Maass form invariants
Level: | \( 5 \) |
Weight: | \( 0 \) |
Character: | 5.1 |
Symmetry: | odd |
Fricke sign: | not computed rigorously |
Spectral parameter: | \(20.694603450454793256678635786 \pm 2 \cdot 10^{-3}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -1.48527584 \pm 3.1 \) | \(a_{3}= -1.15858351 \pm 3.4 \) |
\(a_{4}= +1.20604432 \pm 2.7 \) | \(a_{5}= \pm0.44721360 \pm 1.0 \cdot 10^{-8} \) | \(a_{6}= +1.72081610 \pm 3.2 \) |
\(a_{7}= -1.02213154 \pm 1.3 \) | \(a_{8}= -0.30603265 \pm 2.9 \) | \(a_{9}= +0.34231575 \pm 1.6 \) |
\(a_{10}= \pm0.66423555 \pm 1.4 \) | \(a_{11}= -1.45783486 \pm 1.7 \) | \(a_{12}= -1.39730306 \pm 2.8 \) |
\(a_{13}= -0.87106161 \pm 2.2 \) | \(a_{14}= +1.51814728 \pm 1.3 \) | \(a_{15}= \pm0.51813430 \pm 1.5 \) |
\(a_{16}= -0.75150141 \pm 1.4 \) | \(a_{17}= +1.22199460 \pm 3.5 \) | \(a_{18}= -0.50843331 \pm 1.4 \) |
\(a_{19}= -0.70196536 \pm 3.2 \) | \(a_{20}= \pm0.53935942 \pm 1.2 \) | \(a_{21}= +1.18422474 \pm 1.4 \) |
\(a_{22}= +2.16528690 \pm 1.8 \) | \(a_{23}= +0.95288806 \pm 1.3 \) | \(a_{24}= +0.35456439 \pm 3.0 \) |
\(a_{25}= \pm0.2 \) | \(a_{26}= +1.29376677 \pm 2.6 \) | \(a_{27}= +0.76198213 \pm 2.6 \) |
\(a_{28}= -1.23273594 \pm 1.0 \) | \(a_{29}= +0.83930508 \pm 1.5 \) | \(a_{30}= \pm0.76957235 \pm 1.4 \) |
\(a_{31}= +0.40955389 \pm 3.3 \) | \(a_{32}= +1.42221955 \pm 3.4 \) | \(a_{33}= +1.68902343 \pm 1.2 \) |
\(a_{34}= -1.81499906 \pm 3.3 \) | \(a_{35}= \pm0.45711112 \pm 5.8 \cdot 10^{-1} \) | \(a_{36}= +0.41284797 \pm 7.8 \cdot 10^{-1} \) |
\(a_{37}= +0.24954787 \pm 4.2 \) | \(a_{38}= +1.04261218 \pm 2.2 \) | \(a_{39}= +1.00919762 \pm 1.7 \) |
\(a_{40}= \pm0.13686196 \pm 1.3 \) | \(a_{41}= -1.35168901 \pm 3.5 \) | \(a_{42}= -1.75890040 \pm 1.3 \) |
\(a_{43}= +1.66979038 \pm 3.5 \) | \(a_{44}= -1.75821346 \pm 1.3 \) | \(a_{45}= \pm0.15308826 \pm 7.5 \cdot 10^{-1} \) |
\(a_{46}= -1.41530162 \pm 1.6 \) | \(a_{47}= -0.23487679 \pm 2.1 \) | \(a_{48}= +0.87067715 \pm 1.4 \) |
\(a_{49}= +0.04475288 \pm 2.8 \) | \(a_{50}= \pm0.29705517 \pm 6.3 \cdot 10^{-1} \) | \(a_{51}= -1.41578279 \pm 3.4 \) |
\(a_{52}= -1.05053891 \pm 2.1 \) | \(a_{53}= -1.28007225 \pm 3.3 \) | \(a_{54}= -1.13175365 \pm 2.7 \) |
\(a_{55}= \pm0.65196357 \pm 7.8 \cdot 10^{-1} \) | \(a_{56}= +0.31280563 \pm 1.1 \) | \(a_{57}= +0.81328549 \pm 3.7 \) |
\(a_{58}= -1.24659956 \pm 1.2 \) | \(a_{59}= -0.67847923 \pm 2.6 \) | \(a_{60}= \pm0.62489293 \pm 1.2 \) |
\(a_{61}= +0.97539935 \pm 1.9 \) | \(a_{62}= -0.60830050 \pm 4.6 \) | \(a_{63}= -0.34989172 \pm 1.0 \) |
\(a_{64}= -1.36088692 \pm 3.1 \) | \(a_{65}= \pm0.38955059 \pm 1.0 \) | \(a_{66}= -2.50866569 \pm 1.5 \) |
\(a_{67}= +1.78278432 \pm 2.1 \) | \(a_{68}= +1.47377965 \pm 2.8 \) | \(a_{69}= -1.10400040 \pm 1.5 \) |
\(a_{70}= \pm0.67893610 \pm 6.0 \cdot 10^{-1} \) | \(a_{71}= +1.60705882 \pm 1.6 \) | \(a_{72}= -0.10475980 \pm 1.7 \) |
\(a_{73}= +0.02590209 \pm 2.8 \) | \(a_{74}= -0.37064742 \pm 2.9 \) | \(a_{75}= \pm0.23171670 \pm 6.8 \cdot 10^{-1} \) |
\(a_{76}= -0.84660133 \pm 2.1 \) | \(a_{77}= +1.49009899 \pm 8.7 \cdot 10^{-1} \) | \(a_{78}= -1.49893684 \pm 2.4 \) |
\(a_{79}= +0.19243420 \pm 4.0 \) | \(a_{80}= \pm0.33608165 \pm 6.2 \cdot 10^{-1} \) | \(a_{81}= -1.22513568 \pm 3.5 \) |
\(a_{82}= +2.00763103 \pm 4.7 \) | \(a_{83}= -0.40966792 \pm 3.4 \) | \(a_{84}= +1.42822753 \pm 9.7 \cdot 10^{-1} \) |
\(a_{85}= \pm0.54649260 \pm 1.5 \) | \(a_{86}= -2.48009931 \pm 2.1 \) | \(a_{87}= -0.97240503 \pm 1.8 \) |
\(a_{88}= +0.44614507 \pm 1.6 \) | \(a_{89}= +1.45283162 \pm 4.0 \) | \(a_{90}= \pm0.22737829 \pm 6.6 \cdot 10^{-1} \) |
\(a_{91}= +0.89033954 \pm 9.6 \cdot 10^{-1} \) | \(a_{92}= +1.14922524 \pm 1.1 \) | \(a_{93}= -0.47450238 \pm 3.5 \) |
\(a_{94}= +0.34885682 \pm 1.9 \) | \(a_{95}= \pm0.31392845 \pm 1.4 \) | \(a_{96}= -1.64776012 \pm 3.5 \) |
\(a_{97}= -1.54880527 \pm 2.6 \) | \(a_{98}= -0.06647037 \pm 2.7 \) | \(a_{99}= -0.49903983 \pm 1.5 \) |
\(a_{100}= \pm0.24120886 \pm 5.5 \cdot 10^{-1} \) | \(a_{101}= -1.33044761 \pm 2.7 \) | \(a_{102}= +2.10282798 \pm 3.2 \) |
\(a_{103}= +0.48943594 \pm 2.6 \) | \(a_{104}= +0.26657330 \pm 1.9 \) | \(a_{105}= \pm0.52960141 \pm 6.4 \cdot 10^{-1} \) |
\(a_{106}= +1.90126039 \pm 2.6 \) | \(a_{107}= +0.16725713 \pm 2.6 \) | \(a_{108}= +0.91898422 \pm 2.4 \) |
\(a_{109}= -1.26308493 \pm 1.6 \) | \(a_{110}= \pm0.96834574 \pm 8.3 \cdot 10^{-1} \) | \(a_{111}= -0.28912204 \pm 4.5 \) |
\(a_{112}= +0.76813330 \pm 9.4 \cdot 10^{-1} \) | \(a_{113}= -0.69458236 \pm 2.4 \) | \(a_{114}= -1.20795328 \pm 2.6 \) |
\(a_{115}= \pm0.42614450 \pm 6.1 \cdot 10^{-1} \) | \(a_{116}= +1.01223913 \pm 8.6 \cdot 10^{-1} \) | \(a_{117}= -0.29817811 \pm 1.6 \) |
\(a_{118}= +1.00772880 \pm 2.7 \) | \(a_{119}= -1.24903922 \pm 1.1 \) | \(a_{120}= \pm0.15856601 \pm 1.3 \) |
\(a_{121}= +1.12528248 \pm 2.7 \) | \(a_{122}= -1.44873710 \pm 1.5 \) | \(a_{123}= +1.56604460 \pm 3.6 \) |
\(a_{124}= +0.49394014 \pm 4.0 \) | \(a_{125}= \pm0.08944272 \pm 1.0 \cdot 10^{-8} \) | \(a_{126}= +0.51968572 \pm 1.0 \) |
\(a_{127}= +0.91081335 \pm 3.7 \) | \(a_{128}= +0.59907292 \pm 2.4 \) | \(a_{129}= -1.93459160 \pm 3.9 \) |
\(a_{130}= \pm0.57859009 \pm 1.2 \) | \(a_{131}= -1.11685571 \pm 3.2 \) | \(a_{132}= +2.03703712 \pm 1.2 \) |
\(a_{133}= +0.71750093 \pm 1.3 \) | \(a_{134}= -2.64792647 \pm 1.5 \) | \(a_{135}= \pm0.34076877 \pm 1.1 \) |
\(a_{136}= -0.37397025 \pm 3.2 \) | \(a_{137}= +0.13244110 \pm 3.9 \) | \(a_{138}= +1.63974512 \pm 1.7 \) |
\(a_{139}= +0.37298955 \pm 3.7 \) | \(a_{140}= \pm0.55129627 \pm 4.8 \cdot 10^{-1} \) | \(a_{141}= +0.27212437 \pm 1.1 \) |
\(a_{142}= -2.38692563 \pm 1.7 \) | \(a_{143}= +1.26986398 \pm 1.9 \) | \(a_{144}= -0.25725077 \pm 1.1 \) |
\(a_{145}= \pm0.37534864 \pm 7.1 \cdot 10^{-1} \) | \(a_{146}= -0.03847174 \pm 2.4 \) | \(a_{147}= -0.05184995 \pm 2.9 \) |
\(a_{148}= +0.30096579 \pm 2.9 \) | \(a_{149}= +0.75093365 \pm 1.2 \) | \(a_{150}= \pm0.34416322 \pm 6.4 \cdot 10^{-1} \) |
\(a_{151}= +0.19387104 \pm 2.1 \) | \(a_{152}= +0.21482432 \pm 3.2 \) | \(a_{153}= +0.41830800 \pm 1.8 \) |
\(a_{154}= -2.21320802 \pm 9.8 \cdot 10^{-1} \) | \(a_{155}= \pm0.18315807 \pm 1.5 \) | \(a_{156}= +1.21713706 \pm 2.0 \) |
\(a_{157}= -0.35071521 \pm 3.0 \) | \(a_{158}= -0.28581787 \pm 2.7 \) | \(a_{159}= +1.48307060 \pm 3.5 \) |
\(a_{160}= \pm0.63603592 \pm 1.5 \) | \(a_{161}= -0.97397694 \pm 1.0 \) | \(a_{162}= +1.81966442 \pm 3.3 \) |
\(a_{163}= -0.48426874 \pm 2.7 \) | \(a_{164}= -1.63019686 \pm 4.0 \) | \(a_{165}= \pm0.75535424 \pm 5.7 \cdot 10^{-1} \) |
\(a_{166}= +0.60846987 \pm 2.6 \) | \(a_{167}= -1.19357318 \pm 2.7 \) | \(a_{168}= -0.36241144 \pm 1.3 \) |
\(a_{169}= -0.24125167 \pm 2.6 \) | \(a_{170}= \pm0.81169225 \pm 1.4 \) | \(a_{171}= -0.24029380 \pm 1.5 \) |
\(a_{172}= +2.01384121 \pm 2.3 \) | \(a_{173}= +0.72689489 \pm 3.0 \) | \(a_{174}= +1.44428970 \pm 1.4 \) |
\(a_{175}= \pm0.20442631 \pm 2.6 \cdot 10^{-1} \) | \(a_{176}= +1.09556496 \pm 1.1 \) | \(a_{177}= +0.78607484 \pm 3.1 \) |
\(a_{178}= -2.15785570 \pm 3.7 \) | \(a_{179}= -0.72407869 \pm 3.2 \) | \(a_{180}= \pm0.18463122 \pm 3.4 \cdot 10^{-1} \) |
\(a_{181}= +1.12137812 \pm 3.4 \) | \(a_{182}= -1.32239981 \pm 1.2 \) | \(a_{183}= -1.13008161 \pm 2.1 \) |
\(a_{184}= -0.29161486 \pm 1.0 \) | \(a_{185}= \pm0.11160120 \pm 1.8 \) | \(a_{186}= +0.70476692 \pm 4.8 \) |
\(a_{187}= -1.78146633 \pm 2.1 \) | \(a_{188}= -0.28327182 \pm 1.3 \) | \(a_{189}= -0.77884596 \pm 9.3 \cdot 10^{-1} \) |
\(a_{190}= \pm0.46627034 \pm 1.0 \) | \(a_{191}= +0.43141966 \pm 8.8 \cdot 10^{-1} \) | \(a_{192}= +1.57670115 \pm 3.2 \) |
\(a_{193}= +1.64837998 \pm 1.4 \) | \(a_{194}= +2.30040305 \pm 2.3 \) | \(a_{195}= \pm0.45132690 \pm 7.9 \cdot 10^{-1} \) |
\(a_{196}= +0.05397396 \pm 2.4 \) | \(a_{197}= -0.91414072 \pm 3.2 \) | \(a_{198}= +0.74121181 \pm 1.3 \) |
\(a_{199}= -0.21273652 \pm 4.4 \) | \(a_{200}= \pm0.06120653 \pm 5.8 \cdot 10^{-1} \) | \(a_{201}= -2.06550451 \pm 2.3 \) |
\(a_{202}= +1.97608170 \pm 2.5 \) | \(a_{203}= -0.85788019 \pm 8.5 \cdot 10^{-1} \) | \(a_{204}= -1.70749680 \pm 3.0 \) |
\(a_{205}= \pm0.60449370 \pm 1.6 \) | \(a_{206}= -0.72694738 \pm 3.9 \) | \(a_{207}= +0.32618859 \pm 1.2 \) |
\(a_{208}= +0.65460403 \pm 1.2 \) | \(a_{209}= +1.02334957 \pm 7.9 \cdot 10^{-1} \) | \(a_{210}= \pm0.78660417 \pm 6.1 \cdot 10^{-1} \) |
\(a_{211}= +1.17641575 \pm 1.8 \) | \(a_{212}= -1.54382387 \pm 2.4 \) | \(a_{213}= -1.86191184 \pm 2.0 \) |
\(a_{214}= -0.24842298 \pm 2.9 \) | \(a_{215}= \pm0.74675296 \pm 1.5 \) | \(a_{216}= -0.23319141 \pm 2.2 \) |
\(a_{217}= -0.41861794 \pm 1.3 \) | \(a_{218}= +1.87602953 \pm 2.1 \) | \(a_{219}= -0.03000973 \pm 2.9 \) |
\(a_{220}= \pm0.78629696 \pm 5.9 \cdot 10^{-1} \) | \(a_{221}= -1.06443258 \pm 2.7 \) | \(a_{222}= +0.42942599 \pm 3.0 \) |
\(a_{223}= +1.18740523 \pm 3.4 \) | \(a_{224}= -1.45369545 \pm 1.2 \) | \(a_{225}= \pm0.06846315 \pm 3.3 \cdot 10^{-1} \) |
\(a_{226}= +1.03164641 \pm 2.9 \) | \(a_{227}= -0.60996873 \pm 2.6 \) | \(a_{228}= +0.98085834 \pm 2.3 \) |
\(a_{229}= -0.14728788 \pm 4.8 \) | \(a_{230}= \pm0.63294213 \pm 7.3 \cdot 10^{-1} \) | \(a_{231}= -1.72640411 \pm 7.2 \cdot 10^{-1} \) |
\(a_{232}= -0.25685476 \pm 1.6 \) | \(a_{233}= +0.69114365 \pm 4.3 \) | \(a_{234}= +0.44287674 \pm 1.4 \) |
\(a_{235}= \pm0.10504009 \pm 9.4 \cdot 10^{-1} \) | \(a_{236}= -0.81827602 \pm 2.2 \) | \(a_{237}= -0.22295109 \pm 4.4 \) |
\(a_{238}= +1.85516778 \pm 1.1 \) | \(a_{239}= +0.50180881 \pm 3.2 \) | \(a_{240}= \pm0.38937866 \pm 6.4 \cdot 10^{-1} \) |
\(a_{241}= -0.64932307 \pm 1.8 \) | \(a_{242}= -1.67135488 \pm 2.4 \) | \(a_{243}= +0.65743987 \pm 1.8 \) |
\(a_{244}= +1.17637485 \pm 1.3 \) | \(a_{245}= \pm0.02001410 \pm 1.2 \) | \(a_{246}= -2.32600821 \pm 4.7 \) |
\(a_{247}= +0.61145507 \pm 9.5 \cdot 10^{-1} \) | \(a_{248}= -0.12533686 \pm 2.2 \) | \(a_{249}= +0.47463450 \pm 3.8 \) |
\(a_{250}= \pm0.13284711 \pm 2.8 \cdot 10^{-1} \) | \(a_{251}= -0.09298339 \pm 4.8 \) | \(a_{252}= -0.42198493 \pm 5.6 \cdot 10^{-1} \) |
\(a_{253}= -1.38915344 \pm 1.1 \) | \(a_{254}= -1.35280906 \pm 2.9 \) | \(a_{255}= \pm0.63315731 \pm 1.5 \) |
\(a_{256}= +0.47109839 \pm 2.6 \) | \(a_{257}= -0.27213390 \pm 2.5 \) | \(a_{258}= +2.87340217 \pm 2.4 \) |
\(a_{259}= -0.25507074 \pm 1.3 \) | \(a_{260}= \pm0.46981528 \pm 9.5 \cdot 10^{-1} \) | \(a_{261}= +0.28730735 \pm 1.3 \) |
\(a_{262}= +1.65883880 \pm 3.9 \) | \(a_{263}= +0.53657964 \pm 3.6 \) | \(a_{264}= -0.51689632 \pm 1.0 \) |
\(a_{265}= \pm0.57246571 \pm 1.4 \) | \(a_{266}= -1.06568679 \pm 1.1 \) | \(a_{267}= -1.68322676 \pm 4.4 \) |
\(a_{268}= +2.15011690 \pm 1.4 \) | \(a_{269}= -1.57060800 \pm 3.1 \) | \(a_{270}= \pm0.50613562 \pm 1.2 \) |
\(a_{271}= +0.73456356 \pm 2.5 \) | \(a_{272}= -0.91833067 \pm 1.3 \) | \(a_{273}= -1.03153271 \pm 8.6 \cdot 10^{-1} \) |
\(a_{274}= -0.19671157 \pm 4.7 \) | \(a_{275}= \pm0.29156697 \pm 3.5 \cdot 10^{-1} \) | \(a_{276}= -1.33147341 \pm 1.1 \) |
\(a_{277}= +0.38372283 \pm 3.4 \) | \(a_{278}= -0.55399237 \pm 2.6 \) | \(a_{279}= +0.14019675 \pm 1.1 \) |
\(a_{280}= \pm0.13989093 \pm 5.1 \cdot 10^{-1} \) | \(a_{281}= -0.86000774 \pm 1.4 \) | \(a_{282}= -0.40417976 \pm 1.4 \) |
\(a_{283}= +0.80152782 \pm 3.4 \) | \(a_{284}= +1.93818416 \pm 9.1 \cdot 10^{-1} \) | \(a_{285}= \pm0.36371233 \pm 1.6 \) |
\(a_{286}= -1.88609829 \pm 1.9 \) | \(a_{287}= +1.38160397 \pm 1.4 \) | \(a_{288}= +0.48684815 \pm 1.2 \) |
\(a_{289}= +0.49327080 \pm 1.4 \) | \(a_{290}= \pm0.55749627 \pm 5.5 \cdot 10^{-1} \) | \(a_{291}= +1.79442024 \pm 2.7 \) |
\(a_{292}= +0.03123906 \pm 2.2 \) | \(a_{293}= +0.88016124 \pm 4.2 \) | \(a_{294}= +0.07701147 \pm 2.7 \) |
\(a_{295}= \pm0.30342513 \pm 1.2 \) | \(a_{296}= -0.07636980 \pm 4.0 \) | \(a_{297}= -1.11084411 \pm 1.0 \) |
\(a_{298}= -1.11534361 \pm 1.4 \) | \(a_{299}= -0.83002421 \pm 1.0 \) | \(a_{300}= \pm0.27946061 \pm 5.7 \cdot 10^{-1} \) |
\(a_{301}= -1.70674541 \pm 1.0 \) | \(a_{302}= -0.28795197 \pm 2.6 \) | \(a_{303}= +1.54143467 \pm 2.7 \) |
\(a_{304}= +0.52752796 \pm 1.1 \) | \(a_{305}= \pm0.43621185 \pm 8.6 \cdot 10^{-1} \) | \(a_{306}= -0.62130276 \pm 1.4 \) |
\(a_{307}= -1.37981841 \pm 2.9 \) | \(a_{308}= +1.79712542 \pm 6.9 \cdot 10^{-1} \) | \(a_{309}= -0.56705241 \pm 2.7 \) |
\(a_{310}= \pm0.27204025 \pm 2.0 \) | \(a_{311}= +1.68148263 \pm 3.1 \) | \(a_{312}= -0.30884743 \pm 1.2 \) |
\(a_{313}= +0.69358505 \pm 3.0 \) | \(a_{314}= +0.52090883 \pm 2.7 \) | \(a_{315}= \pm0.15647634 \pm 4.6 \cdot 10^{-1} \) |
\(a_{316}= +0.23208418 \pm 2.6 \) | \(a_{317}= -0.70626131 \pm 4.6 \) | \(a_{318}= -2.20276893 \pm 2.7 \) |
\(a_{319}= -1.22356821 \pm 1.0 \) | \(a_{320}= \pm0.60860713 \pm 1.4 \) | \(a_{321}= -0.19378136 \pm 2.5 \) |
\(a_{322}= +1.44662442 \pm 1.0 \) | \(a_{323}= -0.85779788 \pm 3.2 \) | \(a_{324}= -1.47756793 \pm 3.0 \) |
\(a_{325}= \pm0.17421232 \pm 4.4 \cdot 10^{-1} \) | \(a_{326}= +0.71927266 \pm 2.6 \) | \(a_{327}= +1.46338937 \pm 1.6 \) |
\(a_{328}= +0.41366098 \pm 2.5 \) | \(a_{329}= +0.24007497 \pm 8.2 \cdot 10^{-1} \) | \(a_{330}= \pm1.12190940 \pm 6.7 \cdot 10^{-1} \) |
\(a_{331}= -0.75791574 \pm 2.5 \) | \(a_{332}= -0.49407767 \pm 2.5 \) | \(a_{333}= +0.08542416 \pm 1.4 \) |
\(a_{334}= +1.77278541 \pm 1.8 \) | \(a_{335}= \pm0.79728538 \pm 9.5 \cdot 10^{-1} \) | \(a_{336}= -0.88994657 \pm 9.7 \cdot 10^{-1} \) |
\(a_{337}= +0.64863324 \pm 4.6 \) | \(a_{338}= +0.35832528 \pm 1.8 \) | \(a_{339}= +0.80473167 \pm 2.8 \) |
\(a_{340}= \pm0.65909430 \pm 1.2 \) | \(a_{341}= -0.59706193 \pm 1.8 \) | \(a_{342}= +0.35690257 \pm 1.3 \) |
\(a_{343}= +0.97638821 \pm 2.0 \) | \(a_{344}= -0.51101038 \pm 3.4 \) | \(a_{345}= \pm0.49372399 \pm 7.0 \cdot 10^{-1} \) |
\(a_{346}= -1.07963941 \pm 3.8 \) | \(a_{347}= -0.06520293 \pm 2.2 \) | \(a_{348}= -1.17276356 \pm 8.8 \cdot 10^{-1} \) |
\(a_{349}= -0.16955210 \pm 3.4 \) | \(a_{350}= \pm0.30362946 \pm 2.6 \cdot 10^{-1} \) | \(a_{351}= -0.66373338 \pm 1.5 \) |
\(a_{352}= -2.07336124 \pm 1.6 \) | \(a_{353}= +1.37174433 \pm 1.3 \) | \(a_{354}= -1.16753798 \pm 3.0 \) |
\(a_{355}= \pm0.71869855 \pm 7.4 \cdot 10^{-1} \) | \(a_{356}= +1.75217933 \pm 3.5 \) | \(a_{357}= +1.44711624 \pm 1.2 \) |
\(a_{358}= +1.07545659 \pm 4.7 \) | \(a_{359}= -0.56886359 \pm 1.5 \) | \(a_{360}= \pm0.04685001 \pm 7.6 \cdot 10^{-1} \) |
\(a_{361}= -0.50724464 \pm 2.4 \) | \(a_{362}= -1.66555583 \pm 3.6 \) | \(a_{363}= -1.30373372 \pm 3.0 \) |
\(a_{364}= +1.07378895 \pm 9.7 \cdot 10^{-1} \) | \(a_{365}= \pm0.01158377 \pm 1.2 \) | \(a_{366}= +1.67848291 \pm 1.6 \) |
\(a_{367}= +0.68679608 \pm 2.8 \) | \(a_{368}= -0.71609673 \pm 1.1 \) | \(a_{369}= -0.46270444 \pm 1.4 \) |
\(a_{370}= \pm0.16575856 \pm 1.3 \) | \(a_{371}= +1.30840222 \pm 1.0 \) | \(a_{372}= -0.57227090 \pm 4.1 \) |
\(a_{373}= +0.47808376 \pm 3.9 \) | \(a_{374}= +2.64596890 \pm 2.0 \) | \(a_{375}= \pm0.10362686 \pm 3.0 \cdot 10^{-1} \) |
\(a_{376}= +0.07187997 \pm 2.1 \) | \(a_{377}= -0.73108644 \pm 1.1 \) | \(a_{378}= +1.15680109 \pm 9.2 \cdot 10^{-1} \) |
\(a_{379}= -0.26178396 \pm 2.6 \) | \(a_{380}= \pm0.37861163 \pm 9.6 \cdot 10^{-1} \) | \(a_{381}= -1.05525332 \pm 3.5 \) |
\(a_{382}= -0.64077719 \pm 1.0 \) | \(a_{383}= -0.50811651 \pm 3.7 \) | \(a_{384}= -0.69407601 \pm 2.6 \) |
\(a_{385}= \pm0.66639253 \pm 3.9 \cdot 10^{-1} \) | \(a_{386}= -2.44829896 \pm 1.4 \) | \(a_{387}= +0.57159555 \pm 9.0 \cdot 10^{-1} \) |
\(a_{388}= -1.86792780 \pm 1.8 \) | \(a_{389}= -1.49715672 \pm 3.8 \) | \(a_{390}= \pm0.67034493 \pm 1.1 \) |
\(a_{391}= +1.16442407 \pm 1.0 \) | \(a_{392}= -0.01369584 \pm 2.5 \) | \(a_{393}= +1.29397061 \pm 3.4 \) |
\(a_{394}= +1.35775112 \pm 3.7 \) | \(a_{395}= \pm0.08605919 \pm 1.7 \) | \(a_{396}= -0.60186416 \pm 7.3 \cdot 10^{-1} \) |
\(a_{397}= +0.78051743 \pm 3.3 \) | \(a_{398}= +0.31597242 \pm 3.9 \) | \(a_{399}= -0.83128474 \pm 1.7 \) |
\(a_{400}= \pm0.15030028 \pm 2.8 \cdot 10^{-1} \) | \(a_{401}= -0.74107175 \pm 5.1 \) | \(a_{402}= +3.06784395 \pm 1.6 \) |
\(a_{403}= -0.35674667 \pm 2.9 \) | \(a_{404}= -1.60457879 \pm 2.0 \) | \(a_{405}= \pm0.54789733 \pm 1.5 \) |
\(a_{406}= +1.27418873 \pm 7.9 \cdot 10^{-1} \) | \(a_{407}= -0.36379958 \pm 1.4 \) | \(a_{408}= +0.43327577 \pm 3.0 \) |
\(a_{409}= +0.77477640 \pm 3.4 \) | \(a_{410}= \pm0.89783989 \pm 2.1 \) | \(a_{411}= -0.15344408 \pm 4.1 \) |
\(a_{412}= +0.59028144 \pm 3.3 \) | \(a_{413}= +0.69349502 \pm 1.3 \) | \(a_{414}= -0.48448003 \pm 1.2 \) |
\(a_{415}= \pm0.18320906 \pm 1.5 \) | \(a_{416}= -1.23884085 \pm 2.3 \) | \(a_{417}= -0.43213954 \pm 4.0 \) |
\(a_{418}= -1.51995639 \pm 8.1 \cdot 10^{-1} \) | \(a_{419}= +1.49769202 \pm 1.5 \) | \(a_{420}= \pm0.63872277 \pm 4.3 \cdot 10^{-1} \) |
\(a_{421}= +0.52496982 \pm 2.4 \) | \(a_{422}= -1.74730189 \pm 1.7 \) | \(a_{423}= -0.08040202 \pm 1.8 \) |
\(a_{424}= +0.39174391 \pm 3.1 \) | \(a_{425}= \pm0.24439892 \pm 7.0 \cdot 10^{-1} \) | \(a_{426}= +2.76545268 \pm 1.9 \) |
\(a_{427}= -0.99698644 \pm 9.0 \cdot 10^{-1} \) | \(a_{428}= +0.20171952 \pm 2.1 \) | \(a_{429}= -1.47124347 \pm 1.0 \) |
\(a_{430}= \pm1.10913413 \pm 9.7 \cdot 10^{-1} \) | \(a_{431}= -0.00126774 \pm 3.2 \) | \(a_{432}= -0.57263065 \pm 9.6 \cdot 10^{-1} \) |
\(a_{433}= +0.52322614 \pm 4.0 \) | \(a_{434}= +0.62176312 \pm 1.6 \) | \(a_{435}= \pm0.43487275 \pm 8.3 \cdot 10^{-1} \) |
\(a_{436}= -1.52333640 \pm 1.8 \) | \(a_{437}= -0.66889441 \pm 1.1 \) | \(a_{438}= +0.04457273 \pm 2.3 \) |
\(a_{439}= +0.28280444 \pm 2.2 \) | \(a_{440}= \pm0.19952214 \pm 7.1 \cdot 10^{-1} \) | \(a_{441}= +0.01531962 \pm 1.2 \) |
\(a_{442}= +1.58097600 \pm 2.9 \) | \(a_{443}= -1.17603229 \pm 2.9 \) | \(a_{444}= -0.34869400 \pm 3.1 \) |
\(a_{445}= \pm0.64972605 \pm 1.8 \) | \(a_{446}= -1.76362430 \pm 3.4 \) | \(a_{447}= -0.87001934 \pm 1.5 \) |
\(a_{448}= +1.39100544 \pm 1.3 \) | \(a_{449}= +0.68041998 \pm 3.6 \) | \(a_{450}= \pm0.10168666 \pm 2.9 \cdot 10^{-1} \) |
\(a_{451}= +1.97053936 \pm 2.1 \) | \(a_{452}= -0.83769712 \pm 2.4 \) | \(a_{453}= -0.22461579 \pm 2.1 \) |
\(a_{454}= +0.90597182 \pm 2.8 \) | \(a_{455}= \pm0.39817195 \pm 4.3 \cdot 10^{-1} \) | \(a_{456}= -0.24889192 \pm 3.7 \) |
\(a_{457}= -0.61208602 \pm 3.3 \) | \(a_{458}= +0.21876314 \pm 3.7 \) | \(a_{459}= +0.93113805 \pm 2.7 \) |
\(a_{460}= \pm0.51394915 \pm 5.3 \cdot 10^{-1} \) | \(a_{461}= +0.91233926 \pm 4.5 \) | \(a_{462}= +2.56418632 \pm 7.0 \cdot 10^{-1} \) |
\(a_{463}= +1.83958304 \pm 2.7 \) | \(a_{464}= -0.63073896 \pm 8.2 \cdot 10^{-1} \) | \(a_{465}= \pm0.21220392 \pm 1.5 \) |
\(a_{466}= -1.02653897 \pm 3.1 \) | \(a_{467}= +0.68976545 \pm 1.6 \) | \(a_{468}= -0.35961601 \pm 8.0 \cdot 10^{-1} \) |
\(a_{469}= -1.82224007 \pm 9.4 \cdot 10^{-1} \) | \(a_{470}= \pm0.15601351 \pm 8.9 \cdot 10^{-1} \) | \(a_{471}= +0.40633286 \pm 3.2 \) |
\(a_{472}= +0.20763680 \pm 2.4 \) | \(a_{473}= -2.43427863 \pm 5.9 \cdot 10^{-1} \) | \(a_{474}= +0.33114387 \pm 3.1 \) |
\(a_{475}= \pm0.14039307 \pm 6.5 \cdot 10^{-1} \) | \(a_{476}= -1.50639666 \pm 9.4 \cdot 10^{-1} \) | \(a_{477}= -0.43818889 \pm 1.4 \) |
\(a_{478}= -0.74532450 \pm 2.8 \) | \(a_{479}= -1.85239807 \pm 2.9 \) | \(a_{480}= \pm0.73690073 \pm 1.6 \) |
\(a_{481}= -0.21737157 \pm 1.5 \) | \(a_{482}= +0.96442387 \pm 2.2 \) | \(a_{483}= +1.12843362 \pm 1.1 \) |
\(a_{484}= +1.35714054 \pm 2.2 \) | \(a_{485}= \pm0.69264677 \pm 1.1 \) | \(a_{486}= -0.97647955 \pm 1.5 \) |
\(a_{487}= -1.65752355 \pm 4.2 \) | \(a_{488}= -0.29850405 \pm 1.8 \) | \(a_{489}= +0.56106577 \pm 2.4 \) |
\(a_{490}= \pm0.02972645 \pm 1.2 \) | \(a_{491}= +1.45834926 \pm 2.2 \) | \(a_{492}= +1.88871920 \pm 4.1 \) |
\(a_{493}= +1.02562628 \pm 1.5 \) | \(a_{494}= -0.90817945 \pm 1.1 \) | \(a_{495}= \pm0.22317740 \pm 6.8 \cdot 10^{-1} \) |
\(a_{496}= -0.30778033 \pm 1.7 \) | \(a_{497}= -1.64262550 \pm 1.2 \) | \(a_{498}= -0.70496315 \pm 2.8 \) |
\(a_{499}= +0.25236874 \pm 4.0 \) | \(a_{500}= \pm0.10787188 \pm 2.4 \cdot 10^{-1} \) | \(a_{501}= +1.38285421 \pm 3.0 \) |
\(a_{502}= +0.13810598 \pm 3.0 \) | \(a_{503}= -0.81865102 \pm 4.2 \) | \(a_{504}= +0.10707829 \pm 1.0 \) |
\(a_{505}= \pm0.59499426 \pm 1.2 \) | \(a_{506}= +2.06327604 \pm 1.3 \) | \(a_{507}= +0.27951021 \pm 2.7 \) |
\(a_{508}= +1.09848126 \pm 2.4 \) | \(a_{509}= +0.40525280 \pm 2.3 \) | \(a_{510}= \pm0.94041326 \pm 1.4 \) |
\(a_{511}= -0.02647534 \pm 1.0 \) | \(a_{512}= -1.29878398 \pm 2.2 \) | \(a_{513}= -0.53488506 \pm 2.6 \) |
\(a_{514}= +0.40419391 \pm 3.7 \) | \(a_{515}= \pm0.21888241 \pm 1.1 \) | \(a_{516}= -2.33320322 \pm 2.6 \) |
\(a_{517}= +0.34241157 \pm 2.2 \) | \(a_{518}= +0.37885041 \pm 1.1 \) | \(a_{519}= -0.84216843 \pm 3.1 \) |
\(a_{520}= \pm0.11921520 \pm 8.5 \cdot 10^{-1} \) | \(a_{521}= +0.95362070 \pm 3.0 \) | \(a_{522}= -0.42673066 \pm 1.2 \) |
\(a_{523}= +0.13848659 \pm 4.3 \) | \(a_{524}= -1.34697749 \pm 3.4 \) | \(a_{525}= \pm0.23684495 \pm 2.9 \cdot 10^{-1} \) |
\(a_{526}= -0.79696878 \pm 4.2 \) | \(a_{527}= +0.50047264 \pm 3.6 \) | \(a_{528}= -1.26930349 \pm 7.9 \cdot 10^{-1} \) |
\(a_{529}= -0.09200434 \pm 2.9 \) | \(a_{530}= \pm0.85026949 \pm 1.1 \) | \(a_{531}= -0.23225413 \pm 1.5 \) |
\(a_{532}= +0.86533792 \pm 8.4 \cdot 10^{-1} \) | \(a_{533}= +1.17740441 \pm 3.0 \) | \(a_{534}= +2.50005603 \pm 3.9 \) |
\(a_{535}= \pm0.07479966 \pm 1.1 \) | \(a_{536}= -0.54559022 \pm 2.0 \) | \(a_{537}= +0.83890563 \pm 3.4 \) |
\(a_{538}= +2.33278612 \pm 2.9 \) | \(a_{539}= -0.06524231 \pm 1.4 \) | \(a_{540}= \pm0.41098224 \pm 1.1 \) |
\(a_{541}= -1.87560084 \pm 2.8 \) | \(a_{542}= -1.09102951 \pm 2.5 \) | \(a_{543}= -1.29921020 \pm 3.5 \) |
\(a_{544}= +1.73794461 \pm 3.6 \) | \(a_{545}= \pm0.56486875 \pm 7.3 \cdot 10^{-1} \) | \(a_{546}= +1.53211062 \pm 9.9 \cdot 10^{-1} \) |
\(a_{547}= -1.79758598 \pm 2.4 \) | \(a_{548}= +0.15972984 \pm 4.1 \) | \(a_{549}= +0.33389456 \pm 1.1 \) |
\(a_{550}= \pm0.43305738 \pm 3.7 \cdot 10^{-1} \) | \(a_{551}= -0.58916309 \pm 1.6 \) | \(a_{552}= +0.33786017 \pm 1.4 \) |
\(a_{553}= -0.19669307 \pm 1.4 \) | \(a_{554}= -0.56993425 \pm 4.4 \) | \(a_{555}= \pm0.12929931 \pm 2.0 \) |
\(a_{556}= +0.44984193 \pm 2.3 \) | \(a_{557}= -1.12064641 \pm 2.5 \) | \(a_{558}= -0.20823084 \pm 1.0 \) |
\(a_{559}= -1.45449030 \pm 4.8 \cdot 10^{-1} \) | \(a_{560}= \pm0.34351965 \pm 4.2 \cdot 10^{-1} \) | \(a_{561}= +2.06397751 \pm 1.1 \) |
\(a_{562}= +1.27734872 \pm 1.4 \) | \(a_{563}= -1.02837865 \pm 1.1 \) | \(a_{564}= +0.32819405 \pm 1.2 \) |
\(a_{565}= \pm0.31062668 \pm 1.0 \) | \(a_{566}= -1.19048990 \pm 4.8 \) | \(a_{567}= +1.25224981 \pm 1.2 \) |
\(a_{568}= -0.49181248 \pm 1.6 \) | \(a_{569}= +0.57589471 \pm 2.0 \) | \(a_{570}= \pm0.54021313 \pm 1.2 \) |
\(a_{571}= +1.39951955 \pm 2.7 \) | \(a_{572}= +1.53151224 \pm 1.2 \) | \(a_{573}= -0.49983570 \pm 9.7 \cdot 10^{-1} \) |
\(a_{574}= -2.05206299 \pm 1.8 \) | \(a_{575}= \pm0.19057761 \pm 2.7 \cdot 10^{-1} \) | \(a_{576}= -0.46585303 \pm 1.6 \) |
\(a_{577}= +0.69252257 \pm 2.9 \) | \(a_{578}= -0.73264321 \pm 1.2 \) | \(a_{579}= -1.90978586 \pm 1.3 \) |
\(a_{580}= \pm0.45268710 \pm 3.8 \cdot 10^{-1} \) | \(a_{581}= +0.41873450 \pm 1.3 \) | \(a_{582}= -2.66520903 \pm 2.4 \) |
\(a_{583}= +1.86613395 \pm 1.5 \) | \(a_{584}= -0.00792688 \pm 2.6 \) | \(a_{585}= \pm0.13334930 \pm 7.4 \cdot 10^{-1} \) |
\(a_{586}= -1.30728222 \pm 2.7 \) | \(a_{587}= -0.83066638 \pm 2.8 \) | \(a_{588}= -0.06253333 \pm 2.5 \) |
\(a_{589}= -0.28749264 \pm 2.1 \) | \(a_{590}= \pm0.45067002 \pm 1.2 \) | \(a_{591}= +1.05910836 \pm 3.3 \) |
\(a_{592}= -0.18753557 \pm 1.0 \) | \(a_{593}= -0.12938359 \pm 3.8 \) | \(a_{594}= +1.64990992 \pm 1.3 \) |
\(a_{595}= \pm0.55858732 \pm 5.1 \cdot 10^{-1} \) | \(a_{596}= +0.90565927 \pm 9.5 \cdot 10^{-1} \) | \(a_{597}= +0.24647303 \pm 4.6 \) |
\(a_{598}= +1.23281491 \pm 1.3 \) | \(a_{599}= -0.05127281 \pm 4.0 \) | \(a_{600}= \pm0.07091288 \pm 6.1 \cdot 10^{-1} \) |
\(a_{601}= -0.99417573 \pm 4.0 \) | \(a_{602}= +2.53498772 \pm 7.0 \cdot 10^{-1} \) | \(a_{603}= +0.61027515 \pm 9.7 \cdot 10^{-1} \) |
\(a_{604}= +0.23381706 \pm 2.1 \) | \(a_{605}= \pm0.50324162 \pm 1.2 \) | \(a_{606}= -2.28945567 \pm 2.5 \) |
\(a_{607}= +0.09360770 \pm 2.3 \) | \(a_{608}= -0.99834885 \pm 3.1 \) | \(a_{609}= +0.99392585 \pm 1.1 \) |
\(a_{610}= \pm0.64789493 \pm 7.0 \cdot 10^{-1} \) | \(a_{611}= +0.20459215 \pm 2.6 \) | \(a_{612}= +0.50449799 \pm 7.8 \cdot 10^{-1} \) |
\(a_{613}= -0.58004184 \pm 3.5 \) | \(a_{614}= +2.04941095 \pm 2.0 \) | \(a_{615}= \pm0.70035644 \pm 1.6 \) |
\(a_{616}= -0.45601895 \pm 6.4 \cdot 10^{-1} \) | \(a_{617}= +0.97255856 \pm 4.5 \) | \(a_{618}= +0.84222925 \pm 4.0 \) |
\(a_{619}= -1.36980622 \pm 4.6 \) | \(a_{620}= \pm0.22089675 \pm 1.8 \) | \(a_{621}= +0.72608367 \pm 8.9 \cdot 10^{-1} \) |
\(a_{622}= -2.49746553 \pm 2.9 \) | \(a_{623}= -1.48498501 \pm 1.3 \) | \(a_{624}= -0.75841344 \pm 1.0 \) |
\(a_{625}= \pm0.04 \) | \(a_{626}= -1.03016511 \pm 2.8 \) | \(a_{627}= -1.18563593 \pm 9.9 \cdot 10^{-1} \) |
\(a_{628}= -0.42297809 \pm 2.0 \) | \(a_{629}= +0.30494615 \pm 4.4 \) | \(a_{630}= \pm0.23241052 \pm 4.7 \cdot 10^{-1} \) |
\(a_{631}= +0.63354420 \pm 3.7 \) | \(a_{632}= -0.05889115 \pm 3.9 \) | \(a_{633}= -1.36297588 \pm 1.2 \) |
\(a_{634}= +1.04899286 \pm 3.2 \) | \(a_{635}= \pm0.40732811 \pm 1.6 \) | \(a_{636}= +1.78864888 \pm 2.6 \) |
\(a_{637}= -0.03898251 \pm 1.9 \) | \(a_{638}= +1.81733630 \pm 8.9 \cdot 10^{-1} \) | \(a_{639}= +0.55012154 \pm 1.7 \) |
\(a_{640}= \pm0.26791355 \pm 1.0 \) | \(a_{641}= -0.84276647 \pm 2.4 \) | \(a_{642}= +0.28781877 \pm 2.8 \) |
\(a_{643}= +1.74475503 \pm 1.9 \) | \(a_{644}= -1.17465936 \pm 6.6 \cdot 10^{-1} \) | \(a_{645}= \pm0.86517567 \pm 1.7 \) |
\(a_{646}= +1.27406646 \pm 2.2 \) | \(a_{647}= -1.79288221 \pm 3.9 \) | \(a_{648}= +0.37493152 \pm 3.1 \) |
\(a_{649}= +0.98911067 \pm 1.0 \) | \(a_{650}= \pm0.25875335 \pm 5.3 \cdot 10^{-1} \) | \(a_{651}= +0.48500385 \pm 1.4 \) |
\(a_{652}= -0.58404956 \pm 2.0 \) | \(a_{653}= -0.11570403 \pm 2.2 \) | \(a_{654}= -2.17353687 \pm 2.1 \) |
\(a_{655}= \pm0.49947306 \pm 1.4 \) | \(a_{656}= +1.01579620 \pm 1.9 \) | \(a_{657}= +0.00886669 \pm 1.0 \) |
\(a_{658}= -0.35657755 \pm 6.6 \cdot 10^{-1} \) | \(a_{659}= +0.59741825 \pm 4.3 \) | \(a_{660}= \pm0.91099069 \pm 5.4 \cdot 10^{-1} \) |
\(a_{661}= -0.85916395 \pm 3.1 \) | \(a_{662}= +1.12571393 \pm 3.1 \) | \(a_{663}= +1.23323404 \pm 1.7 \) |
\(a_{664}= +0.12537176 \pm 3.3 \) | \(a_{665}= \pm0.32087617 \pm 6.0 \cdot 10^{-1} \) | \(a_{666}= -0.12687845 \pm 1.2 \) |
\(a_{667}= +0.79976380 \pm 1.1 \) | \(a_{668}= -1.43950216 \pm 1.6 \) | \(a_{669}= -1.37570812 \pm 3.8 \) |
\(a_{670}= \pm1.18418872 \pm 6.7 \cdot 10^{-1} \) | \(a_{671}= -1.42197118 \pm 9.7 \cdot 10^{-1} \) | \(a_{672}= +1.68422758 \pm 1.1 \) |
\(a_{673}= +0.10120209 \pm 2.7 \) | \(a_{674}= -0.96339928 \pm 3.0 \) | \(a_{675}= \pm0.15239643 \pm 5.2 \cdot 10^{-1} \) |
\(a_{676}= -0.29096021 \pm 1.7 \) | \(a_{677}= -0.94414476 \pm 3.1 \) | \(a_{678}= -1.19524851 \pm 3.2 \) |
\(a_{679}= +1.58308271 \pm 1.2 \) | \(a_{680}= \pm0.16724458 \pm 1.4 \) | \(a_{681}= +0.70669971 \pm 2.7 \) |
\(a_{682}= +0.88680167 \pm 2.4 \) | \(a_{683}= -0.47485955 \pm 4.4 \) | \(a_{684}= -0.28980497 \pm 6.2 \cdot 10^{-1} \) |
\(a_{685}= \pm0.05922946 \pm 1.7 \) | \(a_{686}= -1.45020582 \pm 2.0 \) | \(a_{687}= +0.17064531 \pm 5.2 \) |
\(a_{688}= -1.25484983 \pm 4.0 \cdot 10^{-1} \) | \(a_{689}= +1.11502180 \pm 1.8 \) | \(a_{690}= \pm0.73331631 \pm 7.6 \cdot 10^{-1} \) |
\(a_{691}= +0.05113115 \pm 2.2 \) | \(a_{692}= +0.87666745 \pm 3.3 \) | \(a_{693}= +0.51008435 \pm 8.3 \cdot 10^{-1} \) |
\(a_{694}= +0.09684434 \pm 1.8 \) | \(a_{695}= \pm0.16680600 \pm 1.6 \) | \(a_{696}= +0.29758769 \pm 1.9 \) |
\(a_{697}= -1.65175667 \pm 3.8 \) | \(a_{698}= +0.25183164 \pm 4.1 \) | \(a_{699}= -0.80074764 \pm 4.7 \) |
\(a_{700}= \pm0.24654719 \pm 2.1 \cdot 10^{-1} \) | \(a_{701}= +1.46045987 \pm 1.8 \) | \(a_{702}= +0.98582715 \pm 2.2 \) |
\(a_{703}= -0.17517396 \pm 4.9 \) | \(a_{704}= +1.98394840 \pm 1.9 \) | \(a_{705}= \pm0.12169772 \pm 4.9 \cdot 10^{-1} \) |
\(a_{706}= -2.03741871 \pm 1.1 \) | \(a_{707}= +1.35989246 \pm 1.1 \) | \(a_{708}= +0.94804110 \pm 2.3 \) |
\(a_{709}= -0.64281475 \pm 4.0 \) | \(a_{710}= \pm1.06746560 \pm 7.6 \cdot 10^{-1} \) | \(a_{711}= +0.06587326 \pm 1.9 \) |
\(a_{712}= -0.44461392 \pm 3.6 \) | \(a_{713}= +0.39025901 \pm 1.5 \) | \(a_{714}= -2.14936679 \pm 1.2 \) |
\(a_{715}= \pm0.56790044 \pm 8.8 \cdot 10^{-1} \) | \(a_{716}= -0.87327099 \pm 4.1 \) | \(a_{717}= -0.58138741 \pm 2.6 \) |
\(a_{718}= +0.84491935 \pm 1.8 \) | \(a_{719}= -0.87855768 \pm 1.3 \) | \(a_{720}= \pm0.11504604 \pm 5.0 \cdot 10^{-1} \) |
\(a_{721}= -0.50026791 \pm 1.0 \) | \(a_{722}= +0.75339821 \pm 2.6 \) | \(a_{723}= +0.75229500 \pm 1.9 \) |
\(a_{724}= +1.35243172 \pm 3.2 \) | \(a_{725}= \pm0.16786102 \pm 3.1 \cdot 10^{-1} \) | \(a_{726}= +1.93640420 \pm 2.6 \) |
\(a_{727}= -0.07160296 \pm 3.5 \) | \(a_{728}= -0.27247297 \pm 7.4 \cdot 10^{-1} \) | \(a_{729}= +0.46343669 \pm 2.6 \) |
\(a_{730}= \pm0.01720509 \pm 1.0 \) | \(a_{731}= +2.04047483 \pm 3.7 \) | \(a_{732}= -1.36292851 \pm 1.3 \) |
\(a_{733}= -0.19219324 \pm 2.3 \) | \(a_{734}= -1.02008162 \pm 4.2 \) | \(a_{735}= \pm0.02318800 \pm 1.3 \) |
\(a_{736}= +1.35521603 \pm 1.3 \) | \(a_{737}= -2.59900512 \pm 7.1 \cdot 10^{-1} \) | \(a_{738}= +0.68724372 \pm 1.4 \) |
\(a_{739}= +0.88921219 \pm 2.7 \) | \(a_{740}= \pm0.13459599 \pm 1.3 \) | \(a_{741}= -0.70842177 \pm 1.2 \) |
\(a_{742}= -1.94333820 \pm 8.9 \cdot 10^{-1} \) | \(a_{743}= -0.80566349 \pm 4.6 \) | \(a_{744}= +0.14521322 \pm 2.3 \) |
\(a_{745}= \pm0.33582774 \pm 5.4 \cdot 10^{-1} \) | \(a_{746}= -0.71008625 \pm 4.6 \) | \(a_{747}= -0.14023578 \pm 1.4 \) |
\(a_{748}= -2.14852735 \pm 1.4 \) | \(a_{749}= -0.17095879 \pm 1.6 \) | \(a_{750}= \pm0.15391447 \pm 2.9 \cdot 10^{-1} \) |
\(a_{751}= -0.43606952 \pm 3.1 \) | \(a_{752}= +0.17651024 \pm 1.1 \) | \(a_{753}= +0.10772902 \pm 5.0 \) |
\(a_{754}= +1.08586502 \pm 1.0 \) | \(a_{755}= \pm0.08670176 \pm 9.6 \cdot 10^{-1} \) | \(a_{756}= -0.93932275 \pm 9.3 \cdot 10^{-1} \) |
\(a_{757}= +0.71827979 \pm 2.5 \) | \(a_{758}= +0.38882140 \pm 2.6 \) | \(a_{759}= +1.60945027 \pm 1.0 \) |
\(a_{760}= \pm0.09607236 \pm 1.4 \) | \(a_{761}= +0.17946601 \pm 3.1 \) | \(a_{762}= +1.56734227 \pm 2.8 \) |
\(a_{763}= +1.29103894 \pm 7.8 \cdot 10^{-1} \) | \(a_{764}= +0.52031123 \pm 8.1 \cdot 10^{-1} \) | \(a_{765}= \pm0.18707302 \pm 8.1 \cdot 10^{-1} \) |
\(a_{766}= +0.75469318 \pm 3.6 \) | \(a_{767}= +0.59099721 \pm 1.5 \) | \(a_{768}= -0.54580683 \pm 2.6 \) |
\(a_{769}= -1.44507265 \pm 2.3 \) | \(a_{770}= \pm0.98977672 \pm 4.4 \cdot 10^{-1} \) | \(a_{771}= +0.31528985 \pm 2.5 \) |
\(a_{772}= +1.98801931 \pm 9.1 \cdot 10^{-1} \) | \(a_{773}= -1.33255307 \pm 1.7 \) | \(a_{774}= -0.84897705 \pm 5.7 \cdot 10^{-1} \) |
\(a_{775}= \pm0.08191078 \pm 6.7 \cdot 10^{-1} \) | \(a_{776}= +0.47398499 \pm 2.5 \) | \(a_{777}= +0.29552076 \pm 1.3 \) |
\(a_{778}= +2.22369071 \pm 2.6 \) | \(a_{779}= +0.94883886 \pm 2.3 \) | \(a_{780}= \pm0.54432024 \pm 9.2 \cdot 10^{-1} \) |
\(a_{781}= -2.34282636 \pm 1.2 \) | \(a_{782}= -1.72949094 \pm 1.4 \) | \(a_{783}= +0.63953547 \pm 1.0 \) |
\(a_{784}= -0.03363185 \pm 1.0 \) | \(a_{785}= \pm0.15684461 \pm 1.3 \) | \(a_{786}= -1.92190328 \pm 4.0 \) |
\(a_{787}= +0.92549766 \pm 2.1 \) | \(a_{788}= -1.10249422 \pm 3.3 \) | \(a_{789}= -0.62167233 \pm 3.7 \) |
\(a_{790}= \pm0.12782164 \pm 1.2 \) | \(a_{791}= +0.70995454 \pm 1.2 \) | \(a_{792}= +0.15272248 \pm 1.5 \) |
\(a_{793}= -0.84963293 \pm 1.1 \) | \(a_{794}= -1.15928368 \pm 3.9 \) | \(a_{795}= \pm0.66324934 \pm 1.5 \) |
\(a_{796}= -0.25656967 \pm 3.5 \) | \(a_{797}= -1.00340106 \pm 2.7 \) | \(a_{798}= +1.23468715 \pm 1.4 \) |
\(a_{799}= -0.28701817 \pm 2.8 \) | \(a_{800}= \pm0.28444391 \pm 6.8 \cdot 10^{-1} \) | \(a_{801}= +0.49732714 \pm 1.3 \) |
\(a_{802}= +1.10069597 \pm 4.7 \) | \(a_{803}= -0.03776096 \pm 1.2 \) | \(a_{804}= -2.49108999 \pm 1.5 \) |
\(a_{805}= \pm0.43557573 \pm 4.4 \cdot 10^{-1} \) | \(a_{806}= +0.52986721 \pm 4.1 \) | \(a_{807}= +1.81968053 \pm 3.3 \) |
\(a_{808}= +0.40716042 \pm 2.5 \) | \(a_{809}= +1.58002890 \pm 2.6 \) | \(a_{810}= \pm0.81377867 \pm 1.4 \) |
\(a_{811}= +0.29144276 \pm 2.1 \) | \(a_{812}= -1.03464154 \pm 4.5 \cdot 10^{-1} \) | \(a_{813}= -0.85105323 \pm 2.5 \) |
\(a_{814}= +0.54034273 \pm 1.5 \) | \(a_{815}= \pm0.21657156 \pm 1.2 \) | \(a_{816}= +1.06396277 \pm 1.2 \) |
\(a_{817}= -1.17213500 \pm 4.4 \) | \(a_{818}= -1.15075667 \pm 3.7 \) | \(a_{819}= +0.30477725 \pm 8.4 \cdot 10^{-1} \) |
\(a_{820}= \pm0.72904620 \pm 1.8 \) | \(a_{821}= +1.53377024 \pm 2.3 \) | \(a_{822}= +0.22790679 \pm 4.9 \) |
\(a_{823}= -0.13364060 \pm 3.7 \) | \(a_{824}= -0.14978338 \pm 1.5 \) | \(a_{825}= \pm0.33780469 \pm 2.5 \cdot 10^{-1} \) |
\(a_{826}= -1.03003139 \pm 1.4 \) | \(a_{827}= -0.51357350 \pm 2.4 \) | \(a_{828}= +0.39339790 \pm 5.3 \cdot 10^{-1} \) |
\(a_{829}= -0.59343620 \pm 4.7 \) | \(a_{830}= \pm0.27211600 \pm 1.1 \) | \(a_{831}= -0.44457494 \pm 3.1 \) |
\(a_{832}= +1.18541635 \pm 2.8 \) | \(a_{833}= +0.05468778 \pm 3.1 \) | \(a_{834}= +0.64184642 \pm 2.8 \) |
\(a_{835}= \pm0.53378215 \pm 1.2 \) | \(a_{836}= +1.23420493 \pm 5.9 \cdot 10^{-1} \) | \(a_{837}= +0.31207274 \pm 3.0 \) |
\(a_{838}= -2.22448578 \pm 1.4 \) | \(a_{839}= -0.46059324 \pm 1.8 \) | \(a_{840}= \pm0.16207532 \pm 6.1 \cdot 10^{-1} \) |
\(a_{841}= -0.29556698 \pm 2.7 \) | \(a_{842}= -0.77972499 \pm 1.8 \) | \(a_{843}= +0.99639079 \pm 1.3 \) |
\(a_{844}= +1.41880953 \pm 1.1 \) | \(a_{845}= \pm0.10789103 \pm 1.1 \) | \(a_{846}= +0.11941918 \pm 1.4 \) |
\(a_{847}= -1.15018671 \pm 1.0 \) | \(a_{848}= +0.96197611 \pm 9.5 \cdot 10^{-1} \) | \(a_{849}= -0.92863691 \pm 3.7 \) |
\(a_{850}= \pm0.36299981 \pm 6.6 \cdot 10^{-1} \) | \(a_{851}= +0.23779118 \pm 1.1 \) | \(a_{852}= -2.24554821 \pm 7.3 \cdot 10^{-1} \) |
\(a_{853}= -0.05721673 \pm 2.7 \) | \(a_{854}= +1.48079987 \pm 9.5 \cdot 10^{-1} \) | \(a_{855}= \pm0.10746265 \pm 6.7 \cdot 10^{-1} \) |
\(a_{856}= -0.05118614 \pm 2.3 \) | \(a_{857}= +0.71754336 \pm 2.9 \) | \(a_{858}= +2.18520238 \pm 1.2 \) |
\(a_{859}= -0.22652173 \pm 2.8 \) | \(a_{860}= \pm0.90061717 \pm 1.0 \) | \(a_{861}= -1.60070357 \pm 1.3 \) |
\(a_{862}= +0.00188295 \pm 2.2 \) | \(a_{863}= +0.91780897 \pm 4.3 \) | \(a_{864}= +1.08370588 \pm 2.9 \) |
\(a_{865}= \pm0.32507728 \pm 1.3 \) | \(a_{866}= -0.77713515 \pm 2.6 \) | \(a_{867}= -0.57149542 \pm 9.3 \cdot 10^{-1} \) |
\(a_{868}= -0.50487180 \pm 1.5 \) | \(a_{869}= -0.28053729 \pm 1.5 \) | \(a_{870}= \pm0.64590599 \pm 6.5 \cdot 10^{-1} \) |
\(a_{871}= -1.55291498 \pm 7.8 \cdot 10^{-1} \) | \(a_{872}= +0.38654523 \pm 1.2 \) | \(a_{873}= -0.53018044 \pm 1.7 \) |
\(a_{874}= +0.99349271 \pm 1.1 \) | \(a_{875}= \pm0.09142222 \pm 1.1 \cdot 10^{-1} \) | \(a_{876}= -0.03619306 \pm 2.3 \) |
\(a_{877}= +1.14008420 \pm 2.6 \) | \(a_{878}= -0.42004260 \pm 2.9 \) | \(a_{879}= -1.01974029 \pm 4.5 \) |
\(a_{880}= \pm0.48995154 \pm 5.0 \cdot 10^{-1} \) | \(a_{881}= +0.32525619 \pm 2.4 \) | \(a_{882}= -0.02275385 \pm 9.4 \cdot 10^{-1} \) |
\(a_{883}= -0.60605963 \pm 2.5 \) | \(a_{884}= -1.28375288 \pm 2.2 \) | \(a_{885}= \pm0.35154336 \pm 1.4 \) |
\(a_{886}= +1.74673235 \pm 3.4 \) | \(a_{887}= +0.94050692 \pm 4.1 \) | \(a_{888}= +0.08848079 \pm 4.3 \) |
\(a_{889}= -0.93097104 \pm 1.3 \) | \(a_{890}= \pm0.96502241 \pm 1.6 \) | \(a_{891}= +1.78604550 \pm 1.6 \) |
\(a_{892}= +1.43206334 \pm 3.0 \) | \(a_{893}= +0.16487537 \pm 5.2 \cdot 10^{-1} \) | \(a_{894}= +1.29221871 \pm 1.6 \) |
\(a_{895}= \pm0.32381783 \pm 1.4 \) | \(a_{896}= -0.61233132 \pm 9.9 \cdot 10^{-1} \) | \(a_{897}= +0.96165236 \pm 1.1 \) |
\(a_{898}= -1.01061135 \pm 3.2 \) | \(a_{899}= +0.34374066 \pm 9.5 \cdot 10^{-1} \) | \(a_{900}= \pm0.08256959 \pm 1.5 \cdot 10^{-1} \) |
\(a_{901}= -1.56424138 \pm 3.6 \) | \(a_{902}= -2.92679450 \pm 2.7 \) | \(a_{903}= +1.97740709 \pm 1.1 \) |
\(a_{904}= +0.21256489 \pm 1.9 \) | \(a_{905}= \pm0.50149554 \pm 1.5 \) | \(a_{906}= +0.33361640 \pm 2.6 \) |
\(a_{907}= +0.23240908 \pm 4.2 \) | \(a_{908}= -0.73564932 \pm 2.4 \) | \(a_{909}= -0.45543317 \pm 1.8 \) |
\(a_{910}= \pm0.59139517 \pm 5.4 \cdot 10^{-1} \) | \(a_{911}= +0.99740726 \pm 4.4 \) | \(a_{912}= -0.61118519 \pm 1.4 \) |
\(a_{913}= +0.59722818 \pm 1.2 \) | \(a_{914}= +0.90911658 \pm 3.3 \) | \(a_{915}= \pm0.50538786 \pm 9.5 \cdot 10^{-1} \) |
\(a_{916}= -0.17763572 \pm 3.4 \) | \(a_{917}= +1.14157344 \pm 1.4 \) | \(a_{918}= -1.38299684 \pm 2.8 \) |
\(a_{919}= +1.49699094 \pm 3.1 \) | \(a_{920}= \pm0.13041413 \pm 4.8 \cdot 10^{-1} \) | \(a_{921}= +1.59863485 \pm 2.8 \) |
\(a_{922}= -1.35507546 \pm 3.2 \) | \(a_{923}= -1.39984724 \pm 1.4 \) | \(a_{924}= -2.08211988 \pm 4.8 \cdot 10^{-1} \) |
\(a_{925}= \pm0.04990957 \pm 8.4 \cdot 10^{-1} \) | \(a_{926}= -2.73228824 \pm 2.4 \) | \(a_{927}= +0.16754163 \pm 8.9 \cdot 10^{-1} \) |
\(a_{928}= +1.19367610 \pm 1.2 \) | \(a_{929}= -1.42157471 \pm 1.6 \) | \(a_{930}= \pm0.31518135 \pm 2.1 \) |
\(a_{931}= -0.03141497 \pm 2.8 \) | \(a_{932}= +0.83354988 \pm 2.9 \) | \(a_{933}= -1.94813805 \pm 2.5 \) |
\(a_{934}= -1.02449196 \pm 1.8 \) | \(a_{935}= \pm0.79669596 \pm 9.5 \cdot 10^{-1} \) | \(a_{936}= +0.09125224 \pm 1.7 \) |
\(a_{937}= -1.06255962 \pm 5.1 \) | \(a_{938}= +2.70652916 \pm 7.5 \cdot 10^{-1} \) | \(a_{939}= -0.80357620 \pm 2.7 \) |
\(a_{940}= \pm0.12668301 \pm 6.2 \cdot 10^{-1} \) | \(a_{941}= -1.76928556 \pm 3.6 \) | \(a_{942}= -0.60351638 \pm 2.9 \) |
\(a_{943}= -1.28800833 \pm 1.8 \) | \(a_{944}= +0.50987810 \pm 1.4 \) | \(a_{945}= \pm0.34831050 \pm 4.1 \cdot 10^{-1} \) |
\(a_{946}= +3.61557523 \pm 4.7 \cdot 10^{-1} \) | \(a_{947}= +1.80212854 \pm 4.1 \) | \(a_{948}= -0.26888890 \pm 2.8 \) |
\(a_{949}= -0.02256231 \pm 1.5 \) | \(a_{950}= \pm0.20852244 \pm 4.5 \cdot 10^{-1} \) | \(a_{951}= +0.81826271 \pm 5.1 \) |
\(a_{952}= +0.38224679 \pm 1.0 \) | \(a_{953}= -0.83706680 \pm 4.6 \) | \(a_{954}= +0.65083137 \pm 1.0 \) |
\(a_{955}= \pm0.19293674 \pm 3.9 \cdot 10^{-1} \) | \(a_{956}= +0.60520367 \pm 2.2 \) | \(a_{957}= +1.41760595 \pm 1.0 \) |
\(a_{958}= +2.75132209 \pm 3.8 \) | \(a_{959}= -0.13537223 \pm 1.4 \) | \(a_{960}= \pm0.70512219 \pm 1.4 \) |
\(a_{961}= -0.83226561 \pm 4.2 \) | \(a_{962}= +0.32285674 \pm 1.7 \) | \(a_{963}= +0.05725475 \pm 2.1 \) |
\(a_{964}= -0.78311241 \pm 1.9 \) | \(a_{965}= \pm0.73717794 \pm 6.3 \cdot 10^{-1} \) | \(a_{966}= -1.67603520 \pm 1.0 \) |
\(a_{967}= +0.28265278 \pm 2.0 \) | \(a_{968}= -0.34437318 \pm 2.5 \) | \(a_{969}= +0.99383047 \pm 3.7 \) |
\(a_{970}= \pm1.02877152 \pm 1.0 \) | \(a_{971}= +0.42076938 \pm 2.5 \) | \(a_{972}= +0.79290162 \pm 9.6 \cdot 10^{-1} \) |
\(a_{973}= -0.38124438 \pm 1.5 \) | \(a_{974}= +2.46187969 \pm 3.0 \) | \(a_{975}= \pm0.20183952 \pm 3.5 \cdot 10^{-1} \) |
\(a_{976}= -0.73301399 \pm 8.4 \cdot 10^{-1} \) | \(a_{977}= -1.55541110 \pm 2.1 \) | \(a_{978}= -0.83333744 \pm 2.5 \) |
\(a_{979}= -2.11798858 \pm 1.4 \) | \(a_{980}= \pm0.02413789 \pm 1.1 \) | \(a_{981}= -0.43237386 \pm 9.0 \cdot 10^{-1} \) |
\(a_{982}= -2.16605093 \pm 1.6 \) | \(a_{983}= +0.34640826 \pm 3.2 \) | \(a_{984}= -0.47926079 \pm 2.5 \) |
\(a_{985}= \pm0.40881616 \pm 1.4 \) | \(a_{986}= -1.52333793 \pm 1.1 \) | \(a_{987}= -0.27814690 \pm 6.4 \cdot 10^{-1} \) |
\(a_{988}= +0.73744192 \pm 8.0 \cdot 10^{-1} \) | \(a_{989}= +1.59112333 \pm 5.3 \cdot 10^{-1} \) | \(a_{990}= \pm0.33148000 \pm 6.1 \cdot 10^{-1} \) |
\(a_{991}= +0.77426621 \pm 3.2 \) | \(a_{992}= +0.58247555 \pm 4.2 \) | \(a_{993}= +0.87810867 \pm 2.3 \) |
\(a_{994}= +2.43975197 \pm 1.3 \) | \(a_{995}= \pm0.09513866 \pm 1.9 \) | \(a_{996}= +0.57243024 \pm 2.7 \) |
\(a_{997}= +1.00820062 \pm 4.5 \) | \(a_{998}= -0.37483719 \pm 3.4 \) | \(a_{999}= +0.19015101 \pm 3.4 \) |
\(a_{1000}= \pm0.02737239 \pm 2.6 \cdot 10^{-1} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000