Maass form invariants
| Level: | \( 5 \) |
| Weight: | \( 0 \) |
| Character: | 5.1 |
| Symmetry: | odd |
| Fricke sign: | $+1$ |
| Spectral parameter: | \(8.81789729862314026895815340765 \pm 2 \cdot 10^{-11}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
| \(a_{1}= +1 \) | \(a_{2}= +1.05112499 \pm 3.6 \cdot 10^{-7} \) | \(a_{3}= -0.46269436 \pm 3.9 \cdot 10^{-7} \) |
| \(a_{4}= +0.10486373 \pm 3.2 \cdot 10^{-7} \) | \(a_{5}= -0.44721360 \pm 1.0 \cdot 10^{-8} \) | \(a_{6}= -0.48634960 \pm 3.7 \cdot 10^{-7} \) |
| \(a_{7}= -0.42678947 \pm 1.5 \cdot 10^{-7} \) | \(a_{8}= -0.94090009 \pm 3.4 \cdot 10^{-7} \) | \(a_{9}= -0.78591393 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{10}= -0.47007738 \pm 3.7 \cdot 10^{-7} \) | \(a_{11}= -0.41453593 \pm 2.0 \cdot 10^{-7} \) | \(a_{12}= -0.04851986 \pm 3.3 \cdot 10^{-7} \) |
| \(a_{13}= +0.35374619 \pm 2.6 \cdot 10^{-7} \) | \(a_{14}= -0.44860907 \pm 1.5 \cdot 10^{-7} \) | \(a_{15}= +0.20692321 \pm 4.0 \cdot 10^{-7} \) |
| \(a_{16}= -1.09386733 \pm 1.6 \cdot 10^{-7} \) | \(a_{17}= +0.43298064 \pm 4.0 \cdot 10^{-7} \) | \(a_{18}= -0.82609377 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{19}= +1.83440938 \pm 3.8 \cdot 10^{-7} \) | \(a_{20}= -0.04689649 \pm 3.3 \cdot 10^{-7} \) | \(a_{21}= +0.19747308 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{22}= -0.43572907 \pm 2.1 \cdot 10^{-7} \) | \(a_{23}= -1.79416231 \pm 1.5 \cdot 10^{-7} \) | \(a_{24}= +0.43534916 \pm 3.5 \cdot 10^{-7} \) |
| \(a_{25}= +0.2 \) | \(a_{26}= +0.37183146 \pm 3.1 \cdot 10^{-7} \) | \(a_{27}= +0.82633230 \pm 3.0 \cdot 10^{-7} \) |
| \(a_{28}= -0.04475474 \pm 1.2 \cdot 10^{-7} \) | \(a_{29}= +0.30209585 \pm 1.8 \cdot 10^{-7} \) | \(a_{30}= +0.21750215 \pm 7.7 \cdot 10^{-7} \) |
| \(a_{31}= -1.49217646 \pm 3.9 \cdot 10^{-7} \) | \(a_{32}= -0.20889119 \pm 4.0 \cdot 10^{-7} \) | \(a_{33}= +0.19180343 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{34}= +0.45511677 \pm 3.8 \cdot 10^{-7} \) | \(a_{35}= +0.19086605 \pm 1.6 \cdot 10^{-7} \) | \(a_{36}= -0.08241387 \pm 9.0 \cdot 10^{-8} \) |
| \(a_{37}= -1.66799917 \pm 4.8 \cdot 10^{-7} \) | \(a_{38}= +1.92819353 \pm 2.6 \cdot 10^{-7} \) | \(a_{39}= -0.16367637 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{40}= +0.42078331 \pm 3.5 \cdot 10^{-7} \) | \(a_{41}= -0.51503384 \pm 4.1 \cdot 10^{-7} \) | \(a_{42}= +0.20756889 \pm 1.5 \cdot 10^{-7} \) |
| \(a_{43}= +0.31015562 \pm 4.1 \cdot 10^{-7} \) | \(a_{44}= -0.04346979 \pm 1.5 \cdot 10^{-7} \) | \(a_{45}= +0.35147140 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{46}= -1.88588884 \pm 1.9 \cdot 10^{-7} \) | \(a_{47}= +0.38986023 \pm 2.4 \cdot 10^{-7} \) | \(a_{48}= +0.50612624 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{49}= -0.81785075 \pm 3.3 \cdot 10^{-7} \) | \(a_{50}= +0.21022500 \pm 3.7 \cdot 10^{-7} \) | \(a_{51}= -0.20033770 \pm 3.9 \cdot 10^{-7} \) |
| \(a_{52}= +0.03709515 \pm 2.4 \cdot 10^{-7} \) | \(a_{53}= +0.96114429 \pm 3.8 \cdot 10^{-7} \) | \(a_{54}= +0.86857853 \pm 3.1 \cdot 10^{-7} \) |
| \(a_{55}= +0.18538610 \pm 2.1 \cdot 10^{-7} \) | \(a_{56}= +0.40156625 \pm 1.3 \cdot 10^{-7} \) | \(a_{57}= -0.84877087 \pm 4.3 \cdot 10^{-7} \) |
| \(a_{58}= +0.31754050 \pm 1.4 \cdot 10^{-7} \) | \(a_{59}= -0.90327268 \pm 3.1 \cdot 10^{-7} \) | \(a_{60}= +0.02169874 \pm 7.3 \cdot 10^{-7} \) |
| \(a_{61}= -0.57545459 \pm 2.2 \cdot 10^{-7} \) | \(a_{62}= -1.56846396 \pm 5.3 \cdot 10^{-7} \) | \(a_{63}= +0.33541979 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{64}= +0.87429658 \pm 3.6 \cdot 10^{-7} \) | \(a_{65}= -0.15820011 \pm 2.7 \cdot 10^{-7} \) | \(a_{66}= +0.20160938 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{67}= +1.10601419 \pm 2.4 \cdot 10^{-7} \) | \(a_{68}= +0.04540397 \pm 3.3 \cdot 10^{-7} \) | \(a_{69}= +0.83014878 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{70}= +0.20062408 \pm 5.3 \cdot 10^{-7} \) | \(a_{71}= -1.14146633 \pm 1.9 \cdot 10^{-7} \) | \(a_{72}= +0.73946649 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{73}= +0.22956559 \pm 3.2 \cdot 10^{-7} \) | \(a_{74}= -1.75327561 \pm 3.4 \cdot 10^{-7} \) | \(a_{75}= -0.09253887 \pm 4.0 \cdot 10^{-7} \) |
| \(a_{76}= +0.19236302 \pm 2.4 \cdot 10^{-7} \) | \(a_{77}= +0.17691957 \pm 1.0 \cdot 10^{-7} \) | \(a_{78}= -0.17204432 \pm 2.8 \cdot 10^{-7} \) |
| \(a_{79}= -0.15201428 \pm 4.6 \cdot 10^{-7} \) | \(a_{80}= +0.48919234 \pm 1.7 \cdot 10^{-7} \) | \(a_{81}= +0.40357464 \pm 4.1 \cdot 10^{-7} \) |
| \(a_{82}= -0.54136494 \pm 5.4 \cdot 10^{-7} \) | \(a_{83}= -0.43220462 \pm 4.0 \cdot 10^{-7} \) | \(a_{84}= +0.02070776 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{85}= -0.19363483 \pm 4.1 \cdot 10^{-7} \) | \(a_{86}= +0.32601232 \pm 2.5 \cdot 10^{-7} \) | \(a_{87}= -0.13977805 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{88}= +0.39003689 \pm 1.8 \cdot 10^{-7} \) | \(a_{89}= +0.63159565 \pm 4.7 \cdot 10^{-7} \) | \(a_{90}= +0.36944037 \pm 5.7 \cdot 10^{-7} \) |
| \(a_{91}= -0.15097515 \pm 1.1 \cdot 10^{-7} \) | \(a_{92}= -0.18814256 \pm 1.3 \cdot 10^{-7} \) | \(a_{93}= +0.69042163 \pm 4.0 \cdot 10^{-7} \) |
| \(a_{94}= +0.40979183 \pm 2.3 \cdot 10^{-7} \) | \(a_{95}= -0.82037282 \pm 3.9 \cdot 10^{-7} \) | \(a_{96}= +0.09665277 \pm 4.1 \cdot 10^{-7} \) |
| \(a_{97}= -0.45514948 \pm 3.0 \cdot 10^{-7} \) | \(a_{98}= -0.85966336 \pm 3.1 \cdot 10^{-7} \) | \(a_{99}= +0.32578956 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{100}= +0.02097275 \pm 3.3 \cdot 10^{-7} \) | \(a_{101}= -1.64525332 \pm 3.1 \cdot 10^{-7} \) | \(a_{102}= -0.21057996 \pm 3.8 \cdot 10^{-7} \) |
| \(a_{103}= +0.89571103 \pm 3.0 \cdot 10^{-7} \) | \(a_{104}= -0.33283982 \pm 2.2 \cdot 10^{-7} \) | \(a_{105}= -0.08831265 \pm 5.6 \cdot 10^{-7} \) |
| \(a_{106}= +1.01028278 \pm 3.1 \cdot 10^{-7} \) | \(a_{107}= +0.77247325 \pm 3.0 \cdot 10^{-7} \) | \(a_{108}= +0.08665229 \pm 2.8 \cdot 10^{-7} \) |
| \(a_{109}= +0.09203250 \pm 1.9 \cdot 10^{-7} \) | \(a_{110}= +0.19486396 \pm 5.8 \cdot 10^{-7} \) | \(a_{111}= +0.77177381 \pm 5.2 \cdot 10^{-7} \) |
| \(a_{112}= +0.46685106 \pm 1.0 \cdot 10^{-7} \) | \(a_{113}= -0.58747107 \pm 2.8 \cdot 10^{-7} \) | \(a_{114}= -0.89216427 \pm 3.1 \cdot 10^{-7} \) |
| \(a_{115}= +0.80237378 \pm 1.6 \cdot 10^{-7} \) | \(a_{116}= +0.03167890 \pm 1.0 \cdot 10^{-7} \) | \(a_{117}= -0.27801406 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{118}= -0.94945248 \pm 3.1 \cdot 10^{-7} \) | \(a_{119}= -0.18479158 \pm 1.3 \cdot 10^{-7} \) | \(a_{120}= -0.19469407 \pm 7.5 \cdot 10^{-7} \) |
| \(a_{121}= -0.82815997 \pm 3.2 \cdot 10^{-7} \) | \(a_{122}= -0.60487469 \pm 1.8 \cdot 10^{-7} \) | \(a_{123}= +0.23830325 \pm 4.1 \cdot 10^{-7} \) |
| \(a_{124}= -0.15647520 \pm 4.7 \cdot 10^{-7} \) | \(a_{125}= -0.08944272 \pm 3.1 \cdot 10^{-7} \) | \(a_{126}= +0.35256812 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{127}= +1.29576514 \pm 4.3 \cdot 10^{-7} \) | \(a_{128}= +1.12788617 \pm 2.8 \cdot 10^{-7} \) | \(a_{129}= -0.14350726 \pm 4.6 \cdot 10^{-7} \) |
| \(a_{130}= -0.16628808 \pm 6.3 \cdot 10^{-7} \) | \(a_{131}= -0.04344581 \pm 3.7 \cdot 10^{-7} \) | \(a_{132}= +0.02011322 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{133}= -0.78290660 \pm 1.5 \cdot 10^{-7} \) | \(a_{134}= +1.16255915 \pm 1.7 \cdot 10^{-7} \) | \(a_{135}= -0.36954704 \pm 3.1 \cdot 10^{-7} \) |
| \(a_{136}= -0.40739153 \pm 3.7 \cdot 10^{-7} \) | \(a_{137}= -0.43976680 \pm 4.5 \cdot 10^{-7} \) | \(a_{138}= +0.87259012 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{139}= +0.12532968 \pm 4.4 \cdot 10^{-7} \) | \(a_{140}= +0.02001493 \pm 4.8 \cdot 10^{-7} \) | \(a_{141}= -0.18038613 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{142}= -1.19982378 \pm 1.9 \cdot 10^{-7} \) | \(a_{143}= -0.14664050 \pm 2.3 \cdot 10^{-7} \) | \(a_{144}= +0.85968558 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{145}= -0.13510137 \pm 1.9 \cdot 10^{-7} \) | \(a_{146}= +0.24130213 \pm 2.8 \cdot 10^{-7} \) | \(a_{147}= +0.37841493 \pm 3.4 \cdot 10^{-7} \) |
| \(a_{148}= -0.17491262 \pm 3.3 \cdot 10^{-7} \) | \(a_{149}= -0.93246423 \pm 1.4 \cdot 10^{-7} \) | \(a_{150}= -0.09726992 \pm 7.7 \cdot 10^{-7} \) |
| \(a_{151}= +0.61853968 \pm 2.5 \cdot 10^{-7} \) | \(a_{152}= -1.72599596 \pm 3.7 \cdot 10^{-7} \) | \(a_{153}= -0.34028552 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{154}= +0.18596458 \pm 1.1 \cdot 10^{-7} \) | \(a_{155}= +0.66732160 \pm 4.0 \cdot 10^{-7} \) | \(a_{156}= -0.01716372 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{157}= +1.47343320 \pm 3.5 \cdot 10^{-7} \) | \(a_{158}= -0.15978601 \pm 3.2 \cdot 10^{-7} \) | \(a_{159}= -0.44471604 \pm 4.1 \cdot 10^{-7} \) |
| \(a_{160}= +0.09341898 \pm 4.1 \cdot 10^{-7} \) | \(a_{161}= +0.76572958 \pm 1.1 \cdot 10^{-7} \) | \(a_{162}= +0.42420739 \pm 3.8 \cdot 10^{-7} \) |
| \(a_{163}= +0.90190083 \pm 3.1 \cdot 10^{-7} \) | \(a_{164}= -0.05400837 \pm 4.7 \cdot 10^{-7} \) | \(a_{165}= -0.08577710 \pm 6.1 \cdot 10^{-7} \) |
| \(a_{166}= -0.45430108 \pm 3.0 \cdot 10^{-7} \) | \(a_{167}= +0.98321034 \pm 3.1 \cdot 10^{-7} \) | \(a_{168}= -0.18580244 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{169}= -0.87486363 \pm 3.0 \cdot 10^{-7} \) | \(a_{170}= -0.20353441 \pm 7.8 \cdot 10^{-7} \) | \(a_{171}= -1.44168789 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{172}= +0.03252408 \pm 2.7 \cdot 10^{-7} \) | \(a_{173}= -1.51586834 \pm 3.5 \cdot 10^{-7} \) | \(a_{174}= -0.14692420 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{175}= -0.08535789 \pm 1.6 \cdot 10^{-7} \) | \(a_{176}= +0.45344731 \pm 1.3 \cdot 10^{-7} \) | \(a_{177}= +0.41793917 \pm 3.6 \cdot 10^{-7} \) |
| \(a_{178}= +0.66388597 \pm 4.3 \cdot 10^{-7} \) | \(a_{179}= -0.06244716 \pm 3.8 \cdot 10^{-7} \) | \(a_{180}= +0.03685660 \pm 5.2 \cdot 10^{-7} \) |
| \(a_{181}= -1.03902525 \pm 4.0 \cdot 10^{-7} \) | \(a_{182}= -0.15869375 \pm 1.4 \cdot 10^{-7} \) | \(a_{183}= +0.26625959 \pm 2.4 \cdot 10^{-7} \) |
| \(a_{184}= +1.68812749 \pm 1.2 \cdot 10^{-7} \) | \(a_{185}= +0.74595191 \pm 4.9 \cdot 10^{-7} \) | \(a_{186}= +0.72571942 \pm 5.5 \cdot 10^{-7} \) |
| \(a_{187}= -0.17948603 \pm 2.4 \cdot 10^{-7} \) | \(a_{188}= +0.04088220 \pm 1.6 \cdot 10^{-7} \) | \(a_{189}= -0.35266992 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{190}= -0.86231436 \pm 7.5 \cdot 10^{-7} \) | \(a_{191}= +1.39692454 \pm 1.0 \cdot 10^{-7} \) | \(a_{192}= -0.40453210 \pm 3.7 \cdot 10^{-7} \) |
| \(a_{193}= +0.21710424 \pm 1.6 \cdot 10^{-7} \) | \(a_{194}= -0.47841899 \pm 2.6 \cdot 10^{-7} \) | \(a_{195}= +0.07319830 \pm 6.6 \cdot 10^{-7} \) |
| \(a_{196}= -0.08576288 \pm 2.8 \cdot 10^{-7} \) | \(a_{197}= -1.39035071 \pm 3.7 \cdot 10^{-7} \) | \(a_{198}= +0.34244555 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{199}= +0.81671588 \pm 5.1 \cdot 10^{-7} \) | \(a_{200}= -0.18818002 \pm 3.5 \cdot 10^{-7} \) | \(a_{201}= -0.51174653 \pm 2.7 \cdot 10^{-7} \) |
| \(a_{202}= -1.72936687 \pm 2.9 \cdot 10^{-7} \) | \(a_{203}= -0.12893133 \pm 9.9 \cdot 10^{-8} \) | \(a_{204}= -0.02100816 \pm 3.4 \cdot 10^{-7} \) |
| \(a_{205}= +0.23033014 \pm 4.2 \cdot 10^{-7} \) | \(a_{206}= +0.94150424 \pm 4.5 \cdot 10^{-7} \) | \(a_{207}= +1.41005716 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{208}= -0.38695140 \pm 1.4 \cdot 10^{-7} \) | \(a_{209}= -0.76042859 \pm 9.2 \cdot 10^{-8} \) | \(a_{210}= -0.09282763 \pm 9.3 \cdot 10^{-7} \) |
| \(a_{211}= -0.55172303 \pm 2.2 \cdot 10^{-7} \) | \(a_{212}= +0.10078918 \pm 2.9 \cdot 10^{-7} \) | \(a_{213}= +0.52815003 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{214}= +0.81196594 \pm 3.3 \cdot 10^{-7} \) | \(a_{215}= -0.13870581 \pm 4.2 \cdot 10^{-7} \) | \(a_{216}= -0.77749614 \pm 2.6 \cdot 10^{-7} \) |
| \(a_{217}= +0.63684520 \pm 1.6 \cdot 10^{-7} \) | \(a_{218}= +0.09673766 \pm 2.5 \cdot 10^{-7} \) | \(a_{219}= -0.10621870 \pm 3.4 \cdot 10^{-7} \) |
| \(a_{220}= +0.01944028 \pm 5.3 \cdot 10^{-7} \) | \(a_{221}= +0.15316525 \pm 3.1 \cdot 10^{-7} \) | \(a_{222}= +0.81123073 \pm 3.5 \cdot 10^{-7} \) |
| \(a_{223}= -0.48430305 \pm 3.9 \cdot 10^{-7} \) | \(a_{224}= +0.08915256 \pm 1.4 \cdot 10^{-7} \) | \(a_{225}= -0.15718279 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{226}= -0.61750552 \pm 3.4 \cdot 10^{-7} \) | \(a_{227}= +0.99277743 \pm 3.0 \cdot 10^{-7} \) | \(a_{228}= -0.08900528 \pm 2.7 \cdot 10^{-7} \) |
| \(a_{229}= -0.15102630 \pm 5.6 \cdot 10^{-7} \) | \(a_{230}= +0.84339513 \pm 5.3 \cdot 10^{-7} \) | \(a_{231}= -0.08185969 \pm 8.4 \cdot 10^{-8} \) |
| \(a_{232}= -0.28424202 \pm 1.9 \cdot 10^{-7} \) | \(a_{233}= -0.25439255 \pm 5.0 \cdot 10^{-7} \) | \(a_{234}= -0.29222752 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{235}= -0.17435079 \pm 2.5 \cdot 10^{-7} \) | \(a_{236}= -0.09472055 \pm 2.6 \cdot 10^{-7} \) | \(a_{237}= +0.07033615 \pm 5.2 \cdot 10^{-7} \) |
| \(a_{238}= -0.19423904 \pm 1.3 \cdot 10^{-7} \) | \(a_{239}= -1.85103555 \pm 3.7 \cdot 10^{-7} \) | \(a_{240}= -0.22634654 \pm 5.7 \cdot 10^{-7} \) |
| \(a_{241}= +0.91893328 \pm 2.1 \cdot 10^{-7} \) | \(a_{242}= -0.87049963 \pm 2.8 \cdot 10^{-7} \) | \(a_{243}= -1.01306401 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{244}= -0.06034432 \pm 1.5 \cdot 10^{-7} \) | \(a_{245}= +0.36575397 \pm 3.4 \cdot 10^{-7} \) | \(a_{246}= +0.25048650 \pm 5.5 \cdot 10^{-7} \) |
| \(a_{247}= +0.64891533 \pm 1.1 \cdot 10^{-7} \) | \(a_{248}= +1.40398897 \pm 2.6 \cdot 10^{-7} \) | \(a_{249}= +0.19997864 \pm 4.4 \cdot 10^{-7} \) |
| \(a_{250}= -0.09401548 \pm 3.7 \cdot 10^{-7} \) | \(a_{251}= +0.47451684 \pm 5.6 \cdot 10^{-7} \) | \(a_{252}= +0.03517337 \pm 6.6 \cdot 10^{-8} \) |
| \(a_{253}= +0.74374474 \pm 1.2 \cdot 10^{-7} \) | \(a_{254}= +1.36201111 \pm 3.4 \cdot 10^{-7} \) | \(a_{255}= +0.08959374 \pm 8.1 \cdot 10^{-7} \) |
| \(a_{256}= +0.31125275 \pm 3.0 \cdot 10^{-7} \) | \(a_{257}= -1.51363404 \pm 3.0 \cdot 10^{-7} \) | \(a_{258}= -0.15084406 \pm 2.7 \cdot 10^{-7} \) |
| \(a_{259}= +0.71188448 \pm 1.6 \cdot 10^{-7} \) | \(a_{260}= -0.01658945 \pm 5.9 \cdot 10^{-7} \) | \(a_{261}= -0.23742134 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{262}= -0.04566698 \pm 4.6 \cdot 10^{-7} \) | \(a_{263}= -0.76895485 \pm 4.2 \cdot 10^{-7} \) | \(a_{264}= -0.18046787 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{265}= -0.42983679 \pm 4.0 \cdot 10^{-7} \) | \(a_{266}= -0.82293269 \pm 1.3 \cdot 10^{-7} \) | \(a_{267}= -0.29223574 \pm 5.1 \cdot 10^{-7} \) |
| \(a_{268}= +0.11598078 \pm 1.7 \cdot 10^{-7} \) | \(a_{269}= +0.42334815 \pm 3.7 \cdot 10^{-7} \) | \(a_{270}= -0.38844013 \pm 6.8 \cdot 10^{-7} \) |
| \(a_{271}= -0.61965237 \pm 2.9 \cdot 10^{-7} \) | \(a_{272}= -0.47362338 \pm 1.5 \cdot 10^{-7} \) | \(a_{273}= +0.06985535 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{274}= -0.46224987 \pm 5.5 \cdot 10^{-7} \) | \(a_{275}= -0.08290719 \pm 2.1 \cdot 10^{-7} \) | \(a_{276}= +0.08705250 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{277}= +1.15569992 \pm 4.0 \cdot 10^{-7} \) | \(a_{278}= +0.13173716 \pm 3.1 \cdot 10^{-7} \) | \(a_{279}= +1.17272227 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{280}= -0.17958589 \pm 5.0 \cdot 10^{-7} \) | \(a_{281}= -0.09708680 \pm 1.6 \cdot 10^{-7} \) | \(a_{282}= -0.18960837 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{283}= +0.73947467 \pm 3.9 \cdot 10^{-7} \) | \(a_{284}= -0.11969842 \pm 1.0 \cdot 10^{-7} \) | \(a_{285}= +0.37958187 \pm 7.8 \cdot 10^{-7} \) |
| \(a_{286}= -0.15413750 \pm 2.2 \cdot 10^{-7} \) | \(a_{287}= +0.21981102 \pm 1.6 \cdot 10^{-7} \) | \(a_{288}= +0.16417050 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{289}= -0.81252777 \pm 1.7 \cdot 10^{-7} \) | \(a_{290}= -0.14200843 \pm 5.6 \cdot 10^{-7} \) | \(a_{291}= +0.21059510 \pm 3.2 \cdot 10^{-7} \) |
| \(a_{292}= +0.02407310 \pm 2.6 \cdot 10^{-7} \) | \(a_{293}= -0.43710992 \pm 4.8 \cdot 10^{-7} \) | \(a_{294}= +0.39776138 \pm 3.2 \cdot 10^{-7} \) |
| \(a_{295}= +0.40395582 \pm 3.2 \cdot 10^{-7} \) | \(a_{296}= +1.56942058 \pm 4.6 \cdot 10^{-7} \) | \(a_{297}= -0.34254443 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{298}= -0.98013645 \pm 1.6 \cdot 10^{-7} \) | \(a_{299}= -0.63467808 \pm 1.2 \cdot 10^{-7} \) | \(a_{300}= -0.00970397 \pm 7.3 \cdot 10^{-7} \) |
| \(a_{301}= -0.13237115 \pm 1.2 \cdot 10^{-7} \) | \(a_{302}= +0.65016251 \pm 3.0 \cdot 10^{-7} \) | \(a_{303}= +0.76124943 \pm 3.1 \cdot 10^{-7} \) |
| \(a_{304}= -2.00660050 \pm 1.3 \cdot 10^{-7} \) | \(a_{305}= +0.25735111 \pm 2.3 \cdot 10^{-7} \) | \(a_{306}= -0.35768261 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{307}= +0.28150607 \pm 3.4 \cdot 10^{-7} \) | \(a_{308}= +0.01855245 \pm 8.0 \cdot 10^{-8} \) | \(a_{309}= -0.41444044 \pm 3.1 \cdot 10^{-7} \) |
| \(a_{310}= +0.70143841 \pm 7.7 \cdot 10^{-7} \) | \(a_{311}= -0.43787271 \pm 3.6 \cdot 10^{-7} \) | \(a_{312}= +0.15400311 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{313}= -1.50683309 \pm 3.5 \cdot 10^{-7} \) | \(a_{314}= +1.54876245 \pm 3.1 \cdot 10^{-7} \) | \(a_{315}= -0.15000429 \pm 3.5 \cdot 10^{-7} \) |
| \(a_{316}= -0.01594079 \pm 3.0 \cdot 10^{-7} \) | \(a_{317}= -0.44524958 \pm 5.4 \cdot 10^{-7} \) | \(a_{318}= -0.46745214 \pm 3.2 \cdot 10^{-7} \) |
| \(a_{319}= -0.12522958 \pm 1.2 \cdot 10^{-7} \) | \(a_{320}= -0.39099732 \pm 3.8 \cdot 10^{-7} \) | \(a_{321}= -0.35741901 \pm 3.0 \cdot 10^{-7} \) |
| \(a_{322}= +0.80487749 \pm 1.2 \cdot 10^{-7} \) | \(a_{323}= +0.79426375 \pm 3.8 \cdot 10^{-7} \) | \(a_{324}= +0.04232034 \pm 3.5 \cdot 10^{-7} \) |
| \(a_{325}= +0.07074924 \pm 2.7 \cdot 10^{-7} \) | \(a_{326}= +0.94801049 \pm 3.1 \cdot 10^{-7} \) | \(a_{327}= -0.04258292 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{328}= +0.48459539 \pm 2.9 \cdot 10^{-7} \) | \(a_{329}= -0.16638824 \pm 9.6 \cdot 10^{-8} \) | \(a_{330}= -0.09016246 \pm 9.8 \cdot 10^{-7} \) |
| \(a_{331}= -0.87932427 \pm 3.0 \cdot 10^{-7} \) | \(a_{332}= -0.04532259 \pm 2.9 \cdot 10^{-7} \) | \(a_{333}= +1.31090379 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{334}= +1.03347695 \pm 2.1 \cdot 10^{-7} \) | \(a_{335}= -0.49462458 \pm 2.5 \cdot 10^{-7} \) | \(a_{336}= -0.21600935 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{337}= +1.28641190 \pm 5.4 \cdot 10^{-7} \) | \(a_{338}= -0.91959102 \pm 2.1 \cdot 10^{-7} \) | \(a_{339}= +0.27181955 \pm 3.2 \cdot 10^{-7} \) |
| \(a_{340}= -0.02030527 \pm 7.3 \cdot 10^{-7} \) | \(a_{341}= +0.61856075 \pm 2.1 \cdot 10^{-7} \) | \(a_{342}= -1.51539416 \pm 1.5 \cdot 10^{-7} \) |
| \(a_{343}= +0.77583956 \pm 2.3 \cdot 10^{-7} \) | \(a_{344}= -0.29182545 \pm 4.0 \cdot 10^{-7} \) | \(a_{345}= -0.37125382 \pm 5.6 \cdot 10^{-7} \) |
| \(a_{346}= -1.59336709 \pm 4.5 \cdot 10^{-7} \) | \(a_{347}= -1.57029495 \pm 2.5 \cdot 10^{-7} \) | \(a_{348}= -0.01465765 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{349}= -0.10984391 \pm 4.0 \cdot 10^{-7} \) | \(a_{350}= -0.08972181 \pm 5.3 \cdot 10^{-7} \) | \(a_{351}= +0.29231190 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{352}= +0.08659290 \pm 1.9 \cdot 10^{-7} \) | \(a_{353}= -1.15556069 \pm 1.5 \cdot 10^{-7} \) | \(a_{354}= +0.43930631 \pm 3.5 \cdot 10^{-7} \) |
| \(a_{355}= +0.51047926 \pm 2.0 \cdot 10^{-7} \) | \(a_{356}= +0.06623148 \pm 4.0 \cdot 10^{-7} \) | \(a_{357}= +0.08550202 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{358}= -0.06563977 \pm 5.5 \cdot 10^{-7} \) | \(a_{359}= +0.44677175 \pm 1.8 \cdot 10^{-7} \) | \(a_{360}= -0.33069947 \pm 5.4 \cdot 10^{-7} \) |
| \(a_{361}= +2.36505778 \pm 2.8 \cdot 10^{-7} \) | \(a_{362}= -1.09214540 \pm 4.2 \cdot 10^{-7} \) | \(a_{363}= +0.38318494 \pm 3.5 \cdot 10^{-7} \) |
| \(a_{364}= -0.01583182 \pm 1.1 \cdot 10^{-7} \) | \(a_{365}= -0.10266485 \pm 3.3 \cdot 10^{-7} \) | \(a_{366}= +0.27987211 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{367}= +0.22045104 \pm 3.2 \cdot 10^{-7} \) | \(a_{368}= +1.96257554 \pm 1.2 \cdot 10^{-7} \) | \(a_{369}= +0.40477227 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{370}= +0.78408869 \pm 8.6 \cdot 10^{-7} \) | \(a_{371}= -0.41020626 \pm 1.2 \cdot 10^{-7} \) | \(a_{372}= +0.07240019 \pm 4.8 \cdot 10^{-7} \) |
| \(a_{373}= -1.44645596 \pm 4.5 \cdot 10^{-7} \) | \(a_{374}= -0.18866225 \pm 2.4 \cdot 10^{-7} \) | \(a_{375}= +0.04138464 \pm 4.0 \cdot 10^{-7} \) |
| \(a_{376}= -0.36681952 \pm 2.4 \cdot 10^{-7} \) | \(a_{377}= +0.10686526 \pm 1.3 \cdot 10^{-7} \) | \(a_{378}= -0.37070017 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{379}= -1.09977692 \pm 3.1 \cdot 10^{-7} \) | \(a_{380}= -0.08602736 \pm 7.1 \cdot 10^{-7} \) | \(a_{381}= -0.59954322 \pm 4.1 \cdot 10^{-7} \) |
| \(a_{382}= +1.46834228 \pm 1.2 \cdot 10^{-7} \) | \(a_{383}= -0.65972872 \pm 4.3 \cdot 10^{-7} \) | \(a_{384}= -0.52186657 \pm 3.0 \cdot 10^{-7} \) |
| \(a_{385}= -0.07912084 \pm 3.6 \cdot 10^{-7} \) | \(a_{386}= +0.22820369 \pm 1.6 \cdot 10^{-7} \) | \(a_{387}= -0.24375562 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{388}= -0.04772867 \pm 2.1 \cdot 10^{-7} \) | \(a_{389}= +0.53701229 \pm 4.4 \cdot 10^{-7} \) | \(a_{390}= +0.07694056 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{391}= -0.77683755 \pm 1.2 \cdot 10^{-7} \) | \(a_{392}= +0.76951585 \pm 2.9 \cdot 10^{-7} \) | \(a_{393}= +0.02010213 \pm 3.9 \cdot 10^{-7} \) |
| \(a_{394}= -1.46143237 \pm 4.3 \cdot 10^{-7} \) | \(a_{395}= +0.06798285 \pm 4.7 \cdot 10^{-7} \) | \(a_{396}= +0.03416351 \pm 8.5 \cdot 10^{-8} \) |
| \(a_{397}= +1.15812093 \pm 3.9 \cdot 10^{-7} \) | \(a_{398}= +0.85847047 \pm 4.5 \cdot 10^{-7} \) | \(a_{399}= +0.36224647 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{400}= -0.21877347 \pm 1.7 \cdot 10^{-7} \) | \(a_{401}= -0.52285361 \pm 5.9 \cdot 10^{-7} \) | \(a_{402}= -0.53790956 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{403}= -0.52785174 \pm 3.4 \cdot 10^{-7} \) | \(a_{404}= -0.17252741 \pm 2.4 \cdot 10^{-7} \) | \(a_{405}= -0.18048407 \pm 4.2 \cdot 10^{-7} \) |
| \(a_{406}= -0.13552294 \pm 9.2 \cdot 10^{-8} \) | \(a_{407}= +0.69144558 \pm 1.7 \cdot 10^{-7} \) | \(a_{408}= +0.18849776 \pm 3.5 \cdot 10^{-7} \) |
| \(a_{409}= -0.52406071 \pm 3.9 \cdot 10^{-7} \) | \(a_{410}= +0.24210576 \pm 7.9 \cdot 10^{-7} \) | \(a_{411}= +0.20347762 \pm 4.8 \cdot 10^{-7} \) |
| \(a_{412}= +0.09392760 \pm 3.9 \cdot 10^{-7} \) | \(a_{413}= +0.38550727 \pm 1.6 \cdot 10^{-7} \) | \(a_{414}= +1.48214631 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{415}= +0.19328778 \pm 4.1 \cdot 10^{-7} \) | \(a_{416}= -0.07389446 \pm 2.7 \cdot 10^{-7} \) | \(a_{417}= -0.05798934 \pm 4.7 \cdot 10^{-7} \) |
| \(a_{418}= -0.79930549 \pm 9.4 \cdot 10^{-8} \) | \(a_{419}= +0.88610105 \pm 1.7 \cdot 10^{-7} \) | \(a_{420}= -0.00926079 \pm 8.8 \cdot 10^{-7} \) |
| \(a_{421}= +0.56675342 \pm 2.8 \cdot 10^{-7} \) | \(a_{422}= -0.57992986 \pm 2.0 \cdot 10^{-7} \) | \(a_{423}= -0.30639658 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{424}= -0.90434075 \pm 3.6 \cdot 10^{-7} \) | \(a_{425}= +0.08659613 \pm 4.1 \cdot 10^{-7} \) | \(a_{426}= +0.55515169 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{427}= +0.24559796 \pm 1.0 \cdot 10^{-7} \) | \(a_{428}= +0.08100443 \pm 2.4 \cdot 10^{-7} \) | \(a_{429}= +0.06784973 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{430}= -0.14579714 \pm 7.9 \cdot 10^{-7} \) | \(a_{431}= -0.03388585 \pm 3.7 \cdot 10^{-7} \) | \(a_{432}= -0.90389791 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{433}= +0.69545462 \pm 4.7 \cdot 10^{-7} \) | \(a_{434}= +0.66940390 \pm 1.8 \cdot 10^{-7} \) | \(a_{435}= +0.06251064 \pm 5.9 \cdot 10^{-7} \) |
| \(a_{436}= +0.00965087 \pm 2.1 \cdot 10^{-7} \) | \(a_{437}= -3.29122818 \pm 1.3 \cdot 10^{-7} \) | \(a_{438}= -0.11164913 \pm 2.7 \cdot 10^{-7} \) |
| \(a_{439}= -1.15486468 \pm 2.5 \cdot 10^{-7} \) | \(a_{440}= -0.17442980 \pm 5.5 \cdot 10^{-7} \) | \(a_{441}= +0.64276030 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{442}= +0.16099582 \pm 3.4 \cdot 10^{-7} \) | \(a_{443}= +0.83894841 \pm 3.4 \cdot 10^{-7} \) | \(a_{444}= +0.08093108 \pm 3.6 \cdot 10^{-7} \) |
| \(a_{445}= -0.28245816 \pm 4.8 \cdot 10^{-7} \) | \(a_{446}= -0.50906303 \pm 3.9 \cdot 10^{-7} \) | \(a_{447}= +0.43144594 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{448}= -0.37314057 \pm 1.5 \cdot 10^{-7} \) | \(a_{449}= +0.83659285 \pm 4.2 \cdot 10^{-7} \) | \(a_{450}= -0.16521875 \pm 5.7 \cdot 10^{-7} \) |
| \(a_{451}= +0.21350003 \pm 2.5 \cdot 10^{-7} \) | \(a_{452}= -0.06160441 \pm 2.8 \cdot 10^{-7} \) | \(a_{453}= -0.28619482 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{454}= +1.04353316 \pm 3.3 \cdot 10^{-7} \) | \(a_{455}= +0.06751814 \pm 4.2 \cdot 10^{-7} \) | \(a_{456}= +0.79860859 \pm 4.3 \cdot 10^{-7} \) |
| \(a_{457}= +1.31829255 \pm 3.8 \cdot 10^{-7} \) | \(a_{458}= -0.15874752 \pm 4.3 \cdot 10^{-7} \) | \(a_{459}= +0.35778589 \pm 3.2 \cdot 10^{-7} \) |
| \(a_{460}= +0.08413991 \pm 4.9 \cdot 10^{-7} \) | \(a_{461}= -0.81644201 \pm 5.2 \cdot 10^{-7} \) | \(a_{462}= -0.08604476 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{463}= +1.61496074 \pm 3.1 \cdot 10^{-7} \) | \(a_{464}= -0.33045278 \pm 9.5 \cdot 10^{-8} \) | \(a_{465}= -0.30876594 \pm 8.0 \cdot 10^{-7} \) |
| \(a_{466}= -0.26739836 \pm 3.6 \cdot 10^{-7} \) | \(a_{467}= +0.39711416 \pm 1.8 \cdot 10^{-7} \) | \(a_{468}= -0.02915359 \pm 9.3 \cdot 10^{-8} \) |
| \(a_{469}= -0.47203521 \pm 1.1 \cdot 10^{-7} \) | \(a_{470}= -0.18326448 \pm 6.2 \cdot 10^{-7} \) | \(a_{471}= -0.68174923 \pm 3.7 \cdot 10^{-7} \) |
| \(a_{472}= +0.84988935 \pm 2.7 \cdot 10^{-7} \) | \(a_{473}= -0.12857065 \pm 6.8 \cdot 10^{-8} \) | \(a_{474}= +0.07393208 \pm 3.6 \cdot 10^{-7} \) |
| \(a_{475}= +0.36688188 \pm 3.9 \cdot 10^{-7} \) | \(a_{476}= -0.01937793 \pm 1.0 \cdot 10^{-7} \) | \(a_{477}= -0.75537669 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{478}= -1.94566971 \pm 3.3 \cdot 10^{-7} \) | \(a_{479}= -0.90518927 \pm 3.4 \cdot 10^{-7} \) | \(a_{480}= -0.04322443 \pm 8.1 \cdot 10^{-7} \) |
| \(a_{481}= -0.59004835 \pm 1.8 \cdot 10^{-7} \) | \(a_{482}= +0.96591373 \pm 2.6 \cdot 10^{-7} \) | \(a_{483}= -0.35429876 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{484}= -0.08684395 \pm 2.6 \cdot 10^{-7} \) | \(a_{485}= +0.20354903 \pm 3.1 \cdot 10^{-7} \) | \(a_{486}= -1.06485689 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{487}= -0.14124303 \pm 4.9 \cdot 10^{-7} \) | \(a_{488}= +0.54144527 \pm 2.1 \cdot 10^{-7} \) | \(a_{489}= -0.41730442 \pm 2.8 \cdot 10^{-7} \) |
| \(a_{490}= +0.38445314 \pm 7.1 \cdot 10^{-7} \) | \(a_{491}= +0.63028872 \pm 2.5 \cdot 10^{-7} \) | \(a_{492}= +0.02498937 \pm 4.8 \cdot 10^{-7} \) |
| \(a_{493}= +0.13080166 \pm 1.8 \cdot 10^{-7} \) | \(a_{494}= +0.68209112 \pm 1.3 \cdot 10^{-7} \) | \(a_{495}= -0.14569752 \pm 4.1 \cdot 10^{-7} \) |
| \(a_{496}= +1.63224308 \pm 2.0 \cdot 10^{-7} \) | \(a_{497}= +0.48716581 \pm 1.4 \cdot 10^{-7} \) | \(a_{498}= +0.21020254 \pm 3.3 \cdot 10^{-7} \) |
| \(a_{499}= -0.23814719 \pm 4.7 \cdot 10^{-7} \) | \(a_{500}= -0.00937930 \pm 3.3 \cdot 10^{-7} \) | \(a_{501}= -0.45492588 \pm 3.5 \cdot 10^{-7} \) |
| \(a_{502}= +0.49877651 \pm 3.5 \cdot 10^{-7} \) | \(a_{503}= -1.22388544 \pm 4.9 \cdot 10^{-7} \) | \(a_{504}= -0.31559651 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{505}= +0.73577965 \pm 3.2 \cdot 10^{-7} \) | \(a_{506}= +0.78176868 \pm 1.5 \cdot 10^{-7} \) | \(a_{507}= +0.40479447 \pm 3.2 \cdot 10^{-7} \) |
| \(a_{508}= +0.13587877 \pm 2.8 \cdot 10^{-7} \) | \(a_{509}= -0.82268263 \pm 2.7 \cdot 10^{-7} \) | \(a_{510}= +0.09417422 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{511}= -0.09797618 \pm 1.2 \cdot 10^{-7} \) | \(a_{512}= -0.80072063 \pm 2.6 \cdot 10^{-7} \) | \(a_{513}= +1.51583172 \pm 3.0 \cdot 10^{-7} \) |
| \(a_{514}= -1.59101856 \pm 4.4 \cdot 10^{-7} \) | \(a_{515}= -0.40057415 \pm 3.1 \cdot 10^{-7} \) | \(a_{516}= -0.01504871 \pm 3.0 \cdot 10^{-7} \) |
| \(a_{517}= -0.16161107 \pm 2.5 \cdot 10^{-7} \) | \(a_{518}= +0.74827956 \pm 1.3 \cdot 10^{-7} \) | \(a_{519}= +0.70138373 \pm 3.6 \cdot 10^{-7} \) |
| \(a_{520}= +0.14885049 \pm 6.1 \cdot 10^{-7} \) | \(a_{521}= +1.20980272 \pm 3.5 \cdot 10^{-7} \) | \(a_{522}= -0.24955950 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{523}= -1.52892943 \pm 5.1 \cdot 10^{-7} \) | \(a_{524}= -0.00455589 \pm 3.9 \cdot 10^{-7} \) | \(a_{525}= +0.03949462 \pm 5.6 \cdot 10^{-7} \) |
| \(a_{526}= -0.80826766 \pm 4.9 \cdot 10^{-7} \) | \(a_{527}= -0.64608352 \pm 4.2 \cdot 10^{-7} \) | \(a_{528}= -0.20980751 \pm 9.2 \cdot 10^{-8} \) |
| \(a_{529}= +2.21901841 \pm 3.4 \cdot 10^{-7} \) | \(a_{530}= -0.45181219 \pm 7.6 \cdot 10^{-7} \) | \(a_{531}= +0.70989458 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{532}= -0.08209851 \pm 9.8 \cdot 10^{-8} \) | \(a_{533}= -0.18219126 \pm 3.5 \cdot 10^{-7} \) | \(a_{534}= -0.30717629 \pm 4.6 \cdot 10^{-7} \) |
| \(a_{535}= -0.34546054 \pm 3.1 \cdot 10^{-7} \) | \(a_{536}= -1.04064886 \pm 2.4 \cdot 10^{-7} \) | \(a_{537}= +0.02889395 \pm 3.9 \cdot 10^{-7} \) |
| \(a_{538}= +0.44499182 \pm 3.4 \cdot 10^{-7} \) | \(a_{539}= +0.33902852 \pm 1.7 \cdot 10^{-7} \) | \(a_{540}= -0.03875208 \pm 6.3 \cdot 10^{-7} \) |
| \(a_{541}= -1.93746767 \pm 3.3 \cdot 10^{-7} \) | \(a_{542}= -0.65133209 \pm 2.9 \cdot 10^{-7} \) | \(a_{543}= +0.48075112 \pm 4.1 \cdot 10^{-7} \) |
| \(a_{544}= -0.09044584 \pm 4.2 \cdot 10^{-7} \) | \(a_{545}= -0.04115819 \pm 2.0 \cdot 10^{-7} \) | \(a_{546}= +0.07342670 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{547}= -0.01243945 \pm 2.8 \cdot 10^{-7} \) | \(a_{548}= -0.04611559 \pm 4.8 \cdot 10^{-7} \) | \(a_{549}= +0.45225778 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{550}= -0.08714581 \pm 5.8 \cdot 10^{-7} \) | \(a_{551}= +0.55416747 \pm 1.9 \cdot 10^{-7} \) | \(a_{552}= -0.78108706 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{553}= +0.06487809 \pm 1.7 \cdot 10^{-7} \) | \(a_{554}= +1.21478506 \pm 5.1 \cdot 10^{-7} \) | \(a_{555}= -0.34514774 \pm 8.9 \cdot 10^{-7} \) |
| \(a_{556}= +0.01314254 \pm 2.7 \cdot 10^{-7} \) | \(a_{557}= +1.66981558 \pm 3.0 \cdot 10^{-7} \) | \(a_{558}= +1.23267768 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{559}= +0.10971637 \pm 5.6 \cdot 10^{-8} \) | \(a_{560}= -0.20878214 \pm 3.2 \cdot 10^{-7} \) | \(a_{561}= +0.08304717 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{562}= -0.10205036 \pm 1.7 \cdot 10^{-7} \) | \(a_{563}= -0.94571513 \pm 1.3 \cdot 10^{-7} \) | \(a_{564}= -0.01891596 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{565}= +0.26272505 \pm 2.9 \cdot 10^{-7} \) | \(a_{566}= +0.77728030 \pm 5.5 \cdot 10^{-7} \) | \(a_{567}= -0.17224141 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{568}= +1.07400578 \pm 1.9 \cdot 10^{-7} \) | \(a_{569}= -0.44171414 \pm 2.3 \cdot 10^{-7} \) | \(a_{570}= +0.39898799 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{571}= +0.55934216 \pm 3.2 \cdot 10^{-7} \) | \(a_{572}= -0.01537727 \pm 1.4 \cdot 10^{-7} \) | \(a_{573}= -0.64634910 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{574}= +0.23104885 \pm 2.1 \cdot 10^{-7} \) | \(a_{575}= -0.35883246 \pm 1.6 \cdot 10^{-7} \) | \(a_{576}= -0.68712187 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{577}= -1.38104263 \pm 3.4 \cdot 10^{-7} \) | \(a_{578}= -0.85406824 \pm 1.4 \cdot 10^{-7} \) | \(a_{579}= -0.10045291 \pm 1.5 \cdot 10^{-7} \) |
| \(a_{580}= -0.01416723 \pm 5.1 \cdot 10^{-7} \) | \(a_{581}= +0.18446038 \pm 1.6 \cdot 10^{-7} \) | \(a_{582}= +0.22136177 \pm 2.8 \cdot 10^{-7} \) |
| \(a_{583}= -0.39842884 \pm 1.7 \cdot 10^{-7} \) | \(a_{584}= -0.21599828 \pm 3.0 \cdot 10^{-7} \) | \(a_{585}= +0.12433167 \pm 4.6 \cdot 10^{-7} \) |
| \(a_{586}= -0.45945716 \pm 3.1 \cdot 10^{-7} \) | \(a_{587}= -0.87014395 \pm 3.3 \cdot 10^{-7} \) | \(a_{588}= +0.03968200 \pm 3.0 \cdot 10^{-7} \) |
| \(a_{589}= -2.73726250 \pm 2.4 \cdot 10^{-7} \) | \(a_{590}= +0.42460806 \pm 6.9 \cdot 10^{-7} \) | \(a_{591}= +0.64330743 \pm 3.8 \cdot 10^{-7} \) |
| \(a_{592}= +1.82456981 \pm 1.2 \cdot 10^{-7} \) | \(a_{593}= +1.41048355 \pm 4.5 \cdot 10^{-7} \) | \(a_{594}= -0.36005700 \pm 1.5 \cdot 10^{-7} \) |
| \(a_{595}= +0.08264131 \pm 5.7 \cdot 10^{-7} \) | \(a_{596}= -0.09778168 \pm 1.1 \cdot 10^{-7} \) | \(a_{597}= -0.37788983 \pm 5.4 \cdot 10^{-7} \) |
| \(a_{598}= -0.66712599 \pm 1.6 \cdot 10^{-7} \) | \(a_{599}= +0.63133373 \pm 4.6 \cdot 10^{-7} \) | \(a_{600}= +0.08706983 \pm 7.5 \cdot 10^{-7} \) |
| \(a_{601}= +0.38727837 \pm 4.6 \cdot 10^{-7} \) | \(a_{602}= -0.13913863 \pm 8.1 \cdot 10^{-8} \) | \(a_{603}= -0.86923196 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{604}= +0.06486238 \pm 2.5 \cdot 10^{-7} \) | \(a_{605}= +0.37036440 \pm 3.3 \cdot 10^{-7} \) | \(a_{606}= +0.80016829 \pm 2.9 \cdot 10^{-7} \) |
| \(a_{607}= +1.72985161 \pm 2.6 \cdot 10^{-7} \) | \(a_{608}= -0.38319196 \pm 3.6 \cdot 10^{-7} \) | \(a_{609}= +0.05965580 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{610}= +0.27050819 \pm 6.0 \cdot 10^{-7} \) | \(a_{611}= +0.13791157 \pm 3.0 \cdot 10^{-7} \) | \(a_{612}= -0.03568361 \pm 9.1 \cdot 10^{-8} \) |
| \(a_{613}= +0.68935291 \pm 4.1 \cdot 10^{-7} \) | \(a_{614}= +0.29589806 \pm 2.3 \cdot 10^{-7} \) | \(a_{615}= -0.10657245 \pm 8.2 \cdot 10^{-7} \) |
| \(a_{616}= -0.16646364 \pm 7.4 \cdot 10^{-8} \) | \(a_{617}= +1.05631170 \pm 5.3 \cdot 10^{-7} \) | \(a_{618}= -0.43562870 \pm 4.7 \cdot 10^{-7} \) |
| \(a_{619}= +0.35532217 \pm 5.4 \cdot 10^{-7} \) | \(a_{620}= +0.06997784 \pm 7.2 \cdot 10^{-7} \) | \(a_{621}= -1.48257427 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{622}= -0.46025894 \pm 3.4 \cdot 10^{-7} \) | \(a_{623}= -0.26955837 \pm 1.5 \cdot 10^{-7} \) | \(a_{624}= +0.17904023 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{625}= +0.04 \) | \(a_{626}= -1.58386991 \pm 3.3 \cdot 10^{-7} \) | \(a_{627}= +0.35184602 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{628}= +0.15450971 \pm 2.4 \cdot 10^{-7} \) | \(a_{629}= -0.72221135 \pm 5.1 \cdot 10^{-7} \) | \(a_{630}= -0.15767326 \pm 7.2 \cdot 10^{-7} \) |
| \(a_{631}= +0.99147044 \pm 4.3 \cdot 10^{-7} \) | \(a_{632}= +0.14303025 \pm 4.5 \cdot 10^{-7} \) | \(a_{633}= +0.25527913 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{634}= -0.46801296 \pm 3.7 \cdot 10^{-7} \) | \(a_{635}= -0.57948379 \pm 4.4 \cdot 10^{-7} \) | \(a_{636}= -0.04663458 \pm 3.1 \cdot 10^{-7} \) |
| \(a_{637}= -0.28931159 \pm 2.2 \cdot 10^{-7} \) | \(a_{638}= -0.13163194 \pm 1.0 \cdot 10^{-7} \) | \(a_{639}= +0.89709429 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{640}= -0.50440603 \pm 2.9 \cdot 10^{-7} \) | \(a_{641}= -0.87779137 \pm 2.8 \cdot 10^{-7} \) | \(a_{642}= -0.37569206 \pm 3.3 \cdot 10^{-7} \) |
| \(a_{643}= +0.70401912 \pm 2.2 \cdot 10^{-7} \) | \(a_{644}= +0.08029726 \pm 7.7 \cdot 10^{-8} \) | \(a_{645}= +0.06417840 \pm 8.2 \cdot 10^{-7} \) |
| \(a_{646}= +0.83487047 \pm 2.6 \cdot 10^{-7} \) | \(a_{647}= -0.41330453 \pm 4.6 \cdot 10^{-7} \) | \(a_{648}= -0.37972342 \pm 3.6 \cdot 10^{-7} \) |
| \(a_{649}= +0.37443898 \pm 1.2 \cdot 10^{-7} \) | \(a_{650}= +0.07436629 \pm 6.3 \cdot 10^{-7} \) | \(a_{651}= -0.29466468 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{652}= +0.09457669 \pm 2.4 \cdot 10^{-7} \) | \(a_{653}= +0.53097902 \pm 2.6 \cdot 10^{-7} \) | \(a_{654}= -0.04475997 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{655}= +0.01942956 \pm 3.8 \cdot 10^{-7} \) | \(a_{656}= +0.56337869 \pm 2.2 \cdot 10^{-7} \) | \(a_{657}= -0.18041879 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{658}= -0.17489484 \pm 7.7 \cdot 10^{-8} \) | \(a_{659}= -0.38718295 \pm 5.0 \cdot 10^{-7} \) | \(a_{660}= -0.00899491 \pm 9.3 \cdot 10^{-7} \) |
| \(a_{661}= -0.21906784 \pm 3.6 \cdot 10^{-7} \) | \(a_{662}= -0.92427971 \pm 3.6 \cdot 10^{-7} \) | \(a_{663}= -0.07086870 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{664}= +0.40666137 \pm 3.8 \cdot 10^{-7} \) | \(a_{665}= +0.35012648 \pm 5.4 \cdot 10^{-7} \) | \(a_{666}= +1.37792373 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{667}= -0.54200899 \pm 1.2 \cdot 10^{-7} \) | \(a_{668}= +0.10310311 \pm 1.9 \cdot 10^{-7} \) | \(a_{669}= +0.22408429 \pm 4.4 \cdot 10^{-7} \) |
| \(a_{670}= -0.51991226 \pm 6.2 \cdot 10^{-7} \) | \(a_{671}= +0.23854660 \pm 1.1 \cdot 10^{-7} \) | \(a_{672}= -0.04125039 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{673}= +0.76266907 \pm 3.1 \cdot 10^{-7} \) | \(a_{674}= +1.35217969 \pm 3.5 \cdot 10^{-7} \) | \(a_{675}= +0.16526646 \pm 3.1 \cdot 10^{-7} \) |
| \(a_{676}= -0.09174147 \pm 2.0 \cdot 10^{-7} \) | \(a_{677}= -1.88476369 \pm 3.6 \cdot 10^{-7} \) | \(a_{678}= +0.28571632 \pm 3.7 \cdot 10^{-7} \) |
| \(a_{679}= +0.19425300 \pm 1.5 \cdot 10^{-7} \) | \(a_{680}= +0.18219103 \pm 7.6 \cdot 10^{-7} \) | \(a_{681}= -0.45935251 \pm 3.1 \cdot 10^{-7} \) |
| \(a_{682}= +0.65018466 \pm 2.8 \cdot 10^{-7} \) | \(a_{683}= +0.19922348 \pm 5.1 \cdot 10^{-7} \) | \(a_{684}= -0.15118078 \pm 7.2 \cdot 10^{-8} \) |
| \(a_{685}= +0.19666969 \pm 4.6 \cdot 10^{-7} \) | \(a_{686}= +0.81550434 \pm 2.4 \cdot 10^{-7} \) | \(a_{687}= +0.06987902 \pm 6.1 \cdot 10^{-7} \) |
| \(a_{688}= -0.33926910 \pm 4.7 \cdot 10^{-8} \) | \(a_{689}= +0.34000113 \pm 2.1 \cdot 10^{-7} \) | \(a_{690}= -0.39023417 \pm 9.3 \cdot 10^{-7} \) |
| \(a_{691}= +0.62770648 \pm 2.5 \cdot 10^{-7} \) | \(a_{692}= -0.15895962 \pm 3.9 \cdot 10^{-7} \) | \(a_{693}= -0.13904355 \pm 9.7 \cdot 10^{-8} \) |
| \(a_{694}= -1.65057625 \pm 2.1 \cdot 10^{-7} \) | \(a_{695}= -0.05604914 \pm 4.5 \cdot 10^{-7} \) | \(a_{696}= +0.13151718 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{697}= -0.22299968 \pm 4.4 \cdot 10^{-7} \) | \(a_{698}= -0.11545968 \pm 4.8 \cdot 10^{-7} \) | \(a_{699}= +0.11770600 \pm 5.5 \cdot 10^{-7} \) |
| \(a_{700}= -0.00895095 \pm 4.8 \cdot 10^{-7} \) | \(a_{701}= -1.25821184 \pm 2.1 \cdot 10^{-7} \) | \(a_{702}= +0.30725634 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{703}= -3.05979333 \pm 5.7 \cdot 10^{-7} \) | \(a_{704}= -0.36242734 \pm 2.2 \cdot 10^{-7} \) | \(a_{705}= +0.08067113 \pm 6.5 \cdot 10^{-7} \) |
| \(a_{706}= -1.21463871 \pm 1.3 \cdot 10^{-7} \) | \(a_{707}= +0.70217679 \pm 1.3 \cdot 10^{-7} \) | \(a_{708}= +0.04382666 \pm 2.7 \cdot 10^{-7} \) |
| \(a_{709}= +0.70562703 \pm 4.7 \cdot 10^{-7} \) | \(a_{710}= +0.53657751 \pm 5.7 \cdot 10^{-7} \) | \(a_{711}= +0.11947014 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{712}= -0.59426840 \pm 4.1 \cdot 10^{-7} \) | \(a_{713}= +2.67720677 \pm 1.8 \cdot 10^{-7} \) | \(a_{714}= +0.08987331 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{715}= +0.06557963 \pm 4.7 \cdot 10^{-7} \) | \(a_{716}= -0.00654844 \pm 4.7 \cdot 10^{-7} \) | \(a_{717}= +0.85646370 \pm 3.1 \cdot 10^{-7} \) |
| \(a_{718}= +0.46961295 \pm 2.1 \cdot 10^{-7} \) | \(a_{719}= -1.15615378 \pm 1.5 \cdot 10^{-7} \) | \(a_{720}= -0.38446308 \pm 3.6 \cdot 10^{-7} \) |
| \(a_{721}= -0.38228004 \pm 1.2 \cdot 10^{-7} \) | \(a_{722}= +2.48597132 \pm 3.1 \cdot 10^{-7} \) | \(a_{723}= -0.42518524 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{724}= -0.10895607 \pm 3.7 \cdot 10^{-7} \) | \(a_{725}= +0.06041917 \pm 1.9 \cdot 10^{-7} \) | \(a_{726}= +0.40277527 \pm 3.0 \cdot 10^{-7} \) |
| \(a_{727}= +1.33971300 \pm 4.1 \cdot 10^{-7} \) | \(a_{728}= +0.14205253 \pm 8.6 \cdot 10^{-8} \) | \(a_{729}= +0.06516436 \pm 3.0 \cdot 10^{-7} \) |
| \(a_{730}= -0.10791359 \pm 7.0 \cdot 10^{-7} \) | \(a_{731}= +0.13429138 \pm 4.3 \cdot 10^{-7} \) | \(a_{732}= +0.02792098 \pm 1.5 \cdot 10^{-7} \) |
| \(a_{733}= -0.43827238 \pm 2.7 \cdot 10^{-7} \) | \(a_{734}= +0.23172160 \pm 4.9 \cdot 10^{-7} \) | \(a_{735}= -0.16923230 \pm 7.4 \cdot 10^{-7} \) |
| \(a_{736}= +0.37478470 \pm 1.5 \cdot 10^{-7} \) | \(a_{737}= -0.45848262 \pm 8.3 \cdot 10^{-8} \) | \(a_{738}= +0.42546625 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{739}= -0.25685613 \pm 3.2 \cdot 10^{-7} \) | \(a_{740}= +0.07822330 \pm 8.2 \cdot 10^{-7} \) | \(a_{741}= -0.30024946 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{742}= -0.43117805 \pm 1.0 \cdot 10^{-7} \) | \(a_{743}= -0.65793732 \pm 5.3 \cdot 10^{-7} \) | \(a_{744}= -0.64961777 \pm 2.6 \cdot 10^{-7} \) |
| \(a_{745}= +0.41701068 \pm 1.5 \cdot 10^{-7} \) | \(a_{746}= -1.52040600 \pm 5.4 \cdot 10^{-7} \) | \(a_{747}= +0.33967563 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{748}= -0.01882158 \pm 1.6 \cdot 10^{-7} \) | \(a_{749}= -0.32968345 \pm 1.8 \cdot 10^{-7} \) | \(a_{750}= +0.04350043 \pm 7.7 \cdot 10^{-7} \) |
| \(a_{751}= +0.65036214 \pm 3.6 \cdot 10^{-7} \) | \(a_{752}= -0.42645537 \pm 1.2 \cdot 10^{-7} \) | \(a_{753}= -0.21955627 \pm 5.9 \cdot 10^{-7} \) |
| \(a_{754}= +0.11232874 \pm 1.1 \cdot 10^{-7} \) | \(a_{755}= -0.27661935 \pm 2.6 \cdot 10^{-7} \) | \(a_{756}= -0.03698229 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{757}= -0.53735662 \pm 2.9 \cdot 10^{-7} \) | \(a_{758}= -1.15600299 \pm 3.0 \cdot 10^{-7} \) | \(a_{759}= -0.34412649 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{760}= +0.77188886 \pm 7.3 \cdot 10^{-7} \) | \(a_{761}= +1.33231943 \pm 3.6 \cdot 10^{-7} \) | \(a_{762}= -0.63019485 \pm 3.3 \cdot 10^{-7} \) |
| \(a_{763}= -0.03927850 \pm 9.1 \cdot 10^{-8} \) | \(a_{764}= +0.14648672 \pm 9.4 \cdot 10^{-8} \) | \(a_{765}= +0.15218031 \pm 6.1 \cdot 10^{-7} \) |
| \(a_{766}= -0.69345734 \pm 4.2 \cdot 10^{-7} \) | \(a_{767}= -0.31952927 \pm 1.8 \cdot 10^{-7} \) | \(a_{768}= -0.14401489 \pm 3.0 \cdot 10^{-7} \) |
| \(a_{769}= +1.25634363 \pm 2.6 \cdot 10^{-7} \) | \(a_{770}= -0.08316589 \pm 7.3 \cdot 10^{-7} \) | \(a_{771}= +0.70034993 \pm 2.9 \cdot 10^{-7} \) |
| \(a_{772}= +0.02276636 \pm 1.0 \cdot 10^{-7} \) | \(a_{773}= +1.03863138 \pm 2.0 \cdot 10^{-7} \) | \(a_{774}= -0.25621763 \pm 6.7 \cdot 10^{-8} \) |
| \(a_{775}= -0.29843529 \pm 4.0 \cdot 10^{-7} \) | \(a_{776}= +0.42825019 \pm 2.9 \cdot 10^{-7} \) | \(a_{777}= -0.32938493 \pm 1.5 \cdot 10^{-7} \) |
| \(a_{778}= +0.56446703 \pm 3.0 \cdot 10^{-7} \) | \(a_{779}= -0.94478291 \pm 2.7 \cdot 10^{-7} \) | \(a_{780}= +0.00767585 \pm 9.9 \cdot 10^{-7} \) |
| \(a_{781}= +0.47317880 \pm 1.4 \cdot 10^{-7} \) | \(a_{782}= -0.81655336 \pm 1.6 \cdot 10^{-7} \) | \(a_{783}= +0.24963156 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{784}= +0.89462022 \pm 1.2 \cdot 10^{-7} \) | \(a_{785}= -0.65893936 \pm 3.6 \cdot 10^{-7} \) | \(a_{786}= +0.02112985 \pm 4.7 \cdot 10^{-7} \) |
| \(a_{787}= +0.54409615 \pm 2.5 \cdot 10^{-7} \) | \(a_{788}= -0.14579737 \pm 3.8 \cdot 10^{-7} \) | \(a_{789}= +0.35579107 \pm 4.3 \cdot 10^{-7} \) |
| \(a_{790}= +0.07145848 \pm 8.4 \cdot 10^{-7} \) | \(a_{791}= +0.25072646 \pm 1.4 \cdot 10^{-7} \) | \(a_{792}= -0.30653543 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{793}= -0.20356487 \pm 1.3 \cdot 10^{-7} \) | \(a_{794}= +1.21732984 \pm 4.6 \cdot 10^{-7} \) | \(a_{795}= +0.19888306 \pm 7.9 \cdot 10^{-7} \) |
| \(a_{796}= +0.08564388 \pm 4.0 \cdot 10^{-7} \) | \(a_{797}= -0.72839233 \pm 3.2 \cdot 10^{-7} \) | \(a_{798}= +0.38076631 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{799}= +0.16880193 \pm 3.3 \cdot 10^{-7} \) | \(a_{800}= -0.04177824 \pm 4.1 \cdot 10^{-7} \) | \(a_{801}= -0.49637982 \pm 1.5 \cdot 10^{-7} \) |
| \(a_{802}= -0.54958449 \pm 5.5 \cdot 10^{-7} \) | \(a_{803}= -0.09516318 \pm 1.4 \cdot 10^{-7} \) | \(a_{804}= -0.05366365 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{805}= -0.34244468 \pm 3.2 \cdot 10^{-7} \) | \(a_{806}= -0.55483815 \pm 4.8 \cdot 10^{-7} \) | \(a_{807}= -0.19588080 \pm 3.9 \cdot 10^{-7} \) |
| \(a_{808}= +1.54801900 \pm 2.9 \cdot 10^{-7} \) | \(a_{809}= -0.24088135 \pm 3.0 \cdot 10^{-7} \) | \(a_{810}= -0.18971131 \pm 7.9 \cdot 10^{-7} \) |
| \(a_{811}= -0.68900722 \pm 2.4 \cdot 10^{-7} \) | \(a_{812}= -0.01352022 \pm 5.2 \cdot 10^{-8} \) | \(a_{813}= +0.28670965 \pm 2.9 \cdot 10^{-7} \) |
| \(a_{814}= +0.72679573 \pm 1.8 \cdot 10^{-7} \) | \(a_{815}= -0.40334231 \pm 3.3 \cdot 10^{-7} \) | \(a_{816}= +0.21914286 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{817}= +0.56895238 \pm 5.1 \cdot 10^{-7} \) | \(a_{818}= -0.55085331 \pm 4.3 \cdot 10^{-7} \) | \(a_{819}= +0.11865347 \pm 9.8 \cdot 10^{-8} \) |
| \(a_{820}= +0.02415328 \pm 7.4 \cdot 10^{-7} \) | \(a_{821}= -0.65179027 \pm 2.6 \cdot 10^{-7} \) | \(a_{822}= +0.21388041 \pm 5.7 \cdot 10^{-7} \) |
| \(a_{823}= -1.51225137 \pm 4.3 \cdot 10^{-7} \) | \(a_{824}= -0.84277459 \pm 1.7 \cdot 10^{-7} \) | \(a_{825}= +0.03836069 \pm 6.1 \cdot 10^{-7} \) |
| \(a_{826}= +0.40521632 \pm 1.6 \cdot 10^{-7} \) | \(a_{827}= +1.11091865 \pm 2.8 \cdot 10^{-7} \) | \(a_{828}= +0.14786386 \pm 6.2 \cdot 10^{-8} \) |
| \(a_{829}= -0.94120626 \pm 5.5 \cdot 10^{-7} \) | \(a_{830}= +0.20316962 \pm 7.8 \cdot 10^{-7} \) | \(a_{831}= -0.53473583 \pm 3.6 \cdot 10^{-7} \) |
| \(a_{832}= +0.30927909 \pm 3.3 \cdot 10^{-7} \) | \(a_{833}= -0.35411354 \pm 3.6 \cdot 10^{-7} \) | \(a_{834}= -0.06095404 \pm 3.3 \cdot 10^{-7} \) |
| \(a_{835}= -0.43970503 \pm 3.2 \cdot 10^{-7} \) | \(a_{836}= -0.07974138 \pm 6.9 \cdot 10^{-8} \) | \(a_{837}= -1.23303360 \pm 3.5 \cdot 10^{-7} \) |
| \(a_{838}= +0.93140295 \pm 1.7 \cdot 10^{-7} \) | \(a_{839}= +1.33873177 \pm 2.1 \cdot 10^{-7} \) | \(a_{840}= +0.08309338 \pm 9.0 \cdot 10^{-7} \) |
| \(a_{841}= -0.90873810 \pm 3.2 \cdot 10^{-7} \) | \(a_{842}= +0.59572868 \pm 2.1 \cdot 10^{-7} \) | \(a_{843}= +0.04492151 \pm 1.5 \cdot 10^{-7} \) |
| \(a_{844}= -0.05785574 \pm 1.2 \cdot 10^{-7} \) | \(a_{845}= +0.39125091 \pm 3.2 \cdot 10^{-7} \) | \(a_{846}= -0.32206110 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{847}= +0.35344995 \pm 1.2 \cdot 10^{-7} \) | \(a_{848}= -1.05136434 \pm 1.1 \cdot 10^{-7} \) | \(a_{849}= -0.34215075 \pm 4.3 \cdot 10^{-7} \) |
| \(a_{850}= +0.09102335 \pm 7.8 \cdot 10^{-7} \) | \(a_{851}= +2.99266126 \pm 1.3 \cdot 10^{-7} \) | \(a_{852}= +0.05538378 \pm 8.5 \cdot 10^{-8} \) |
| \(a_{853}= +0.47922954 \pm 3.2 \cdot 10^{-7} \) | \(a_{854}= +0.25815415 \pm 1.1 \cdot 10^{-7} \) | \(a_{855}= +0.64474242 \pm 5.8 \cdot 10^{-7} \) |
| \(a_{856}= -0.72682015 \pm 2.7 \cdot 10^{-7} \) | \(a_{857}= +0.81715285 \pm 3.4 \cdot 10^{-7} \) | \(a_{858}= +0.07131855 \pm 1.5 \cdot 10^{-7} \) |
| \(a_{859}= -0.08772938 \pm 3.3 \cdot 10^{-7} \) | \(a_{860}= -0.01454521 \pm 7.4 \cdot 10^{-7} \) | \(a_{861}= -0.10170532 \pm 1.5 \cdot 10^{-7} \) |
| \(a_{862}= -0.03561826 \pm 2.5 \cdot 10^{-7} \) | \(a_{863}= -0.31397716 \pm 5.1 \cdot 10^{-7} \) | \(a_{864}= -0.17261354 \pm 3.4 \cdot 10^{-7} \) |
| \(a_{865}= +0.67791693 \pm 3.6 \cdot 10^{-7} \) | \(a_{866}= +0.73100973 \pm 3.0 \cdot 10^{-7} \) | \(a_{867}= +0.37595201 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{868}= +0.06678197 \pm 1.7 \cdot 10^{-7} \) | \(a_{869}= +0.06301538 \pm 1.7 \cdot 10^{-7} \) | \(a_{870}= +0.06570650 \pm 9.6 \cdot 10^{-7} \) |
| \(a_{871}= +0.39124831 \pm 9.1 \cdot 10^{-8} \) | \(a_{872}= -0.08659339 \pm 1.4 \cdot 10^{-7} \) | \(a_{873}= +0.35770832 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{874}= -3.45949218 \pm 1.2 \cdot 10^{-7} \) | \(a_{875}= +0.03817321 \pm 1.6 \cdot 10^{-7} \) | \(a_{876}= -0.01113849 \pm 2.7 \cdot 10^{-7} \) |
| \(a_{877}= -1.07217541 \pm 3.1 \cdot 10^{-7} \) | \(a_{878}= -1.21390712 \pm 3.4 \cdot 10^{-7} \) | \(a_{879}= +0.20224829 \pm 5.3 \cdot 10^{-7} \) |
| \(a_{880}= -0.20278780 \pm 3.7 \cdot 10^{-7} \) | \(a_{881}= -1.20451892 \pm 2.8 \cdot 10^{-7} \) | \(a_{882}= +0.67562141 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{883}= -0.23294002 \pm 2.9 \cdot 10^{-7} \) | \(a_{884}= +0.01606148 \pm 2.6 \cdot 10^{-7} \) | \(a_{885}= -0.18690808 \pm 7.2 \cdot 10^{-7} \) |
| \(a_{886}= +0.88183964 \pm 4.0 \cdot 10^{-7} \) | \(a_{887}= -0.03660218 \pm 4.8 \cdot 10^{-7} \) | \(a_{888}= -0.72616205 \pm 5.0 \cdot 10^{-7} \) |
| \(a_{889}= -0.55301891 \pm 1.6 \cdot 10^{-7} \) | \(a_{890}= -0.29689883 \pm 8.5 \cdot 10^{-7} \) | \(a_{891}= -0.16729619 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{892}= -0.05078583 \pm 3.5 \cdot 10^{-7} \) | \(a_{893}= +0.71516326 \pm 6.0 \cdot 10^{-8} \) | \(a_{894}= +0.45350361 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{895}= +0.02792722 \pm 3.9 \cdot 10^{-7} \) | \(a_{896}= -0.48136994 \pm 1.1 \cdot 10^{-7} \) | \(a_{897}= +0.29366197 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{898}= +0.87936364 \pm 3.7 \cdot 10^{-7} \) | \(a_{899}= -0.45078032 \pm 1.1 \cdot 10^{-7} \) | \(a_{900}= -0.01648277 \pm 5.2 \cdot 10^{-7} \) |
| \(a_{901}= +0.41615687 \pm 4.2 \cdot 10^{-7} \) | \(a_{902}= +0.22441522 \pm 3.2 \cdot 10^{-7} \) | \(a_{903}= +0.06124739 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{904}= +0.55275158 \pm 2.2 \cdot 10^{-7} \) | \(a_{905}= +0.46466622 \pm 4.1 \cdot 10^{-7} \) | \(a_{906}= -0.30082652 \pm 3.1 \cdot 10^{-7} \) |
| \(a_{907}= -0.37151283 \pm 4.9 \cdot 10^{-7} \) | \(a_{908}= +0.10410635 \pm 2.8 \cdot 10^{-7} \) | \(a_{909}= +1.29302750 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{910}= +0.07097000 \pm 7.9 \cdot 10^{-7} \) | \(a_{911}= -0.77714691 \pm 5.1 \cdot 10^{-7} \) | \(a_{912}= +0.92844273 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{913}= +0.17916434 \pm 1.4 \cdot 10^{-7} \) | \(a_{914}= +1.38569024 \pm 3.9 \cdot 10^{-7} \) | \(a_{915}= -0.11907491 \pm 6.3 \cdot 10^{-7} \) |
| \(a_{916}= -0.01583718 \pm 3.9 \cdot 10^{-7} \) | \(a_{917}= +0.01854221 \pm 1.6 \cdot 10^{-7} \) | \(a_{918}= +0.37607769 \pm 3.3 \cdot 10^{-7} \) |
| \(a_{919}= +1.01748614 \pm 3.6 \cdot 10^{-7} \) | \(a_{920}= -0.75495356 \pm 5.1 \cdot 10^{-7} \) | \(a_{921}= -0.13025127 \pm 3.3 \cdot 10^{-7} \) |
| \(a_{922}= -0.85818260 \pm 3.7 \cdot 10^{-7} \) | \(a_{923}= -0.40378937 \pm 1.6 \cdot 10^{-7} \) | \(a_{924}= -0.00858411 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{925}= -0.33359983 \pm 4.9 \cdot 10^{-7} \) | \(a_{926}= +1.69752559 \pm 2.8 \cdot 10^{-7} \) | \(a_{927}= -0.70395178 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{928}= -0.06310516 \pm 1.5 \cdot 10^{-7} \) | \(a_{929}= -1.56078492 \pm 1.8 \cdot 10^{-7} \) | \(a_{930}= -0.32455159 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{931}= -1.50027309 \pm 3.2 \cdot 10^{-7} \) | \(a_{932}= -0.02667655 \pm 3.4 \cdot 10^{-7} \) | \(a_{933}= +0.20260123 \pm 3.0 \cdot 10^{-7} \) |
| \(a_{934}= +0.41741662 \pm 2.2 \cdot 10^{-7} \) | \(a_{935}= +0.08026859 \pm 6.2 \cdot 10^{-7} \) | \(a_{936}= +0.26158345 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{937}= +1.10301157 \pm 5.9 \cdot 10^{-7} \) | \(a_{938}= -0.49616800 \pm 8.7 \cdot 10^{-8} \) | \(a_{939}= +0.69720317 \pm 3.1 \cdot 10^{-7} \) |
| \(a_{940}= -0.01828308 \pm 5.7 \cdot 10^{-7} \) | \(a_{941}= -1.11883452 \pm 4.2 \cdot 10^{-7} \) | \(a_{942}= -0.71660365 \pm 3.3 \cdot 10^{-7} \) |
| \(a_{943}= +0.92405431 \pm 2.1 \cdot 10^{-7} \) | \(a_{944}= +0.98806048 \pm 1.6 \cdot 10^{-7} \) | \(a_{945}= +0.15771878 \pm 4.6 \cdot 10^{-7} \) |
| \(a_{946}= -0.13514382 \pm 5.5 \cdot 10^{-8} \) | \(a_{947}= -1.53471063 \pm 4.8 \cdot 10^{-7} \) | \(a_{948}= +0.00737571 \pm 3.3 \cdot 10^{-7} \) |
| \(a_{949}= +0.08120795 \pm 1.8 \cdot 10^{-7} \) | \(a_{950}= +0.38563871 \pm 7.5 \cdot 10^{-7} \) | \(a_{951}= +0.20601447 \pm 6.0 \cdot 10^{-7} \) |
| \(a_{952}= +0.17387041 \pm 1.1 \cdot 10^{-7} \) | \(a_{953}= +0.63691909 \pm 5.3 \cdot 10^{-7} \) | \(a_{954}= -0.79399531 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{955}= -0.62472364 \pm 1.1 \cdot 10^{-7} \) | \(a_{956}= -0.19410650 \pm 2.6 \cdot 10^{-7} \) | \(a_{957}= +0.05794302 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{958}= -0.95146706 \pm 4.4 \cdot 10^{-7} \) | \(a_{959}= +0.18768784 \pm 1.6 \cdot 10^{-7} \) | \(a_{960}= +0.18091225 \pm 7.7 \cdot 10^{-7} \) |
| \(a_{961}= +1.22659058 \pm 4.8 \cdot 10^{-7} \) | \(a_{962}= -0.62021457 \pm 2.0 \cdot 10^{-7} \) | \(a_{963}= -0.60709749 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{964}= +0.09636278 \pm 2.2 \cdot 10^{-7} \) | \(a_{965}= -0.09709197 \pm 1.7 \cdot 10^{-7} \) | \(a_{966}= -0.37241228 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{967}= -0.95761262 \pm 2.4 \cdot 10^{-7} \) | \(a_{968}= +0.77921579 \pm 2.9 \cdot 10^{-7} \) | \(a_{969}= -0.36750135 \pm 4.3 \cdot 10^{-7} \) |
| \(a_{970}= +0.21395548 \pm 6.8 \cdot 10^{-7} \) | \(a_{971}= +1.09747823 \pm 2.9 \cdot 10^{-7} \) | \(a_{972}= -0.10623368 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{973}= -0.05348939 \pm 1.7 \cdot 10^{-7} \) | \(a_{974}= -0.14846407 \pm 3.5 \cdot 10^{-7} \) | \(a_{975}= -0.03273527 \pm 6.6 \cdot 10^{-7} \) |
| \(a_{976}= +0.62947097 \pm 9.8 \cdot 10^{-8} \) | \(a_{977}= -0.17782707 \pm 2.5 \cdot 10^{-7} \) | \(a_{978}= -0.43863911 \pm 2.9 \cdot 10^{-7} \) |
| \(a_{979}= -0.26181909 \pm 1.7 \cdot 10^{-7} \) | \(a_{980}= +0.03835433 \pm 6.6 \cdot 10^{-7} \) | \(a_{981}= -0.07232962 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{982}= +0.66251222 \pm 1.9 \cdot 10^{-7} \) | \(a_{983}= +0.73569197 \pm 3.7 \cdot 10^{-7} \) | \(a_{984}= -0.22421955 \pm 2.9 \cdot 10^{-7} \) |
| \(a_{985}= +0.62178374 \pm 3.8 \cdot 10^{-7} \) | \(a_{986}= +0.13748889 \pm 1.3 \cdot 10^{-7} \) | \(a_{987}= +0.07698690 \pm 7.4 \cdot 10^{-8} \) |
| \(a_{988}= +0.06804769 \pm 9.3 \cdot 10^{-8} \) | \(a_{989}= -0.55646953 \pm 6.2 \cdot 10^{-8} \) | \(a_{990}= -0.15314630 \pm 7.7 \cdot 10^{-7} \) |
| \(a_{991}= +1.05584600 \pm 3.7 \cdot 10^{-7} \) | \(a_{992}= +0.31170252 \pm 4.9 \cdot 10^{-7} \) | \(a_{993}= +0.40685838 \pm 2.7 \cdot 10^{-7} \) |
| \(a_{994}= +0.51207215 \pm 1.5 \cdot 10^{-7} \) | \(a_{995}= -0.36524645 \pm 5.2 \cdot 10^{-7} \) | \(a_{996}= +0.02097051 \pm 3.1 \cdot 10^{-7} \) |
| \(a_{997}= +1.19393923 \pm 5.2 \cdot 10^{-7} \) | \(a_{998}= -0.25032246 \pm 4.0 \cdot 10^{-7} \) | \(a_{999}= -1.37832159 \pm 4.0 \cdot 10^{-7} \) |
| \(a_{1000}= +0.08415666 \pm 3.5 \cdot 10^{-7} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000