{-8} \) | \(a_{461}= +0.27461187 \pm 1 \cdot 10^{-8} \) | \(a_{462}= -0.24997138 \pm 1.2 \cdot 10^{-8} \) |
\(a_{463}= -0.76725257 \pm 1 \cdot 10^{-8} \) | \(a_{464}= -0.37027416 \pm 1.1 \cdot 10^{-8} \) | \(a_{465}= -0.34044819 \pm 1.2 \cdot 10^{-8} \) |
\(a_{466}= -0.69081531 \pm 1.1 \cdot 10^{-8} \) | \(a_{467}= -0.76900509 \pm 1 \cdot 10^{-8} \) | \(a_{468}= +0.16342418 \pm 1.1 \cdot 10^{-8} \) |
\(a_{469}= -0.39339270 \pm 1 \cdot 10^{-8} \) | \(a_{470}= -0.02704521 \pm 1.2 \cdot 10^{-8} \) | \(a_{471}= +0.40916870 \pm 1.1 \cdot 10^{-8} \) |
\(a_{472}= -0.17403283 \pm 1.1 \cdot 10^{-8} \) | \(a_{473}= -0.13404599 \pm 1 \cdot 10^{-8} \) | \(a_{474}= +0.35138772 \pm 1.1 \cdot 10^{-8} \) |
\(a_{475}= -0.07617463 \pm 1 \cdot 10^{-8} \) | \(a_{476}= -0.56631200 \pm 1.1 \cdot 10^{-8} \) | \(a_{477}= -0.25215906 \pm 1.1 \cdot 10^{-8} \) |
\(a_{478}= -0.46773066 \pm 1.1 \cdot 10^{-8} \) | \(a_{479}= -0.31218365 \pm 1 \cdot 10^{-8} \) | \(a_{480}= +0.10413615 \pm 1.1 \cdot 10^{-8} \) |
\(a_{481}= +0.79292182 \pm 1 \cdot 10^{-8} \) | \(a_{482}= +0.88714657 \pm 1.2 \cdot 10^{-8} \) | \(a_{483}= -0.02742321 \pm 1.1 \cdot 10^{-8} \) |
\(a_{484}= -0.09354873 \pm 1.1 \cdot 10^{-8} \) | \(a_{485}= +0.83505391 \pm 1 \cdot 10^{-8} \) | \(a_{486}= +0.04536092 \pm 9.6 \cdot 10^{-7} \) |
\(a_{487}= +0.58161845 \pm 1 \cdot 10^{-8} \) | \(a_{488}= +0.29889981 \pm 1.1 \cdot 10^{-8} \) | \(a_{489}= +0.60821958 \pm 1.1 \cdot 10^{-8} \) |
\(a_{490}= -0.38872840 \pm 1.2 \cdot 10^{-8} \) | \(a_{491}= +1.49112309 \pm 1 \cdot 10^{-8} \) | \(a_{492}= -0.33970810 \pm 1.1 \cdot 10^{-8} \) |
\(a_{493}= -2.47014525 \pm 1 \cdot 10^{-8} \) | \(a_{494}= -1.28641799 \pm 1.2 \cdot 10^{-8} \) | \(a_{495}= +0.30664446 \pm 1.3 \cdot 10^{-8} \) |
\(a_{496}= -0.14448226 \pm 1.1 \cdot 10^{-8} \) | \(a_{497}= +1.05826621 \pm 1 \cdot 10^{-8} \) | \(a_{498}= +0.16775993 \pm 1.1 \cdot 10^{-8} \) |
\(a_{499}= -0.51260723 \pm 1 \cdot 10^{-8} \) | \(a_{500}= -0.48921549 \pm 1.1 \cdot 10^{-8} \) | \(a_{501}= -0.53014490 \pm 1.1 \cdot 10^{-8} \) |
\(a_{502}= +1.05672897 \pm 1.1 \cdot 10^{-8} \) | \(a_{503}= +1.17937060 \pm 1 \cdot 10^{-8} \) | \(a_{504}= -0.08003509 \pm 1.1 \cdot 10^{-8} \) |
\(a_{505}= +0.94094772 \pm 1 \cdot 10^{-8} \) | \(a_{506}= +0.04458990 \pm 1.2 \cdot 10^{-8} \) | \(a_{507}= -0.02224607 \pm 1.0 \cdot 10^{-8} \) |
\(a_{508}= +0.42355430 \pm 1.1 \cdot 10^{-8} \) | \(a_{509}= +0.20002864 \pm 1 \cdot 10^{-8} \) | \(a_{510}= +0.69470528 \pm 1.2 \cdot 10^{-8} \) |
\(a_{511}= +0.44337200 \pm 1 \cdot 10^{-8} \) | \(a_{512}= +0.04419417 \pm 1.0 \cdot 10^{-6} \) | \(a_{513}= -0.35706530 \pm 1.1 \cdot 10^{-8} \) |
\(a_{514}= -0.51142348 \pm 1.2 \cdot 10^{-8} \) | \(a_{515}= -1.58360497 \pm 1 \cdot 10^{-8} \) | \(a_{516}= -0.04291844 \pm 1.2 \cdot 10^{-8} \) |
\(a_{517}= -0.03379772 \pm 1 \cdot 10^{-8} \) | \(a_{518}= -0.38832421 \pm 1.2 \cdot 10^{-8} \) | \(a_{519}= -0.09789451 \pm 1.1 \cdot 10^{-8} \) |
\(a_{520}= +0.35372007 \pm 1.3 \cdot 10^{-8} \) | \(a_{521}= -0.54755356 \pm 1 \cdot 10^{-8} \) | \(a_{522}= -0.34909783 \pm 1.1 \cdot 10^{-8} \) |
\(a_{523}= +0.65308881 \pm 1 \cdot 10^{-8} \) | \(a_{524}= +0.04483957 \pm 1.1 \cdot 10^{-8} \) | \(a_{525}= -0.01609781 \pm 1.1 \cdot 10^{-8} \) |
\(a_{526}= -0.07258477 \pm 1.1 \cdot 10^{-8} \) | \(a_{527}= -0.96385926 \pm 1 \cdot 10^{-8} \) | \(a_{528}= +0.13013635 \pm 1.1 \cdot 10^{-8} \) |
\(a_{529}= -0.99510825 \pm 1 \cdot 10^{-8} \) | \(a_{530}= -0.54578043 \pm 1.2 \cdot 10^{-8} \) | \(a_{531}= -0.16407972 \pm 1.1 \cdot 10^{-8} \) |
\(a_{532}= +0.63000820 \pm 1.1 \cdot 10^{-8} \) | \(a_{533}= -1.15388917 \pm 1 \cdot 10^{-8} \) | \(a_{534}= +0.27874229 \pm 1.2 \cdot 10^{-8} \) |
\(a_{535}= +0.20758807 \pm 1 \cdot 10^{-8} \) | \(a_{536}= +0.20480221 \pm 1.1 \cdot 10^{-8} \) | \(a_{537}= -0.60362577 \pm 1.1 \cdot 10^{-8} \) |
\(a_{538}= +0.24104240 \pm 1.1 \cdot 10^{-8} \) | \(a_{539}= -0.48578419 \pm 1 \cdot 10^{-8} \) | \(a_{540}= +0.09818050 \pm 1.1 \cdot 10^{-8} \) |
\(a_{541}= +0.80423707 \pm 1 \cdot 10^{-8} \) | \(a_{542}= +0.66611418 \pm 1.1 \cdot 10^{-8} \) | \(a_{543}= -0.73154073 \pm 1.1 \cdot 10^{-8} \) |
\(a_{544}= +0.29482486 \pm 1.1 \cdot 10^{-8} \) | \(a_{545}= +1.07047760 \pm 1 \cdot 10^{-8} \) | \(a_{546}= -0.27185580 \pm 1.2 \cdot 10^{-8} \) |
\(a_{547}= +0.79075791 \pm 1 \cdot 10^{-8} \) | \(a_{548}= -0.05755893 \pm 1.1 \cdot 10^{-8} \) | \(a_{549}= +0.28180544 \pm 1.1 \cdot 10^{-8} \) |
\(a_{550}= +0.02617490 \pm 1.2 \cdot 10^{-8} \) | \(a_{551}= +2.74797596 \pm 1 \cdot 10^{-8} \) | \(a_{552}= +0.01427666 \pm 1.1 \cdot 10^{-8} \) |
\(a_{553}= -0.58453279 \pm 1 \cdot 10^{-8} \) | \(a_{554}= +0.69547716 \pm 1.1 \cdot 10^{-8} \) | \(a_{555}= +0.47636441 \pm 1.3 \cdot 10^{-8} \) |
\(a_{556}= -0.60058124 \pm 1.1 \cdot 10^{-8} \) | \(a_{557}= -1.03328499 \pm 1 \cdot 10^{-8} \) | \(a_{558}= -0.13621918 \pm 1.1 \cdot 10^{-8} \) |
\(a_{559}= -0.14578142 \pm 1 \cdot 10^{-8} \) | \(a_{560}= -0.17323028 \pm 1.2 \cdot 10^{-8} \) | \(a_{561}= +0.86815588 \pm 1.2 \cdot 10^{-8} \) |
\(a_{562}= -0.55950930 \pm 1.1 \cdot 10^{-8} \) | \(a_{563}= +1.10480110 \pm 1 \cdot 10^{-8} \) | \(a_{564}= -0.01082125 \pm 1.1 \cdot 10^{-8} \) |
\(a_{565}= +0.82719088 \pm 1 \cdot 10^{-8} \) | \(a_{566}= -1.17390764 \pm 1.1 \cdot 10^{-8} \) | \(a_{567}= -0.07545780 \pm 1.1 \cdot 10^{-8} \) |
\(a_{568}= -0.55093869 \pm 1.2 \cdot 10^{-8} \) | \(a_{569}= -1.57608344 \pm 1 \cdot 10^{-8} \) | \(a_{570}= -0.77284257 \pm 1.2 \cdot 10^{-8} \) |
\(a_{571}= -1.46212790 \pm 1 \cdot 10^{-8} \) | \(a_{572}= +0.44203516 \pm 1.2 \cdot 10^{-8} \) | \(a_{573}= +0.15860668 \pm 1.1 \cdot 10^{-8} \) |
\(a_{574}= +0.56510376 \pm 1.2 \cdot 10^{-8} \) | \(a_{575}= +0.00287153 \pm 1 \cdot 10^{-8} \) | \(a_{576}= +0.04166667 \pm 1.0 \cdot 10^{-6} \) |
\(a_{577}= +0.01079366 \pm 1 \cdot 10^{-8} \) | \(a_{578}= +1.25970677 \pm 1.1 \cdot 10^{-8} \) | \(a_{579}= +0.36708107 \pm 1.1 \cdot 10^{-8} \) |
\(a_{580}= -0.75559753 \pm 1.2 \cdot 10^{-8} \) | \(a_{581}= -0.27906831 \pm 1 \cdot 10^{-8} \) | \(a_{582}= +0.33411945 \pm 1.1 \cdot 10^{-8} \) |
\(a_{583}= -0.68204820 \pm 1 \cdot 10^{-8} \) | \(a_{584}= -0.23082169 \pm 1.1 \cdot 10^{-8} \) | \(a_{585}= +0.33349048 \pm 1.3 \cdot 10^{-8} \) |
\(a_{586}= -0.58402432 \pm 1.2 \cdot 10^{-8} \) | \(a_{587}= -1.71727946 \pm 1 \cdot 10^{-8} \) | \(a_{588}= -0.15553693 \pm 1.1 \cdot 10^{-8} \) |
\(a_{589}= +1.07226977 \pm 1 \cdot 10^{-8} \) | \(a_{590}= -0.35513894 \pm 1.2 \cdot 10^{-8} \) | \(a_{591}= +0.23892372 \pm 1.1 \cdot 10^{-8} \) |
\(a_{592}= +0.20216353 \pm 1.2 \cdot 10^{-8} \) | \(a_{593}= +1.70039714 \pm 1 \cdot 10^{-8} \) | \(a_{594}= +0.12269373 \pm 1.1 \cdot 10^{-8} \) |
\(a_{595}= -1.15564086 \pm 1 \cdot 10^{-8} \) | \(a_{596}= +0.69733712 \pm 1.2 \cdot 10^{-8} \) | \(a_{597}= -0.53912559 \pm 1.1 \cdot 10^{-8} \) |
\(a_{598}= +0.04849365 \pm 1.2 \cdot 10^{-8} \) | \(a_{599}= -0.12910948 \pm 1 \cdot 10^{-8} \) | \(a_{600}= +0.00838060 \pm 1.1 \cdot 10^{-8} \) |
\(a_{601}= +0.37310073 \pm 1 \cdot 10^{-8} \) | \(a_{602}= +0.07139475 \pm 1.3 \cdot 10^{-8} \) | \(a_{603}= +0.19308937 \pm 1.1 \cdot 10^{-8} \) |
\(a_{604}= -0.07428650 \pm 1.1 \cdot 10^{-8} \) | \(a_{605}= -0.19089959 \pm 1 \cdot 10^{-8} \) | \(a_{606}= +0.37648939 \pm 1.1 \cdot 10^{-8} \) |
\(a_{607}= +0.45919123 \pm 1 \cdot 10^{-8} \) | \(a_{608}= -0.32798542 \pm 1.1 \cdot 10^{-8} \) | \(a_{609}= +0.58072354 \pm 1.2 \cdot 10^{-8} \) |
\(a_{610}= +0.60994793 \pm 1.3 \cdot 10^{-8} \) | \(a_{611}= -0.03675663 \pm 1 \cdot 10^{-8} \) | \(a_{612}= +0.27796355 \pm 1.1 \cdot 10^{-8} \) |
\(a_{613}= +0.86409775 \pm 1 \cdot 10^{-8} \) | \(a_{614}= +1.13829586 \pm 1.1 \cdot 10^{-8} \) | \(a_{615}= -0.69322310 \pm 1.3 \cdot 10^{-8} \) |
\(a_{616}= -0.21648156 \pm 1.2 \cdot 10^{-8} \) | \(a_{617}= -0.83558672 \pm 1 \cdot 10^{-8} \) | \(a_{618}= -0.63362762 \pm 1.1 \cdot 10^{-8} \) |
\(a_{619}= +0.14866418 \pm 1 \cdot 10^{-8} \) | \(a_{620}= -0.29483678 \pm 1.2 \cdot 10^{-8} \) | \(a_{621}= +0.01346017 \pm 1.1 \cdot 10^{-8} \) |
\(a_{622}= +1.13678730 \pm 1.0 \cdot 10^{-8} \) | \(a_{623}= -0.46368725 \pm 1 \cdot 10^{-8} \) | \(a_{624}= +0.14152949 \pm 1.1 \cdot 10^{-8} \) |
\(a_{625}= -1.03937077 \pm 1 \cdot 10^{-8} \) | \(a_{626}= -1.06700249 \pm 1.1 \cdot 10^{-8} \) | \(a_{627}= -0.96580211 \pm 1.2 \cdot 10^{-8} \) |
\(a_{628}= +0.35435049 \pm 1.1 \cdot 10^{-8} \) | \(a_{629}= +1.34865820 \pm 1 \cdot 10^{-8} \) | \(a_{630}= -0.16332307 \pm 1.2 \cdot 10^{-8} \) |
\(a_{631}= +0.65192070 \pm 1 \cdot 10^{-8} \) | \(a_{632}= +0.30431070 \pm 1.1 \cdot 10^{-8} \) | \(a_{633}= -0.13252745 \pm 1.1 \cdot 10^{-8} \) |
\(a_{634}= +0.58118987 \pm 1.1 \cdot 10^{-8} \) | \(a_{635}= +0.86432330 \pm 1 \cdot 10^{-8} \) | \(a_{636}= -0.21837615 \pm 1.1 \cdot 10^{-8} \) |
\(a_{637}= -0.52831350 \pm 1 \cdot 10^{-8} \) | \(a_{638}= -0.94425141 \pm 1.2 \cdot 10^{-8} \) | \(a_{639}= -0.51942998 \pm 1.2 \cdot 10^{-8} \) |
\(a_{640}= +0.09018455 \pm 1.1 \cdot 10^{-8} \) | \(a_{641}= -0.79901550 \pm 1 \cdot 10^{-8} \) | \(a_{642}= +0.08305956 \pm 1.1 \cdot 10^{-8} \) |
\(a_{643}= +0.39885939 \pm 1 \cdot 10^{-8} \) | \(a_{644}= -0.02374920 \pm 1.1 \cdot 10^{-8} \) | \(a_{645}= -0.08758124 \pm 1.3 \cdot 10^{-8} \) |
\(a_{646}= -2.18803181 \pm 1.1 \cdot 10^{-8} \) | \(a_{647}= +0.89563179 \pm 1 \cdot 10^{-8} \) | \(a_{648}= +0.03928371 \pm 1.2 \cdot 10^{-6} \) |
\(a_{649}= -0.44380829 \pm 1 \cdot 10^{-8} \) | \(a_{650}= +0.02846646 \pm 1.2 \cdot 10^{-8} \) | \(a_{651}= +0.22660035 \pm 1.1 \cdot 10^{-8} \) |
\(a_{652}= +0.52673361 \pm 1.1 \cdot 10^{-8} \) | \(a_{653}= -0.70669137 \pm 1 \cdot 10^{-8} \) | \(a_{654}= +0.42831652 \pm 1.2 \cdot 10^{-8} \) |
\(a_{655}= +0.09150158 \pm 1 \cdot 10^{-8} \) | \(a_{656}= -0.29419584 \pm 1.1 \cdot 10^{-8} \) | \(a_{657}= -0.21762077 \pm 1.1 \cdot 10^{-8} \) |
\(a_{658}= +0.01800113 \pm 1.1 \cdot 10^{-8} \) | \(a_{659}= -0.67435649 \pm 1 \cdot 10^{-8} \) | \(a_{660}= +0.26556189 \pm 1.3 \cdot 10^{-8} \) |
\(a_{661}= +1.43378176 \pm 1 \cdot 10^{-8} \) | \(a_{662}= -1.22414939 \pm 1.1 \cdot 10^{-8} \) | \(a_{663}= +0.94416096 \pm 1.2 \cdot 10^{-8} \) |
\(a_{664}= +0.14528436 \pm 1.1 \cdot 10^{-8} \) | \(a_{665}= +1.28562209 \pm 1 \cdot 10^{-8} \) | \(a_{666}= +0.19060160 \pm 1.2 \cdot 10^{-8} \) |
\(a_{667}= -0.10358949 \pm 1 \cdot 10^{-8} \) | \(a_{668}= -0.45911895 \pm 1.1 \cdot 10^{-8} \) | \(a_{669}= -0.16566381 \pm 1.1 \cdot 10^{-8} \) |
\(a_{670}= +0.41792828 \pm 1.3 \cdot 10^{-8} \) | \(a_{671}= +0.76223673 \pm 1 \cdot 10^{-8} \) | \(a_{672}= -0.06931242 \pm 1.1 \cdot 10^{-8} \) |
\(a_{673}= -0.97457958 \pm 1 \cdot 10^{-8} \) | \(a_{674}= +0.81886109 \pm 1.2 \cdot 10^{-8} \) | \(a_{675}= +0.00790131 \pm 1.1 \cdot 10^{-8} \) |
\(a_{676}= -0.01926566 \pm 1.0 \cdot 10^{-8} \) | \(a_{677}= +0.22903816 \pm 1 \cdot 10^{-8} \) | \(a_{678}= +0.33097332 \pm 1.1 \cdot 10^{-8} \) |
\(a_{679}= -0.55580705 \pm 1 \cdot 10^{-8} \) | \(a_{680}= +0.60163242 \pm 1.2 \cdot 10^{-8} \) | \(a_{681}= +0.13335542 \pm 1.1 \cdot 10^{-8} \) |
\(a_{682}= -0.36845018 \pm 1.2 \cdot 10^{-8} \) | \(a_{683}= +0.57534902 \pm 1 \cdot 10^{-8} \) | \(a_{684}= -0.30922762 \pm 1.1 \cdot 10^{-8} \) |
\(a_{685}= -0.11745725 \pm 1 \cdot 10^{-8} \) | \(a_{686}= +0.73894589 \pm 1.1 \cdot 10^{-8} \) | \(a_{687}= +0.89649052 \pm 1.2 \cdot 10^{-8} \) |
\(a_{688}= -0.03716846 \pm 1.2 \cdot 10^{-8} \) | \(a_{689}= -0.74175997 \pm 1 \cdot 10^{-8} \) | \(a_{690}= +0.02913358 \pm 1.2 \cdot 10^{-8} \) |
\(a_{691}= +1.00244877 \pm 1 \cdot 10^{-8} \) | \(a_{692}= -0.08477913 \pm 1.1 \cdot 10^{-8} \) | \(a_{693}= -0.20410077 \pm 1.2 \cdot 10^{-8} \) |
\(a_{694}= +0.16897729 \pm 1.1 \cdot 10^{-8} \) | \(a_{695}= -1.22557217 \pm 1 \cdot 10^{-8} \) | \(a_{696}= -0.30232758 \pm 1.1 \cdot 10^{-8} \) |
\(a_{697}= -1.96261729 \pm 1 \cdot 10^{-8} \) | \(a_{698}= +1.01288745 \pm 1.1 \cdot 10^{-8} \) | \(a_{699}= -0.56404834 \pm 1.1 \cdot 10^{-8} \) |
\(a_{700}= -0.01394112 \pm 1.1 \cdot 10^{-8} \) | \(a_{701}= +0.23614973 \pm 1 \cdot 10^{-8} \) | \(a_{702}= +0.13343529 \pm 1.1 \cdot 10^{-8} \) |
\(a_{703}= -1.50034915 \pm 1 \cdot 10^{-8} \) | \(a_{704}= +0.11270139 \pm 1.1 \cdot 10^{-8} \) | \(a_{705}= -0.02208232 \pm 1.2 \cdot 10^{-8} \) |
\(a_{706}= -0.20167432 \pm 1.1 \cdot 10^{-8} \) | \(a_{707}= -0.62628936 \pm 1 \cdot 10^{-8} \) | \(a_{708}= -0.14209721 \pm 1.1 \cdot 10^{-8} \) |
\(a_{709}= -0.56677759 \pm 1 \cdot 10^{-8} \) | \(a_{710}= -1.12426941 \pm 1.3 \cdot 10^{-8} \) | \(a_{711}= +0.28690688 \pm 1.1 \cdot 10^{-8} \) |
\(a_{712}= +0.24139790 \pm 1.2 \cdot 10^{-8} \) | \(a_{713}= -0.04042098 \pm 1 \cdot 10^{-8} \) | \(a_{714}= -0.46239181 \pm 1.1 \cdot 10^{-8} \) |
\(a_{715}= +0.90203615 \pm 1 \cdot 10^{-8} \) | \(a_{716}= -0.52275525 \pm 1.1 \cdot 10^{-8} \) | \(a_{717}= -0.38190048 \pm 1.1 \cdot 10^{-8} \) |
\(a_{718}= +0.26308718 \pm 1.1 \cdot 10^{-8} \) | \(a_{719}= +0.27848665 \pm 1 \cdot 10^{-8} \) | \(a_{720}= +0.08502681 \pm 1.1 \cdot 10^{-8} \) |
\(a_{721}= +1.05403830 \pm 1 \cdot 10^{-8} \) | \(a_{722}= +1.72702490 \pm 1.1 \cdot 10^{-8} \) | \(a_{723}= +0.72435214 \pm 1.2 \cdot 10^{-8} \) |
\(a_{724}= -0.63353285 \pm 1.1 \cdot 10^{-8} \) | \(a_{725}= -0.06080849 \pm 1 \cdot 10^{-8} \) | \(a_{726}= -0.07638221 \pm 1.1 \cdot 10^{-8} \) |
\(a_{727}= +1.93277301 \pm 1 \cdot 10^{-8} \) | \(a_{728}= -0.23543403 \pm 1.2 \cdot 10^{-8} \) | \(a_{729}= +0.03703704 \pm 1.3 \cdot 10^{-6} \) |
\(a_{730}= -0.47102475 \pm 1.2 \cdot 10^{-8} \) | \(a_{731}= -0.24795547 \pm 1 \cdot 10^{-8} \) | \(a_{732}= +0.24405067 \pm 1.1 \cdot 10^{-8} \) |
\(a_{733}= +1.34747319 \pm 1 \cdot 10^{-8} \) | \(a_{734}= +0.45981362 \pm 1.2 \cdot 10^{-8} \) | \(a_{735}= -0.31739541 \pm 1.2 \cdot 10^{-8} \) |
\(a_{736}= +0.01236395 \pm 1.1 \cdot 10^{-8} \) | \(a_{737}= +0.52227456 \pm 1 \cdot 10^{-8} \) | \(a_{738}= -0.27737050 \pm 1.1 \cdot 10^{-8} \) |
\(a_{739}= -0.88693992 \pm 1 \cdot 10^{-8} \) | \(a_{740}= +0.41254368 \pm 1.3 \cdot 10^{-8} \) | \(a_{741}= -1.05035589 \pm 1.2 \cdot 10^{-8} \) |
\(a_{742}= +0.36326829 \pm 1.1 \cdot 10^{-8} \) | \(a_{743}= -1.72901103 \pm 1 \cdot 10^{-8} \) | \(a_{744}= -0.11796927 \pm 1.1 \cdot 10^{-8} \) |
\(a_{745}= +1.42301641 \pm 1 \cdot 10^{-8} \) | \(a_{746}= -1.15447836 \pm 1.1 \cdot 10^{-8} \) | \(a_{747}= +0.13697541 \pm 1.1 \cdot 10^{-8} \) |
\(a_{748}= +0.75184505 \pm 1.2 \cdot 10^{-8} \) | \(a_{749}= -0.13816942 \pm 1 \cdot 10^{-8} \) | \(a_{750}= -0.39944277 \pm 1.1 \cdot 10^{-8} \) |
\(a_{751}= +0.67602536 \pm 1 \cdot 10^{-8} \) | \(a_{752}= -0.00937148 \pm 1.1 \cdot 10^{-8} \) | \(a_{753}= +0.86281559 \pm 1.1 \cdot 10^{-8} \) |
\(a_{754}= -1.02691848 \pm 1.2 \cdot 10^{-8} \) | \(a_{755}= -0.15159226 \pm 1 \cdot 10^{-8} \) | \(a_{756}= -0.06534837 \pm 1.1 \cdot 10^{-8} \) |
\(a_{757}= +0.08613046 \pm 1 \cdot 10^{-8} \) | \(a_{758}= -0.64722751 \pm 1.2 \cdot 10^{-8} \) | \(a_{759}= +0.03640750 \pm 1.2 \cdot 10^{-8} \) |
\(a_{760}= -0.66930130 \pm 1.2 \cdot 10^{-8} \) | \(a_{761}= +1.31799047 \pm 1 \cdot 10^{-8} \) | \(a_{762}= +0.34583064 \pm 1.1 \cdot 10^{-8} \) |
\(a_{763}= -0.71250369 \pm 1 \cdot 10^{-8} \) | \(a_{764}= +0.13735741 \pm 1.1 \cdot 10^{-8} \) | \(a_{765}= +0.56722448 \pm 1.2 \cdot 10^{-8} \) |
\(a_{766}= +0.66664995 \pm 1.1 \cdot 10^{-8} \) | \(a_{767}= -0.48266270 \pm 1 \cdot 10^{-8} \) | \(a_{768}= +0.03608439 \pm 1.4 \cdot 10^{-6} \) |
\(a_{769}= -1.67319704 \pm 1 \cdot 10^{-8} \) | \(a_{770}= -0.44176168 \pm 1.3 \cdot 10^{-8} \) | \(a_{771}= -0.41757552 \pm 1.2 \cdot 10^{-8} \) |
\(a_{772}= +0.31790154 \pm 1.1 \cdot 10^{-8} \) | \(a_{773}= -1.33699631 \pm 1 \cdot 10^{-8} \) | \(a_{774}= -0.03504276 \pm 1.2 \cdot 10^{-8} \) |
\(a_{775}= -0.02372769 \pm 1 \cdot 10^{-8} \) | \(a_{776}= +0.28935593 \pm 1.1 \cdot 10^{-8} \) | \(a_{777}= -0.31706539 \pm 1.2 \cdot 10^{-8} \) |
\(a_{778}= +0.51324819 \pm 1.1 \cdot 10^{-8} \) | \(a_{779}= +2.18336357 \pm 1 \cdot 10^{-8} \) | \(a_{780}= +0.28881123 \pm 1.3 \cdot 10^{-8} \) |
\(a_{781}= -1.40497147 \pm 1 \cdot 10^{-8} \) | \(a_{782}= +0.08248147 \pm 1.1 \cdot 10^{-8} \) | \(a_{783}= -0.28503718 \pm 1.1 \cdot 10^{-8} \) |
\(a_{784}= -0.13469893 \pm 1.1 \cdot 10^{-8} \) | \(a_{785}= +0.72310299 \pm 1 \cdot 10^{-8} \) | \(a_{786}= +0.03661136 \pm 1.1 \cdot 10^{-8} \) |
\(a_{787}= -1.56004909 \pm 1 \cdot 10^{-8} \) | \(a_{788}= +0.20691401 \pm 1.1 \cdot 10^{-8} \) | \(a_{789}= -0.05926522 \pm 1.1 \cdot 10^{-8} \) |
\(a_{790}= +0.62098962 \pm 1.3 \cdot 10^{-8} \) | \(a_{791}= -0.55057346 \pm 1 \cdot 10^{-8} \) | \(a_{792}= +0.10625589 \pm 1.1 \cdot 10^{-8} \) |
\(a_{793}= +0.82896883 \pm 1 \cdot 10^{-8} \) | \(a_{794}= +0.49005899 \pm 1.1 \cdot 10^{-8} \) | \(a_{795}= -0.44562785 \pm 1.2 \cdot 10^{-8} \) |
\(a_{796}= -0.46689646 \pm 1.1 \cdot 10^{-8} \) | \(a_{797}= +0.97861318 \pm 1 \cdot 10^{-8} \) | \(a_{798}= +0.51439954 \pm 1.1 \cdot 10^{-8} \) |
\(a_{799}= -0.06251832 \pm 1 \cdot 10^{-8} \) | \(a_{800}= +0.00725781 \pm 1.1 \cdot 10^{-8} \) | \(a_{801}= +0.22759213 \pm 1.2 \cdot 10^{-8} \) |
\(a_{802}= -0.50522051 \pm 1.1 \cdot 10^{-8} \) | \(a_{803}= -0.58862790 \pm 1 \cdot 10^{-8} \) | \(a_{804}= +0.16722030 \pm 1.1 \cdot 10^{-8} \) |
\(a_{805}= -0.04846365 \pm 1 \cdot 10^{-8} \) | \(a_{806}= -0.40070716 \pm 1.2 \cdot 10^{-8} \) | \(a_{807}= +0.19681030 \pm 1.1 \cdot 10^{-8} \) |
\(a_{808}= +0.32604938 \pm 1.1 \cdot 10^{-8} \) | \(a_{809}= +1.17389765 \pm 1 \cdot 10^{-8} \) | \(a_{810}= +0.08016404 \pm 1.1 \cdot 10^{-8} \) |
\(a_{811}= +0.48390125 \pm 1 \cdot 10^{-8} \) | \(a_{812}= +0.50292134 \pm 1.2 \cdot 10^{-8} \) | \(a_{813}= +0.54387995 \pm 1.1 \cdot 10^{-8} \) |
\(a_{814}= +0.51554556 \pm 1.3 \cdot 10^{-8} \) | \(a_{815}= +1.07487547 \pm 1 \cdot 10^{-8} \) | \(a_{816}= +0.24072349 \pm 1.1 \cdot 10^{-8} \) |
\(a_{817}= +0.27584437 \pm 1 \cdot 10^{-8} \) | \(a_{818}= -0.93641229 \pm 1.1 \cdot 10^{-8} \) | \(a_{819}= -0.22196933 \pm 1.2 \cdot 10^{-8} \) |
\(a_{820}= -0.60034882 \pm 1.3 \cdot 10^{-8} \) | \(a_{821}= -1.73331932 \pm 1 \cdot 10^{-8} \) | \(a_{822}= -0.04699667 \pm 1.1 \cdot 10^{-8} \) |
\(a_{823}= +0.04470252 \pm 1 \cdot 10^{-8} \) | \(a_{824}= -0.54873762 \pm 1.1 \cdot 10^{-8} \) | \(a_{825}= +0.02137172 \pm 1.2 \cdot 10^{-8} \) |
\(a_{826}= +0.23637842 \pm 1.1 \cdot 10^{-8} \) | \(a_{827}= -0.14611383 \pm 1 \cdot 10^{-8} \) | \(a_{828}= +0.01165685 \pm 1.1 \cdot 10^{-8} \) |
\(a_{829}= +0.00051813 \pm 1 \cdot 10^{-8} \) | \(a_{830}= +0.29647357 \pm 1.2 \cdot 10^{-8} \) | \(a_{831}= +0.56785472 \pm 1.1 \cdot 10^{-8} \) |
\(a_{832}= +0.12256814 \pm 1.1 \cdot 10^{-8} \) | \(a_{833}= -0.89859341 \pm 1 \cdot 10^{-8} \) | \(a_{834}= -0.49037253 \pm 1.1 \cdot 10^{-8} \) |
\(a_{835}= -0.93689807 \pm 1 \cdot 10^{-8} \) | \(a_{836}= -0.83640916 \pm 1.2 \cdot 10^{-8} \) | \(a_{837}= -0.11122250 \pm 1.1 \cdot 10^{-8} \) |
\(a_{838}= -0.47089688 \pm 1.1 \cdot 10^{-8} \) | \(a_{839}= +1.07821747 \pm 1 \cdot 10^{-8} \) | \(a_{840}= -0.14144193 \pm 1.2 \cdot 10^{-8} \) |
\(a_{841}= +1.19364725 \pm 1 \cdot 10^{-8} \) | \(a_{842}= +0.18929861 \pm 1.1 \cdot 10^{-8} \) | \(a_{843}= -0.45683743 \pm 1.1 \cdot 10^{-8} \) |
\(a_{844}= -0.11477214 \pm 1.1 \cdot 10^{-8} \) | \(a_{845}= -0.03931435 \pm 1 \cdot 10^{-8} \) | \(a_{846}= -0.00883552 \pm 1.1 \cdot 10^{-8} \) |
\(a_{847}= +0.12706166 \pm 1 \cdot 10^{-8} \) | \(a_{848}= -0.18911929 \pm 1.1 \cdot 10^{-8} \) | \(a_{849}= -0.95849158 \pm 1.1 \cdot 10^{-8} \) |
\(a_{850}= +0.04841779 \pm 1.1 \cdot 10^{-8} \) | \(a_{851}= +0.05655814 \pm 1 \cdot 10^{-8} \) | \(a_{852}= -0.44983955 \pm 1.2 \cdot 10^{-8} \) |
\(a_{853}= +0.15839374 \pm 1 \cdot 10^{-8} \) | \(a_{854}= -0.40597781 \pm 1.2 \cdot 10^{-8} \) | \(a_{855}= -0.63102332 \pm 1.2 \cdot 10^{-8} \) |
\(a_{856}= +0.07193169 \pm 1.1 \cdot 10^{-8} \) | \(a_{857}= -1.86046879 \pm 1 \cdot 10^{-8} \) | \(a_{858}= +0.36092020 \pm 1.2 \cdot 10^{-8} \) |
\(a_{859}= +0.97354553 \pm 1 \cdot 10^{-8} \) | \(a_{860}= -0.07584758 \pm 1.3 \cdot 10^{-8} \) | \(a_{861}= +0.46140528 \pm 1.2 \cdot 10^{-8} \) |
\(a_{862}= +0.53796055 \pm 1.1 \cdot 10^{-8} \) | \(a_{863}= +0.40476452 \pm 1 \cdot 10^{-8} \) | \(a_{864}= +0.03402069 \pm 1.5 \cdot 10^{-6} \) |
\(a_{865}= -0.17300398 \pm 1 \cdot 10^{-8} \) | \(a_{866}= +1.00605649 \pm 1.1 \cdot 10^{-8} \) | \(a_{867}= +1.02854627 \pm 1.1 \cdot 10^{-8} \) |
\(a_{868}= +0.19624166 \pm 1.1 \cdot 10^{-8} \) | \(a_{869}= +0.77603526 \pm 1 \cdot 10^{-8} \) | \(a_{870}= -0.61694280 \pm 1.2 \cdot 10^{-8} \) |
\(a_{871}= +0.56799851 \pm 1 \cdot 10^{-8} \) | \(a_{872}= +0.37093299 \pm 1.2 \cdot 10^{-8} \) | \(a_{873}= +0.27280739 \pm 1.1 \cdot 10^{-8} \) |
\(a_{874}= -0.09175861 \pm 1.1 \cdot 10^{-8} \) | \(a_{875}= +0.66447227 \pm 1 \cdot 10^{-8} \) | \(a_{876}= -0.18846512 \pm 1.1 \cdot 10^{-8} \) |
\(a_{877}= +0.37982559 \pm 1 \cdot 10^{-8} \) | \(a_{878}= +0.89510739 \pm 1.1 \cdot 10^{-8} \) | \(a_{879}= -0.47685386 \pm 1.2 \cdot 10^{-8} \) |
\(a_{880}= +0.22998334 \pm 1.3 \cdot 10^{-8} \) | \(a_{881}= -1.10610914 \pm 1 \cdot 10^{-8} \) | \(a_{882}= -0.12699537 \pm 1.1 \cdot 10^{-8} \) |
\(a_{883}= +1.27055327 \pm 1 \cdot 10^{-8} \) | \(a_{884}= +0.81766737 \pm 1.2 \cdot 10^{-8} \) | \(a_{885}= -0.28996973 \pm 1.2 \cdot 10^{-8} \) |
\(a_{886}= -1.06411718 \pm 1.0 \cdot 10^{-8} \) | \(a_{887}= -1.05059534 \pm 1 \cdot 10^{-8} \) | \(a_{888}= +0.16506583 \pm 1.2 \cdot 10^{-8} \) |
\(a_{889}= -0.57528859 \pm 1 \cdot 10^{-8} \) | \(a_{890}= +0.49260704 \pm 1.3 \cdot 10^{-8} \) | \(a_{891}= +0.10017901 \pm 1.1 \cdot 10^{-8} \) |
\(a_{892}= -0.14346907 \pm 1.1 \cdot 10^{-8} \) | \(a_{893}= +0.06955009 \pm 1 \cdot 10^{-8} \) | \(a_{894}= +0.56937338 \pm 1.2 \cdot 10^{-8} \) |
\(a_{895}= -1.06675707 \pm 1 \cdot 10^{-8} \) | \(a_{896}= -0.06002631 \pm 1.1 \cdot 10^{-8} \) | \(a_{897}= +0.03959490 \pm 1.2 \cdot 10^{-8} \) |
\(a_{898}= -0.15060991 \pm 1.1 \cdot 10^{-8} \) | \(a_{899}= +0.85596878 \pm 1 \cdot 10^{-8} \) | \(a_{900}= +0.00684273 \pm 1.1 \cdot 10^{-8} \) |
\(a_{901}= -1.26163846 \pm 1 \cdot 10^{-8} \) | \(a_{902}= -0.75024096 \pm 1.2 \cdot 10^{-8} \) | \(a_{903}= +0.05829357 \pm 1.3 \cdot 10^{-8} \) |
\(a_{904}= +0.28663130 \pm 1.1 \cdot 10^{-8} \) | \(a_{905}= -1.29281465 \pm 1 \cdot 10^{-8} \) | \(a_{906}= -0.06065467 \pm 1.1 \cdot 10^{-8} \) |
\(a_{907}= -1.33560426 \pm 1 \cdot 10^{-8} \) | \(a_{908}= +0.11548918 \pm 1.1 \cdot 10^{-8} \) | \(a_{909}= +0.30740230 \pm 1.1 \cdot 10^{-8} \) |
\(a_{910}= -0.48043691 \pm 1.3 \cdot 10^{-8} \) | \(a_{911}= +0.35893346 \pm 1 \cdot 10^{-8} \) | \(a_{912}= -0.26779898 \pm 1.1 \cdot 10^{-8} \) |
\(a_{913}= +0.37049564 \pm 1 \cdot 10^{-8} \) | \(a_{914}= +0.25724476 \pm 1.1 \cdot 10^{-8} \) | \(a_{915}= +0.49802040 \pm 1.3 \cdot 10^{-8} \) |
\(a_{916}= +0.77638357 \pm 1.2 \cdot 10^{-8} \) | \(a_{917}= -0.06090292 \pm 1 \cdot 10^{-8} \) | \(a_{918}= +0.22695629 \pm 1.1 \cdot 10^{-8} \) |
\(a_{919}= -0.69591006 \pm 1 \cdot 10^{-8} \) | \(a_{920}= +0.02523042 \pm 1.2 \cdot 10^{-8} \) | \(a_{921}= +0.92941468 \pm 1.1 \cdot 10^{-8} \) |
\(a_{922}= +0.19417992 \pm 1.1 \cdot 10^{-8} \) | \(a_{923}= -1.52797354 \pm 1 \cdot 10^{-8} \) | \(a_{924}= -0.17675646 \pm 1.2 \cdot 10^{-8} \) |
\(a_{925}= +0.03320043 \pm 1 \cdot 10^{-8} \) | \(a_{926}= -0.54252949 \pm 1.0 \cdot 10^{-8} \) | \(a_{927}= -0.51735479 \pm 1.1 \cdot 10^{-8} \) |
\(a_{928}= -0.26182337 \pm 1.1 \cdot 10^{-8} \) | \(a_{929}= +0.97906873 \pm 1 \cdot 10^{-8} \) | \(a_{930}= -0.24073322 \pm 1.2 \cdot 10^{-8} \) |
\(a_{931}= +0.99966312 \pm 1 \cdot 10^{-8} \) | \(a_{932}= -0.48848019 \pm 1.1 \cdot 10^{-8} \) | \(a_{933}= +0.92818294 \pm 1.0 \cdot 10^{-8} \) |
\(a_{934}= -0.54376871 \pm 1.2 \cdot 10^{-8} \) | \(a_{935}= +1.53424765 \pm 1 \cdot 10^{-8} \) | \(a_{936}= +0.11555835 \pm 1.1 \cdot 10^{-8} \) |
\(a_{937}= +1.18738296 \pm 1 \cdot 10^{-8} \) | \(a_{938}= -0.27817064 \pm 1.2 \cdot 10^{-8} \) | \(a_{939}= -0.87120388 \pm 1.1 \cdot 10^{-8} \) |
\(a_{940}= -0.01912385 \pm 1.2 \cdot 10^{-8} \) | \(a_{941}= +1.84414159 \pm 1 \cdot 10^{-8} \) | \(a_{942}= +0.28932596 \pm 1.1 \cdot 10^{-8} \) |
\(a_{943}= -0.08230549 \pm 1 \cdot 10^{-8} \) | \(a_{944}= -0.12305979 \pm 1.1 \cdot 10^{-8} \) | \(a_{945}= -0.13335273 \pm 1.2 \cdot 10^{-8} \) |
\(a_{946}= -0.09478483 \pm 1.3 \cdot 10^{-8} \) | \(a_{947}= -1.56924566 \pm 1 \cdot 10^{-8} \) | \(a_{948}= +0.24846864 \pm 1.1 \cdot 10^{-8} \) |
\(a_{949}= -0.64016094 \pm 1 \cdot 10^{-8} \) | \(a_{950}= -0.05386360 \pm 1.1 \cdot 10^{-8} \) | \(a_{951}= +0.47453954 \pm 1.1 \cdot 10^{-8} \) |
\(a_{952}= -0.40044306 \pm 1.1 \cdot 10^{-8} \) | \(a_{953}= +1.18920315 \pm 1 \cdot 10^{-8} \) | \(a_{954}= -0.17830338 \pm 1.1 \cdot 10^{-8} \) |
\(a_{955}= +0.28029750 \pm 1 \cdot 10^{-8} \) | \(a_{956}= -0.33073552 \pm 1.1 \cdot 10^{-8} \) | \(a_{957}= -0.77097805 \pm 1.2 \cdot 10^{-8} \) |
\(a_{958}= -0.22074717 \pm 1.1 \cdot 10^{-8} \) | \(a_{959}= +0.07817887 \pm 1 \cdot 10^{-8} \) | \(a_{960}= +0.07363538 \pm 1.1 \cdot 10^{-8} \) |
\(a_{961}= -0.66599801 \pm 1 \cdot 10^{-8} \) | \(a_{962}= +0.56068040 \pm 1.3 \cdot 10^{-8} \) | \(a_{963}= +0.06781785 \pm 1.1 \cdot 10^{-8} \) |
\(a_{964}= +0.62730736 \pm 1.2 \cdot 10^{-8} \) | \(a_{965}= +0.64872368 \pm 1 \cdot 10^{-8} \) | \(a_{966}= -0.01939114 \pm 1.1 \cdot 10^{-8} \) |
\(a_{967}= -0.03157631 \pm 1 \cdot 10^{-8} \) | \(a_{968}= -0.06614894 \pm 1.1 \cdot 10^{-8} \) | \(a_{969}= -1.78652049 \pm 1.1 \cdot 10^{-8} \) |
\(a_{970}= +0.59047228 \pm 1.3 \cdot 10^{-8} \) | \(a_{971}= +0.28938280 \pm 1 \cdot 10^{-8} \) | \(a_{972}= +0.03207501 \pm 1.7 \cdot 10^{-6} \) |
\(a_{973}= +0.81573374 \pm 1 \cdot 10^{-8} \) | \(a_{974}= +0.41126635 \pm 1.2 \cdot 10^{-8} \) | \(a_{975}= +0.02324276 \pm 1.2 \cdot 10^{-8} \) |
\(a_{976}= +0.21135408 \pm 1.1 \cdot 10^{-8} \) | \(a_{977}= -0.57512761 \pm 1 \cdot 10^{-8} \) | \(a_{978}= +0.43007619 \pm 1.1 \cdot 10^{-8} \) |
\(a_{979}= +0.61559875 \pm 1 \cdot 10^{-8} \) | \(a_{980}= -0.27487248 \pm 1.2 \cdot 10^{-8} \) | \(a_{981}= +0.34971898 \pm 1.2 \cdot 10^{-8} \) |
\(a_{982}= +1.05438325 \pm 1.2 \cdot 10^{-8} \) | \(a_{983}= -1.72258614 \pm 1 \cdot 10^{-8} \) | \(a_{984}= -0.24020990 \pm 1.1 \cdot 10^{-8} \) |
\(a_{985}= +0.42223771 \pm 1 \cdot 10^{-8} \) | \(a_{986}= -1.74665645 \pm 1.2 \cdot 10^{-8} \) | \(a_{987}= +0.01469786 \pm 1.1 \cdot 10^{-8} \) |
\(a_{988}= -0.90963489 \pm 1.2 \cdot 10^{-8} \) | \(a_{989}= -0.01039841 \pm 1 \cdot 10^{-8} \) | \(a_{990}= +0.21683037 \pm 1.3 \cdot 10^{-8} \) |
\(a_{991}= -0.94331445 \pm 1 \cdot 10^{-8} \) | \(a_{992}= -0.10216439 \pm 1.1 \cdot 10^{-8} \) | \(a_{993}= -0.99951379 \pm 1.1 \cdot 10^{-8} \) |
\(a_{994}= +0.74830721 \pm 1.2 \cdot 10^{-8} \) | \(a_{995}= -0.95276918 \pm 1 \cdot 10^{-8} \) | \(a_{996}= +0.11862418 \pm 1.1 \cdot 10^{-8} \) |
\(a_{997}= +0.18641459 \pm 1 \cdot 10^{-8} \) | \(a_{998}= -0.36246805 \pm 1.0 \cdot 10^{-8} \) | \(a_{999}= +0.15562556 \pm 1.2 \cdot 10^{-8} \) |
\(a_{1000}= -0.34592759 \pm 1.1 \cdot 10^{-8} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000