Maass form invariants
Level: | \( 5 \) |
Weight: | \( 0 \) |
Character: | 5.1 |
Symmetry: | odd |
Fricke sign: | not computed rigorously |
Spectral parameter: | \(20.3593370401821489713520622198 \pm 9 \cdot 10^{-4}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -0.69363499 \pm 1.0 \) | \(a_{3}= -1.32008305 \pm 1.1 \) |
\(a_{4}= -0.51887050 \pm 9.3 \cdot 10^{-1} \) | \(a_{5}= \pm0.44721360 \pm 1.0 \cdot 10^{-8} \) | \(a_{6}= +0.91565579 \pm 1.0 \) |
\(a_{7}= +1.77749939 \pm 4.4 \cdot 10^{-1} \) | \(a_{8}= +1.05354172 \pm 9.9 \cdot 10^{-1} \) | \(a_{9}= +0.74261926 \pm 5.6 \cdot 10^{-1} \) |
\(a_{10}= \pm0.31020300 \pm 4.7 \cdot 10^{-1} \) | \(a_{11}= +0.93132069 \pm 5.9 \cdot 10^{-1} \) | \(a_{12}= +0.68495215 \pm 9.6 \cdot 10^{-1} \) |
\(a_{13}= -0.92870586 \pm 7.5 \cdot 10^{-1} \) | \(a_{14}= -1.23293577 \pm 4.5 \cdot 10^{-1} \) | \(a_{15}= \pm0.59035909 \pm 5.1 \cdot 10^{-1} \) |
\(a_{16}= -0.21190290 \pm 4.7 \cdot 10^{-1} \) | \(a_{17}= -0.61833714 \pm 1.1 \) | \(a_{18}= -0.51510671 \pm 5.0 \cdot 10^{-1} \) |
\(a_{19}= +1.23571786 \pm 1.1 \) | \(a_{20}= \pm0.23204594 \pm 4.1 \cdot 10^{-1} \) | \(a_{21}= -2.34644682 \pm 4.9 \cdot 10^{-1} \) |
\(a_{22}= -0.64599661 \pm 6.3 \cdot 10^{-1} \) | \(a_{23}= +0.63406692 \pm 4.6 \cdot 10^{-1} \) | \(a_{24}= -1.39076258 \pm 1.0 \) |
\(a_{25}= \pm0.2 \) | \(a_{26}= +0.64418288 \pm 9.0 \cdot 10^{-1} \) | \(a_{27}= +0.33976395 \pm 8.8 \cdot 10^{-1} \) |
\(a_{28}= -0.92229200 \pm 3.6 \cdot 10^{-1} \) | \(a_{29}= +0.12937389 \pm 5.4 \cdot 10^{-1} \) | \(a_{30}= \pm0.40949372 \pm 4.9 \cdot 10^{-1} \) |
\(a_{31}= -0.34874821 \pm 1.1 \) | \(a_{32}= -0.90655846 \pm 1.1 \) | \(a_{33}= -1.22942065 \pm 4.3 \cdot 10^{-1} \) |
\(a_{34}= +0.42890028 \pm 1.1 \) | \(a_{35}= \pm0.79492189 \pm 1.9 \cdot 10^{-1} \) | \(a_{36}= -0.38532323 \pm 2.6 \cdot 10^{-1} \) |
\(a_{37}= -1.61123588 \pm 1.4 \) | \(a_{38}= -0.85713715 \pm 7.7 \cdot 10^{-1} \) | \(a_{39}= +1.22596887 \pm 6.0 \cdot 10^{-1} \) |
\(a_{40}= \pm0.47115818 \pm 4.4 \cdot 10^{-1} \) | \(a_{41}= -0.59111522 \pm 1.2 \) | \(a_{42}= +1.62757762 \pm 4.6 \cdot 10^{-1} \) |
\(a_{43}= +1.87689094 \pm 1.2 \) | \(a_{44}= -0.48323483 \pm 4.5 \cdot 10^{-1} \) | \(a_{45}= \pm0.33210943 \pm 2.5 \cdot 10^{-1} \) |
\(a_{46}= -0.43981100 \pm 5.5 \cdot 10^{-1} \) | \(a_{47}= +0.16771543 \pm 7.1 \cdot 10^{-1} \) | \(a_{48}= +0.27972943 \pm 4.8 \cdot 10^{-1} \) |
\(a_{49}= +2.15950409 \pm 9.7 \cdot 10^{-1} \) | \(a_{50}= \pm0.13872700 \pm 2.1 \cdot 10^{-1} \) | \(a_{51}= +0.81625638 \pm 1.1 \) |
\(a_{52}= +0.48187808 \pm 7.1 \cdot 10^{-1} \) | \(a_{53}= +0.38788274 \pm 1.1 \) | \(a_{54}= -0.23567216 \pm 9.1 \cdot 10^{-1} \) |
\(a_{55}= \pm0.41649927 \pm 2.6 \cdot 10^{-1} \) | \(a_{56}= +1.87266977 \pm 3.8 \cdot 10^{-1} \) | \(a_{57}= -1.63125021 \pm 1.2 \) |
\(a_{58}= -0.08973826 \pm 4.2 \cdot 10^{-1} \) | \(a_{59}= +0.34344337 \pm 9.1 \cdot 10^{-1} \) | \(a_{60}= \pm0.30631992 \pm 4.3 \cdot 10^{-1} \) |
\(a_{61}= -1.05038788 \pm 6.5 \cdot 10^{-1} \) | \(a_{62}= +0.24190396 \pm 1.5 \) | \(a_{63}= +1.32000529 \pm 3.4 \cdot 10^{-1} \) |
\(a_{64}= +0.84072357 \pm 1.0 \) | \(a_{65}= \pm0.41532989 \pm 3.3 \cdot 10^{-1} \) | \(a_{66}= +0.85276918 \pm 5.0 \cdot 10^{-1} \) |
\(a_{67}= -0.39750059 \pm 7.2 \cdot 10^{-1} \) | \(a_{68}= +0.32083690 \pm 9.7 \cdot 10^{-1} \) | \(a_{69}= -0.83702099 \pm 5.3 \cdot 10^{-1} \) |
\(a_{70}= \pm0.55138564 \pm 2.0 \cdot 10^{-1} \) | \(a_{71}= -0.98252226 \pm 5.6 \cdot 10^{-1} \) | \(a_{72}= +0.78238038 \pm 5.7 \cdot 10^{-1} \) |
\(a_{73}= -0.16363185 \pm 9.5 \cdot 10^{-1} \) | \(a_{74}= +1.11760958 \pm 9.9 \cdot 10^{-1} \) | \(a_{75}= \pm0.26401661 \pm 2.3 \cdot 10^{-1} \) |
\(a_{76}= -0.64117754 \pm 7.2 \cdot 10^{-1} \) | \(a_{77}= +1.65542195 \pm 2.9 \cdot 10^{-1} \) | \(a_{78}= -0.85037490 \pm 8.3 \cdot 10^{-1} \) |
\(a_{79}= +0.50498803 \pm 1.3 \) | \(a_{80}= \pm0.09476586 \pm 2.1 \cdot 10^{-1} \) | \(a_{81}= -1.19113589 \pm 1.2 \) |
\(a_{82}= +0.41001820 \pm 1.5 \) | \(a_{83}= +0.16780773 \pm 1.1 \) | \(a_{84}= +1.21750204 \pm 3.2 \cdot 10^{-1} \) |
\(a_{85}= \pm0.27652878 \pm 5.2 \cdot 10^{-1} \) | \(a_{86}= -1.30187723 \pm 7.3 \cdot 10^{-1} \) | \(a_{87}= -0.17078428 \pm 6.2 \cdot 10^{-1} \) |
\(a_{88}= +0.98118520 \pm 5.4 \cdot 10^{-1} \) | \(a_{89}= +0.28700595 \pm 1.3 \) | \(a_{90}= \pm0.23036272 \pm 2.2 \cdot 10^{-1} \) |
\(a_{91}= -1.65077410 \pm 3.2 \cdot 10^{-1} \) | \(a_{92}= -0.32899862 \pm 4.0 \cdot 10^{-1} \) | \(a_{93}= +0.46037660 \pm 1.1 \) |
\(a_{94}= -0.11633329 \pm 6.7 \cdot 10^{-1} \) | \(a_{95}= \pm0.55262983 \pm 4.9 \cdot 10^{-1} \) | \(a_{96}= +1.19673245 \pm 1.2 \) |
\(a_{97}= +1.81271039 \pm 8.8 \cdot 10^{-1} \) | \(a_{98}= -1.49790760 \pm 9.1 \cdot 10^{-1} \) | \(a_{99}= +0.69161668 \pm 5.1 \cdot 10^{-1} \) |
\(a_{100}= \pm0.10377410 \pm 1.8 \cdot 10^{-1} \) | \(a_{101}= -1.06826061 \pm 9.1 \cdot 10^{-1} \) | \(a_{102}= -0.56618399 \pm 1.1 \) |
\(a_{103}= +0.96566003 \pm 8.8 \cdot 10^{-1} \) | \(a_{104}= -0.97843038 \pm 6.4 \cdot 10^{-1} \) | \(a_{105}= \pm1.04936292 \pm 2.1 \cdot 10^{-1} \) |
\(a_{106}= -0.26904904 \pm 9.0 \cdot 10^{-1} \) | \(a_{107}= +1.20153133 \pm 8.9 \cdot 10^{-1} \) | \(a_{108}= -0.17629349 \pm 8.3 \cdot 10^{-1} \) |
\(a_{109}= -1.10151747 \pm 5.5 \cdot 10^{-1} \) | \(a_{110}= \pm0.28889847 \pm 2.8 \cdot 10^{-1} \) | \(a_{111}= +2.12696518 \pm 1.5 \) |
\(a_{112}= -0.37665728 \pm 3.1 \cdot 10^{-1} \) | \(a_{113}= +0.51614570 \pm 8.1 \cdot 10^{-1} \) | \(a_{114}= +1.13149222 \pm 9.0 \cdot 10^{-1} \) |
\(a_{115}= \pm0.28356335 \pm 2.0 \cdot 10^{-1} \) | \(a_{116}= -0.06712829 \pm 2.9 \cdot 10^{-1} \) | \(a_{117}= -0.68967486 \pm 5.6 \cdot 10^{-1} \) |
\(a_{118}= -0.23822434 \pm 9.1 \cdot 10^{-1} \) | \(a_{119}= -1.09909389 \pm 3.8 \cdot 10^{-1} \) | \(a_{120}= \pm0.62196793 \pm 4.6 \cdot 10^{-1} \) |
\(a_{121}= -0.13264178 \pm 9.4 \cdot 10^{-1} \) | \(a_{122}= +0.72858579 \pm 5.3 \cdot 10^{-1} \) | \(a_{123}= +0.78032119 \pm 1.2 \) |
\(a_{124}= +0.18095516 \pm 1.3 \) | \(a_{125}= \pm0.08944272 \pm 1.0 \cdot 10^{-8} \) | \(a_{126}= -0.91560186 \pm 3.5 \cdot 10^{-1} \) |
\(a_{127}= -0.02300643 \pm 1.2 \) | \(a_{128}= +0.32340317 \pm 8.1 \cdot 10^{-1} \) | \(a_{129}= -2.47765192 \pm 1.3 \) |
\(a_{130}= \pm0.28808734 \pm 4.0 \cdot 10^{-1} \) | \(a_{131}= +0.39914895 \pm 1.0 \) | \(a_{132}= +0.63791011 \pm 4.1 \cdot 10^{-1} \) |
\(a_{133}= +2.19648775 \pm 4.5 \cdot 10^{-1} \) | \(a_{134}= +0.27572032 \pm 5.1 \cdot 10^{-1} \) | \(a_{135}= \pm0.15194706 \pm 3.9 \cdot 10^{-1} \) |
\(a_{136}= -0.65144398 \pm 1.0 \) | \(a_{137}= -0.71223068 \pm 1.3 \) | \(a_{138}= +0.58058705 \pm 5.7 \cdot 10^{-1} \) |
\(a_{139}= +0.18120756 \pm 1.2 \) | \(a_{140}= \pm0.41246152 \pm 1.6 \cdot 10^{-1} \) | \(a_{141}= -0.22139830 \pm 3.7 \cdot 10^{-1} \) |
\(a_{142}= +0.68151182 \pm 5.7 \cdot 10^{-1} \) | \(a_{143}= -0.86492298 \pm 6.7 \cdot 10^{-1} \) | \(a_{144}= -0.15736318 \pm 3.8 \cdot 10^{-1} \) |
\(a_{145}= \pm0.05785776 \pm 2.4 \cdot 10^{-1} \) | \(a_{146}= +0.11350078 \pm 8.1 \cdot 10^{-1} \) | \(a_{147}= -2.85072474 \pm 9.9 \cdot 10^{-1} \) |
\(a_{148}= +0.83602277 \pm 9.8 \cdot 10^{-1} \) | \(a_{149}= +0.94333642 \pm 4.1 \cdot 10^{-1} \) | \(a_{150}= \pm0.18313116 \pm 2.1 \cdot 10^{-1} \) |
\(a_{151}= +0.94318349 \pm 7.3 \cdot 10^{-1} \) | \(a_{152}= +1.30188033 \pm 1.0 \) | \(a_{153}= -0.45918907 \pm 6.1 \cdot 10^{-1} \) |
\(a_{154}= -1.14825859 \pm 3.3 \cdot 10^{-1} \) | \(a_{155}= \pm0.15596494 \pm 5.1 \cdot 10^{-1} \) | \(a_{156}= -0.63611908 \pm 6.9 \cdot 10^{-1} \) |
\(a_{157}= +0.81563514 \pm 1.0 \) | \(a_{158}= -0.35027737 \pm 9.4 \cdot 10^{-1} \) | \(a_{159}= -0.51203743 \pm 1.1 \) |
\(a_{160}= \pm0.40542527 \pm 5.2 \cdot 10^{-1} \) | \(a_{161}= +1.12705356 \pm 3.3 \cdot 10^{-1} \) | \(a_{162}= +0.82621353 \pm 1.1 \) |
\(a_{163}= +1.07357012 \pm 9.2 \cdot 10^{-1} \) | \(a_{164}= +0.30671225 \pm 1.3 \) | \(a_{165}= \pm0.54981363 \pm 1.9 \cdot 10^{-1} \) |
\(a_{166}= -0.11639732 \pm 8.9 \cdot 10^{-1} \) | \(a_{167}= +1.00615022 \pm 9.1 \cdot 10^{-1} \) | \(a_{168}= -2.47207963 \pm 4.6 \cdot 10^{-1} \) |
\(a_{169}= -0.13750542 \pm 8.9 \cdot 10^{-1} \) | \(a_{170}= \pm0.19181003 \pm 5.0 \cdot 10^{-1} \) | \(a_{171}= +0.91766789 \pm 5.1 \cdot 10^{-1} \) |
\(a_{172}= -0.97386334 \pm 7.9 \cdot 10^{-1} \) | \(a_{173}= -1.46174576 \pm 1.0 \) | \(a_{174}= +0.11846195 \pm 4.9 \cdot 10^{-1} \) |
\(a_{175}= \pm0.35549988 \pm 8.8 \cdot 10^{-2} \) | \(a_{176}= -0.19734956 \pm 3.8 \cdot 10^{-1} \) | \(a_{177}= -0.45337377 \pm 1.0 \) |
\(a_{178}= -0.19907737 \pm 1.2 \) | \(a_{179}= +0.02111636 \pm 1.1 \) | \(a_{180}= \pm0.17232179 \pm 1.1 \cdot 10^{-1} \) |
\(a_{181}= +1.52792738 \pm 1.1 \) | \(a_{182}= +1.14503468 \pm 4.1 \cdot 10^{-1} \) | \(a_{183}= +1.38659924 \pm 7.1 \cdot 10^{-1} \) |
\(a_{184}= +0.66801595 \pm 3.6 \cdot 10^{-1} \) | \(a_{185}= \pm0.72056659 \pm 6.3 \cdot 10^{-1} \) | \(a_{186}= -0.31933332 \pm 1.6 \) |
\(a_{187}= -0.57587017 \pm 7.2 \cdot 10^{-1} \) | \(a_{188}= -0.08702259 \pm 4.6 \cdot 10^{-1} \) | \(a_{189}= +0.60393021 \pm 3.1 \cdot 10^{-1} \) |
\(a_{190}= \pm0.38332339 \pm 3.4 \cdot 10^{-1} \) | \(a_{191}= +0.21791699 \pm 2.9 \cdot 10^{-1} \) | \(a_{192}= -1.10982494 \pm 1.1 \) |
\(a_{193}= +0.22162643 \pm 4.7 \cdot 10^{-1} \) | \(a_{194}= -1.25735935 \pm 7.7 \cdot 10^{-1} \) | \(a_{195}= \pm0.54826995 \pm 2.6 \cdot 10^{-1} \) |
\(a_{196}= -1.12050297 \pm 8.3 \cdot 10^{-1} \) | \(a_{197}= +0.41922480 \pm 1.0 \) | \(a_{198}= -0.47972953 \pm 4.6 \cdot 10^{-1} \) |
\(a_{199}= +0.03895349 \pm 1.4 \) | \(a_{200}= \pm0.21070834 \pm 1.9 \cdot 10^{-1} \) | \(a_{201}= +0.52473379 \pm 8.1 \cdot 10^{-1} \) |
\(a_{202}= +0.74098294 \pm 8.5 \cdot 10^{-1} \) | \(a_{203}= +0.22996201 \pm 2.8 \cdot 10^{-1} \) | \(a_{204}= -0.42353136 \pm 1.0 \) |
\(a_{205}= \pm0.26435476 \pm 5.4 \cdot 10^{-1} \) | \(a_{206}= -0.66981559 \pm 1.3 \) | \(a_{207}= +0.47087031 \pm 4.2 \cdot 10^{-1} \) |
\(a_{208}= +0.19679547 \pm 4.2 \cdot 10^{-1} \) | \(a_{209}= +1.15084961 \pm 2.6 \cdot 10^{-1} \) | \(a_{210}= \pm0.72787484 \pm 2.0 \cdot 10^{-1} \) |
\(a_{211}= -1.95106162 \pm 6.3 \cdot 10^{-1} \) | \(a_{212}= -0.20126091 \pm 8.4 \cdot 10^{-1} \) | \(a_{213}= +1.29701098 \pm 6.8 \cdot 10^{-1} \) |
\(a_{214}= -0.83342418 \pm 9.8 \cdot 10^{-1} \) | \(a_{215}= \pm0.83937115 \pm 5.3 \cdot 10^{-1} \) | \(a_{216}= +0.35795550 \pm 7.5 \cdot 10^{-1} \) |
\(a_{217}= -0.61989973 \pm 4.6 \cdot 10^{-1} \) | \(a_{218}= +0.76405106 \pm 7.2 \cdot 10^{-1} \) | \(a_{219}= +0.21600763 \pm 9.9 \cdot 10^{-1} \) |
\(a_{220}= \pm0.21610919 \pm 2.0 \cdot 10^{-1} \) | \(a_{221}= +0.57425333 \pm 9.2 \cdot 10^{-1} \) | \(a_{222}= -1.47533747 \pm 1.0 \) |
\(a_{223}= +0.77809192 \pm 1.1 \) | \(a_{224}= -1.61140710 \pm 4.1 \cdot 10^{-1} \) | \(a_{225}= \pm0.14852385 \pm 1.1 \cdot 10^{-1} \) |
\(a_{226}= -0.35801672 \pm 9.9 \cdot 10^{-1} \) | \(a_{227}= -0.08610651 \pm 8.8 \cdot 10^{-1} \) | \(a_{228}= +0.84640761 \pm 7.8 \cdot 10^{-1} \) |
\(a_{229}= +0.17232517 \pm 1.6 \) | \(a_{230}= \pm0.19668946 \pm 2.4 \cdot 10^{-1} \) | \(a_{231}= -2.18529446 \pm 2.4 \cdot 10^{-1} \) |
\(a_{232}= +0.13630079 \pm 5.5 \cdot 10^{-1} \) | \(a_{233}= +1.08029347 \pm 1.4 \) | \(a_{234}= +0.47838262 \pm 4.9 \cdot 10^{-1} \) |
\(a_{235}= \pm0.07500462 \pm 3.1 \cdot 10^{-1} \) | \(a_{236}= -0.17820263 \pm 7.6 \cdot 10^{-1} \) | \(a_{237}= -0.66662614 \pm 1.5 \) |
\(a_{238}= +0.76236998 \pm 3.9 \cdot 10^{-1} \) | \(a_{239}= +1.16928418 \pm 1.0 \) | \(a_{240}= \pm0.12509880 \pm 2.1 \cdot 10^{-1} \) |
\(a_{241}= -1.22197660 \pm 6.2 \cdot 10^{-1} \) | \(a_{242}= +0.09200498 \pm 8.3 \cdot 10^{-1} \) | \(a_{243}= +1.23263436 \pm 6.2 \cdot 10^{-1} \) |
\(a_{244}= +0.54501528 \pm 4.5 \cdot 10^{-1} \) | \(a_{245}= \pm0.96575959 \pm 4.3 \cdot 10^{-1} \) | \(a_{246}= -0.54125808 \pm 1.6 \) |
\(a_{247}= -1.14761842 \pm 3.2 \cdot 10^{-1} \) | \(a_{248}= -0.36742079 \pm 7.6 \cdot 10^{-1} \) | \(a_{249}= -0.22152015 \pm 1.3 \) |
\(a_{250}= \pm0.06204060 \pm 9.5 \cdot 10^{-2} \) | \(a_{251}= +0.33487826 \pm 1.6 \) | \(a_{252}= -0.68491181 \pm 1.9 \cdot 10^{-1} \) |
\(a_{253}= +0.59051964 \pm 3.7 \cdot 10^{-1} \) | \(a_{254}= +0.01595806 \pm 1.0 \) | \(a_{255}= \pm0.36504095 \pm 5.1 \cdot 10^{-1} \) |
\(a_{256}= -1.06504733 \pm 8.8 \cdot 10^{-1} \) | \(a_{257}= +1.69151663 \pm 8.7 \cdot 10^{-1} \) | \(a_{258}= +1.71858607 \pm 8.1 \cdot 10^{-1} \) |
\(a_{259}= -2.86397079 \pm 4.6 \cdot 10^{-1} \) | \(a_{260}= \pm0.21550243 \pm 3.2 \cdot 10^{-1} \) | \(a_{261}= +0.09607554 \pm 4.7 \cdot 10^{-1} \) |
\(a_{262}= -0.27686368 \pm 1.3 \) | \(a_{263}= -0.97266066 \pm 1.2 \) | \(a_{264}= -1.29524595 \pm 3.5 \cdot 10^{-1} \) |
\(a_{265}= \pm0.17346644 \pm 5.0 \cdot 10^{-1} \) | \(a_{266}= -1.52356076 \pm 3.9 \cdot 10^{-1} \) | \(a_{267}= -0.37887169 \pm 1.5 \) |
\(a_{268}= +0.20625133 \pm 4.9 \cdot 10^{-1} \) | \(a_{269}= +1.95401785 \pm 1.0 \) | \(a_{270}= \pm0.10539580 \pm 4.0 \cdot 10^{-1} \) |
\(a_{271}= +0.99796652 \pm 8.5 \cdot 10^{-1} \) | \(a_{272}= +0.13102744 \pm 4.6 \cdot 10^{-1} \) | \(a_{273}= +2.17915892 \pm 2.9 \cdot 10^{-1} \) |
\(a_{274}= +0.49402812 \pm 1.6 \) | \(a_{275}= \pm0.18626414 \pm 1.1 \cdot 10^{-1} \) | \(a_{276}= +0.43430550 \pm 3.8 \cdot 10^{-1} \) |
\(a_{277}= -0.65303513 \pm 1.1 \) | \(a_{278}= -0.12569190 \pm 9.0 \cdot 10^{-1} \) | \(a_{279}= -0.25898714 \pm 3.8 \cdot 10^{-1} \) |
\(a_{280}= \pm0.83748338 \pm 1.7 \cdot 10^{-1} \) | \(a_{281}= -1.62899173 \pm 4.7 \cdot 10^{-1} \) | \(a_{282}= +0.15356961 \pm 4.8 \cdot 10^{-1} \) |
\(a_{283}= +0.16602592 \pm 1.1 \) | \(a_{284}= +0.50980182 \pm 3.0 \cdot 10^{-1} \) | \(a_{285}= \pm0.72951727 \pm 5.7 \cdot 10^{-1} \) |
\(a_{286}= +0.59994084 \pm 6.5 \cdot 10^{-1} \) | \(a_{287}= -1.05070695 \pm 4.8 \cdot 10^{-1} \) | \(a_{288}= -0.67322777 \pm 4.0 \cdot 10^{-1} \) |
\(a_{289}= -0.61765918 \pm 4.9 \cdot 10^{-1} \) | \(a_{290}= \pm0.04013217 \pm 1.8 \cdot 10^{-1} \) | \(a_{291}= -2.39292826 \pm 9.3 \cdot 10^{-1} \) |
\(a_{292}= +0.08490374 \pm 7.6 \cdot 10^{-1} \) | \(a_{293}= +1.43347090 \pm 1.4 \) | \(a_{294}= +1.97736243 \pm 9.2 \cdot 10^{-1} \) |
\(a_{295}= \pm0.15359254 \pm 4.0 \cdot 10^{-1} \) | \(a_{296}= -1.69750423 \pm 1.3 \) | \(a_{297}= +0.31642919 \pm 3.5 \cdot 10^{-1} \) |
\(a_{298}= -0.65433115 \pm 4.7 \cdot 10^{-1} \) | \(a_{299}= -0.58886166 \pm 3.5 \cdot 10^{-1} \) | \(a_{300}= \pm0.13699043 \pm 1.9 \cdot 10^{-1} \) |
\(a_{301}= +3.33617251 \pm 3.6 \cdot 10^{-1} \) | \(a_{302}= -0.65422507 \pm 8.8 \cdot 10^{-1} \) | \(a_{303}= +1.41019273 \pm 9.2 \cdot 10^{-1} \) |
\(a_{304}= -0.26185220 \pm 3.7 \cdot 10^{-1} \) | \(a_{305}= \pm0.46974774 \pm 2.9 \cdot 10^{-1} \) | \(a_{306}= +0.31850961 \pm 4.9 \cdot 10^{-1} \) |
\(a_{307}= -1.48619149 \pm 9.8 \cdot 10^{-1} \) | \(a_{308}= -0.85894962 \pm 2.3 \cdot 10^{-1} \) | \(a_{309}= -1.27475144 \pm 9.2 \cdot 10^{-1} \) |
\(a_{310}= \pm0.10818274 \pm 7.0 \cdot 10^{-1} \) | \(a_{311}= +0.41516777 \pm 1.0 \) | \(a_{312}= +1.29160936 \pm 4.2 \cdot 10^{-1} \) |
\(a_{313}= +1.25516013 \pm 1.0 \) | \(a_{314}= -0.56575307 \pm 9.1 \cdot 10^{-1} \) | \(a_{315}= \pm0.59032431 \pm 1.5 \cdot 10^{-1} \) |
\(a_{316}= -0.26202339 \pm 8.8 \cdot 10^{-1} \) | \(a_{317}= +0.90672545 \pm 1.5 \) | \(a_{318}= +0.35516708 \pm 9.3 \cdot 10^{-1} \) |
\(a_{319}= +0.12048858 \pm 3.6 \cdot 10^{-1} \) | \(a_{320}= \pm0.37598301 \pm 4.8 \cdot 10^{-1} \) | \(a_{321}= -1.58612115 \pm 8.7 \cdot 10^{-1} \) |
\(a_{322}= -0.78176379 \pm 3.5 \cdot 10^{-1} \) | \(a_{323}= -0.76409025 \pm 1.1 \) | \(a_{324}= +0.61804528 \pm 1.0 \) |
\(a_{325}= \pm0.18574117 \pm 1.5 \cdot 10^{-1} \) | \(a_{326}= -0.74466580 \pm 9.0 \cdot 10^{-1} \) | \(a_{327}= +1.45409454 \pm 5.4 \cdot 10^{-1} \) |
\(a_{328}= -0.62276455 \pm 8.4 \cdot 10^{-1} \) | \(a_{329}= +0.29811408 \pm 2.7 \cdot 10^{-1} \) | \(a_{330}= \pm0.38136997 \pm 2.2 \cdot 10^{-1} \) |
\(a_{331}= -0.16950753 \pm 8.7 \cdot 10^{-1} \) | \(a_{332}= -0.08707048 \pm 8.5 \cdot 10^{-1} \) | \(a_{333}= -1.19653480 \pm 4.8 \cdot 10^{-1} \) |
\(a_{334}= -0.69790100 \pm 6.2 \cdot 10^{-1} \) | \(a_{335}= \pm0.17776767 \pm 3.2 \cdot 10^{-1} \) | \(a_{336}= +0.49721889 \pm 3.2 \cdot 10^{-1} \) |
\(a_{337}= -0.41374046 \pm 1.5 \) | \(a_{338}= +0.09537857 \pm 6.2 \cdot 10^{-1} \) | \(a_{339}= -0.68135519 \pm 9.4 \cdot 10^{-1} \) |
\(a_{340}= \pm0.14348262 \pm 4.3 \cdot 10^{-1} \) | \(a_{341}= -0.32479642 \pm 6.1 \cdot 10^{-1} \) | \(a_{342}= -0.63652656 \pm 4.5 \cdot 10^{-1} \) |
\(a_{343}= +2.06101781 \pm 6.9 \cdot 10^{-1} \) | \(a_{344}= +1.97738292 \pm 1.1 \) | \(a_{345}= \pm0.37432717 \pm 2.3 \cdot 10^{-1} \) |
\(a_{346}= +1.01391801 \pm 1.3 \) | \(a_{347}= +0.46446228 \pm 7.5 \cdot 10^{-1} \) | \(a_{348}= +0.08861492 \pm 2.9 \cdot 10^{-1} \) |
\(a_{349}= -0.63232136 \pm 1.1 \) | \(a_{350}= \pm0.24658715 \pm 9.0 \cdot 10^{-2} \) | \(a_{351}= -0.31554077 \pm 5.3 \cdot 10^{-1} \) |
\(a_{352}= -0.84429664 \pm 5.6 \cdot 10^{-1} \) | \(a_{353}= +0.28692335 \pm 4.5 \cdot 10^{-1} \) | \(a_{354}= +0.31447591 \pm 1.0 \) |
\(a_{355}= \pm0.43939731 \pm 2.5 \cdot 10^{-1} \) | \(a_{356}= -0.14891892 \pm 1.1 \) | \(a_{357}= +1.45089522 \pm 4.1 \cdot 10^{-1} \) |
\(a_{358}= -0.01464705 \pm 1.6 \) | \(a_{359}= -0.96567800 \pm 5.3 \cdot 10^{-1} \) | \(a_{360}= \pm0.34989114 \pm 2.5 \cdot 10^{-1} \) |
\(a_{361}= +0.52699863 \pm 8.3 \cdot 10^{-1} \) | \(a_{362}= -1.05982389 \pm 1.2 \) | \(a_{363}= +0.17509817 \pm 1.0 \) |
\(a_{364}= +0.85653799 \pm 3.3 \cdot 10^{-1} \) | \(a_{365}= \pm0.07317839 \pm 4.2 \cdot 10^{-1} \) | \(a_{366}= -0.96179375 \pm 5.6 \cdot 10^{-1} \) |
\(a_{367}= -1.65302330 \pm 9.4 \cdot 10^{-1} \) | \(a_{368}= -0.13436062 \pm 3.7 \cdot 10^{-1} \) | \(a_{369}= -0.43897355 \pm 4.9 \cdot 10^{-1} \) |
\(a_{370}= \pm0.49981020 \pm 4.4 \cdot 10^{-1} \) | \(a_{371}= +0.68946134 \pm 3.5 \cdot 10^{-1} \) | \(a_{372}= -0.23887584 \pm 1.4 \) |
\(a_{373}= -0.67375896 \pm 1.3 \) | \(a_{374}= +0.39944370 \pm 7.0 \cdot 10^{-1} \) | \(a_{375}= \pm0.11807182 \pm 1.0 \cdot 10^{-1} \) |
\(a_{376}= +0.17669521 \pm 7.1 \cdot 10^{-1} \) | \(a_{377}= -0.12015029 \pm 3.8 \cdot 10^{-1} \) | \(a_{378}= -0.41890713 \pm 3.1 \cdot 10^{-1} \) |
\(a_{379}= +0.17952621 \pm 9.1 \cdot 10^{-1} \) | \(a_{380}= \pm0.28674332 \pm 3.2 \cdot 10^{-1} \) | \(a_{381}= +0.03037040 \pm 1.2 \) |
\(a_{382}= -0.15115485 \pm 3.4 \cdot 10^{-1} \) | \(a_{383}= +1.25899119 \pm 1.2 \) | \(a_{384}= -0.42691905 \pm 8.9 \cdot 10^{-1} \) |
\(a_{385}= \pm0.74032720 \pm 1.3 \cdot 10^{-1} \) | \(a_{386}= -0.15372785 \pm 4.7 \cdot 10^{-1} \) | \(a_{387}= +1.39381537 \pm 3.0 \cdot 10^{-1} \) |
\(a_{388}= -0.94056195 \pm 6.2 \cdot 10^{-1} \) | \(a_{389}= +1.71115076 \pm 1.2 \) | \(a_{390}= \pm0.38029922 \pm 3.7 \cdot 10^{-1} \) |
\(a_{391}= -0.39206713 \pm 3.7 \cdot 10^{-1} \) | \(a_{392}= +2.27512766 \pm 8.6 \cdot 10^{-1} \) | \(a_{393}= -0.52690977 \pm 1.1 \) |
\(a_{394}= -0.29078899 \pm 1.2 \) | \(a_{395}= \pm0.22583751 \pm 6.0 \cdot 10^{-1} \) | \(a_{396}= -0.35885949 \pm 2.4 \cdot 10^{-1} \) |
\(a_{397}= +0.78068013 \pm 1.1 \) | \(a_{398}= -0.02701951 \pm 1.3 \) | \(a_{399}= -2.89954625 \pm 5.7 \cdot 10^{-1} \) |
\(a_{400}= \pm0.04238058 \pm 9.4 \cdot 10^{-2} \) | \(a_{401}= -0.46379588 \pm 1.7 \) | \(a_{402}= -0.36397372 \pm 5.6 \cdot 10^{-1} \) |
\(a_{403}= +0.32388451 \pm 9.8 \cdot 10^{-1} \) | \(a_{404}= +0.55428892 \pm 6.9 \cdot 10^{-1} \) | \(a_{405}= \pm0.53269217 \pm 5.3 \cdot 10^{-1} \) |
\(a_{406}= -0.15950970 \pm 2.6 \cdot 10^{-1} \) | \(a_{407}= -1.50057730 \pm 5.0 \cdot 10^{-1} \) | \(a_{408}= +0.85996015 \pm 1.0 \) |
\(a_{409}= -1.26122262 \pm 1.1 \) | \(a_{410}= \pm0.18336571 \pm 7.1 \cdot 10^{-1} \) | \(a_{411}= +0.94020365 \pm 1.3 \) |
\(a_{412}= -0.50105250 \pm 1.1 \) | \(a_{413}= +0.61047038 \pm 4.6 \cdot 10^{-1} \) | \(a_{414}= -0.32661212 \pm 4.2 \cdot 10^{-1} \) |
\(a_{415}= \pm0.07504590 \pm 5.2 \cdot 10^{-1} \) | \(a_{416}= +0.84192615 \pm 7.9 \cdot 10^{-1} \) | \(a_{417}= -0.23920903 \pm 1.3 \) |
\(a_{418}= -0.79826955 \pm 2.7 \cdot 10^{-1} \) | \(a_{419}= +1.83335019 \pm 5.1 \cdot 10^{-1} \) | \(a_{420}= \pm0.54448346 \pm 1.4 \cdot 10^{-1} \) |
\(a_{421}= -0.60024543 \pm 8.2 \cdot 10^{-1} \) | \(a_{422}= +1.35332461 \pm 5.8 \cdot 10^{-1} \) | \(a_{423}= +0.12454871 \pm 6.2 \cdot 10^{-1} \) |
\(a_{424}= +0.40865065 \pm 1.0 \) | \(a_{425}= \pm0.12366743 \pm 2.3 \cdot 10^{-1} \) | \(a_{426}= -0.89965220 \pm 6.6 \cdot 10^{-1} \) |
\(a_{427}= -1.86706381 \pm 3.0 \cdot 10^{-1} \) | \(a_{428}= -0.62343916 \pm 7.2 \cdot 10^{-1} \) | \(a_{429}= +1.14177017 \pm 3.5 \cdot 10^{-1} \) |
\(a_{430}= \pm0.58221720 \pm 3.2 \cdot 10^{-1} \) | \(a_{431}= +0.16506736 \pm 1.0 \) | \(a_{432}= -0.07199697 \pm 3.2 \cdot 10^{-1} \) |
\(a_{433}= -0.48561306 \pm 1.3 \) | \(a_{434}= +0.42998414 \pm 5.4 \cdot 10^{-1} \) | \(a_{435}= \pm0.07637705 \pm 2.8 \cdot 10^{-1} \) |
\(a_{436}= +0.57154492 \pm 6.2 \cdot 10^{-1} \) | \(a_{437}= +0.78352782 \pm 3.8 \cdot 10^{-1} \) | \(a_{438}= -0.14983045 \pm 8.1 \cdot 10^{-1} \) |
\(a_{439}= +0.36425482 \pm 7.4 \cdot 10^{-1} \) | \(a_{440}= \pm0.43879936 \pm 2.4 \cdot 10^{-1} \) | \(a_{441}= +1.60368933 \pm 4.0 \cdot 10^{-1} \) |
\(a_{442}= -0.39832220 \pm 1.0 \) | \(a_{443}= +0.93781607 \pm 9.9 \cdot 10^{-1} \) | \(a_{444}= -1.10361949 \pm 1.0 \) |
\(a_{445}= \pm0.12835296 \pm 6.1 \cdot 10^{-1} \) | \(a_{446}= -0.53971178 \pm 1.1 \) | \(a_{447}= -1.24528242 \pm 5.3 \cdot 10^{-1} \) |
\(a_{448}= +1.49438563 \pm 4.4 \cdot 10^{-1} \) | \(a_{449}= -0.32451372 \pm 1.2 \) | \(a_{450}= \pm0.10302134 \pm 1.0 \cdot 10^{-1} \) |
\(a_{451}= -0.55051783 \pm 7.3 \cdot 10^{-1} \) | \(a_{452}= -0.26781278 \pm 8.2 \cdot 10^{-1} \) | \(a_{453}= -1.24508054 \pm 7.2 \cdot 10^{-1} \) |
\(a_{454}= +0.05972649 \pm 9.6 \cdot 10^{-1} \) | \(a_{455}= \pm0.73824862 \pm 1.4 \cdot 10^{-1} \) | \(a_{456}= -1.71859015 \pm 1.2 \) |
\(a_{457}= +0.01754683 \pm 1.1 \) | \(a_{458}= -0.11953077 \pm 1.2 \) | \(a_{459}= -0.21008867 \pm 9.3 \cdot 10^{-1} \) |
\(a_{460}= \pm0.14713266 \pm 1.7 \cdot 10^{-1} \) | \(a_{461}= +1.52011409 \pm 1.5 \) | \(a_{462}= +1.51579670 \pm 2.3 \cdot 10^{-1} \) |
\(a_{463}= -0.27309013 \pm 9.1 \cdot 10^{-1} \) | \(a_{464}= -0.02741470 \pm 2.7 \cdot 10^{-1} \) | \(a_{465}= \pm0.20588668 \pm 5.2 \cdot 10^{-1} \) |
\(a_{466}= -0.74932935 \pm 1.0 \) | \(a_{467}= +0.69274747 \pm 5.4 \cdot 10^{-1} \) | \(a_{468}= +0.35785194 \pm 2.7 \cdot 10^{-1} \) |
\(a_{469}= -0.70655705 \pm 3.1 \cdot 10^{-1} \) | \(a_{470}= \pm0.05202583 \pm 3.0 \cdot 10^{-1} \) | \(a_{471}= -1.07670613 \pm 1.0 \) |
\(a_{472}= +0.36183192 \pm 8.1 \cdot 10^{-1} \) | \(a_{473}= +1.74798736 \pm 1.9 \cdot 10^{-1} \) | \(a_{474}= +0.46239522 \pm 1.0 \) |
\(a_{475}= \pm0.24714357 \pm 2.2 \cdot 10^{-1} \) | \(a_{476}= +0.57028740 \pm 3.1 \cdot 10^{-1} \) | \(a_{477}= +0.28804920 \pm 4.7 \cdot 10^{-1} \) |
\(a_{478}= -0.81105642 \pm 9.6 \cdot 10^{-1} \) | \(a_{479}= -0.15503575 \pm 9.9 \cdot 10^{-1} \) | \(a_{480}= \pm0.53519502 \pm 5.4 \cdot 10^{-1} \) |
\(a_{481}= +1.49636421 \pm 5.2 \cdot 10^{-1} \) | \(a_{482}= +0.84760573 \pm 7.7 \cdot 10^{-1} \) | \(a_{483}= -1.48780431 \pm 3.7 \cdot 10^{-1} \) |
\(a_{484}= +0.06882391 \pm 7.6 \cdot 10^{-1} \) | \(a_{485}= \pm0.81066873 \pm 3.9 \cdot 10^{-1} \) | \(a_{486}= -0.85499832 \pm 5.1 \cdot 10^{-1} \) |
\(a_{487}= -0.13425639 \pm 1.4 \) | \(a_{488}= -1.10662746 \pm 6.3 \cdot 10^{-1} \) | \(a_{489}= -1.41720171 \pm 8.3 \cdot 10^{-1} \) |
\(a_{490}= \pm0.66988464 \pm 4.1 \cdot 10^{-1} \) | \(a_{491}= +1.24829399 \pm 7.4 \cdot 10^{-1} \) | \(a_{492}= -0.40488565 \pm 1.4 \) |
\(a_{493}= -0.07999668 \pm 5.3 \cdot 10^{-1} \) | \(a_{494}= +0.79602829 \pm 3.8 \cdot 10^{-1} \) | \(a_{495}= \pm0.30930038 \pm 2.3 \cdot 10^{-1} \) |
\(a_{496}= +0.07390076 \pm 6.0 \cdot 10^{-1} \) | \(a_{497}= -1.74643272 \pm 4.2 \cdot 10^{-1} \) | \(a_{498}= +0.15365412 \pm 9.6 \cdot 10^{-1} \) |
\(a_{499}= +0.75662978 \pm 1.3 \) | \(a_{500}= \pm0.04640919 \pm 8.3 \cdot 10^{-2} \) | \(a_{501}= -1.32820185 \pm 1.0 \) |
\(a_{502}= -0.23228328 \pm 1.0 \) | \(a_{503}= +0.56712259 \pm 1.4 \) | \(a_{504}= +1.39068065 \pm 3.3 \cdot 10^{-1} \) |
\(a_{505}= \pm0.47774067 \pm 4.1 \cdot 10^{-1} \) | \(a_{506}= -0.40960508 \pm 4.5 \cdot 10^{-1} \) | \(a_{507}= +0.18151858 \pm 9.4 \cdot 10^{-1} \) |
\(a_{508}= +0.01193736 \pm 8.2 \cdot 10^{-1} \) | \(a_{509}= -1.87223905 \pm 7.9 \cdot 10^{-1} \) | \(a_{510}= \pm0.25320518 \pm 4.9 \cdot 10^{-1} \) |
\(a_{511}= -0.29085551 \pm 3.4 \cdot 10^{-1} \) | \(a_{512}= +0.41535092 \pm 7.5 \cdot 10^{-1} \) | \(a_{513}= +0.41985238 \pm 8.8 \cdot 10^{-1} \) |
\(a_{514}= -1.17329512 \pm 1.2 \) | \(a_{515}= \pm0.43185629 \pm 3.9 \cdot 10^{-1} \) | \(a_{516}= +1.28558049 \pm 8.7 \cdot 10^{-1} \) |
\(a_{517}= +0.15619685 \pm 7.5 \cdot 10^{-1} \) | \(a_{518}= +1.98655035 \pm 3.9 \cdot 10^{-1} \) | \(a_{519}= +1.92962581 \pm 1.0 \) |
\(a_{520}= \pm0.43756737 \pm 2.8 \cdot 10^{-1} \) | \(a_{521}= -0.23436316 \pm 1.0 \) | \(a_{522}= -0.06664136 \pm 4.0 \cdot 10^{-1} \) |
\(a_{523}= -0.40309190 \pm 1.4 \) | \(a_{524}= -0.20710662 \pm 1.1 \) | \(a_{525}= \pm0.46928936 \pm 9.8 \cdot 10^{-2} \) |
\(a_{526}= +0.67467147 \pm 1.4 \) | \(a_{527}= +0.21564397 \pm 1.2 \) | \(a_{528}= +0.26051781 \pm 2.6 \cdot 10^{-1} \) |
\(a_{529}= -0.59795914 \pm 9.9 \cdot 10^{-1} \) | \(a_{530}= \pm0.12032239 \pm 4.0 \cdot 10^{-1} \) | \(a_{531}= +0.25504766 \pm 5.3 \cdot 10^{-1} \) |
\(a_{532}= -1.13969270 \pm 2.8 \cdot 10^{-1} \) | \(a_{533}= +0.54897217 \pm 1.0 \) | \(a_{534}= +0.26279866 \pm 1.3 \) |
\(a_{535}= \pm0.53734115 \pm 4.0 \cdot 10^{-1} \) | \(a_{536}= -0.41878346 \pm 6.9 \cdot 10^{-1} \) | \(a_{537}= -0.02787535 \pm 1.1 \) |
\(a_{538}= -1.35537515 \pm 9.9 \cdot 10^{-1} \) | \(a_{539}= +2.01119083 \pm 5.0 \cdot 10^{-1} \) | \(a_{540}= \pm0.07884085 \pm 3.7 \cdot 10^{-1} \) |
\(a_{541}= -0.33967367 \pm 9.7 \cdot 10^{-1} \) | \(a_{542}= -0.69222449 \pm 8.4 \cdot 10^{-1} \) | \(a_{543}= -2.01699104 \pm 1.2 \) |
\(a_{544}= +0.56055876 \pm 1.2 \) | \(a_{545}= \pm0.49261359 \pm 2.4 \cdot 10^{-1} \) | \(a_{546}= -1.51154087 \pm 3.3 \cdot 10^{-1} \) |
\(a_{547}= +1.28599013 \pm 8.2 \cdot 10^{-1} \) | \(a_{548}= +0.36955549 \pm 1.4 \) | \(a_{549}= -0.78003827 \pm 3.9 \cdot 10^{-1} \) |
\(a_{550}= \pm0.12919932 \pm 1.2 \cdot 10^{-1} \) | \(a_{551}= +0.15986963 \pm 5.5 \cdot 10^{-1} \) | \(a_{552}= -0.88183654 \pm 4.9 \cdot 10^{-1} \) |
\(a_{553}= +0.89761592 \pm 4.9 \cdot 10^{-1} \) | \(a_{554}= +0.45296801 \pm 1.5 \) | \(a_{555}= \pm0.95120774 \pm 6.8 \cdot 10^{-1} \) |
\(a_{556}= -0.09402326 \pm 7.9 \cdot 10^{-1} \) | \(a_{557}= +1.29094626 \pm 8.7 \cdot 10^{-1} \) | \(a_{558}= +0.17964254 \pm 3.4 \cdot 10^{-1} \) |
\(a_{559}= -1.74307962 \pm 1.6 \cdot 10^{-1} \) | \(a_{560}= \pm0.16844626 \pm 1.4 \cdot 10^{-1} \) | \(a_{561}= +0.76019645 \pm 3.8 \cdot 10^{-1} \) |
\(a_{562}= +1.12992566 \pm 5.0 \cdot 10^{-1} \) | \(a_{563}= +0.38747735 \pm 3.9 \cdot 10^{-1} \) | \(a_{564}= +0.11487705 \pm 4.0 \cdot 10^{-1} \) |
\(a_{565}= \pm0.23082738 \pm 3.6 \cdot 10^{-1} \) | \(a_{566}= -0.11516139 \pm 1.6 \) | \(a_{567}= -2.11724332 \pm 4.2 \cdot 10^{-1} \) |
\(a_{568}= -1.03512820 \pm 5.5 \cdot 10^{-1} \) | \(a_{569}= -1.80769110 \pm 6.8 \cdot 10^{-1} \) | \(a_{570}= \pm0.50601870 \pm 4.0 \cdot 10^{-1} \) |
\(a_{571}= +1.28117733 \pm 9.3 \cdot 10^{-1} \) | \(a_{572}= +0.44878302 \pm 4.2 \cdot 10^{-1} \) | \(a_{573}= -0.28766853 \pm 3.2 \cdot 10^{-1} \) |
\(a_{574}= +0.72880710 \pm 6.2 \cdot 10^{-1} \) | \(a_{575}= \pm0.12681338 \pm 9.2 \cdot 10^{-2} \) | \(a_{576}= +0.62433752 \pm 5.5 \cdot 10^{-1} \) |
\(a_{577}= +0.18513242 \pm 9.9 \cdot 10^{-1} \) | \(a_{578}= +0.42843002 \pm 4.2 \cdot 10^{-1} \) | \(a_{579}= -0.29256530 \pm 4.3 \cdot 10^{-1} \) |
\(a_{580}= \pm0.03002069 \pm 1.3 \cdot 10^{-1} \) | \(a_{581}= +0.29827815 \pm 4.7 \cdot 10^{-1} \) | \(a_{582}= +1.65981877 \pm 8.1 \cdot 10^{-1} \) |
\(a_{583}= +0.36124322 \pm 5.1 \cdot 10^{-1} \) | \(a_{584}= -0.17239298 \pm 8.8 \cdot 10^{-1} \) | \(a_{585}= \pm0.30843198 \pm 2.5 \cdot 10^{-1} \) |
\(a_{586}= -0.99430557 \pm 9.1 \cdot 10^{-1} \) | \(a_{587}= +0.24144201 \pm 9.7 \cdot 10^{-1} \) | \(a_{588}= +1.47915697 \pm 8.7 \cdot 10^{-1} \) |
\(a_{589}= -0.43095439 \pm 7.2 \cdot 10^{-1} \) | \(a_{590}= \pm0.10653716 \pm 4.1 \cdot 10^{-1} \) | \(a_{591}= -0.55341156 \pm 1.1 \) |
\(a_{592}= +0.34142556 \pm 3.5 \cdot 10^{-1} \) | \(a_{593}= -1.37456671 \pm 1.3 \) | \(a_{594}= -0.21948636 \pm 4.4 \cdot 10^{-1} \) |
\(a_{595}= \pm0.49152973 \pm 1.7 \cdot 10^{-1} \) | \(a_{596}= -0.48946944 \pm 3.2 \cdot 10^{-1} \) | \(a_{597}= -0.05142185 \pm 1.5 \) |
\(a_{598}= +0.40845505 \pm 4.6 \cdot 10^{-1} \) | \(a_{599}= +1.63339982 \pm 1.3 \) | \(a_{600}= \pm0.27815252 \pm 2.0 \cdot 10^{-1} \) |
\(a_{601}= +0.13080689 \pm 1.3 \) | \(a_{602}= -2.31408598 \pm 2.3 \cdot 10^{-1} \) | \(a_{603}= -0.29519159 \pm 3.2 \cdot 10^{-1} \) |
\(a_{604}= -0.48939009 \pm 7.3 \cdot 10^{-1} \) | \(a_{605}= \pm0.05931921 \pm 4.2 \cdot 10^{-1} \) | \(a_{606}= -0.97815902 \pm 8.5 \cdot 10^{-1} \) |
\(a_{607}= -0.28504033 \pm 7.7 \cdot 10^{-1} \) | \(a_{608}= -1.12025048 \pm 1.0 \) | \(a_{609}= -0.30356895 \pm 4.0 \cdot 10^{-1} \) |
\(a_{610}= \pm0.32583347 \pm 2.3 \cdot 10^{-1} \) | \(a_{611}= -0.15575831 \pm 8.9 \cdot 10^{-1} \) | \(a_{612}= +0.23825966 \pm 2.6 \cdot 10^{-1} \) |
\(a_{613}= -0.65012707 \pm 1.1 \) | \(a_{614}= +1.03087442 \pm 6.9 \cdot 10^{-1} \) | \(a_{615}= \pm0.34897024 \pm 5.4 \cdot 10^{-1} \) |
\(a_{616}= +1.74405610 \pm 2.1 \cdot 10^{-1} \) | \(a_{617}= +1.41208638 \pm 1.5 \) | \(a_{618}= +0.88421220 \pm 1.3 \) |
\(a_{619}= +1.74549763 \pm 1.5 \) | \(a_{620}= \pm0.08092561 \pm 6.1 \cdot 10^{-1} \) | \(a_{621}= +0.21543308 \pm 3.0 \cdot 10^{-1} \) |
\(a_{622}= -0.28797489 \pm 1.0 \) | \(a_{623}= +0.51015290 \pm 4.6 \cdot 10^{-1} \) | \(a_{624}= -0.25978636 \pm 3.6 \cdot 10^{-1} \) |
\(a_{625}= \pm0.04 \) | \(a_{626}= -0.87062299 \pm 9.5 \cdot 10^{-1} \) | \(a_{627}= -1.51921706 \pm 3.3 \cdot 10^{-1} \) |
\(a_{628}= -0.42320901 \pm 6.9 \cdot 10^{-1} \) | \(a_{629}= +0.99628699 \pm 1.4 \) | \(a_{630}= \pm0.40946960 \pm 1.5 \cdot 10^{-1} \) |
\(a_{631}= -0.76492715 \pm 1.2 \) | \(a_{632}= +0.53202596 \pm 1.3 \) | \(a_{633}= +2.57556338 \pm 4.1 \cdot 10^{-1} \) |
\(a_{634}= -0.62893650 \pm 1.0 \) | \(a_{635}= \pm0.01028879 \pm 5.6 \cdot 10^{-1} \) | \(a_{636}= +0.26568112 \pm 9.0 \cdot 10^{-1} \) |
\(a_{637}= -2.00554410 \pm 6.6 \cdot 10^{-1} \) | \(a_{638}= -0.08357509 \pm 3.0 \cdot 10^{-1} \) | \(a_{639}= -0.72963996 \pm 5.8 \cdot 10^{-1} \) |
\(a_{640}= \pm0.14463030 \pm 3.6 \cdot 10^{-1} \) | \(a_{641}= +0.67068846 \pm 8.3 \cdot 10^{-1} \) | \(a_{642}= +1.10018913 \pm 9.7 \cdot 10^{-1} \) |
\(a_{643}= -0.78973072 \pm 6.6 \cdot 10^{-1} \) | \(a_{644}= -0.58479485 \pm 2.2 \cdot 10^{-1} \) | \(a_{645}= \pm1.10803962 \pm 5.9 \cdot 10^{-1} \) |
\(a_{646}= +0.52999973 \pm 7.5 \cdot 10^{-1} \) | \(a_{647}= +0.46390319 \pm 1.3 \) | \(a_{648}= -1.25491136 \pm 1.0 \) |
\(a_{649}= +0.31985592 \pm 3.5 \cdot 10^{-1} \) | \(a_{650}= \pm0.12883658 \pm 1.8 \cdot 10^{-1} \) | \(a_{651}= +0.81831913 \pm 4.7 \cdot 10^{-1} \) |
\(a_{652}= -0.55704386 \pm 7.0 \cdot 10^{-1} \) | \(a_{653}= +1.11737754 \pm 7.7 \cdot 10^{-1} \) | \(a_{654}= -1.00861085 \pm 7.3 \cdot 10^{-1} \) |
\(a_{655}= \pm0.17850484 \pm 4.8 \cdot 10^{-1} \) | \(a_{656}= +0.12525903 \pm 6.5 \cdot 10^{-1} \) | \(a_{657}= -0.12151616 \pm 3.6 \cdot 10^{-1} \) |
\(a_{658}= -0.20678236 \pm 2.2 \cdot 10^{-1} \) | \(a_{659}= -1.12156413 \pm 1.4 \) | \(a_{660}= \pm0.28528207 \pm 1.8 \cdot 10^{-1} \) |
\(a_{661}= -0.91133924 \pm 1.0 \) | \(a_{662}= +0.11757636 \pm 1.0 \) | \(a_{663}= -0.75806208 \pm 6.0 \cdot 10^{-1} \) |
\(a_{664}= +0.17679245 \pm 1.1 \) | \(a_{665}= \pm0.98229918 \pm 2.0 \cdot 10^{-1} \) | \(a_{666}= +0.82995841 \pm 4.1 \cdot 10^{-1} \) |
\(a_{667}= +0.08203170 \pm 3.7 \cdot 10^{-1} \) | \(a_{668}= -0.52206167 \pm 5.6 \cdot 10^{-1} \) | \(a_{669}= -1.02714595 \pm 1.3 \) |
\(a_{670}= \pm0.12330587 \pm 2.2 \cdot 10^{-1} \) | \(a_{671}= -0.97824796 \pm 3.2 \cdot 10^{-1} \) | \(a_{672}= +2.12719121 \pm 3.8 \cdot 10^{-1} \) |
\(a_{673}= -0.21817129 \pm 9.2 \cdot 10^{-1} \) | \(a_{674}= +0.28698486 \pm 1.0 \) | \(a_{675}= \pm0.06795279 \pm 1.7 \cdot 10^{-1} \) |
\(a_{676}= +0.07134751 \pm 5.9 \cdot 10^{-1} \) | \(a_{677}= +0.18297225 \pm 1.0 \) | \(a_{678}= +0.47261180 \pm 1.0 \) |
\(a_{679}= +3.22209161 \pm 4.3 \cdot 10^{-1} \) | \(a_{680}= \pm0.29133460 \pm 4.8 \cdot 10^{-1} \) | \(a_{681}= +0.11366775 \pm 9.1 \cdot 10^{-1} \) |
\(a_{682}= +0.22529016 \pm 8.1 \cdot 10^{-1} \) | \(a_{683}= -0.16844610 \pm 1.4 \) | \(a_{684}= -0.47615080 \pm 2.1 \cdot 10^{-1} \) |
\(a_{685}= \pm0.31851924 \pm 5.9 \cdot 10^{-1} \) | \(a_{686}= -1.42959407 \pm 6.9 \cdot 10^{-1} \) | \(a_{687}= -0.22748354 \pm 1.7 \) |
\(a_{688}= -0.39771864 \pm 1.3 \cdot 10^{-1} \) | \(a_{689}= -0.36022898 \pm 6.2 \cdot 10^{-1} \) | \(a_{690}= \pm0.25964642 \pm 2.5 \cdot 10^{-1} \) |
\(a_{691}= -0.81687196 \pm 7.4 \cdot 10^{-1} \) | \(a_{692}= +0.75845675 \pm 1.1 \) | \(a_{693}= +1.22934823 \pm 2.8 \cdot 10^{-1} \) |
\(a_{694}= -0.32216729 \pm 6.1 \cdot 10^{-1} \) | \(a_{695}= \pm0.08103848 \pm 5.7 \cdot 10^{-1} \) | \(a_{696}= -0.17992836 \pm 6.4 \cdot 10^{-1} \) |
\(a_{697}= +0.36550850 \pm 1.2 \) | \(a_{698}= +0.43860022 \pm 1.4 \) | \(a_{699}= -1.42607710 \pm 1.6 \) |
\(a_{700}= \pm0.18445840 \pm 7.3 \cdot 10^{-2} \) | \(a_{701}= +1.35554860 \pm 6.1 \cdot 10^{-1} \) | \(a_{702}= +0.21887012 \pm 7.5 \cdot 10^{-1} \) |
\(a_{703}= -1.99103295 \pm 1.6 \) | \(a_{704}= +0.78298325 \pm 6.5 \cdot 10^{-1} \) | \(a_{705}= \pm0.09901233 \pm 1.6 \cdot 10^{-1} \) |
\(a_{706}= -0.19902007 \pm 3.9 \cdot 10^{-1} \) | \(a_{707}= -1.89883259 \pm 3.9 \cdot 10^{-1} \) | \(a_{708}= +0.23524228 \pm 7.9 \cdot 10^{-1} \) |
\(a_{709}= +0.84721289 \pm 1.3 \) | \(a_{710}= \pm0.30478135 \pm 2.5 \cdot 10^{-1} \) | \(a_{711}= +0.37501384 \pm 6.5 \cdot 10^{-1} \) |
\(a_{712}= +0.30237275 \pm 1.2 \) | \(a_{713}= -0.22112970 \pm 5.3 \cdot 10^{-1} \) | \(a_{714}= -1.00639169 \pm 4.0 \cdot 10^{-1} \) |
\(a_{715}= \pm0.38680532 \pm 2.9 \cdot 10^{-1} \) | \(a_{716}= -0.01095666 \pm 1.3 \) | \(a_{717}= -1.54355223 \pm 9.1 \cdot 10^{-1} \) |
\(a_{718}= +0.66982805 \pm 6.3 \cdot 10^{-1} \) | \(a_{719}= +0.01066462 \pm 4.4 \cdot 10^{-1} \) | \(a_{720}= \pm0.07037495 \pm 1.7 \cdot 10^{-1} \) |
\(a_{721}= +1.71646011 \pm 3.6 \cdot 10^{-1} \) | \(a_{722}= -0.36554469 \pm 9.0 \cdot 10^{-1} \) | \(a_{723}= +1.61311060 \pm 6.6 \cdot 10^{-1} \) |
\(a_{724}= -0.79279644 \pm 1.0 \) | \(a_{725}= \pm0.02587478 \pm 1.0 \cdot 10^{-1} \) | \(a_{726}= -0.12145422 \pm 8.8 \cdot 10^{-1} \) |
\(a_{727}= +1.51757180 \pm 1.2 \) | \(a_{728}= -1.73915940 \pm 2.5 \cdot 10^{-1} \) | \(a_{729}= -0.43604383 \pm 8.8 \cdot 10^{-1} \) |
\(a_{730}= \pm0.05075909 \pm 3.6 \cdot 10^{-1} \) | \(a_{731}= -1.16055138 \pm 1.2 \) | \(a_{732}= -0.71946544 \pm 4.6 \cdot 10^{-1} \) |
\(a_{733}= +1.85367452 \pm 7.9 \cdot 10^{-1} \) | \(a_{734}= +1.14659480 \pm 1.4 \) | \(a_{735}= \pm1.27488286 \pm 4.4 \cdot 10^{-1} \) |
\(a_{736}= -0.57481873 \pm 4.6 \cdot 10^{-1} \) | \(a_{737}= -0.37020052 \pm 2.4 \cdot 10^{-1} \) | \(a_{738}= +0.30448742 \pm 5.0 \cdot 10^{-1} \) |
\(a_{739}= +0.68196136 \pm 9.4 \cdot 10^{-1} \) | \(a_{740}= \pm0.37388075 \pm 4.4 \cdot 10^{-1} \) | \(a_{741}= +1.51495163 \pm 4.1 \cdot 10^{-1} \) |
\(a_{742}= -0.47823451 \pm 3.0 \cdot 10^{-1} \) | \(a_{743}= -0.61856550 \pm 1.5 \) | \(a_{744}= +0.48502596 \pm 7.7 \cdot 10^{-1} \) |
\(a_{745}= \pm0.42187287 \pm 1.8 \cdot 10^{-1} \) | \(a_{746}= +0.46734279 \pm 1.5 \) | \(a_{747}= +0.12461726 \pm 4.8 \cdot 10^{-1} \) |
\(a_{748}= +0.29880204 \pm 4.7 \cdot 10^{-1} \) | \(a_{749}= +2.13572122 \pm 5.4 \cdot 10^{-1} \) | \(a_{750}= \pm0.08189874 \pm 9.8 \cdot 10^{-2} \) |
\(a_{751}= -0.36284183 \pm 1.0 \) | \(a_{752}= -0.03553939 \pm 3.7 \cdot 10^{-1} \) | \(a_{753}= -0.44206712 \pm 1.7 \) |
\(a_{754}= +0.08334044 \pm 3.4 \cdot 10^{-1} \) | \(a_{755}= \pm0.42180448 \pm 3.2 \cdot 10^{-1} \) | \(a_{756}= -0.31336157 \pm 3.1 \cdot 10^{-1} \) |
\(a_{757}= -1.28999855 \pm 8.6 \cdot 10^{-1} \) | \(a_{758}= -0.12452566 \pm 8.9 \cdot 10^{-1} \) | \(a_{759}= -0.77953496 \pm 3.4 \cdot 10^{-1} \) |
\(a_{760}= \pm0.58221858 \pm 4.8 \cdot 10^{-1} \) | \(a_{761}= +0.09502937 \pm 1.0 \) | \(a_{762}= -0.02106597 \pm 9.6 \cdot 10^{-1} \) |
\(a_{763}= -1.95794663 \pm 2.6 \cdot 10^{-1} \) | \(a_{764}= -0.11307070 \pm 2.7 \cdot 10^{-1} \) | \(a_{765}= \pm0.20535560 \pm 2.7 \cdot 10^{-1} \) |
\(a_{766}= -0.87328034 \pm 1.2 \) | \(a_{767}= -0.31895787 \pm 5.3 \cdot 10^{-1} \) | \(a_{768}= +1.40595092 \pm 8.8 \cdot 10^{-1} \) |
\(a_{769}= -0.77899696 \pm 7.8 \cdot 10^{-1} \) | \(a_{770}= \pm0.51351685 \pm 1.4 \cdot 10^{-1} \) | \(a_{771}= -2.23294244 \pm 8.5 \cdot 10^{-1} \) |
\(a_{772}= -0.11499542 \pm 3.0 \cdot 10^{-1} \) | \(a_{773}= +0.06373308 \pm 6.0 \cdot 10^{-1} \) | \(a_{774}= -0.96679911 \pm 1.9 \cdot 10^{-1} \) |
\(a_{775}= \pm0.06974964 \pm 2.2 \cdot 10^{-1} \) | \(a_{776}= +1.90976603 \pm 8.5 \cdot 10^{-1} \) | \(a_{777}= +3.78067931 \pm 4.6 \cdot 10^{-1} \) |
\(a_{778}= -1.18691404 \pm 8.8 \cdot 10^{-1} \) | \(a_{779}= -0.73045164 \pm 7.9 \cdot 10^{-1} \) | \(a_{780}= \pm0.28448110 \pm 3.1 \cdot 10^{-1} \) |
\(a_{781}= -0.91504330 \pm 4.2 \cdot 10^{-1} \) | \(a_{782}= +0.27195148 \pm 4.9 \cdot 10^{-1} \) | \(a_{783}= +0.04395658 \pm 3.5 \cdot 10^{-1} \) |
\(a_{784}= -0.45760519 \pm 3.5 \cdot 10^{-1} \) | \(a_{785}= \pm0.36476312 \pm 4.5 \cdot 10^{-1} \) | \(a_{786}= +0.36548305 \pm 1.3 \) |
\(a_{787}= +0.55393921 \pm 7.3 \cdot 10^{-1} \) | \(a_{788}= -0.21752338 \pm 1.1 \) | \(a_{789}= +1.28399285 \pm 1.2 \) |
\(a_{790}= \pm0.15664880 \pm 4.2 \cdot 10^{-1} \) | \(a_{791}= +0.91744867 \pm 4.0 \cdot 10^{-1} \) | \(a_{792}= +0.72864703 \pm 5.1 \cdot 10^{-1} \) |
\(a_{793}= +0.97550138 \pm 3.8 \cdot 10^{-1} \) | \(a_{794}= -0.54150705 \pm 1.3 \) | \(a_{795}= \pm0.22899010 \pm 5.3 \cdot 10^{-1} \) |
\(a_{796}= -0.02021182 \pm 1.1 \) | \(a_{797}= -0.46636936 \pm 9.4 \cdot 10^{-1} \) | \(a_{798}= +2.01122673 \pm 4.8 \cdot 10^{-1} \) |
\(a_{799}= -0.10370468 \pm 9.7 \cdot 10^{-1} \) | \(a_{800}= \pm0.18131169 \pm 2.3 \cdot 10^{-1} \) | \(a_{801}= +0.21313615 \pm 4.5 \cdot 10^{-1} \) |
\(a_{802}= +0.32170505 \pm 1.6 \) | \(a_{803}= -0.15239373 \pm 4.1 \cdot 10^{-1} \) | \(a_{804}= -0.27226888 \pm 5.2 \cdot 10^{-1} \) |
\(a_{805}= \pm0.50403368 \pm 1.5 \cdot 10^{-1} \) | \(a_{806}= -0.22465763 \pm 1.4 \) | \(a_{807}= -2.57946585 \pm 1.1 \) |
\(a_{808}= -1.12545713 \pm 8.6 \cdot 10^{-1} \) | \(a_{809}= -1.26468481 \pm 8.7 \cdot 10^{-1} \) | \(a_{810}= \pm0.36949392 \pm 5.0 \cdot 10^{-1} \) |
\(a_{811}= +0.21313273 \pm 7.1 \cdot 10^{-1} \) | \(a_{812}= -0.11932050 \pm 1.5 \cdot 10^{-1} \) | \(a_{813}= -1.31739868 \pm 8.6 \cdot 10^{-1} \) |
\(a_{814}= +1.04085292 \pm 5.3 \cdot 10^{-1} \) | \(a_{815}= \pm0.48011515 \pm 4.1 \cdot 10^{-1} \) | \(a_{816}= -0.17296710 \pm 4.2 \cdot 10^{-1} \) |
\(a_{817}= +2.31930766 \pm 1.4 \) | \(a_{818}= +0.87482814 \pm 1.2 \) | \(a_{819}= -1.22589665 \pm 2.8 \cdot 10^{-1} \) |
\(a_{820}= \pm0.13716589 \pm 6.1 \cdot 10^{-1} \) | \(a_{821}= +0.52158524 \pm 7.8 \cdot 10^{-1} \) | \(a_{822}= -0.65215815 \pm 1.6 \) |
\(a_{823}= +0.21249770 \pm 1.2 \) | \(a_{824}= +1.01736313 \pm 5.0 \cdot 10^{-1} \) | \(a_{825}= \pm0.24588413 \pm 8.6 \cdot 10^{-2} \) |
\(a_{826}= -0.42344362 \pm 4.8 \cdot 10^{-1} \) | \(a_{827}= -0.79871096 \pm 8.1 \cdot 10^{-1} \) | \(a_{828}= -0.24432071 \pm 1.8 \cdot 10^{-1} \) |
\(a_{829}= +0.01455808 \pm 1.6 \) | \(a_{830}= \pm0.05205446 \pm 3.9 \cdot 10^{-1} \) | \(a_{831}= +0.86206060 \pm 1.0 \) |
\(a_{832}= -0.78078491 \pm 9.5 \cdot 10^{-1} \) | \(a_{833}= -1.33530158 \pm 1.0 \) | \(a_{834}= +0.16592375 \pm 9.5 \cdot 10^{-1} \) |
\(a_{835}= \pm0.44996406 \pm 4.0 \cdot 10^{-1} \) | \(a_{836}= -0.59714191 \pm 2.0 \cdot 10^{-1} \) | \(a_{837}= -0.11849207 \pm 1.0 \) |
\(a_{838}= -1.27167584 \pm 4.9 \cdot 10^{-1} \) | \(a_{839}= +0.58852477 \pm 6.1 \cdot 10^{-1} \) | \(a_{840}= \pm1.10554762 \pm 2.0 \cdot 10^{-1} \) |
\(a_{841}= -0.98326240 \pm 9.3 \cdot 10^{-1} \) | \(a_{842}= +0.41635124 \pm 6.1 \cdot 10^{-1} \) | \(a_{843}= +2.15040437 \pm 4.4 \cdot 10^{-1} \) |
\(a_{844}= +1.01234832 \pm 3.7 \cdot 10^{-1} \) | \(a_{845}= \pm0.06149429 \pm 4.0 \cdot 10^{-1} \) | \(a_{846}= -0.08639134 \pm 4.9 \cdot 10^{-1} \) |
\(a_{847}= -0.23577068 \pm 3.5 \cdot 10^{-1} \) | \(a_{848}= -0.08219348 \pm 3.2 \cdot 10^{-1} \) | \(a_{849}= -0.21916800 \pm 1.2 \) |
\(a_{850}= \pm0.08578006 \pm 2.2 \cdot 10^{-1} \) | \(a_{851}= -1.02163137 \pm 3.8 \cdot 10^{-1} \) | \(a_{852}= -0.67298074 \pm 2.4 \cdot 10^{-1} \) |
\(a_{853}= +1.03443736 \pm 9.3 \cdot 10^{-1} \) | \(a_{854}= +1.29506079 \pm 3.2 \cdot 10^{-1} \) | \(a_{855}= \pm0.41039356 \pm 2.2 \cdot 10^{-1} \) |
\(a_{856}= +1.26586339 \pm 8.0 \cdot 10^{-1} \) | \(a_{857}= -0.65278553 \pm 1.0 \) | \(a_{858}= -0.79197174 \pm 4.3 \cdot 10^{-1} \) |
\(a_{859}= +0.28616942 \pm 9.6 \cdot 10^{-1} \) | \(a_{860}= \pm0.43552493 \pm 3.5 \cdot 10^{-1} \) | \(a_{861}= +1.38702044 \pm 4.4 \cdot 10^{-1} \) |
\(a_{862}= -0.11449650 \pm 7.5 \cdot 10^{-1} \) | \(a_{863}= +0.26837863 \pm 1.4 \) | \(a_{864}= -0.30801588 \pm 1.0 \) |
\(a_{865}= \pm0.65371258 \pm 4.5 \cdot 10^{-1} \) | \(a_{866}= +0.33683821 \pm 8.9 \cdot 10^{-1} \) | \(a_{867}= +0.81536142 \pm 3.1 \cdot 10^{-1} \) |
\(a_{868}= +0.32164768 \pm 5.1 \cdot 10^{-1} \) | \(a_{869}= +0.47030580 \pm 5.1 \cdot 10^{-1} \) | \(a_{870}= \pm0.05297780 \pm 2.2 \cdot 10^{-1} \) |
\(a_{871}= +0.36916113 \pm 2.6 \cdot 10^{-1} \) | \(a_{872}= -1.16049461 \pm 4.2 \cdot 10^{-1} \) | \(a_{873}= +1.34615365 \pm 6.0 \cdot 10^{-1} \) |
\(a_{874}= -0.54348231 \pm 3.7 \cdot 10^{-1} \) | \(a_{875}= \pm0.15898438 \pm 3.9 \cdot 10^{-2} \) | \(a_{876}= -0.11207999 \pm 7.9 \cdot 10^{-1} \) |
\(a_{877}= +1.67206643 \pm 9.0 \cdot 10^{-1} \) | \(a_{878}= -0.25265989 \pm 9.9 \cdot 10^{-1} \) | \(a_{879}= -1.89230063 \pm 1.5 \) |
\(a_{880}= \pm0.08825741 \pm 1.7 \cdot 10^{-1} \) | \(a_{881}= -1.32376332 \pm 8.1 \cdot 10^{-1} \) | \(a_{882}= -1.11237504 \pm 3.1 \cdot 10^{-1} \) |
\(a_{883}= -1.29233864 \pm 8.5 \cdot 10^{-1} \) | \(a_{884}= -0.29796311 \pm 7.6 \cdot 10^{-1} \) | \(a_{885}= \pm0.20275492 \pm 4.7 \cdot 10^{-1} \) |
\(a_{886}= -0.65050204 \pm 1.1 \) | \(a_{887}= +1.26644201 \pm 1.4 \) | \(a_{888}= +2.24084656 \pm 1.4 \) |
\(a_{889}= -0.04089391 \pm 4.6 \cdot 10^{-1} \) | \(a_{890}= \pm0.08903011 \pm 5.7 \cdot 10^{-1} \) | \(a_{891}= -1.10932950 \pm 5.4 \cdot 10^{-1} \) |
\(a_{892}= -0.40372894 \pm 1.0 \) | \(a_{893}= +0.20724896 \pm 1.7 \cdot 10^{-1} \) | \(a_{894}= +0.86377146 \pm 5.5 \cdot 10^{-1} \) |
\(a_{895}= \pm0.00944352 \pm 4.9 \cdot 10^{-1} \) | \(a_{896}= +0.57484894 \pm 3.3 \cdot 10^{-1} \) | \(a_{897}= +0.77734630 \pm 3.7 \cdot 10^{-1} \) |
\(a_{898}= +0.22509407 \pm 1.0 \) | \(a_{899}= -0.04511891 \pm 3.2 \cdot 10^{-1} \) | \(a_{900}= \pm0.07706465 \pm 5.2 \cdot 10^{-2} \) |
\(a_{901}= -0.23984231 \pm 1.2 \) | \(a_{902}= +0.38185843 \pm 9.4 \cdot 10^{-1} \) | \(a_{903}= -4.40402478 \pm 3.9 \cdot 10^{-1} \) |
\(a_{904}= +0.54378103 \pm 6.4 \cdot 10^{-1} \) | \(a_{905}= \pm0.68330990 \pm 5.2 \cdot 10^{-1} \) | \(a_{906}= +0.86363143 \pm 9.0 \cdot 10^{-1} \) |
\(a_{907}= -1.31271112 \pm 1.4 \) | \(a_{908}= +0.04467813 \pm 8.2 \cdot 10^{-1} \) | \(a_{909}= -0.79331091 \pm 6.2 \cdot 10^{-1} \) |
\(a_{910}= \pm0.51207508 \pm 1.8 \cdot 10^{-1} \) | \(a_{911}= -1.11887997 \pm 1.4 \) | \(a_{912}= +0.34566665 \pm 5.0 \cdot 10^{-1} \) |
\(a_{913}= +0.15628281 \pm 4.1 \cdot 10^{-1} \) | \(a_{914}= -0.01217109 \pm 1.1 \) | \(a_{915}= \pm0.62010603 \pm 3.2 \cdot 10^{-1} \) |
\(a_{916}= -0.08941445 \pm 1.1 \) | \(a_{917}= +0.70948702 \pm 4.7 \cdot 10^{-1} \) | \(a_{918}= +0.14572485 \pm 9.6 \cdot 10^{-1} \) |
\(a_{919}= -0.39251304 \pm 1.0 \) | \(a_{920}= \pm0.29874582 \pm 1.6 \cdot 10^{-1} \) | \(a_{921}= +1.96189620 \pm 9.7 \cdot 10^{-1} \) |
\(a_{922}= -1.05440433 \pm 1.0 \) | \(a_{923}= +0.91247418 \pm 4.7 \cdot 10^{-1} \) | \(a_{924}= +1.13388483 \pm 1.6 \cdot 10^{-1} \) |
\(a_{925}= \pm0.32224718 \pm 2.8 \cdot 10^{-1} \) | \(a_{926}= +0.18942487 \pm 8.1 \cdot 10^{-1} \) | \(a_{927}= +0.71711774 \pm 3.0 \cdot 10^{-1} \) |
\(a_{928}= -0.11728499 \pm 4.3 \cdot 10^{-1} \) | \(a_{929}= +0.14524293 \pm 5.4 \cdot 10^{-1} \) | \(a_{930}= \pm0.14281020 \pm 7.2 \cdot 10^{-1} \) |
\(a_{931}= +2.66853777 \pm 9.5 \cdot 10^{-1} \) | \(a_{932}= -0.56053241 \pm 1.0 \) | \(a_{933}= -0.54805594 \pm 8.7 \cdot 10^{-1} \) |
\(a_{934}= -0.48051388 \pm 6.4 \cdot 10^{-1} \) | \(a_{935}= \pm0.25753697 \pm 3.2 \cdot 10^{-1} \) | \(a_{936}= -0.72660125 \pm 5.8 \cdot 10^{-1} \) |
\(a_{937}= +1.54526649 \pm 1.7 \) | \(a_{938}= +0.49009270 \pm 2.5 \cdot 10^{-1} \) | \(a_{939}= -1.65691562 \pm 9.2 \cdot 10^{-1} \) |
\(a_{940}= \pm0.03891769 \pm 2.0 \cdot 10^{-1} \) | \(a_{941}= -1.04347992 \pm 1.2 \) | \(a_{942}= +0.74684104 \pm 9.8 \cdot 10^{-1} \) |
\(a_{943}= -0.37480661 \pm 6.3 \cdot 10^{-1} \) | \(a_{944}= -0.07277665 \pm 4.7 \cdot 10^{-1} \) | \(a_{945}= \pm0.27008580 \pm 1.4 \cdot 10^{-1} \) |
\(a_{946}= -1.21246519 \pm 1.5 \cdot 10^{-1} \) | \(a_{947}= +1.35188123 \pm 1.3 \) | \(a_{948}= +0.34589264 \pm 9.6 \cdot 10^{-1} \) |
\(a_{949}= +0.15196586 \pm 5.3 \cdot 10^{-1} \) | \(a_{950}= \pm0.17142743 \pm 1.5 \cdot 10^{-1} \) | \(a_{951}= -1.19695290 \pm 1.7 \) |
\(a_{952}= -1.15794127 \pm 3.4 \cdot 10^{-1} \) | \(a_{953}= -0.00611397 \pm 1.5 \) | \(a_{954}= -0.19980100 \pm 3.6 \cdot 10^{-1} \) |
\(a_{955}= \pm0.09745544 \pm 1.3 \cdot 10^{-1} \) | \(a_{956}= -0.60670707 \pm 7.6 \cdot 10^{-1} \) | \(a_{957}= -0.15905493 \pm 3.6 \cdot 10^{-1} \) |
\(a_{958}= +0.10753822 \pm 1.2 \) | \(a_{959}= -1.26598960 \pm 4.8 \cdot 10^{-1} \) | \(a_{960}= \pm0.49632880 \pm 4.9 \cdot 10^{-1} \) |
\(a_{961}= -0.87837469 \pm 1.4 \) | \(a_{962}= -1.03793057 \pm 5.9 \cdot 10^{-1} \) | \(a_{963}= +0.89228032 \pm 7.3 \cdot 10^{-1} \) |
\(a_{964}= +0.63404761 \pm 6.6 \cdot 10^{-1} \) | \(a_{965}= \pm0.09911435 \pm 2.1 \cdot 10^{-1} \) | \(a_{966}= +1.03199312 \pm 3.5 \cdot 10^{-1} \) |
\(a_{967}= -0.96623945 \pm 7.0 \cdot 10^{-1} \) | \(a_{968}= -0.13974365 \pm 8.4 \cdot 10^{-1} \) | \(a_{969}= +1.00866259 \pm 1.2 \) |
\(a_{970}= \pm0.56230820 \pm 3.4 \cdot 10^{-1} \) | \(a_{971}= +1.88099090 \pm 8.5 \cdot 10^{-1} \) | \(a_{972}= -0.63957761 \pm 3.2 \cdot 10^{-1} \) |
\(a_{973}= +0.32209632 \pm 5.1 \cdot 10^{-1} \) | \(a_{974}= +0.09312493 \pm 1.0 \) | \(a_{975}= \pm0.24519377 \pm 1.2 \cdot 10^{-1} \) |
\(a_{976}= +0.22258024 \pm 2.8 \cdot 10^{-1} \) | \(a_{977}= +1.42405292 \pm 7.2 \cdot 10^{-1} \) | \(a_{978}= +0.98302070 \pm 8.6 \cdot 10^{-1} \) |
\(a_{979}= +0.26729458 \pm 5.0 \cdot 10^{-1} \) | \(a_{980}= \pm0.50110416 \pm 3.7 \cdot 10^{-1} \) | \(a_{981}= -0.81800809 \pm 3.0 \cdot 10^{-1} \) |
\(a_{982}= -0.86586039 \pm 5.6 \cdot 10^{-1} \) | \(a_{983}= -1.44360637 \pm 1.0 \) | \(a_{984}= +0.82210093 \pm 8.5 \cdot 10^{-1} \) |
\(a_{985}= \pm0.18748303 \pm 4.8 \cdot 10^{-1} \) | \(a_{986}= +0.05548850 \pm 3.9 \cdot 10^{-1} \) | \(a_{987}= -0.39353535 \pm 2.1 \cdot 10^{-1} \) |
\(a_{988}= +0.59546534 \pm 2.7 \cdot 10^{-1} \) | \(a_{989}= +1.19007446 \pm 1.8 \cdot 10^{-1} \) | \(a_{990}= \pm0.21454157 \pm 2.0 \cdot 10^{-1} \) |
\(a_{991}= +0.66687993 \pm 1.0 \) | \(a_{992}= +0.31616064 \pm 1.4 \) | \(a_{993}= +0.22376402 \pm 7.8 \cdot 10^{-1} \) |
\(a_{994}= +1.21138684 \pm 4.4 \cdot 10^{-1} \) | \(a_{995}= \pm0.01742053 \pm 6.6 \cdot 10^{-1} \) | \(a_{996}= +0.11494027 \pm 9.1 \cdot 10^{-1} \) |
\(a_{997}= -1.49377624 \pm 1.5 \) | \(a_{998}= -0.52482489 \pm 1.1 \) | \(a_{999}= -0.54743986 \pm 1.1 \) |
\(a_{1000}= \pm0.09423164 \pm 8.8 \cdot 10^{-2} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000