Maass form invariants
| Level: | \( 5 \) |
| Weight: | \( 0 \) |
| Character: | 5.1 |
| Symmetry: | odd |
| Fricke sign: | $+1$ |
| Spectral parameter: | \(11.8708494299610709121935764783 \pm 7 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
| \(a_{1}= +1 \) | \(a_{2}= -0.90216504 \pm 2.2 \cdot 10^{-7} \) | \(a_{3}= +1.11027136 \pm 2.4 \cdot 10^{-7} \) |
| \(a_{4}= -0.18609823 \pm 1.9 \cdot 10^{-7} \) | \(a_{5}= -0.44721360 \pm 1.0 \cdot 10^{-8} \) | \(a_{6}= -1.00164802 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{7}= +0.29262002 \pm 9.2 \cdot 10^{-8} \) | \(a_{8}= +1.07005636 \pm 2.0 \cdot 10^{-7} \) | \(a_{9}= +0.23270250 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{10}= +0.40346047 \pm 2.3 \cdot 10^{-7} \) | \(a_{11}= +1.12649795 \pm 1.2 \cdot 10^{-7} \) | \(a_{12}= -0.20661954 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{13}= -1.47610410 \pm 1.5 \cdot 10^{-7} \) | \(a_{14}= -0.26399156 \pm 9.4 \cdot 10^{-8} \) | \(a_{15}= -0.49652845 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{16}= -0.77926922 \pm 9.8 \cdot 10^{-8} \) | \(a_{17}= -0.30300272 \pm 2.4 \cdot 10^{-7} \) | \(a_{18}= -0.20993606 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{19}= -0.85351717 \pm 2.2 \cdot 10^{-7} \) | \(a_{20}= +0.08322566 \pm 2.0 \cdot 10^{-7} \) | \(a_{21}= +0.32488763 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{22}= -1.01628707 \pm 1.3 \cdot 10^{-7} \) | \(a_{23}= -1.28676882 \pm 9.6 \cdot 10^{-8} \) | \(a_{24}= +1.18805294 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{25}= +0.2 \) | \(a_{26}= +1.33168953 \pm 1.8 \cdot 10^{-7} \) | \(a_{27}= -0.85190844 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{28}= -0.05445607 \pm 7.6 \cdot 10^{-8} \) | \(a_{29}= -1.82849360 \pm 1.1 \cdot 10^{-7} \) | \(a_{30}= +0.44795061 \pm 4.7 \cdot 10^{-7} \) |
| \(a_{31}= +0.26130441 \pm 2.3 \cdot 10^{-7} \) | \(a_{32}= -0.36702692 \pm 2.4 \cdot 10^{-7} \) | \(a_{33}= +1.25071842 \pm 8.9 \cdot 10^{-8} \) |
| \(a_{34}= +0.27335846 \pm 2.3 \cdot 10^{-7} \) | \(a_{35}= -0.13086365 \pm 1.0 \cdot 10^{-7} \) | \(a_{36}= -0.04330552 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{37}= -0.33958279 \pm 2.9 \cdot 10^{-7} \) | \(a_{38}= +0.77001336 \pm 1.6 \cdot 10^{-7} \) | \(a_{39}= -1.63887612 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{40}= -0.47854375 \pm 2.1 \cdot 10^{-7} \) | \(a_{41}= +1.10074038 \pm 2.5 \cdot 10^{-7} \) | \(a_{42}= -0.29310227 \pm 9.6 \cdot 10^{-8} \) |
| \(a_{43}= +0.06663303 \pm 2.5 \cdot 10^{-7} \) | \(a_{44}= -0.20963928 \pm 9.4 \cdot 10^{-8} \) | \(a_{45}= -0.10406772 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{46}= +1.16087785 \pm 1.1 \cdot 10^{-7} \) | \(a_{47}= +1.26014065 \pm 1.4 \cdot 10^{-7} \) | \(a_{48}= -0.86520030 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{49}= -0.91437352 \pm 2.0 \cdot 10^{-7} \) | \(a_{50}= -0.18043301 \pm 2.3 \cdot 10^{-7} \) | \(a_{51}= -0.33641524 \pm 2.4 \cdot 10^{-7} \) |
| \(a_{52}= +0.27470036 \pm 1.4 \cdot 10^{-7} \) | \(a_{53}= -0.40773311 \pm 2.3 \cdot 10^{-7} \) | \(a_{54}= +0.76856201 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{55}= -0.50378520 \pm 1.3 \cdot 10^{-7} \) | \(a_{56}= +0.31311992 \pm 8.0 \cdot 10^{-8} \) | \(a_{57}= -0.94763568 \pm 2.6 \cdot 10^{-7} \) |
| \(a_{58}= +1.64960301 \pm 8.7 \cdot 10^{-8} \) | \(a_{59}= -1.06795050 \pm 1.8 \cdot 10^{-7} \) | \(a_{60}= +0.09240307 \pm 4.4 \cdot 10^{-7} \) |
| \(a_{61}= +0.48272193 \pm 1.3 \cdot 10^{-7} \) | \(a_{62}= -0.23573970 \pm 3.2 \cdot 10^{-7} \) | \(a_{63}= +0.06809341 \pm 7.2 \cdot 10^{-8} \) |
| \(a_{64}= +1.11038807 \pm 2.2 \cdot 10^{-7} \) | \(a_{65}= +0.66013382 \pm 1.6 \cdot 10^{-7} \) | \(a_{66}= -1.12835444 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{67}= -0.17155588 \pm 1.5 \cdot 10^{-7} \) | \(a_{68}= +0.05638827 \pm 2.0 \cdot 10^{-7} \) | \(a_{69}= -1.42866258 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{70}= +0.11806061 \pm 3.2 \cdot 10^{-7} \) | \(a_{71}= -1.64390762 \pm 1.1 \cdot 10^{-7} \) | \(a_{72}= +0.24900480 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{73}= +1.72816920 \pm 1.9 \cdot 10^{-7} \) | \(a_{74}= +0.30635972 \pm 2.0 \cdot 10^{-7} \) | \(a_{75}= +0.22205427 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{76}= +0.15883804 \pm 1.5 \cdot 10^{-7} \) | \(a_{77}= +0.32963586 \pm 6.1 \cdot 10^{-8} \) | \(a_{78}= +1.47853675 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{79}= -0.52583305 \pm 2.8 \cdot 10^{-7} \) | \(a_{80}= +0.34849979 \pm 1.0 \cdot 10^{-7} \) | \(a_{81}= -1.17855205 \pm 2.4 \cdot 10^{-7} \) |
| \(a_{82}= -0.99304949 \pm 3.3 \cdot 10^{-7} \) | \(a_{83}= -0.15217498 \pm 2.4 \cdot 10^{-7} \) | \(a_{84}= -0.06046101 \pm 6.8 \cdot 10^{-8} \) |
| \(a_{85}= +0.13550694 \pm 2.5 \cdot 10^{-7} \) | \(a_{86}= -0.06011399 \pm 1.5 \cdot 10^{-7} \) | \(a_{87}= -2.03012409 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{88}= +1.20541630 \pm 1.1 \cdot 10^{-7} \) | \(a_{89}= +1.54699783 \pm 2.8 \cdot 10^{-7} \) | \(a_{90}= +0.09388626 \pm 3.5 \cdot 10^{-7} \) |
| \(a_{91}= -0.43193762 \pm 6.7 \cdot 10^{-8} \) | \(a_{92}= +0.23946540 \pm 8.3 \cdot 10^{-8} \) | \(a_{93}= +0.29011880 \pm 2.4 \cdot 10^{-7} \) |
| \(a_{94}= -1.13685484 \pm 1.3 \cdot 10^{-7} \) | \(a_{95}= +0.38170448 \pm 2.4 \cdot 10^{-7} \) | \(a_{96}= -0.40749948 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{97}= +1.10016387 \pm 1.8 \cdot 10^{-7} \) | \(a_{98}= +0.82491583 \pm 1.9 \cdot 10^{-7} \) | \(a_{99}= +0.26213889 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{100}= -0.03721965 \pm 2.0 \cdot 10^{-7} \) | \(a_{101}= -1.19657044 \pm 1.9 \cdot 10^{-7} \) | \(a_{102}= +0.30350207 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{103}= +0.20952701 \pm 1.8 \cdot 10^{-7} \) | \(a_{104}= -1.57951459 \pm 1.3 \cdot 10^{-7} \) | \(a_{105}= -0.14529417 \pm 3.4 \cdot 10^{-7} \) |
| \(a_{106}= +0.36784256 \pm 1.8 \cdot 10^{-7} \) | \(a_{107}= -0.30225709 \pm 1.8 \cdot 10^{-7} \) | \(a_{108}= +0.15853865 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{109}= +0.43375718 \pm 1.1 \cdot 10^{-7} \) | \(a_{110}= +0.45449740 \pm 3.5 \cdot 10^{-7} \) | \(a_{111}= -0.37702905 \pm 3.1 \cdot 10^{-7} \) |
| \(a_{112}= -0.22802978 \pm 6.6 \cdot 10^{-8} \) | \(a_{113}= -1.06168986 \pm 1.6 \cdot 10^{-7} \) | \(a_{114}= +0.85492378 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{115}= +0.57546051 \pm 1.0 \cdot 10^{-7} \) | \(a_{116}= +0.34027943 \pm 6.0 \cdot 10^{-8} \) | \(a_{117}= -0.34349312 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{118}= +0.96346761 \pm 1.9 \cdot 10^{-7} \) | \(a_{119}= -0.08866466 \pm 8.0 \cdot 10^{-8} \) | \(a_{120}= -0.53131343 \pm 4.5 \cdot 10^{-7} \) |
| \(a_{121}= +0.26899763 \pm 1.9 \cdot 10^{-7} \) | \(a_{122}= -0.43549485 \pm 1.1 \cdot 10^{-7} \) | \(a_{123}= +1.22212052 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{124}= -0.04862829 \pm 2.8 \cdot 10^{-7} \) | \(a_{125}= -0.08944272 \pm 3.1 \cdot 10^{-7} \) | \(a_{126}= -0.06143150 \pm 7.4 \cdot 10^{-8} \) |
| \(a_{127}= -0.57975598 \pm 2.6 \cdot 10^{-7} \) | \(a_{128}= -0.63472639 \pm 1.7 \cdot 10^{-7} \) | \(a_{129}= +0.07398074 \pm 2.7 \cdot 10^{-7} \) |
| \(a_{130}= -0.59554966 \pm 3.9 \cdot 10^{-7} \) | \(a_{131}= -1.00107161 \pm 2.2 \cdot 10^{-7} \) | \(a_{132}= -0.23275649 \pm 8.5 \cdot 10^{-8} \) |
| \(a_{133}= -0.24975621 \pm 9.4 \cdot 10^{-8} \) | \(a_{134}= +0.15477172 \pm 1.0 \cdot 10^{-7} \) | \(a_{135}= +0.38098504 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{136}= -0.32422999 \pm 2.2 \cdot 10^{-7} \) | \(a_{137}= +0.99479331 \pm 2.7 \cdot 10^{-7} \) | \(a_{138}= +1.28888944 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{139}= +0.03609083 \pm 2.6 \cdot 10^{-7} \) | \(a_{140}= +0.02435349 \pm 2.9 \cdot 10^{-7} \) | \(a_{141}= +1.39909808 \pm 7.8 \cdot 10^{-8} \) |
| \(a_{142}= +1.48307599 \pm 1.2 \cdot 10^{-7} \) | \(a_{143}= -1.66282825 \pm 1.3 \cdot 10^{-7} \) | \(a_{144}= -0.18133790 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{145}= +0.81772720 \pm 1.2 \cdot 10^{-7} \) | \(a_{146}= -1.55909385 \pm 1.6 \cdot 10^{-7} \) | \(a_{147}= -1.01520274 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{148}= +0.06319576 \pm 2.0 \cdot 10^{-7} \) | \(a_{149}= -0.50843812 \pm 8.6 \cdot 10^{-8} \) | \(a_{150}= -0.20032960 \pm 4.7 \cdot 10^{-7} \) |
| \(a_{151}= +1.05416239 \pm 1.5 \cdot 10^{-7} \) | \(a_{152}= -0.91331148 \pm 2.2 \cdot 10^{-7} \) | \(a_{153}= -0.07050949 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{154}= -0.29738595 \pm 6.9 \cdot 10^{-8} \) | \(a_{155}= -0.11685888 \pm 2.4 \cdot 10^{-7} \) | \(a_{156}= +0.30499195 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{157}= +0.49005148 \pm 2.1 \cdot 10^{-7} \) | \(a_{158}= +0.47438820 \pm 1.9 \cdot 10^{-7} \) | \(a_{159}= -0.45269440 \pm 2.4 \cdot 10^{-7} \) |
| \(a_{160}= +0.16413943 \pm 2.5 \cdot 10^{-7} \) | \(a_{161}= -0.37653432 \pm 7.0 \cdot 10^{-8} \) | \(a_{162}= +1.06324846 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{163}= +0.19001091 \pm 1.9 \cdot 10^{-7} \) | \(a_{164}= -0.20484584 \pm 2.8 \cdot 10^{-7} \) | \(a_{165}= -0.55933828 \pm 3.7 \cdot 10^{-7} \) |
| \(a_{166}= +0.13728694 \pm 1.8 \cdot 10^{-7} \) | \(a_{167}= -0.95222377 \pm 1.8 \cdot 10^{-7} \) | \(a_{168}= +0.34764808 \pm 9.7 \cdot 10^{-8} \) |
| \(a_{169}= +1.17888333 \pm 1.8 \cdot 10^{-7} \) | \(a_{170}= -0.12224962 \pm 4.7 \cdot 10^{-7} \) | \(a_{171}= -0.19861558 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{172}= -0.01240029 \pm 1.6 \cdot 10^{-7} \) | \(a_{173}= +0.51178531 \pm 2.1 \cdot 10^{-7} \) | \(a_{174}= +1.83150699 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{175}= +0.05852400 \pm 1.0 \cdot 10^{-7} \) | \(a_{176}= -0.87784517 \pm 8.0 \cdot 10^{-8} \) | \(a_{177}= -1.18571486 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{178}= -1.39564737 \pm 2.6 \cdot 10^{-7} \) | \(a_{179}= -0.01514373 \pm 2.3 \cdot 10^{-7} \) | \(a_{180}= +0.01936682 \pm 3.2 \cdot 10^{-7} \) |
| \(a_{181}= +0.30902902 \pm 2.4 \cdot 10^{-7} \) | \(a_{182}= +0.38967902 \pm 8.5 \cdot 10^{-8} \) | \(a_{183}= +0.53595234 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{184}= -1.37691517 \pm 7.6 \cdot 10^{-8} \) | \(a_{185}= +0.15186604 \pm 3.0 \cdot 10^{-7} \) | \(a_{186}= -0.26173504 \pm 3.3 \cdot 10^{-7} \) |
| \(a_{187}= -0.34133194 \pm 1.5 \cdot 10^{-7} \) | \(a_{188}= -0.23450995 \pm 9.7 \cdot 10^{-8} \) | \(a_{189}= -0.24928547 \pm 6.5 \cdot 10^{-8} \) |
| \(a_{190}= -0.34436044 \pm 4.6 \cdot 10^{-7} \) | \(a_{191}= +1.47388398 \pm 6.2 \cdot 10^{-8} \) | \(a_{192}= +1.23283208 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{193}= +0.61482672 \pm 9.9 \cdot 10^{-8} \) | \(a_{194}= -0.99252939 \pm 1.6 \cdot 10^{-7} \) | \(a_{195}= +0.73292768 \pm 4.0 \cdot 10^{-7} \) |
| \(a_{196}= +0.17016330 \pm 1.7 \cdot 10^{-7} \) | \(a_{197}= -0.43919730 \pm 2.2 \cdot 10^{-7} \) | \(a_{198}= -0.23649255 \pm 9.7 \cdot 10^{-8} \) |
| \(a_{199}= +0.38652071 \pm 3.0 \cdot 10^{-7} \) | \(a_{200}= +0.21401127 \pm 2.1 \cdot 10^{-7} \) | \(a_{201}= -0.19047359 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{202}= +1.07950402 \pm 1.7 \cdot 10^{-7} \) | \(a_{203}= -0.53505384 \pm 6.0 \cdot 10^{-8} \) | \(a_{204}= +0.06260628 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{205}= -0.49226606 \pm 2.6 \cdot 10^{-7} \) | \(a_{206}= -0.18902795 \pm 2.7 \cdot 10^{-7} \) | \(a_{207}= -0.29943433 \pm 8.7 \cdot 10^{-8} \) |
| \(a_{208}= +1.15028249 \pm 8.8 \cdot 10^{-8} \) | \(a_{209}= -0.96148535 \pm 5.5 \cdot 10^{-8} \) | \(a_{210}= +0.13107932 \pm 5.6 \cdot 10^{-7} \) |
| \(a_{211}= -1.06076757 \pm 1.3 \cdot 10^{-7} \) | \(a_{212}= +0.07587841 \pm 1.7 \cdot 10^{-7} \) | \(a_{213}= -1.82518356 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{214}= +0.27268578 \pm 2.0 \cdot 10^{-7} \) | \(a_{215}= -0.02979920 \pm 2.6 \cdot 10^{-7} \) | \(a_{216}= -0.91159005 \pm 1.5 \cdot 10^{-7} \) |
| \(a_{217}= +0.07646290 \pm 9.6 \cdot 10^{-8} \) | \(a_{218}= -0.39132056 \pm 1.5 \cdot 10^{-7} \) | \(a_{219}= +1.91873678 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{220}= +0.09375354 \pm 3.2 \cdot 10^{-7} \) | \(a_{221}= +0.44726356 \pm 1.9 \cdot 10^{-7} \) | \(a_{222}= +0.34014243 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{223}= +1.46674512 \pm 2.3 \cdot 10^{-7} \) | \(a_{224}= -0.10739943 \pm 8.5 \cdot 10^{-8} \) | \(a_{225}= +0.04654050 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{226}= +0.95781948 \pm 2.0 \cdot 10^{-7} \) | \(a_{227}= -0.09127030 \pm 1.8 \cdot 10^{-7} \) | \(a_{228}= +0.17635332 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{229}= -0.23753323 \pm 3.3 \cdot 10^{-7} \) | \(a_{230}= -0.51916036 \pm 3.2 \cdot 10^{-7} \) | \(a_{231}= +0.36598525 \pm 5.1 \cdot 10^{-8} \) |
| \(a_{232}= -1.95659122 \pm 1.1 \cdot 10^{-7} \) | \(a_{233}= +0.58853304 \pm 3.0 \cdot 10^{-7} \) | \(a_{234}= +0.30988749 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{235}= -0.56355203 \pm 1.5 \cdot 10^{-7} \) | \(a_{236}= +0.19874370 \pm 1.5 \cdot 10^{-7} \) | \(a_{237}= -0.58381738 \pm 3.1 \cdot 10^{-7} \) |
| \(a_{238}= +0.07999016 \pm 8.2 \cdot 10^{-8} \) | \(a_{239}= -0.76276302 \pm 2.2 \cdot 10^{-7} \) | \(a_{240}= +0.38692933 \pm 3.5 \cdot 10^{-7} \) |
| \(a_{241}= +0.53850797 \pm 1.3 \cdot 10^{-7} \) | \(a_{242}= -0.24268026 \pm 1.7 \cdot 10^{-7} \) | \(a_{243}= -0.45660415 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{244}= -0.08983370 \pm 9.5 \cdot 10^{-8} \) | \(a_{245}= +0.40892027 \pm 2.1 \cdot 10^{-7} \) | \(a_{246}= -1.10255442 \pm 3.3 \cdot 10^{-7} \) |
| \(a_{247}= +1.25988020 \pm 6.7 \cdot 10^{-8} \) | \(a_{248}= +0.27961045 \pm 1.5 \cdot 10^{-7} \) | \(a_{249}= -0.16895552 \pm 2.7 \cdot 10^{-7} \) |
| \(a_{250}= +0.08069209 \pm 2.3 \cdot 10^{-7} \) | \(a_{251}= +0.60228461 \pm 3.3 \cdot 10^{-7} \) | \(a_{252}= -0.01267206 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{253}= -1.44954244 \pm 7.8 \cdot 10^{-8} \) | \(a_{254}= +0.52303558 \pm 2.1 \cdot 10^{-7} \) | \(a_{255}= +0.15044947 \pm 4.9 \cdot 10^{-7} \) |
| \(a_{256}= -0.53776011 \pm 1.8 \cdot 10^{-7} \) | \(a_{257}= -0.22405507 \pm 1.8 \cdot 10^{-7} \) | \(a_{258}= -0.06674284 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{259}= -0.09936872 \pm 9.6 \cdot 10^{-8} \) | \(a_{260}= -0.12284974 \pm 3.6 \cdot 10^{-7} \) | \(a_{261}= -0.42549504 \pm 9.8 \cdot 10^{-8} \) |
| \(a_{262}= +0.90313182 \pm 2.7 \cdot 10^{-7} \) | \(a_{263}= +0.88489606 \pm 2.5 \cdot 10^{-7} \) | \(a_{264}= +1.33833920 \pm 7.4 \cdot 10^{-8} \) |
| \(a_{265}= +0.18234379 \pm 2.4 \cdot 10^{-7} \) | \(a_{266}= +0.22532133 \pm 8.1 \cdot 10^{-8} \) | \(a_{267}= +1.71758739 \pm 3.1 \cdot 10^{-7} \) |
| \(a_{268}= +0.03192625 \pm 1.0 \cdot 10^{-7} \) | \(a_{269}= -1.85310905 \pm 2.2 \cdot 10^{-7} \) | \(a_{270}= -0.34371138 \pm 4.1 \cdot 10^{-7} \) |
| \(a_{271}= -0.38031441 \pm 1.7 \cdot 10^{-7} \) | \(a_{272}= +0.23612069 \pm 9.6 \cdot 10^{-8} \) | \(a_{273}= -0.47956797 \pm 6.0 \cdot 10^{-8} \) |
| \(a_{274}= -0.89746775 \pm 3.3 \cdot 10^{-7} \) | \(a_{275}= +0.22529959 \pm 1.3 \cdot 10^{-7} \) | \(a_{276}= +0.26587158 \pm 8.0 \cdot 10^{-8} \) |
| \(a_{277}= -0.49728240 \pm 2.4 \cdot 10^{-7} \) | \(a_{278}= -0.03255989 \pm 1.8 \cdot 10^{-7} \) | \(a_{279}= +0.06080619 \pm 8.0 \cdot 10^{-8} \) |
| \(a_{280}= -0.14003148 \pm 3.0 \cdot 10^{-7} \) | \(a_{281}= -1.34245739 \pm 9.8 \cdot 10^{-8} \) | \(a_{282}= -1.26221738 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{283}= +0.03814997 \pm 2.4 \cdot 10^{-7} \) | \(a_{284}= +0.30592830 \pm 6.4 \cdot 10^{-8} \) | \(a_{285}= +0.42379556 \pm 4.8 \cdot 10^{-7} \) |
| \(a_{286}= +1.50014552 \pm 1.3 \cdot 10^{-7} \) | \(a_{287}= +0.32209868 \pm 1.0 \cdot 10^{-7} \) | \(a_{288}= -0.08540808 \pm 8.4 \cdot 10^{-8} \) |
| \(a_{289}= -0.90818935 \pm 1.0 \cdot 10^{-7} \) | \(a_{290}= -0.73772489 \pm 3.4 \cdot 10^{-7} \) | \(a_{291}= +1.22148045 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{292}= -0.32160923 \pm 1.5 \cdot 10^{-7} \) | \(a_{293}= +1.09197304 \pm 2.9 \cdot 10^{-7} \) | \(a_{294}= +0.91588042 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{295}= +0.47760198 \pm 2.0 \cdot 10^{-7} \) | \(a_{296}= -0.36337273 \pm 2.8 \cdot 10^{-7} \) | \(a_{297}= -0.95967311 \pm 7.4 \cdot 10^{-8} \) |
| \(a_{298}= +0.45869510 \pm 9.8 \cdot 10^{-8} \) | \(a_{299}= +1.89940474 \pm 7.4 \cdot 10^{-8} \) | \(a_{300}= -0.04132391 \pm 4.4 \cdot 10^{-7} \) |
| \(a_{301}= +0.01949816 \pm 7.5 \cdot 10^{-8} \) | \(a_{302}= -0.95102846 \pm 1.8 \cdot 10^{-7} \) | \(a_{303}= -1.32851790 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{304}= +0.66511966 \pm 7.8 \cdot 10^{-8} \) | \(a_{305}= -0.21587981 \pm 1.4 \cdot 10^{-7} \) | \(a_{306}= +0.06361120 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{307}= +1.01046614 \pm 2.0 \cdot 10^{-7} \) | \(a_{308}= -0.06134465 \pm 4.8 \cdot 10^{-8} \) | \(a_{309}= +0.23263184 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{310}= +0.10542600 \pm 4.7 \cdot 10^{-7} \) | \(a_{311}= -1.06420478 \pm 2.2 \cdot 10^{-7} \) | \(a_{312}= -1.75368982 \pm 8.7 \cdot 10^{-8} \) |
| \(a_{313}= -0.24283602 \pm 2.1 \cdot 10^{-7} \) | \(a_{314}= -0.44210732 \pm 1.9 \cdot 10^{-7} \) | \(a_{315}= -0.03045230 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{316}= +0.09785660 \pm 1.8 \cdot 10^{-7} \) | \(a_{317}= +1.71483245 \pm 3.2 \cdot 10^{-7} \) | \(a_{318}= +0.40840506 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{319}= -2.05979430 \pm 7.5 \cdot 10^{-8} \) | \(a_{320}= -0.49658064 \pm 2.3 \cdot 10^{-7} \) | \(a_{321}= -0.33558739 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{322}= +0.33969610 \pm 7.4 \cdot 10^{-8} \) | \(a_{323}= +0.25861802 \pm 2.3 \cdot 10^{-7} \) | \(a_{324}= +0.21932645 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{325}= -0.29522082 \pm 1.6 \cdot 10^{-7} \) | \(a_{326}= -0.17142120 \pm 1.8 \cdot 10^{-7} \) | \(a_{327}= +0.48158817 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{328}= +1.17785425 \pm 1.7 \cdot 10^{-7} \) | \(a_{329}= +0.36874239 \pm 5.8 \cdot 10^{-8} \) | \(a_{330}= +0.50461544 \pm 5.9 \cdot 10^{-7} \) |
| \(a_{331}= +0.56959655 \pm 1.8 \cdot 10^{-7} \) | \(a_{332}= +0.02831949 \pm 1.7 \cdot 10^{-7} \) | \(a_{333}= -0.07902177 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{334}= +0.85906300 \pm 1.3 \cdot 10^{-7} \) | \(a_{335}= +0.07672212 \pm 1.6 \cdot 10^{-7} \) | \(a_{336}= -0.25317493 \pm 6.8 \cdot 10^{-8} \) |
| \(a_{337}= +0.38793408 \pm 3.2 \cdot 10^{-7} \) | \(a_{338}= -1.06354733 \pm 1.2 \cdot 10^{-7} \) | \(a_{339}= -1.17876385 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{340}= -0.02521760 \pm 4.5 \cdot 10^{-7} \) | \(a_{341}= +0.29435888 \pm 1.2 \cdot 10^{-7} \) | \(a_{342}= +0.17918404 \pm 9.4 \cdot 10^{-8} \) |
| \(a_{343}= -0.56018402 \pm 1.4 \cdot 10^{-7} \) | \(a_{344}= +0.07130110 \pm 2.4 \cdot 10^{-7} \) | \(a_{345}= +0.63891733 \pm 3.4 \cdot 10^{-7} \) |
| \(a_{346}= -0.46171482 \pm 2.7 \cdot 10^{-7} \) | \(a_{347}= +0.68788140 \pm 1.5 \cdot 10^{-7} \) | \(a_{348}= +0.37780250 \pm 6.2 \cdot 10^{-8} \) |
| \(a_{349}= -1.60154957 \pm 2.4 \cdot 10^{-7} \) | \(a_{350}= -0.05279831 \pm 3.2 \cdot 10^{-7} \) | \(a_{351}= +1.25750554 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{352}= -0.41345507 \pm 1.1 \cdot 10^{-7} \) | \(a_{353}= -1.42532700 \pm 9.5 \cdot 10^{-8} \) | \(a_{354}= +1.06971050 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{355}= +0.73517784 \pm 1.2 \cdot 10^{-7} \) | \(a_{356}= -0.28789356 \pm 2.4 \cdot 10^{-7} \) | \(a_{357}= -0.09844184 \pm 8.5 \cdot 10^{-8} \) |
| \(a_{358}= +0.01366215 \pm 3.3 \cdot 10^{-7} \) | \(a_{359}= -0.08807537 \pm 1.1 \cdot 10^{-7} \) | \(a_{360}= -0.11135833 \pm 3.3 \cdot 10^{-7} \) |
| \(a_{361}= -0.27150843 \pm 1.7 \cdot 10^{-7} \) | \(a_{362}= -0.27879518 \pm 2.5 \cdot 10^{-7} \) | \(a_{363}= +0.29866037 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{364}= +0.08038283 \pm 6.8 \cdot 10^{-8} \) | \(a_{365}= -0.77286076 \pm 2.0 \cdot 10^{-7} \) | \(a_{366}= -0.48351747 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{367}= -1.86015638 \pm 1.9 \cdot 10^{-7} \) | \(a_{368}= +1.00273933 \pm 7.7 \cdot 10^{-8} \) | \(a_{369}= +0.25614504 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{370}= -0.13700823 \pm 5.2 \cdot 10^{-7} \) | \(a_{371}= -0.11931087 \pm 7.4 \cdot 10^{-8} \) | \(a_{372}= -0.05399060 \pm 2.9 \cdot 10^{-7} \) |
| \(a_{373}= -0.11446455 \pm 2.7 \cdot 10^{-7} \) | \(a_{374}= +0.30793775 \pm 1.4 \cdot 10^{-7} \) | \(a_{375}= -0.09930569 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{376}= +1.34842152 \pm 1.4 \cdot 10^{-7} \) | \(a_{377}= +2.69904691 \pm 8.1 \cdot 10^{-8} \) | \(a_{378}= +0.22489663 \pm 6.5 \cdot 10^{-8} \) |
| \(a_{379}= +1.23359568 \pm 1.8 \cdot 10^{-7} \) | \(a_{380}= -0.07103453 \pm 4.3 \cdot 10^{-7} \) | \(a_{381}= -0.64368646 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{382}= -1.32968661 \pm 7.2 \cdot 10^{-8} \) | \(a_{383}= +1.88614128 \pm 2.6 \cdot 10^{-7} \) | \(a_{384}= -0.70471853 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{385}= -0.14741764 \pm 2.2 \cdot 10^{-7} \) | \(a_{386}= -0.55467518 \pm 9.9 \cdot 10^{-8} \) | \(a_{387}= +0.01550567 \pm 6.3 \cdot 10^{-8} \) |
| \(a_{388}= -0.20473855 \pm 1.2 \cdot 10^{-7} \) | \(a_{389}= -0.12689092 \pm 2.6 \cdot 10^{-7} \) | \(a_{390}= -0.66122173 \pm 6.3 \cdot 10^{-7} \) |
| \(a_{391}= +0.38989445 \pm 7.7 \cdot 10^{-8} \) | \(a_{392}= -0.97843121 \pm 1.8 \cdot 10^{-7} \) | \(a_{393}= -1.11146115 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{394}= +0.39622845 \pm 2.6 \cdot 10^{-7} \) | \(a_{395}= +0.23515969 \pm 2.9 \cdot 10^{-7} \) | \(a_{396}= -0.04878358 \pm 5.1 \cdot 10^{-8} \) |
| \(a_{397}= -0.05005389 \pm 2.3 \cdot 10^{-7} \) | \(a_{398}= -0.34870548 \pm 2.7 \cdot 10^{-7} \) | \(a_{399}= -0.27729717 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{400}= -0.15585384 \pm 1.0 \cdot 10^{-7} \) | \(a_{401}= -1.62388381 \pm 3.6 \cdot 10^{-7} \) | \(a_{402}= +0.17183861 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{403}= -0.38571251 \pm 2.0 \cdot 10^{-7} \) | \(a_{404}= +0.22267964 \pm 1.4 \cdot 10^{-7} \) | \(a_{405}= +0.52706450 \pm 2.6 \cdot 10^{-7} \) |
| \(a_{406}= +0.48270687 \pm 5.5 \cdot 10^{-8} \) | \(a_{407}= -0.38253932 \pm 1.0 \cdot 10^{-7} \) | \(a_{408}= -0.35998327 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{409}= +1.45422336 \pm 2.4 \cdot 10^{-7} \) | \(a_{410}= +0.44410523 \pm 4.8 \cdot 10^{-7} \) | \(a_{411}= +1.10449053 \pm 2.9 \cdot 10^{-7} \) |
| \(a_{412}= -0.03899261 \pm 2.3 \cdot 10^{-7} \) | \(a_{413}= -0.31250370 \pm 9.7 \cdot 10^{-8} \) | \(a_{414}= +0.27013918 \pm 8.8 \cdot 10^{-8} \) |
| \(a_{415}= +0.06805472 \pm 2.5 \cdot 10^{-7} \) | \(a_{416}= +0.54176994 \pm 1.6 \cdot 10^{-7} \) | \(a_{417}= +0.04007062 \pm 2.8 \cdot 10^{-7} \) |
| \(a_{418}= +0.86741847 \pm 5.7 \cdot 10^{-8} \) | \(a_{419}= -1.79273308 \pm 1.0 \cdot 10^{-7} \) | \(a_{420}= +0.02703899 \pm 5.3 \cdot 10^{-7} \) |
| \(a_{421}= -0.39501835 \pm 1.7 \cdot 10^{-7} \) | \(a_{422}= +0.95698742 \pm 1.2 \cdot 10^{-7} \) | \(a_{423}= +0.29323788 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{424}= -0.43629741 \pm 2.2 \cdot 10^{-7} \) | \(a_{425}= -0.06060054 \pm 2.5 \cdot 10^{-7} \) | \(a_{426}= +1.64661681 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{427}= +0.14125410 \pm 6.3 \cdot 10^{-8} \) | \(a_{428}= +0.05624951 \pm 1.5 \cdot 10^{-7} \) | \(a_{429}= -1.84619059 \pm 7.2 \cdot 10^{-8} \) |
| \(a_{430}= +0.02688379 \pm 4.8 \cdot 10^{-7} \) | \(a_{431}= -1.29239524 \pm 2.2 \cdot 10^{-7} \) | \(a_{432}= +0.66386602 \pm 6.8 \cdot 10^{-8} \) |
| \(a_{433}= +0.41081846 \pm 2.8 \cdot 10^{-7} \) | \(a_{434}= -0.06898216 \pm 1.1 \cdot 10^{-7} \) | \(a_{435}= +0.90789909 \pm 3.6 \cdot 10^{-7} \) |
| \(a_{436}= -0.08072144 \pm 1.2 \cdot 10^{-7} \) | \(a_{437}= +1.09827929 \pm 8.1 \cdot 10^{-8} \) | \(a_{438}= -1.73101725 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{439}= +0.08558356 \pm 1.5 \cdot 10^{-7} \) | \(a_{440}= -0.53907856 \pm 3.4 \cdot 10^{-7} \) | \(a_{441}= -0.21277701 \pm 8.5 \cdot 10^{-8} \) |
| \(a_{442}= -0.40350555 \pm 2.0 \cdot 10^{-7} \) | \(a_{443}= -0.16295452 \pm 2.0 \cdot 10^{-7} \) | \(a_{444}= +0.07016444 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{445}= -0.69183846 \pm 2.9 \cdot 10^{-7} \) | \(a_{446}= -1.32324618 \pm 2.4 \cdot 10^{-7} \) | \(a_{447}= -0.56450428 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{448}= +0.32492178 \pm 9.3 \cdot 10^{-8} \) | \(a_{449}= +0.71785112 \pm 2.5 \cdot 10^{-7} \) | \(a_{450}= -0.04198721 \pm 3.5 \cdot 10^{-7} \) |
| \(a_{451}= +1.23998178 \pm 1.5 \cdot 10^{-7} \) | \(a_{452}= +0.19757861 \pm 1.7 \cdot 10^{-7} \) | \(a_{453}= +1.17040632 \pm 1.5 \cdot 10^{-7} \) |
| \(a_{454}= +0.08234087 \pm 2.0 \cdot 10^{-7} \) | \(a_{455}= +0.19316837 \pm 2.6 \cdot 10^{-7} \) | \(a_{456}= -1.01402359 \pm 2.6 \cdot 10^{-7} \) |
| \(a_{457}= +0.01179773 \pm 2.3 \cdot 10^{-7} \) | \(a_{458}= +0.21429417 \pm 2.6 \cdot 10^{-7} \) | \(a_{459}= +0.25813057 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{460}= -0.10709218 \pm 3.0 \cdot 10^{-7} \) | \(a_{461}= +0.29961398 \pm 3.1 \cdot 10^{-7} \) | \(a_{462}= -0.33017910 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{463}= -1.14050234 \pm 1.9 \cdot 10^{-7} \) | \(a_{464}= +1.42488878 \pm 5.7 \cdot 10^{-8} \) | \(a_{465}= -0.12974507 \pm 4.9 \cdot 10^{-7} \) |
| \(a_{466}= -0.53095394 \pm 2.2 \cdot 10^{-7} \) | \(a_{467}= +0.73034258 \pm 1.1 \cdot 10^{-7} \) | \(a_{468}= +0.06392346 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{469}= -0.05020069 \pm 6.6 \cdot 10^{-8} \) | \(a_{470}= +0.50841694 \pm 3.8 \cdot 10^{-7} \) | \(a_{471}= +0.54409013 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{472}= -1.14276723 \pm 1.6 \cdot 10^{-7} \) | \(a_{473}= +0.07506197 \pm 4.1 \cdot 10^{-8} \) | \(a_{474}= +0.52669963 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{475}= -0.17070343 \pm 2.4 \cdot 10^{-7} \) | \(a_{476}= +0.01650034 \pm 6.6 \cdot 10^{-8} \) | \(a_{477}= -0.09488052 \pm 9.8 \cdot 10^{-8} \) |
| \(a_{478}= +0.68813814 \pm 1.9 \cdot 10^{-7} \) | \(a_{479}= +0.03087583 \pm 2.0 \cdot 10^{-7} \) | \(a_{480}= +0.18223931 \pm 4.9 \cdot 10^{-7} \) |
| \(a_{481}= +0.50125955 \pm 1.1 \cdot 10^{-7} \) | \(a_{482}= -0.48582307 \pm 1.6 \cdot 10^{-7} \) | \(a_{483}= -0.41805528 \pm 7.8 \cdot 10^{-8} \) |
| \(a_{484}= -0.05005998 \pm 1.5 \cdot 10^{-7} \) | \(a_{485}= -0.49200824 \pm 1.9 \cdot 10^{-7} \) | \(a_{486}= +0.41193231 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{487}= -1.45665594 \pm 2.9 \cdot 10^{-7} \) | \(a_{488}= +0.51653968 \pm 1.3 \cdot 10^{-7} \) | \(a_{489}= +0.21096367 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{490}= -0.36891357 \pm 4.3 \cdot 10^{-7} \) | \(a_{491}= +0.63213716 \pm 1.5 \cdot 10^{-7} \) | \(a_{492}= -0.22743447 \pm 2.9 \cdot 10^{-7} \) |
| \(a_{493}= +0.55403853 \pm 1.1 \cdot 10^{-7} \) | \(a_{494}= -1.13661988 \pm 7.9 \cdot 10^{-8} \) | \(a_{495}= -0.11723208 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{496}= -0.20362648 \pm 1.2 \cdot 10^{-7} \) | \(a_{497}= -0.48104029 \pm 8.8 \cdot 10^{-8} \) | \(a_{498}= +0.15242576 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{499}= -0.97279916 \pm 2.8 \cdot 10^{-7} \) | \(a_{500}= +0.01664513 \pm 2.0 \cdot 10^{-7} \) | \(a_{501}= -1.05722678 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{502}= -0.54336012 \pm 2.1 \cdot 10^{-7} \) | \(a_{503}= -1.03434167 \pm 2.9 \cdot 10^{-7} \) | \(a_{504}= +0.07286379 \pm 7.0 \cdot 10^{-8} \) |
| \(a_{505}= +0.53512257 \pm 2.0 \cdot 10^{-7} \) | \(a_{506}= +1.30772652 \pm 9.4 \cdot 10^{-8} \) | \(a_{507}= +1.30888040 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{508}= +0.10789156 \pm 1.7 \cdot 10^{-7} \) | \(a_{509}= +0.34675110 \pm 1.6 \cdot 10^{-7} \) | \(a_{510}= -0.13573025 \pm 7.2 \cdot 10^{-7} \) |
| \(a_{511}= +0.50569691 \pm 7.2 \cdot 10^{-8} \) | \(a_{512}= +1.11987476 \pm 1.5 \cdot 10^{-7} \) | \(a_{513}= +0.72711848 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{514}= +0.20213466 \pm 2.6 \cdot 10^{-7} \) | \(a_{515}= -0.09370333 \pm 1.9 \cdot 10^{-7} \) | \(a_{516}= -0.01376769 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{517}= +1.41954586 \pm 1.5 \cdot 10^{-7} \) | \(a_{518}= +0.08964699 \pm 8.2 \cdot 10^{-8} \) | \(a_{519}= +0.56822058 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{520}= +0.70638040 \pm 3.7 \cdot 10^{-7} \) | \(a_{521}= -1.72644055 \pm 2.1 \cdot 10^{-7} \) | \(a_{522}= +0.38386675 \pm 8.5 \cdot 10^{-8} \) |
| \(a_{523}= -0.65400589 \pm 3.0 \cdot 10^{-7} \) | \(a_{524}= +0.18629766 \pm 2.4 \cdot 10^{-7} \) | \(a_{525}= +0.06497753 \pm 3.4 \cdot 10^{-7} \) |
| \(a_{526}= -0.79832229 \pm 2.9 \cdot 10^{-7} \) | \(a_{527}= -0.07917595 \pm 2.5 \cdot 10^{-7} \) | \(a_{528}= -0.97464636 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{529}= +0.65577400 \pm 2.0 \cdot 10^{-7} \) | \(a_{530}= -0.16450419 \pm 4.6 \cdot 10^{-7} \) | \(a_{531}= -0.24851476 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{532}= +0.04647919 \pm 5.9 \cdot 10^{-8} \) | \(a_{533}= -1.62480739 \pm 2.1 \cdot 10^{-7} \) | \(a_{534}= -1.54954731 \pm 2.8 \cdot 10^{-7} \) |
| \(a_{535}= +0.13517348 \pm 1.9 \cdot 10^{-7} \) | \(a_{536}= -0.18357447 \pm 1.4 \cdot 10^{-7} \) | \(a_{537}= -0.01681365 \pm 2.4 \cdot 10^{-7} \) |
| \(a_{538}= +1.67181021 \pm 2.0 \cdot 10^{-7} \) | \(a_{539}= -1.03003990 \pm 1.0 \cdot 10^{-7} \) | \(a_{540}= -0.07090064 \pm 3.8 \cdot 10^{-7} \) |
| \(a_{541}= -0.39539432 \pm 2.0 \cdot 10^{-7} \) | \(a_{542}= +0.34310637 \pm 1.7 \cdot 10^{-7} \) | \(a_{543}= +0.34310607 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{544}= +0.11121015 \pm 2.5 \cdot 10^{-7} \) | \(a_{545}= -0.19398211 \pm 1.2 \cdot 10^{-7} \) | \(a_{546}= +0.43264946 \pm 7.0 \cdot 10^{-8} \) |
| \(a_{547}= +0.82794752 \pm 1.7 \cdot 10^{-7} \) | \(a_{548}= -0.18512928 \pm 2.9 \cdot 10^{-7} \) | \(a_{549}= +0.11233060 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{550}= -0.20325741 \pm 3.5 \cdot 10^{-7} \) | \(a_{551}= +1.56065069 \pm 1.1 \cdot 10^{-7} \) | \(a_{552}= -1.52874948 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{553}= -0.15386928 \pm 1.0 \cdot 10^{-7} \) | \(a_{554}= +0.44863080 \pm 3.1 \cdot 10^{-7} \) | \(a_{555}= +0.16861252 \pm 5.4 \cdot 10^{-7} \) |
| \(a_{556}= -0.00671644 \pm 1.6 \cdot 10^{-7} \) | \(a_{557}= -0.71891741 \pm 1.8 \cdot 10^{-7} \) | \(a_{558}= -0.05485722 \pm 7.2 \cdot 10^{-8} \) |
| \(a_{559}= -0.09835729 \pm 3.3 \cdot 10^{-8} \) | \(a_{560}= +0.10197802 \pm 2.0 \cdot 10^{-7} \) | \(a_{561}= -0.37897108 \pm 8.0 \cdot 10^{-8} \) |
| \(a_{562}= +1.21111813 \pm 1.0 \cdot 10^{-7} \) | \(a_{563}= +1.27876669 \pm 8.2 \cdot 10^{-8} \) | \(a_{564}= -0.26036968 \pm 8.5 \cdot 10^{-8} \) |
| \(a_{565}= +0.47480214 \pm 1.7 \cdot 10^{-7} \) | \(a_{566}= -0.03441757 \pm 3.3 \cdot 10^{-7} \) | \(a_{567}= -0.34486793 \pm 8.8 \cdot 10^{-8} \) |
| \(a_{568}= -1.75907381 \pm 1.1 \cdot 10^{-7} \) | \(a_{569}= -0.48061740 \pm 1.4 \cdot 10^{-7} \) | \(a_{570}= -0.38233354 \pm 7.0 \cdot 10^{-7} \) |
| \(a_{571}= +1.58090942 \pm 1.9 \cdot 10^{-7} \) | \(a_{572}= +0.30944940 \pm 8.9 \cdot 10^{-8} \) | \(a_{573}= +1.63641118 \pm 6.8 \cdot 10^{-8} \) |
| \(a_{574}= -0.29058617 \pm 1.3 \cdot 10^{-7} \) | \(a_{575}= -0.25735376 \pm 1.0 \cdot 10^{-7} \) | \(a_{576}= +0.25839008 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{577}= -1.16802339 \pm 2.0 \cdot 10^{-7} \) | \(a_{578}= +0.81933669 \pm 8.7 \cdot 10^{-8} \) | \(a_{579}= +0.68262451 \pm 9.1 \cdot 10^{-8} \) |
| \(a_{580}= -0.15217759 \pm 3.1 \cdot 10^{-7} \) | \(a_{581}= -0.04452945 \pm 9.8 \cdot 10^{-8} \) | \(a_{582}= -1.10197696 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{583}= -0.45931051 \pm 1.0 \cdot 10^{-7} \) | \(a_{584}= +1.84923846 \pm 1.8 \cdot 10^{-7} \) | \(a_{585}= +0.15361479 \pm 2.8 \cdot 10^{-7} \) |
| \(a_{586}= -0.98513991 \pm 1.9 \cdot 10^{-7} \) | \(a_{587}= -1.66208932 \pm 2.0 \cdot 10^{-7} \) | \(a_{588}= +0.18892744 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{589}= -0.22302780 \pm 1.5 \cdot 10^{-7} \) | \(a_{590}= -0.43087582 \pm 4.2 \cdot 10^{-7} \) | \(a_{591}= -0.48762819 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{592}= +0.26462642 \pm 7.3 \cdot 10^{-8} \) | \(a_{593}= -0.48025788 \pm 2.7 \cdot 10^{-7} \) | \(a_{594}= +0.86578353 \pm 9.1 \cdot 10^{-8} \) |
| \(a_{595}= +0.03965204 \pm 3.4 \cdot 10^{-7} \) | \(a_{596}= +0.09461944 \pm 6.7 \cdot 10^{-8} \) | \(a_{597}= +0.42914288 \pm 3.2 \cdot 10^{-7} \) |
| \(a_{598}= -1.71357656 \pm 9.7 \cdot 10^{-8} \) | \(a_{599}= +1.00810009 \pm 2.8 \cdot 10^{-7} \) | \(a_{600}= +0.23761059 \pm 4.5 \cdot 10^{-7} \) |
| \(a_{601}= -1.16100827 \pm 2.8 \cdot 10^{-7} \) | \(a_{602}= -0.01759056 \pm 4.9 \cdot 10^{-8} \) | \(a_{603}= -0.03992148 \pm 6.8 \cdot 10^{-8} \) |
| \(a_{604}= -0.19617776 \pm 1.5 \cdot 10^{-7} \) | \(a_{605}= -0.12029940 \pm 2.0 \cdot 10^{-7} \) | \(a_{606}= +1.19854241 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{607}= +0.76280782 \pm 1.6 \cdot 10^{-7} \) | \(a_{608}= +0.31326378 \pm 2.2 \cdot 10^{-7} \) | \(a_{609}= -0.59405496 \pm 8.3 \cdot 10^{-8} \) |
| \(a_{610}= +0.19475922 \pm 3.6 \cdot 10^{-7} \) | \(a_{611}= -1.86009878 \pm 1.8 \cdot 10^{-7} \) | \(a_{612}= +0.01312169 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{613}= +1.69194813 \pm 2.4 \cdot 10^{-7} \) | \(a_{614}= -0.91160723 \pm 1.4 \cdot 10^{-7} \) | \(a_{615}= -0.54654891 \pm 5.0 \cdot 10^{-7} \) |
| \(a_{616}= +0.35272895 \pm 4.5 \cdot 10^{-8} \) | \(a_{617}= +1.77227770 \pm 3.2 \cdot 10^{-7} \) | \(a_{618}= -0.20987232 \pm 2.8 \cdot 10^{-7} \) |
| \(a_{619}= -1.07311714 \pm 3.2 \cdot 10^{-7} \) | \(a_{620}= +0.02174723 \pm 4.4 \cdot 10^{-7} \) | \(a_{621}= +1.09620922 \pm 6.3 \cdot 10^{-8} \) |
| \(a_{622}= +0.96008835 \pm 2.0 \cdot 10^{-7} \) | \(a_{623}= +0.45268254 \pm 9.6 \cdot 10^{-8} \) | \(a_{624}= +1.27712571 \pm 7.6 \cdot 10^{-8} \) |
| \(a_{625}= +0.04 \) | \(a_{626}= +0.21907817 \pm 1.9 \cdot 10^{-7} \) | \(a_{627}= -1.06750965 \pm 7.0 \cdot 10^{-8} \) |
| \(a_{628}= -0.09119771 \pm 1.4 \cdot 10^{-7} \) | \(a_{629}= +0.10289451 \pm 3.1 \cdot 10^{-7} \) | \(a_{630}= +0.02747300 \pm 4.4 \cdot 10^{-7} \) |
| \(a_{631}= +0.21683735 \pm 2.6 \cdot 10^{-7} \) | \(a_{632}= -0.56267100 \pm 2.7 \cdot 10^{-7} \) | \(a_{633}= -1.17773986 \pm 8.6 \cdot 10^{-8} \) |
| \(a_{634}= -1.54706190 \pm 2.2 \cdot 10^{-7} \) | \(a_{635}= +0.25927476 \pm 2.7 \cdot 10^{-7} \) | \(a_{636}= +0.08424563 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{637}= +1.34971051 \pm 1.3 \cdot 10^{-7} \) | \(a_{638}= +1.85827442 \pm 6.2 \cdot 10^{-8} \) | \(a_{639}= -0.38254142 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{640}= +0.28385827 \pm 1.8 \cdot 10^{-7} \) | \(a_{641}= -0.10186068 \pm 1.7 \cdot 10^{-7} \) | \(a_{642}= +0.30275521 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{643}= -0.89084683 \pm 1.3 \cdot 10^{-7} \) | \(a_{644}= +0.07007237 \pm 4.7 \cdot 10^{-8} \) | \(a_{645}= -0.03308519 \pm 5.0 \cdot 10^{-7} \) |
| \(a_{646}= -0.23331614 \pm 1.5 \cdot 10^{-7} \) | \(a_{647}= -1.65497234 \pm 2.8 \cdot 10^{-7} \) | \(a_{648}= -1.26111712 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{649}= -1.20304406 \pm 7.3 \cdot 10^{-8} \) | \(a_{650}= +0.26633791 \pm 3.9 \cdot 10^{-7} \) | \(a_{651}= +0.08489457 \pm 9.9 \cdot 10^{-8} \) |
| \(a_{652}= -0.03536069 \pm 1.4 \cdot 10^{-7} \) | \(a_{653}= -0.82620287 \pm 1.6 \cdot 10^{-7} \) | \(a_{654}= -0.43447201 \pm 1.5 \cdot 10^{-7} \) |
| \(a_{655}= +0.44769284 \pm 2.3 \cdot 10^{-7} \) | \(a_{656}= -0.85777309 \pm 1.3 \cdot 10^{-7} \) | \(a_{657}= +0.40214930 \pm 7.5 \cdot 10^{-8} \) |
| \(a_{658}= -0.33266649 \pm 4.7 \cdot 10^{-8} \) | \(a_{659}= +0.80057677 \pm 3.0 \cdot 10^{-7} \) | \(a_{660}= +0.10409187 \pm 5.6 \cdot 10^{-7} \) |
| \(a_{661}= +0.88501787 \pm 2.2 \cdot 10^{-7} \) | \(a_{662}= -0.51387009 \pm 2.2 \cdot 10^{-7} \) | \(a_{663}= +0.49658392 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{664}= -0.16283580 \pm 2.3 \cdot 10^{-7} \) | \(a_{665}= +0.11169437 \pm 3.3 \cdot 10^{-7} \) | \(a_{666}= +0.07129067 \pm 8.6 \cdot 10^{-8} \) |
| \(a_{667}= +2.35284856 \pm 7.8 \cdot 10^{-8} \) | \(a_{668}= +0.17720716 \pm 1.1 \cdot 10^{-7} \) | \(a_{669}= +1.62848511 \pm 2.7 \cdot 10^{-7} \) |
| \(a_{670}= -0.06921602 \pm 3.8 \cdot 10^{-7} \) | \(a_{671}= +0.54378527 \pm 6.8 \cdot 10^{-8} \) | \(a_{672}= -0.11924251 \pm 8.0 \cdot 10^{-8} \) |
| \(a_{673}= +0.15538109 \pm 1.9 \cdot 10^{-7} \) | \(a_{674}= -0.34998057 \pm 2.1 \cdot 10^{-7} \) | \(a_{675}= -0.17038169 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{676}= -0.21938810 \pm 1.2 \cdot 10^{-7} \) | \(a_{677}= -1.01375705 \pm 2.2 \cdot 10^{-7} \) | \(a_{678}= +1.06343954 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{679}= +0.32192998 \pm 9.0 \cdot 10^{-8} \) | \(a_{680}= +0.14500006 \pm 4.6 \cdot 10^{-7} \) | \(a_{681}= -0.10133480 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{682}= -0.26556029 \pm 1.6 \cdot 10^{-7} \) | \(a_{683}= -0.95268402 \pm 3.0 \cdot 10^{-7} \) | \(a_{684}= +0.03696201 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{685}= -0.44488509 \pm 2.8 \cdot 10^{-7} \) | \(a_{686}= +0.50537845 \pm 1.4 \cdot 10^{-7} \) | \(a_{687}= -0.26372634 \pm 3.7 \cdot 10^{-7} \) |
| \(a_{688}= -0.05192507 \pm 2.8 \cdot 10^{-8} \) | \(a_{689}= +0.60185652 \pm 1.3 \cdot 10^{-7} \) | \(a_{690}= -0.57640888 \pm 5.6 \cdot 10^{-7} \) |
| \(a_{691}= -0.30357701 \pm 1.5 \cdot 10^{-7} \) | \(a_{692}= -0.09524234 \pm 2.3 \cdot 10^{-7} \) | \(a_{693}= +0.07670709 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{694}= -0.62058255 \pm 1.2 \cdot 10^{-7} \) | \(a_{695}= -0.01614031 \pm 2.7 \cdot 10^{-7} \) | \(a_{696}= -2.17234720 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{697}= -0.33352733 \pm 2.6 \cdot 10^{-7} \) | \(a_{698}= +1.44486204 \pm 2.9 \cdot 10^{-7} \) | \(a_{699}= +0.65343139 \pm 3.3 \cdot 10^{-7} \) |
| \(a_{700}= -0.01089121 \pm 2.9 \cdot 10^{-7} \) | \(a_{701}= +0.05321328 \pm 1.2 \cdot 10^{-7} \) | \(a_{702}= -1.13447754 \pm 1.5 \cdot 10^{-7} \) |
| \(a_{703}= +0.28983974 \pm 3.4 \cdot 10^{-7} \) | \(a_{704}= +1.25084989 \pm 1.3 \cdot 10^{-7} \) | \(a_{705}= -0.62569568 \pm 4.0 \cdot 10^{-7} \) |
| \(a_{706}= +1.28588020 \pm 8.2 \cdot 10^{-8} \) | \(a_{707}= -0.35014047 \pm 8.2 \cdot 10^{-8} \) | \(a_{708}= +0.22065944 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{709}= -1.15932270 \pm 2.8 \cdot 10^{-7} \) | \(a_{710}= -0.66325175 \pm 3.5 \cdot 10^{-7} \) | \(a_{711}= -0.12236267 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{712}= +1.65537487 \pm 2.5 \cdot 10^{-7} \) | \(a_{713}= -0.33623837 \pm 1.1 \cdot 10^{-7} \) | \(a_{714}= +0.08881078 \pm 8.4 \cdot 10^{-8} \) |
| \(a_{715}= +0.74363940 \pm 2.9 \cdot 10^{-7} \) | \(a_{716}= +0.00281822 \pm 2.8 \cdot 10^{-7} \) | \(a_{717}= -0.84687394 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{718}= +0.07945852 \pm 1.3 \cdot 10^{-7} \) | \(a_{719}= -1.40376464 \pm 9.1 \cdot 10^{-8} \) | \(a_{720}= +0.08109677 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{721}= +0.06131180 \pm 7.6 \cdot 10^{-8} \) | \(a_{722}= +0.24494542 \pm 1.8 \cdot 10^{-7} \) | \(a_{723}= +0.59788998 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{724}= -0.05750975 \pm 2.2 \cdot 10^{-7} \) | \(a_{725}= -0.36569872 \pm 1.2 \cdot 10^{-7} \) | \(a_{726}= -0.26944095 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{727}= -0.59067196 \pm 2.5 \cdot 10^{-7} \) | \(a_{728}= -0.46219760 \pm 5.2 \cdot 10^{-8} \) | \(a_{729}= +0.67159753 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{730}= +0.69724796 \pm 4.3 \cdot 10^{-7} \) | \(a_{731}= -0.02018999 \pm 2.6 \cdot 10^{-7} \) | \(a_{732}= -0.09973978 \pm 9.6 \cdot 10^{-8} \) |
| \(a_{733}= -1.70058818 \pm 1.6 \cdot 10^{-7} \) | \(a_{734}= +1.67816806 \pm 2.9 \cdot 10^{-7} \) | \(a_{735}= +0.45401247 \pm 4.5 \cdot 10^{-7} \) |
| \(a_{736}= +0.47227880 \pm 9.5 \cdot 10^{-8} \) | \(a_{737}= -0.19325735 \pm 5.0 \cdot 10^{-8} \) | \(a_{738}= -0.23108510 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{739}= +1.12102227 \pm 1.9 \cdot 10^{-7} \) | \(a_{740}= -0.02826200 \pm 4.9 \cdot 10^{-7} \) | \(a_{741}= +1.39880891 \pm 8.5 \cdot 10^{-8} \) |
| \(a_{742}= +0.10763810 \pm 6.2 \cdot 10^{-8} \) | \(a_{743}= +0.72300832 \pm 3.2 \cdot 10^{-7} \) | \(a_{744}= +0.31044347 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{745}= +0.22738044 \pm 9.6 \cdot 10^{-8} \) | \(a_{746}= +0.10326591 \pm 3.2 \cdot 10^{-7} \) | \(a_{747}= -0.03541150 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{748}= +0.06352127 \pm 9.9 \cdot 10^{-8} \) | \(a_{749}= -0.08844648 \pm 1.1 \cdot 10^{-7} \) | \(a_{750}= +0.08959012 \pm 4.7 \cdot 10^{-7} \) |
| \(a_{751}= -0.65319181 \pm 2.1 \cdot 10^{-7} \) | \(a_{752}= -0.98198881 \pm 7.7 \cdot 10^{-8} \) | \(a_{753}= +0.66869936 \pm 3.5 \cdot 10^{-7} \) |
| \(a_{754}= -2.43498578 \pm 7.1 \cdot 10^{-8} \) | \(a_{755}= -0.47143575 \pm 1.6 \cdot 10^{-7} \) | \(a_{756}= +0.04639158 \pm 6.5 \cdot 10^{-8} \) |
| \(a_{757}= +1.35153040 \pm 1.7 \cdot 10^{-7} \) | \(a_{758}= -1.11290690 \pm 1.8 \cdot 10^{-7} \) | \(a_{759}= -1.60938547 \pm 7.1 \cdot 10^{-8} \) |
| \(a_{760}= +0.40844531 \pm 4.4 \cdot 10^{-7} \) | \(a_{761}= +0.56195954 \pm 2.2 \cdot 10^{-7} \) | \(a_{762}= +0.58071143 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{763}= +0.12692603 \pm 5.5 \cdot 10^{-8} \) | \(a_{764}= -0.27428720 \pm 5.7 \cdot 10^{-8} \) | \(a_{765}= +0.03153280 \pm 3.7 \cdot 10^{-7} \) |
| \(a_{766}= -1.70161074 \pm 2.5 \cdot 10^{-7} \) | \(a_{767}= +1.57640612 \pm 1.1 \cdot 10^{-7} \) | \(a_{768}= -0.59705966 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{769}= -0.38933164 \pm 1.6 \cdot 10^{-7} \) | \(a_{770}= +0.13299504 \pm 4.4 \cdot 10^{-7} \) | \(a_{771}= -0.24876193 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{772}= -0.11441817 \pm 6.4 \cdot 10^{-8} \) | \(a_{773}= -0.46748527 \pm 1.2 \cdot 10^{-7} \) | \(a_{774}= -0.01398868 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{775}= +0.05226088 \pm 2.4 \cdot 10^{-7} \) | \(a_{776}= +1.17723735 \pm 1.7 \cdot 10^{-7} \) | \(a_{777}= -0.11032625 \pm 9.6 \cdot 10^{-8} \) |
| \(a_{778}= +0.11447655 \pm 1.8 \cdot 10^{-7} \) | \(a_{779}= -0.93950082 \pm 1.6 \cdot 10^{-7} \) | \(a_{780}= -0.13639655 \pm 6.0 \cdot 10^{-7} \) |
| \(a_{781}= -1.85185857 \pm 8.8 \cdot 10^{-8} \) | \(a_{782}= -0.35174914 \pm 1.0 \cdot 10^{-7} \) | \(a_{783}= +1.55770913 \pm 7.4 \cdot 10^{-8} \) |
| \(a_{784}= +0.71254314 \pm 7.3 \cdot 10^{-8} \) | \(a_{785}= -0.21915769 \pm 2.2 \cdot 10^{-7} \) | \(a_{786}= +1.00272139 \pm 2.8 \cdot 10^{-7} \) |
| \(a_{787}= +1.27968800 \pm 1.5 \cdot 10^{-7} \) | \(a_{788}= +0.08173384 \pm 2.3 \cdot 10^{-7} \) | \(a_{789}= +0.98247476 \pm 2.6 \cdot 10^{-7} \) |
| \(a_{790}= -0.21215285 \pm 5.1 \cdot 10^{-7} \) | \(a_{791}= -0.31067171 \pm 8.4 \cdot 10^{-8} \) | \(a_{792}= +0.28050339 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{793}= -0.71254783 \pm 8.0 \cdot 10^{-8} \) | \(a_{794}= +0.04515687 \pm 2.7 \cdot 10^{-7} \) | \(a_{795}= +0.20245109 \pm 4.8 \cdot 10^{-7} \) |
| \(a_{796}= -0.07193082 \pm 2.4 \cdot 10^{-7} \) | \(a_{797}= -0.34167000 \pm 1.9 \cdot 10^{-7} \) | \(a_{798}= +0.25016782 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{799}= -0.38182604 \pm 2.0 \cdot 10^{-7} \) | \(a_{800}= -0.07340538 \pm 2.5 \cdot 10^{-7} \) | \(a_{801}= +0.35999027 \pm 9.4 \cdot 10^{-8} \) |
| \(a_{802}= +1.46501121 \pm 3.3 \cdot 10^{-7} \) | \(a_{803}= +1.94677907 \pm 8.6 \cdot 10^{-8} \) | \(a_{804}= +0.03544680 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{805}= +0.16839127 \pm 1.9 \cdot 10^{-7} \) | \(a_{806}= +0.34797634 \pm 2.9 \cdot 10^{-7} \) | \(a_{807}= -2.05745391 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{808}= -1.28039782 \pm 1.7 \cdot 10^{-7} \) | \(a_{809}= +1.79836530 \pm 1.8 \cdot 10^{-7} \) | \(a_{810}= -0.47549917 \pm 4.8 \cdot 10^{-7} \) |
| \(a_{811}= -0.55132236 \pm 1.4 \cdot 10^{-7} \) | \(a_{812}= +0.09957257 \pm 3.1 \cdot 10^{-8} \) | \(a_{813}= -0.42225220 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{814}= +0.34511360 \pm 1.1 \cdot 10^{-7} \) | \(a_{815}= -0.08497546 \pm 2.0 \cdot 10^{-7} \) | \(a_{816}= +0.26215804 \pm 8.8 \cdot 10^{-8} \) |
| \(a_{817}= -0.05687243 \pm 3.0 \cdot 10^{-7} \) | \(a_{818}= -1.31194948 \pm 2.6 \cdot 10^{-7} \) | \(a_{819}= -0.10051296 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{820}= +0.09160984 \pm 4.5 \cdot 10^{-7} \) | \(a_{821}= -0.78173170 \pm 1.6 \cdot 10^{-7} \) | \(a_{822}= -0.99643275 \pm 3.4 \cdot 10^{-7} \) |
| \(a_{823}= -0.10026400 \pm 2.6 \cdot 10^{-7} \) | \(a_{824}= +0.22420571 \pm 1.0 \cdot 10^{-7} \) | \(a_{825}= +0.25014368 \pm 3.7 \cdot 10^{-7} \) |
| \(a_{826}= +0.28192992 \pm 1.0 \cdot 10^{-7} \) | \(a_{827}= -0.59578581 \pm 1.7 \cdot 10^{-7} \) | \(a_{828}= +0.05572420 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{829}= -0.75675548 \pm 3.3 \cdot 10^{-7} \) | \(a_{830}= -0.06139659 \pm 4.7 \cdot 10^{-7} \) | \(a_{831}= -0.55211841 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{832}= -1.63904839 \pm 1.9 \cdot 10^{-7} \) | \(a_{833}= +0.27705766 \pm 2.2 \cdot 10^{-7} \) | \(a_{834}= -0.03615031 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{835}= +0.42584741 \pm 2.0 \cdot 10^{-7} \) | \(a_{836}= +0.17893072 \pm 4.1 \cdot 10^{-8} \) | \(a_{837}= -0.22260743 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{838}= +1.61734112 \pm 1.0 \cdot 10^{-7} \) | \(a_{839}= +0.80288559 \pm 1.2 \cdot 10^{-7} \) | \(a_{840}= -0.15547295 \pm 5.5 \cdot 10^{-7} \) |
| \(a_{841}= +2.34338886 \pm 1.9 \cdot 10^{-7} \) | \(a_{842}= +0.35637174 \pm 1.2 \cdot 10^{-7} \) | \(a_{843}= -1.49049200 \pm 9.2 \cdot 10^{-8} \) |
| \(a_{844}= +0.19740697 \pm 7.8 \cdot 10^{-8} \) | \(a_{845}= -0.52721265 \pm 1.9 \cdot 10^{-7} \) | \(a_{846}= -0.26454897 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{847}= +0.07871409 \pm 7.3 \cdot 10^{-8} \) | \(a_{848}= +0.31773386 \pm 6.6 \cdot 10^{-8} \) | \(a_{849}= +0.04235682 \pm 2.6 \cdot 10^{-7} \) |
| \(a_{850}= +0.05467169 \pm 4.7 \cdot 10^{-7} \) | \(a_{851}= +0.43696455 \pm 7.9 \cdot 10^{-8} \) | \(a_{852}= +0.33966343 \pm 5.1 \cdot 10^{-8} \) |
| \(a_{853}= +0.95078352 \pm 1.9 \cdot 10^{-7} \) | \(a_{854}= -0.12743451 \pm 6.6 \cdot 10^{-8} \) | \(a_{855}= +0.08882359 \pm 3.5 \cdot 10^{-7} \) |
| \(a_{856}= -0.32343212 \pm 1.6 \cdot 10^{-7} \) | \(a_{857}= -1.60460207 \pm 2.0 \cdot 10^{-7} \) | \(a_{858}= +1.66556862 \pm 9.1 \cdot 10^{-8} \) |
| \(a_{859}= -0.44041148 \pm 2.0 \cdot 10^{-7} \) | \(a_{860}= +0.00554558 \pm 4.5 \cdot 10^{-7} \) | \(a_{861}= +0.35761694 \pm 9.1 \cdot 10^{-8} \) |
| \(a_{862}= +1.16595381 \pm 1.5 \cdot 10^{-7} \) | \(a_{863}= -0.58835179 \pm 3.0 \cdot 10^{-7} \) | \(a_{864}= +0.31267333 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{865}= -0.22887735 \pm 2.2 \cdot 10^{-7} \) | \(a_{866}= -0.37062605 \pm 1.8 \cdot 10^{-7} \) | \(a_{867}= -1.00833663 \pm 6.5 \cdot 10^{-8} \) |
| \(a_{868}= -0.01422961 \pm 1.0 \cdot 10^{-7} \) | \(a_{869}= -0.59234985 \pm 1.0 \cdot 10^{-7} \) | \(a_{870}= -0.81907483 \pm 5.8 \cdot 10^{-7} \) |
| \(a_{871}= +0.25323434 \pm 5.5 \cdot 10^{-8} \) | \(a_{872}= +0.46414463 \pm 8.7 \cdot 10^{-8} \) | \(a_{873}= +0.25601089 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{874}= -0.99082918 \pm 7.8 \cdot 10^{-8} \) | \(a_{875}= -0.02617273 \pm 1.0 \cdot 10^{-7} \) | \(a_{876}= -0.35707352 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{877}= +1.93608142 \pm 1.8 \cdot 10^{-7} \) | \(a_{878}= -0.07721050 \pm 2.0 \cdot 10^{-7} \) | \(a_{879}= +1.21238640 \pm 3.2 \cdot 10^{-7} \) |
| \(a_{880}= +0.39258430 \pm 2.3 \cdot 10^{-7} \) | \(a_{881}= -0.79739646 \pm 1.6 \cdot 10^{-7} \) | \(a_{882}= +0.19195998 \pm 6.6 \cdot 10^{-8} \) |
| \(a_{883}= -1.05012277 \pm 1.7 \cdot 10^{-7} \) | \(a_{884}= -0.08323496 \pm 1.5 \cdot 10^{-7} \) | \(a_{885}= +0.53026781 \pm 4.4 \cdot 10^{-7} \) |
| \(a_{886}= +0.14701187 \pm 2.4 \cdot 10^{-7} \) | \(a_{887}= +0.58049264 \pm 2.9 \cdot 10^{-7} \) | \(a_{888}= -0.40344233 \pm 3.0 \cdot 10^{-7} \) |
| \(a_{889}= -0.16964821 \pm 9.7 \cdot 10^{-8} \) | \(a_{890}= +0.62415248 \pm 5.1 \cdot 10^{-7} \) | \(a_{891}= -1.32763647 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{892}= -0.27295867 \pm 2.1 \cdot 10^{-7} \) | \(a_{893}= -1.07555168 \pm 3.6 \cdot 10^{-8} \) | \(a_{894}= +0.50927603 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{895}= +0.00677248 \pm 2.4 \cdot 10^{-7} \) | \(a_{896}= -0.18573365 \pm 6.9 \cdot 10^{-8} \) | \(a_{897}= +2.10885470 \pm 7.8 \cdot 10^{-8} \) |
| \(a_{898}= -0.64762019 \pm 2.2 \cdot 10^{-7} \) | \(a_{899}= -0.47779344 \pm 6.6 \cdot 10^{-8} \) | \(a_{900}= -0.00866110 \pm 3.2 \cdot 10^{-7} \) |
| \(a_{901}= +0.12354424 \pm 2.5 \cdot 10^{-7} \) | \(a_{902}= -1.11866822 \pm 1.9 \cdot 10^{-7} \) | \(a_{903}= +0.02164825 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{904}= -1.13606799 \pm 1.3 \cdot 10^{-7} \) | \(a_{905}= -0.13820198 \pm 2.5 \cdot 10^{-7} \) | \(a_{906}= -1.05589967 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{907}= -0.08437020 \pm 3.0 \cdot 10^{-7} \) | \(a_{908}= +0.01698524 \pm 1.7 \cdot 10^{-7} \) | \(a_{909}= -0.27844494 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{910}= -0.17426976 \pm 4.8 \cdot 10^{-7} \) | \(a_{911}= +0.17502501 \pm 3.1 \cdot 10^{-7} \) | \(a_{912}= +0.73846331 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{913}= -0.17142480 \pm 8.7 \cdot 10^{-8} \) | \(a_{914}= -0.01064350 \pm 2.3 \cdot 10^{-7} \) | \(a_{915}= -0.23968517 \pm 3.8 \cdot 10^{-7} \) |
| \(a_{916}= +0.04420451 \pm 2.4 \cdot 10^{-7} \) | \(a_{917}= -0.29293360 \pm 9.9 \cdot 10^{-8} \) | \(a_{918}= -0.23287638 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{919}= +1.10132855 \pm 2.1 \cdot 10^{-7} \) | \(a_{920}= +0.61577518 \pm 3.1 \cdot 10^{-7} \) | \(a_{921}= +1.12189162 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{922}= -0.27030126 \pm 2.2 \cdot 10^{-7} \) | \(a_{923}= +2.42657879 \pm 9.8 \cdot 10^{-8} \) | \(a_{924}= -0.06810921 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{925}= -0.06791656 \pm 3.0 \cdot 10^{-7} \) | \(a_{926}= +1.02892135 \pm 1.6 \cdot 10^{-7} \) | \(a_{927}= +0.04875746 \pm 6.3 \cdot 10^{-8} \) |
| \(a_{928}= +0.67110637 \pm 9.1 \cdot 10^{-8} \) | \(a_{929}= +0.10967840 \pm 1.1 \cdot 10^{-7} \) | \(a_{930}= +0.11705147 \pm 7.1 \cdot 10^{-7} \) |
| \(a_{931}= +0.78043350 \pm 1.9 \cdot 10^{-7} \) | \(a_{932}= -0.10952496 \pm 2.0 \cdot 10^{-7} \) | \(a_{933}= -1.18155609 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{934}= -0.65888954 \pm 1.3 \cdot 10^{-7} \) | \(a_{935}= +0.15264828 \pm 3.8 \cdot 10^{-7} \) | \(a_{936}= -0.36755700 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{937}= +1.33369660 \pm 3.6 \cdot 10^{-7} \) | \(a_{938}= +0.04528930 \pm 5.2 \cdot 10^{-8} \) | \(a_{939}= -0.26961388 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{940}= +0.10487604 \pm 3.5 \cdot 10^{-7} \) | \(a_{941}= -0.97972805 \pm 2.5 \cdot 10^{-7} \) | \(a_{942}= -0.49085910 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{943}= -1.41639840 \pm 1.3 \cdot 10^{-7} \) | \(a_{944}= +0.83222095 \pm 9.9 \cdot 10^{-8} \) | \(a_{945}= +0.11148385 \pm 2.8 \cdot 10^{-7} \) |
| \(a_{946}= -0.06771829 \pm 3.3 \cdot 10^{-8} \) | \(a_{947}= -0.49068501 \pm 2.9 \cdot 10^{-7} \) | \(a_{948}= +0.10864738 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{949}= -2.55095765 \pm 1.1 \cdot 10^{-7} \) | \(a_{950}= +0.15400267 \pm 4.6 \cdot 10^{-7} \) | \(a_{951}= +1.90392937 \pm 3.6 \cdot 10^{-7} \) |
| \(a_{952}= -0.09487619 \pm 7.1 \cdot 10^{-8} \) | \(a_{953}= +1.41666055 \pm 3.2 \cdot 10^{-7} \) | \(a_{954}= +0.08559788 \pm 7.5 \cdot 10^{-8} \) |
| \(a_{955}= -0.65914096 \pm 7.2 \cdot 10^{-8} \) | \(a_{956}= +0.14194885 \pm 1.5 \cdot 10^{-7} \) | \(a_{957}= -2.28693063 \pm 7.5 \cdot 10^{-8} \) |
| \(a_{958}= -0.02785510 \pm 2.7 \cdot 10^{-7} \) | \(a_{959}= +0.29109644 \pm 1.0 \cdot 10^{-7} \) | \(a_{960}= -0.55133927 \pm 4.7 \cdot 10^{-7} \) |
| \(a_{961}= -0.93172001 \pm 2.9 \cdot 10^{-7} \) | \(a_{962}= -0.45221885 \pm 1.2 \cdot 10^{-7} \) | \(a_{963}= -0.07033598 \pm 1.5 \cdot 10^{-7} \) |
| \(a_{964}= -0.10021538 \pm 1.3 \cdot 10^{-7} \) | \(a_{965}= -0.27495887 \pm 1.0 \cdot 10^{-7} \) | \(a_{966}= +0.37715486 \pm 7.3 \cdot 10^{-8} \) |
| \(a_{967}= -0.09094341 \pm 1.4 \cdot 10^{-7} \) | \(a_{968}= +0.28784263 \pm 1.7 \cdot 10^{-7} \) | \(a_{969}= +0.28713619 \pm 2.6 \cdot 10^{-7} \) |
| \(a_{970}= +0.44387264 \pm 4.1 \cdot 10^{-7} \) | \(a_{971}= -0.36087031 \pm 1.7 \cdot 10^{-7} \) | \(a_{972}= +0.08497323 \pm 6.7 \cdot 10^{-8} \) |
| \(a_{973}= +0.01056090 \pm 1.0 \cdot 10^{-7} \) | \(a_{974}= +1.31414407 \pm 2.1 \cdot 10^{-7} \) | \(a_{975}= -0.32777522 \pm 4.0 \cdot 10^{-7} \) |
| \(a_{976}= -0.37617034 \pm 5.9 \cdot 10^{-8} \) | \(a_{977}= +0.42793187 \pm 1.5 \cdot 10^{-7} \) | \(a_{978}= -0.19032405 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{979}= +1.74268989 \pm 1.0 \cdot 10^{-7} \) | \(a_{980}= -0.07609934 \pm 4.0 \cdot 10^{-7} \) | \(a_{981}= +0.10093638 \pm 6.3 \cdot 10^{-8} \) |
| \(a_{982}= -0.57029205 \pm 1.1 \cdot 10^{-7} \) | \(a_{983}= -0.50949594 \pm 2.2 \cdot 10^{-7} \) | \(a_{984}= +1.30773785 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{985}= +0.19641500 \pm 2.3 \cdot 10^{-7} \) | \(a_{986}= -0.49983420 \pm 8.1 \cdot 10^{-8} \) | \(a_{987}= +0.40940411 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{988}= -0.23446148 \pm 5.6 \cdot 10^{-8} \) | \(a_{989}= -0.08574130 \pm 3.7 \cdot 10^{-8} \) | \(a_{990}= +0.10576268 \pm 4.7 \cdot 10^{-7} \) |
| \(a_{991}= -0.80653041 \pm 2.2 \cdot 10^{-7} \) | \(a_{992}= -0.09590575 \pm 2.9 \cdot 10^{-7} \) | \(a_{993}= +0.63240674 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{994}= +0.43397773 \pm 9.3 \cdot 10^{-8} \) | \(a_{995}= -0.17285732 \pm 3.1 \cdot 10^{-7} \) | \(a_{996}= +0.03144232 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{997}= -0.70857433 \pm 3.1 \cdot 10^{-7} \) | \(a_{998}= +0.87762539 \pm 2.4 \cdot 10^{-7} \) | \(a_{999}= +0.28929345 \pm 2.4 \cdot 10^{-7} \) |
| \(a_{1000}= -0.09570875 \pm 2.1 \cdot 10^{-7} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000