Maass form invariants
Level: | \( 31 \) |
Weight: | \( 0 \) |
Character: | 31.1 |
Symmetry: | odd |
Fricke sign: | $+1$ |
Spectral parameter: | \(4.97913614469592260912157108948 \pm 10 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +1.43250426 \pm 3.4 \cdot 10^{-5} \) | \(a_{3}= -0.97253215 \pm 3.0 \cdot 10^{-5} \) |
\(a_{4}= +1.05206845 \pm 3.7 \cdot 10^{-5} \) | \(a_{5}= +0.85538327 \pm 2.8 \cdot 10^{-5} \) | \(a_{6}= -1.39315645 \pm 3.9 \cdot 10^{-5} \) |
\(a_{7}= -0.99174623 \pm 2.8 \cdot 10^{-5} \) | \(a_{8}= +0.07458827 \pm 3.9 \cdot 10^{-5} \) | \(a_{9}= -0.05418122 \pm 2.9 \cdot 10^{-5} \) |
\(a_{10}= +1.22534017 \pm 3.5 \cdot 10^{-5} \) | \(a_{11}= -0.73904070 \pm 2.8 \cdot 10^{-5} \) | \(a_{12}= -1.02317039 \pm 4.5 \cdot 10^{-5} \) |
\(a_{13}= -0.92454602 \pm 2.9 \cdot 10^{-5} \) | \(a_{14}= -1.42068070 \pm 2.9 \cdot 10^{-5} \) | \(a_{15}= -0.83188773 \pm 2.9 \cdot 10^{-5} \) |
\(a_{16}= -0.94522043 \pm 3.4 \cdot 10^{-5} \) | \(a_{17}= -0.38308438 \pm 2.6 \cdot 10^{-5} \) | \(a_{18}= -0.07761482 \pm 3.7 \cdot 10^{-5} \) |
\(a_{19}= +0.20216068 \pm 2.9 \cdot 10^{-5} \) | \(a_{20}= +0.89992175 \pm 3.6 \cdot 10^{-5} \) | \(a_{21}= +0.96450509 \pm 3.0 \cdot 10^{-5} \) |
\(a_{22}= -1.05867895 \pm 3.0 \cdot 10^{-5} \) | \(a_{23}= +1.05953261 \pm 2.6 \cdot 10^{-5} \) | \(a_{24}= -0.07253949 \pm 4.7 \cdot 10^{-5} \) |
\(a_{25}= -0.26831946 \pm 2.7 \cdot 10^{-5} \) | \(a_{26}= -1.32441611 \pm 2.9 \cdot 10^{-5} \) | \(a_{27}= +1.02522512 \pm 2.5 \cdot 10^{-5} \) |
\(a_{28}= -1.04338492 \pm 3.0 \cdot 10^{-5} \) | \(a_{29}= -0.04216729 \pm 2.6 \cdot 10^{-5} \) | \(a_{30}= -1.19168271 \pm 3.9 \cdot 10^{-5} \) |
\(a_{31}= -0.17960530 \pm 1.0 \cdot 10^{-8} \) | \(a_{32}= -1.42862056 \pm 3.7 \cdot 10^{-5} \) | \(a_{33}= +0.71874084 \pm 3.0 \cdot 10^{-5} \) |
\(a_{34}= -0.54877001 \pm 3.6 \cdot 10^{-5} \) | \(a_{35}= -0.84832313 \pm 2.6 \cdot 10^{-5} \) | \(a_{36}= -0.05700235 \pm 4.0 \cdot 10^{-5} \) |
\(a_{37}= +1.15992607 \pm 2.5 \cdot 10^{-5} \) | \(a_{38}= +0.28959603 \pm 3.5 \cdot 10^{-5} \) | \(a_{39}= +0.89915073 \pm 2.8 \cdot 10^{-5} \) |
\(a_{40}= +0.06380156 \pm 3.7 \cdot 10^{-5} \) | \(a_{41}= +1.20367452 \pm 2.5 \cdot 10^{-5} \) | \(a_{42}= +1.38165765 \pm 3.5 \cdot 10^{-5} \) |
\(a_{43}= -1.63854104 \pm 2.4 \cdot 10^{-5} \) | \(a_{44}= -0.77752140 \pm 2.9 \cdot 10^{-5} \) | \(a_{45}= -0.04634571 \pm 2.8 \cdot 10^{-5} \) |
\(a_{46}= +1.51778497 \pm 2.5 \cdot 10^{-5} \) | \(a_{47}= -1.26757375 \pm 2.5 \cdot 10^{-5} \) | \(a_{48}= +0.91925726 \pm 4.3 \cdot 10^{-5} \) |
\(a_{49}= -0.01643942 \pm 2.6 \cdot 10^{-5} \) | \(a_{50}= -0.38436878 \pm 3.4 \cdot 10^{-5} \) | \(a_{51}= +0.37256188 \pm 3.0 \cdot 10^{-5} \) |
\(a_{52}= -0.97268570 \pm 3.0 \cdot 10^{-5} \) | \(a_{53}= -0.19481688 \pm 2.6 \cdot 10^{-5} \) | \(a_{54}= +1.46863936 \pm 3.3 \cdot 10^{-5} \) |
\(a_{55}= -0.63216305 \pm 3.0 \cdot 10^{-5} \) | \(a_{56}= -0.07397264 \pm 2.9 \cdot 10^{-5} \) | \(a_{57}= -0.19660776 \pm 2.9 \cdot 10^{-5} \) |
\(a_{58}= -0.06040483 \pm 3.1 \cdot 10^{-5} \) | \(a_{59}= -1.35560194 \pm 3.0 \cdot 10^{-5} \) | \(a_{60}= -0.87520283 \pm 4.4 \cdot 10^{-5} \) |
\(a_{61}= +1.85618311 \pm 2.7 \cdot 10^{-5} \) | \(a_{62}= -0.25728536 \pm 3.4 \cdot 10^{-5} \) | \(a_{63}= +0.05373402 \pm 3.2 \cdot 10^{-5} \) |
\(a_{64}= -1.10128461 \pm 3.6 \cdot 10^{-5} \) | \(a_{65}= -0.79084120 \pm 2.8 \cdot 10^{-5} \) | \(a_{66}= +1.02959932 \pm 3.0 \cdot 10^{-5} \) |
\(a_{67}= +0.61126761 \pm 2.3 \cdot 10^{-5} \) | \(a_{68}= -0.40303099 \pm 4.4 \cdot 10^{-5} \) | \(a_{69}= -1.03042953 \pm 3.0 \cdot 10^{-5} \) |
\(a_{70}= -1.21522650 \pm 2.9 \cdot 10^{-5} \) | \(a_{71}= +0.07376198 \pm 2.2 \cdot 10^{-5} \) | \(a_{72}= -0.00404128 \pm 3.8 \cdot 10^{-5} \) |
\(a_{73}= +1.17672402 \pm 2.5 \cdot 10^{-5} \) | \(a_{74}= +1.66159904 \pm 3.1 \cdot 10^{-5} \) | \(a_{75}= +0.26094931 \pm 2.7 \cdot 10^{-5} \) |
\(a_{76}= +0.21268687 \pm 3.4 \cdot 10^{-5} \) | \(a_{77}= +0.73294083 \pm 2.4 \cdot 10^{-5} \) | \(a_{78}= +1.28803725 \pm 2.9 \cdot 10^{-5} \) |
\(a_{79}= -0.85272453 \pm 2.9 \cdot 10^{-5} \) | \(a_{80}= -0.80852574 \pm 3.2 \cdot 10^{-5} \) | \(a_{81}= -0.94288318 \pm 2.9 \cdot 10^{-5} \) |
\(a_{82}= +1.72426888 \pm 3.4 \cdot 10^{-5} \) | \(a_{83}= -0.21144067 \pm 2.3 \cdot 10^{-5} \) | \(a_{84}= +1.01472538 \pm 3.7 \cdot 10^{-5} \) |
\(a_{85}= -0.32768397 \pm 2.4 \cdot 10^{-5} \) | \(a_{86}= -2.34721702 \pm 2.8 \cdot 10^{-5} \) | \(a_{87}= +0.04100905 \pm 3.1 \cdot 10^{-5} \) |
\(a_{88}= -0.05512377 \pm 2.8 \cdot 10^{-5} \) | \(a_{89}= -1.58184125 \pm 2.4 \cdot 10^{-5} \) | \(a_{90}= -0.06639042 \pm 3.6 \cdot 10^{-5} \) |
\(a_{91}= +0.91691503 \pm 3.1 \cdot 10^{-5} \) | \(a_{92}= +1.11470083 \pm 2.9 \cdot 10^{-5} \) | \(a_{93}= +0.17467193 \pm 3.0 \cdot 10^{-5} \) |
\(a_{94}= -1.81580479 \pm 3.3 \cdot 10^{-5} \) | \(a_{95}= +0.17292486 \pm 3.1 \cdot 10^{-5} \) | \(a_{96}= +1.38937943 \pm 4.6 \cdot 10^{-5} \) |
\(a_{97}= +1.63416289 \pm 2.7 \cdot 10^{-5} \) | \(a_{98}= -0.02354953 \pm 2.8 \cdot 10^{-5} \) | \(a_{99}= +0.04004212 \pm 2.6 \cdot 10^{-5} \) |
\(a_{100}= -0.28229044 \pm 3.3 \cdot 10^{-5} \) | \(a_{101}= +0.10845715 \pm 3.0 \cdot 10^{-5} \) | \(a_{102}= +0.53369648 \pm 4.3 \cdot 10^{-5} \) |
\(a_{103}= -1.02645245 \pm 2.4 \cdot 10^{-5} \) | \(a_{104}= -0.06896029 \pm 3.2 \cdot 10^{-5} \) | \(a_{105}= +0.82502152 \pm 2.6 \cdot 10^{-5} \) |
\(a_{106}= -0.27907602 \pm 3.1 \cdot 10^{-5} \) | \(a_{107}= -1.40612594 \pm 2.5 \cdot 10^{-5} \) | \(a_{108}= +1.07860701 \pm 3.4 \cdot 10^{-5} \) |
\(a_{109}= -0.51205487 \pm 2.7 \cdot 10^{-5} \) | \(a_{110}= -0.90557626 \pm 2.8 \cdot 10^{-5} \) | \(a_{111}= -1.12806540 \pm 2.7 \cdot 10^{-5} \) |
\(a_{112}= +0.93741880 \pm 2.3 \cdot 10^{-5} \) | \(a_{113}= -0.27921024 \pm 2.5 \cdot 10^{-5} \) | \(a_{114}= -0.28164145 \pm 3.2 \cdot 10^{-5} \) |
\(a_{115}= +0.90630647 \pm 2.5 \cdot 10^{-5} \) | \(a_{116}= -0.04436288 \pm 3.3 \cdot 10^{-5} \) | \(a_{117}= +0.05009303 \pm 2.9 \cdot 10^{-5} \) |
\(a_{118}= -1.94190555 \pm 3.9 \cdot 10^{-5} \) | \(a_{119}= +0.37992249 \pm 2.1 \cdot 10^{-5} \) | \(a_{120}= -0.06204907 \pm 4.4 \cdot 10^{-5} \) |
\(a_{121}= -0.45381884 \pm 2.9 \cdot 10^{-5} \) | \(a_{122}= +2.65899020 \pm 3.8 \cdot 10^{-5} \) | \(a_{123}= -1.17061217 \pm 3.1 \cdot 10^{-5} \) |
\(a_{124}= -0.18895707 \pm 3.7 \cdot 10^{-5} \) | \(a_{125}= -1.08489925 \pm 2.9 \cdot 10^{-5} \) | \(a_{126}= +0.07697421 \pm 4.0 \cdot 10^{-5} \) |
\(a_{127}= +0.30859614 \pm 2.8 \cdot 10^{-5} \) | \(a_{128}= -0.14897433 \pm 3.4 \cdot 10^{-5} \) | \(a_{129}= +1.59353385 \pm 2.3 \cdot 10^{-5} \) |
\(a_{130}= -1.13288338 \pm 3.0 \cdot 10^{-5} \) | \(a_{131}= -1.50465761 \pm 2.9 \cdot 10^{-5} \) | \(a_{132}= +0.75616456 \pm 3.1 \cdot 10^{-5} \) |
\(a_{133}= -0.20049209 \pm 2.7 \cdot 10^{-5} \) | \(a_{134}= +0.87564345 \pm 2.5 \cdot 10^{-5} \) | \(a_{135}= +0.87696042 \pm 2.5 \cdot 10^{-5} \) |
\(a_{136}= -0.02857360 \pm 4.6 \cdot 10^{-5} \) | \(a_{137}= +1.38775397 \pm 2.7 \cdot 10^{-5} \) | \(a_{138}= -1.47609469 \pm 2.6 \cdot 10^{-5} \) |
\(a_{139}= -0.73882716 \pm 2.1 \cdot 10^{-5} \) | \(a_{140}= -0.89249400 \pm 2.7 \cdot 10^{-5} \) | \(a_{141}= +1.23275622 \pm 3.1 \cdot 10^{-5} \) |
\(a_{142}= +0.10566435 \pm 2.4 \cdot 10^{-5} \) | \(a_{143}= +0.68327714 \pm 2.8 \cdot 10^{-5} \) | \(a_{144}= +0.05121319 \pm 3.6 \cdot 10^{-5} \) |
\(a_{145}= -0.03606920 \pm 2.5 \cdot 10^{-5} \) | \(a_{146}= +1.68566218 \pm 3.1 \cdot 10^{-5} \) | \(a_{147}= +0.01598786 \pm 2.8 \cdot 10^{-5} \) |
\(a_{148}= +1.22032162 \pm 3.5 \cdot 10^{-5} \) | \(a_{149}= +0.40019119 \pm 2.4 \cdot 10^{-5} \) | \(a_{150}= +0.37381099 \pm 3.5 \cdot 10^{-5} \) |
\(a_{151}= +0.32018140 \pm 2.6 \cdot 10^{-5} \) | \(a_{152}= +0.01507882 \pm 3.1 \cdot 10^{-5} \) | \(a_{153}= +0.02075598 \pm 2.5 \cdot 10^{-5} \) |
\(a_{154}= +1.04994086 \pm 2.6 \cdot 10^{-5} \) | \(a_{155}= -0.15363137 \pm 2.8 \cdot 10^{-5} \) | \(a_{156}= +0.94596811 \pm 3.1 \cdot 10^{-5} \) |
\(a_{157}= -1.08670028 \pm 2.4 \cdot 10^{-5} \) | \(a_{158}= -1.22153152 \pm 3.6 \cdot 10^{-5} \) | \(a_{159}= +0.18946568 \pm 2.6 \cdot 10^{-5} \) |
\(a_{160}= -1.22201813 \pm 3.4 \cdot 10^{-5} \) | \(a_{161}= -1.05078747 \pm 2.4 \cdot 10^{-5} \) | \(a_{162}= -1.35068417 \pm 4.0 \cdot 10^{-5} \) |
\(a_{163}= -0.16800267 \pm 2.8 \cdot 10^{-5} \) | \(a_{164}= +1.26634799 \pm 4.1 \cdot 10^{-5} \) | \(a_{165}= +0.61479889 \pm 2.7 \cdot 10^{-5} \) |
\(a_{166}= -0.30288966 \pm 3.1 \cdot 10^{-5} \) | \(a_{167}= -1.96402415 \pm 2.8 \cdot 10^{-5} \) | \(a_{168}= +0.07194077 \pm 3.1 \cdot 10^{-5} \) |
\(a_{169}= -0.14521466 \pm 2.7 \cdot 10^{-5} \) | \(a_{170}= -0.46940868 \pm 3.2 \cdot 10^{-5} \) | \(a_{171}= -0.01095331 \pm 2.6 \cdot 10^{-5} \) |
\(a_{172}= -1.72385733 \pm 2.7 \cdot 10^{-5} \) | \(a_{173}= -1.12101843 \pm 2.9 \cdot 10^{-5} \) | \(a_{174}= +0.05874564 \pm 3.7 \cdot 10^{-5} \) |
\(a_{175}= +0.26610482 \pm 2.5 \cdot 10^{-5} \) | \(a_{176}= +0.69855637 \pm 1.8 \cdot 10^{-5} \) | \(a_{177}= +1.31836647 \pm 3.1 \cdot 10^{-5} \) |
\(a_{178}= -2.26599432 \pm 2.7 \cdot 10^{-5} \) | \(a_{179}= +1.52370394 \pm 3.1 \cdot 10^{-5} \) | \(a_{180}= -0.04875885 \pm 3.9 \cdot 10^{-5} \) |
\(a_{181}= -1.75788393 \pm 2.5 \cdot 10^{-5} \) | \(a_{182}= +1.31348468 \pm 2.8 \cdot 10^{-5} \) | \(a_{183}= -1.80519775 \pm 2.8 \cdot 10^{-5} \) |
\(a_{184}= +0.07902871 \pm 3.3 \cdot 10^{-5} \) | \(a_{185}= +0.99218135 \pm 2.4 \cdot 10^{-5} \) | \(a_{186}= +0.25021828 \pm 6.5 \cdot 10^{-5} \) |
\(a_{187}= +0.28311495 \pm 2.0 \cdot 10^{-5} \) | \(a_{188}= -1.33357435 \pm 4.0 \cdot 10^{-5} \) | \(a_{189}= -1.01676315 \pm 3.0 \cdot 10^{-5} \) |
\(a_{190}= +0.24771560 \pm 3.8 \cdot 10^{-5} \) | \(a_{191}= +0.84514811 \pm 2.8 \cdot 10^{-5} \) | \(a_{192}= +1.07103469 \pm 4.5 \cdot 10^{-5} \) |
\(a_{193}= +1.57570603 \pm 2.6 \cdot 10^{-5} \) | \(a_{194}= +2.34094529 \pm 3.4 \cdot 10^{-5} \) | \(a_{195}= +0.76911849 \pm 2.4 \cdot 10^{-5} \) |
\(a_{196}= -0.01729539 \pm 3.3 \cdot 10^{-5} \) | \(a_{197}= +1.34856396 \pm 2.1 \cdot 10^{-5} \) | \(a_{198}= +0.05736051 \pm 2.8 \cdot 10^{-5} \) |
\(a_{199}= +0.53838623 \pm 2.5 \cdot 10^{-5} \) | \(a_{200}= -0.02001349 \pm 2.8 \cdot 10^{-5} \) | \(a_{201}= -0.59447740 \pm 2.5 \cdot 10^{-5} \) |
\(a_{202}= +0.15536533 \pm 3.5 \cdot 10^{-5} \) | \(a_{203}= +0.04181925 \pm 2.6 \cdot 10^{-5} \) | \(a_{204}= +0.39196060 \pm 5.2 \cdot 10^{-5} \) |
\(a_{205}= +1.02960305 \pm 2.4 \cdot 10^{-5} \) | \(a_{206}= -1.47039751 \pm 2.9 \cdot 10^{-5} \) | \(a_{207}= -0.05740676 \pm 2.4 \cdot 10^{-5} \) |
\(a_{208}= +0.87389978 \pm 2.8 \cdot 10^{-5} \) | \(a_{209}= -0.14940497 \pm 3.2 \cdot 10^{-5} \) | \(a_{210}= +1.18184684 \pm 3.6 \cdot 10^{-5} \) |
\(a_{211}= -0.75863019 \pm 2.7 \cdot 10^{-5} \) | \(a_{212}= -0.20496070 \pm 3.3 \cdot 10^{-5} \) | \(a_{213}= -0.07173590 \pm 2.7 \cdot 10^{-5} \) |
\(a_{214}= -2.01428139 \pm 2.7 \cdot 10^{-5} \) | \(a_{215}= -1.40158059 \pm 2.6 \cdot 10^{-5} \) | \(a_{216}= +0.07646977 \pm 3.0 \cdot 10^{-5} \) |
\(a_{217}= +0.17812288 \pm 2.8 \cdot 10^{-5} \) | \(a_{218}= -0.73352078 \pm 3.4 \cdot 10^{-5} \) | \(a_{219}= -1.14440195 \pm 2.5 \cdot 10^{-5} \) |
\(a_{220}= -0.66507880 \pm 2.5 \cdot 10^{-5} \) | \(a_{221}= +0.35417914 \pm 2.6 \cdot 10^{-5} \) | \(a_{222}= -1.61595849 \pm 3.3 \cdot 10^{-5} \) |
\(a_{223}= +1.40099346 \pm 3.1 \cdot 10^{-5} \) | \(a_{224}= +1.41682906 \pm 2.8 \cdot 10^{-5} \) | \(a_{225}= +0.01453787 \pm 2.4 \cdot 10^{-5} \) |
\(a_{226}= -0.39996985 \pm 3.1 \cdot 10^{-5} \) | \(a_{227}= +0.57750935 \pm 2.6 \cdot 10^{-5} \) | \(a_{228}= -0.20684482 \pm 3.4 \cdot 10^{-5} \) |
\(a_{229}= +1.04336804 \pm 2.8 \cdot 10^{-5} \) | \(a_{230}= +1.29828787 \pm 2.6 \cdot 10^{-5} \) | \(a_{231}= -0.71280852 \pm 3.0 \cdot 10^{-5} \) |
\(a_{232}= -0.00314519 \pm 3.1 \cdot 10^{-5} \) | \(a_{233}= -0.82789426 \pm 2.1 \cdot 10^{-5} \) | \(a_{234}= +0.07175847 \pm 3.1 \cdot 10^{-5} \) |
\(a_{235}= -1.08426138 \pm 2.6 \cdot 10^{-5} \) | \(a_{236}= -1.42618603 \pm 4.4 \cdot 10^{-5} \) | \(a_{237}= +0.82930202 \pm 3.2 \cdot 10^{-5} \) |
\(a_{238}= +0.54424059 \pm 2.0 \cdot 10^{-5} \) | \(a_{239}= +0.96370685 \pm 2.8 \cdot 10^{-5} \) | \(a_{240}= +0.78631728 \pm 3.8 \cdot 10^{-5} \) |
\(a_{241}= +0.50024045 \pm 2.2 \cdot 10^{-5} \) | \(a_{242}= -0.65009742 \pm 3.2 \cdot 10^{-5} \) | \(a_{243}= -0.10824092 \pm 3.1 \cdot 10^{-5} \) |
\(a_{244}= +1.95283168 \pm 4.5 \cdot 10^{-5} \) | \(a_{245}= -0.01406200 \pm 2.5 \cdot 10^{-5} \) | \(a_{246}= -1.67690692 \pm 4.6 \cdot 10^{-5} \) |
\(a_{247}= -0.18690685 \pm 2.9 \cdot 10^{-5} \) | \(a_{248}= -0.01339645 \pm 3.9 \cdot 10^{-5} \) | \(a_{249}= +0.20563285 \pm 2.5 \cdot 10^{-5} \) |
\(a_{250}= -1.55412279 \pm 3.8 \cdot 10^{-5} \) | \(a_{251}= -1.15784049 \pm 2.6 \cdot 10^{-5} \) | \(a_{252}= +0.05653186 \pm 4.1 \cdot 10^{-5} \) |
\(a_{253}= -0.78303772 \pm 2.4 \cdot 10^{-5} \) | \(a_{254}= +0.44206528 \pm 3.4 \cdot 10^{-5} \) | \(a_{255}= +0.31868320 \pm 2.8 \cdot 10^{-5} \) |
\(a_{256}= +0.88787825 \pm 3.3 \cdot 10^{-5} \) | \(a_{257}= -0.82665532 \pm 2.7 \cdot 10^{-5} \) | \(a_{258}= +2.28274402 \pm 3.0 \cdot 10^{-5} \) |
\(a_{259}= -1.15035231 \pm 2.6 \cdot 10^{-5} \) | \(a_{260}= -0.83201907 \pm 2.7 \cdot 10^{-5} \) | \(a_{261}= +0.00228468 \pm 2.7 \cdot 10^{-5} \) |
\(a_{262}= -2.15542843 \pm 3.3 \cdot 10^{-5} \) | \(a_{263}= +0.01079145 \pm 2.9 \cdot 10^{-5} \) | \(a_{264}= +0.05360964 \pm 2.8 \cdot 10^{-5} \) |
\(a_{265}= -0.16664310 \pm 2.4 \cdot 10^{-5} \) | \(a_{266}= -0.28720577 \pm 3.0 \cdot 10^{-5} \) | \(a_{267}= +1.53839147 \pm 2.4 \cdot 10^{-5} \) |
\(a_{268}= +0.64309536 \pm 2.6 \cdot 10^{-5} \) | \(a_{269}= +0.63265037 \pm 2.5 \cdot 10^{-5} \) | \(a_{270}= +1.25624953 \pm 3.0 \cdot 10^{-5} \) |
\(a_{271}= -0.91569937 \pm 3.2 \cdot 10^{-5} \) | \(a_{272}= +0.36209918 \pm 4.2 \cdot 10^{-5} \) | \(a_{273}= -0.89172934 \pm 2.9 \cdot 10^{-5} \) |
\(a_{274}= +1.98796348 \pm 3.3 \cdot 10^{-5} \) | \(a_{275}= +0.19829900 \pm 3.2 \cdot 10^{-5} \) | \(a_{276}= -1.08408239 \pm 3.1 \cdot 10^{-5} \) |
\(a_{277}= +0.80004424 \pm 2.6 \cdot 10^{-5} \) | \(a_{278}= -1.05837306 \pm 2.6 \cdot 10^{-5} \) | \(a_{279}= +0.00973123 \pm 2.9 \cdot 10^{-5} \) |
\(a_{280}= -0.06327496 \pm 2.7 \cdot 10^{-5} \) | \(a_{281}= +0.35986604 \pm 2.7 \cdot 10^{-5} \) | \(a_{282}= +1.76592854 \pm 4.3 \cdot 10^{-5} \) |
\(a_{283}= -1.53096022 \pm 2.7 \cdot 10^{-5} \) | \(a_{284}= +0.07760265 \pm 2.3 \cdot 10^{-5} \) | \(a_{285}= -0.16817499 \pm 3.0 \cdot 10^{-5} \) |
\(a_{286}= +0.97879741 \pm 3.0 \cdot 10^{-5} \) | \(a_{287}= -1.19373967 \pm 2.3 \cdot 10^{-5} \) | \(a_{288}= +0.07740440 \pm 3.9 \cdot 10^{-5} \) |
\(a_{289}= -0.85324636 \pm 2.8 \cdot 10^{-5} \) | \(a_{290}= -0.05166928 \pm 3.2 \cdot 10^{-5} \) | \(a_{291}= -1.58927595 \pm 3.2 \cdot 10^{-5} \) |
\(a_{292}= +1.23799422 \pm 3.1 \cdot 10^{-5} \) | \(a_{293}= +1.60167581 \pm 2.4 \cdot 10^{-5} \) | \(a_{294}= +0.02290268 \pm 3.1 \cdot 10^{-5} \) |
\(a_{295}= -1.15955922 \pm 2.6 \cdot 10^{-5} \) | \(a_{296}= +0.08651688 \pm 3.6 \cdot 10^{-5} \) | \(a_{297}= -0.75768309 \pm 2.2 \cdot 10^{-5} \) |
\(a_{298}= +0.57327558 \pm 3.0 \cdot 10^{-5} \) | \(a_{299}= -0.97958666 \pm 2.7 \cdot 10^{-5} \) | \(a_{300}= +0.27453653 \pm 3.5 \cdot 10^{-5} \) |
\(a_{301}= +1.62501690 \pm 2.3 \cdot 10^{-5} \) | \(a_{302}= +0.45866121 \pm 2.9 \cdot 10^{-5} \) | \(a_{303}= -0.10547807 \pm 3.5 \cdot 10^{-5} \) |
\(a_{304}= -0.19108640 \pm 2.2 \cdot 10^{-5} \) | \(a_{305}= +1.58774797 \pm 2.6 \cdot 10^{-5} \) | \(a_{306}= +0.02973303 \pm 3.1 \cdot 10^{-5} \) |
\(a_{307}= +0.12425768 \pm 2.9 \cdot 10^{-5} \) | \(a_{308}= +0.77110392 \pm 2.8 \cdot 10^{-5} \) | \(a_{309}= +0.99825801 \pm 2.8 \cdot 10^{-5} \) |
\(a_{310}= -0.22007759 \pm 6.3 \cdot 10^{-5} \) | \(a_{311}= +1.40061294 \pm 2.2 \cdot 10^{-5} \) | \(a_{312}= +0.06706610 \pm 3.3 \cdot 10^{-5} \) |
\(a_{313}= -1.75693042 \pm 2.8 \cdot 10^{-5} \) | \(a_{314}= -1.55670278 \pm 2.9 \cdot 10^{-5} \) | \(a_{315}= +0.04596318 \pm 2.8 \cdot 10^{-5} \) |
\(a_{316}= -0.89712457 \pm 4.2 \cdot 10^{-5} \) | \(a_{317}= +0.93110163 \pm 2.7 \cdot 10^{-5} \) | \(a_{318}= +0.27141040 \pm 3.4 \cdot 10^{-5} \) |
\(a_{319}= +0.03116335 \pm 2.7 \cdot 10^{-5} \) | \(a_{320}= -0.94202043 \pm 3.6 \cdot 10^{-5} \) | \(a_{321}= +1.36750268 \pm 2.3 \cdot 10^{-5} \) |
\(a_{322}= -1.50525752 \pm 2.1 \cdot 10^{-5} \) | \(a_{323}= -0.07744460 \pm 2.2 \cdot 10^{-5} \) | \(a_{324}= -0.99197765 \pm 4.1 \cdot 10^{-5} \) |
\(a_{325}= +0.24807369 \pm 2.4 \cdot 10^{-5} \) | \(a_{326}= -0.24066453 \pm 3.3 \cdot 10^{-5} \) | \(a_{327}= +0.49798982 \pm 2.5 \cdot 10^{-5} \) |
\(a_{328}= +0.08978001 \pm 4.6 \cdot 10^{-5} \) | \(a_{329}= +1.25711149 \pm 2.0 \cdot 10^{-5} \) | \(a_{330}= +0.88070203 \pm 2.8 \cdot 10^{-5} \) |
\(a_{331}= +0.37873820 \pm 2.5 \cdot 10^{-5} \) | \(a_{332}= -0.22245006 \pm 3.6 \cdot 10^{-5} \) | \(a_{333}= -0.06284620 \pm 2.5 \cdot 10^{-5} \) |
\(a_{334}= -2.81347296 \pm 3.2 \cdot 10^{-5} \) | \(a_{335}= +0.52286808 \pm 2.4 \cdot 10^{-5} \) | \(a_{336}= -0.91166992 \pm 2.7 \cdot 10^{-5} \) |
\(a_{337}= +1.10959992 \pm 2.9 \cdot 10^{-5} \) | \(a_{338}= -0.20802062 \pm 2.8 \cdot 10^{-5} \) | \(a_{339}= +0.27154093 \pm 2.6 \cdot 10^{-5} \) |
\(a_{340}= -0.34474597 \pm 3.8 \cdot 10^{-5} \) | \(a_{341}= +0.13273563 \pm 2.8 \cdot 10^{-5} \) | \(a_{342}= -0.01569066 \pm 3.4 \cdot 10^{-5} \) |
\(a_{343}= +1.00804996 \pm 2.6 \cdot 10^{-5} \) | \(a_{344}= -0.12221595 \pm 2.9 \cdot 10^{-5} \) | \(a_{345}= -0.88141218 \pm 2.5 \cdot 10^{-5} \) |
\(a_{346}= -1.60586367 \pm 3.9 \cdot 10^{-5} \) | \(a_{347}= +0.01259277 \pm 2.9 \cdot 10^{-5} \) | \(a_{348}= +0.04314433 \pm 4.1 \cdot 10^{-5} \) |
\(a_{349}= +0.08891768 \pm 2.9 \cdot 10^{-5} \) | \(a_{350}= +0.38119628 \pm 3.0 \cdot 10^{-5} \) | \(a_{351}= -0.94786781 \pm 2.3 \cdot 10^{-5} \) |
\(a_{352}= +1.05580874 \pm 2.6 \cdot 10^{-5} \) | \(a_{353}= -1.57862734 \pm 3.2 \cdot 10^{-5} \) | \(a_{354}= +1.88856558 \pm 4.1 \cdot 10^{-5} \) |
\(a_{355}= +0.06309476 \pm 1.9 \cdot 10^{-5} \) | \(a_{356}= -1.66420526 \pm 2.9 \cdot 10^{-5} \) | \(a_{357}= -0.36948684 \pm 2.1 \cdot 10^{-5} \) |
\(a_{358}= +2.18271239 \pm 3.6 \cdot 10^{-5} \) | \(a_{359}= -1.04064678 \pm 2.7 \cdot 10^{-5} \) | \(a_{360}= -0.00345685 \pm 3.7 \cdot 10^{-5} \) |
\(a_{361}= -0.95913106 \pm 2.9 \cdot 10^{-5} \) | \(a_{362}= -2.51817622 \pm 2.9 \cdot 10^{-5} \) | \(a_{363}= +0.44135342 \pm 2.8 \cdot 10^{-5} \) |
\(a_{364}= +0.96465737 \pm 2.8 \cdot 10^{-5} \) | \(a_{365}= +1.00655004 \pm 2.9 \cdot 10^{-5} \) | \(a_{366}= -2.58595346 \pm 4.2 \cdot 10^{-5} \) |
\(a_{367}= +0.22107389 \pm 3.1 \cdot 10^{-5} \) | \(a_{368}= -1.00149187 \pm 3.0 \cdot 10^{-5} \) | \(a_{369}= -0.06521655 \pm 2.9 \cdot 10^{-5} \) |
\(a_{370}= +1.42130401 \pm 2.8 \cdot 10^{-5} \) | \(a_{371}= +0.19320891 \pm 2.7 \cdot 10^{-5} \) | \(a_{372}= +0.18376683 \pm 6.8 \cdot 10^{-5} \) |
\(a_{373}= -0.75438549 \pm 2.5 \cdot 10^{-5} \) | \(a_{374}= +0.40556337 \pm 2.5 \cdot 10^{-5} \) | \(a_{375}= +1.05509940 \pm 3.3 \cdot 10^{-5} \) |
\(a_{376}= -0.09454614 \pm 4.6 \cdot 10^{-5} \) | \(a_{377}= +0.03898560 \pm 2.6 \cdot 10^{-5} \) | \(a_{378}= -1.45651754 \pm 4.0 \cdot 10^{-5} \) |
\(a_{379}= -0.95069350 \pm 2.7 \cdot 10^{-5} \) | \(a_{380}= +0.18192879 \pm 3.6 \cdot 10^{-5} \) | \(a_{381}= -0.30011966 \pm 2.9 \cdot 10^{-5} \) |
\(a_{382}= +1.21067827 \pm 3.7 \cdot 10^{-5} \) | \(a_{383}= +0.74735363 \pm 2.6 \cdot 10^{-5} \) | \(a_{384}= +0.14488233 \pm 4.3 \cdot 10^{-5} \) |
\(a_{385}= +0.62694532 \pm 2.2 \cdot 10^{-5} \) | \(a_{386}= +2.25720559 \pm 2.8 \cdot 10^{-5} \) | \(a_{387}= +0.08877815 \pm 2.5 \cdot 10^{-5} \) |
\(a_{388}= +1.71925121 \pm 3.9 \cdot 10^{-5} \) | \(a_{389}= +0.29594028 \pm 2.3 \cdot 10^{-5} \) | \(a_{390}= +1.10176551 \pm 2.3 \cdot 10^{-5} \) |
\(a_{391}= -0.40589039 \pm 2.2 \cdot 10^{-5} \) | \(a_{392}= -0.00122619 \pm 3.5 \cdot 10^{-5} \) | \(a_{393}= +1.46332790 \pm 3.0 \cdot 10^{-5} \) |
\(a_{394}= +1.93182361 \pm 2.5 \cdot 10^{-5} \) | \(a_{395}= -0.72940630 \pm 2.7 \cdot 10^{-5} \) | \(a_{396}= +0.04212705 \pm 2.9 \cdot 10^{-5} \) |
\(a_{397}= -0.14244682 \pm 2.7 \cdot 10^{-5} \) | \(a_{398}= +0.77124057 \pm 2.9 \cdot 10^{-5} \) | \(a_{399}= +0.19498500 \pm 2.7 \cdot 10^{-5} \) |
\(a_{400}= +0.25362104 \pm 2.0 \cdot 10^{-5} \) | \(a_{401}= -0.36865176 \pm 2.8 \cdot 10^{-5} \) | \(a_{402}= -0.85159141 \pm 3.1 \cdot 10^{-5} \) |
\(a_{403}= +0.16605337 \pm 2.9 \cdot 10^{-5} \) | \(a_{404}= +0.11410435 \pm 3.9 \cdot 10^{-5} \) | \(a_{405}= -0.80652650 \pm 2.7 \cdot 10^{-5} \) |
\(a_{406}= +0.05990626 \pm 2.7 \cdot 10^{-5} \) | \(a_{407}= -0.85723258 \pm 2.5 \cdot 10^{-5} \) | \(a_{408}= +0.02778875 \pm 5.5 \cdot 10^{-5} \) |
\(a_{409}= -1.03080593 \pm 2.3 \cdot 10^{-5} \) | \(a_{410}= +1.47491075 \pm 3.3 \cdot 10^{-5} \) | \(a_{411}= -1.34963536 \pm 3.1 \cdot 10^{-5} \) |
\(a_{412}= -1.07989824 \pm 3.0 \cdot 10^{-5} \) | \(a_{413}= +1.34441311 \pm 2.9 \cdot 10^{-5} \) | \(a_{414}= -0.08223543 \pm 2.5 \cdot 10^{-5} \) |
\(a_{415}= -0.18086281 \pm 2.4 \cdot 10^{-5} \) | \(a_{416}= +1.32082545 \pm 3.1 \cdot 10^{-5} \) | \(a_{417}= +0.71853317 \pm 2.5 \cdot 10^{-5} \) |
\(a_{418}= -0.21402325 \pm 3.6 \cdot 10^{-5} \) | \(a_{419}= -0.59477380 \pm 2.6 \cdot 10^{-5} \) | \(a_{420}= +0.86797911 \pm 3.6 \cdot 10^{-5} \) |
\(a_{421}= +1.07868078 \pm 3.2 \cdot 10^{-5} \) | \(a_{422}= -1.08674098 \pm 2.6 \cdot 10^{-5} \) | \(a_{423}= +0.06867869 \pm 2.8 \cdot 10^{-5} \) |
\(a_{424}= -0.01453106 \pm 3.0 \cdot 10^{-5} \) | \(a_{425}= +0.10278900 \pm 1.7 \cdot 10^{-5} \) | \(a_{426}= -0.10276198 \pm 2.9 \cdot 10^{-5} \) |
\(a_{427}= -1.84086260 \pm 2.1 \cdot 10^{-5} \) | \(a_{428}= -1.47934073 \pm 2.7 \cdot 10^{-5} \) | \(a_{429}= -0.66450898 \pm 3.0 \cdot 10^{-5} \) |
\(a_{430}= -2.00777017 \pm 3.0 \cdot 10^{-5} \) | \(a_{431}= -0.57521264 \pm 2.7 \cdot 10^{-5} \) | \(a_{432}= -0.96906373 \pm 2.5 \cdot 10^{-5} \) |
\(a_{433}= +0.27011739 \pm 3.1 \cdot 10^{-5} \) | \(a_{434}= +0.25516179 \pm 6.2 \cdot 10^{-5} \) | \(a_{435}= +0.03507845 \pm 3.0 \cdot 10^{-5} \) |
\(a_{436}= -0.53871677 \pm 3.6 \cdot 10^{-5} \) | \(a_{437}= +0.21419583 \pm 2.8 \cdot 10^{-5} \) | \(a_{438}= -1.63936066 \pm 3.5 \cdot 10^{-5} \) |
\(a_{439}= +1.00086878 \pm 2.8 \cdot 10^{-5} \) | \(a_{440}= -0.04715195 \pm 3.2 \cdot 10^{-5} \) | \(a_{441}= +0.00089071 \pm 3.0 \cdot 10^{-5} \) |
\(a_{442}= +0.50736313 \pm 2.5 \cdot 10^{-5} \) | \(a_{443}= +0.37575281 \pm 2.7 \cdot 10^{-5} \) | \(a_{444}= -1.18680201 \pm 3.7 \cdot 10^{-5} \) |
\(a_{445}= -1.35308053 \pm 2.6 \cdot 10^{-5} \) | \(a_{446}= +2.00692910 \pm 3.3 \cdot 10^{-5} \) | \(a_{447}= -0.38919880 \pm 2.5 \cdot 10^{-5} \) |
\(a_{448}= +1.09219486 \pm 2.8 \cdot 10^{-5} \) | \(a_{449}= +1.19849217 \pm 2.4 \cdot 10^{-5} \) | \(a_{450}= +0.02082557 \pm 3.1 \cdot 10^{-5} \) |
\(a_{451}= -0.88956446 \pm 2.3 \cdot 10^{-5} \) | \(a_{452}= -0.29374828 \pm 3.2 \cdot 10^{-5} \) | \(a_{453}= -0.31138670 \pm 2.6 \cdot 10^{-5} \) |
\(a_{454}= +0.82728460 \pm 3.4 \cdot 10^{-5} \) | \(a_{455}= +0.78431377 \pm 2.5 \cdot 10^{-5} \) | \(a_{456}= -0.01466463 \pm 3.5 \cdot 10^{-5} \) |
\(a_{457}= -0.23550741 \pm 3.0 \cdot 10^{-5} \) | \(a_{458}= +1.49462916 \pm 3.7 \cdot 10^{-5} \) | \(a_{459}= -0.39274773 \pm 2.3 \cdot 10^{-5} \) |
\(a_{460}= +0.95349644 \pm 2.8 \cdot 10^{-5} \) | \(a_{461}= -1.24159462 \pm 2.4 \cdot 10^{-5} \) | \(a_{462}= -1.02110124 \pm 2.9 \cdot 10^{-5} \) |
\(a_{463}= -1.64323770 \pm 2.8 \cdot 10^{-5} \) | \(a_{464}= +0.03985739 \pm 2.3 \cdot 10^{-5} \) | \(a_{465}= +0.14941145 \pm 5.9 \cdot 10^{-5} \) |
\(a_{466}= -1.18596206 \pm 3.2 \cdot 10^{-5} \) | \(a_{467}= -0.48443209 \pm 2.6 \cdot 10^{-5} \) | \(a_{468}= +0.05270129 \pm 3.1 \cdot 10^{-5} \) |
\(a_{469}= -0.60622234 \pm 2.3 \cdot 10^{-5} \) | \(a_{470}= -1.55320904 \pm 3.3 \cdot 10^{-5} \) | \(a_{471}= +1.05685096 \pm 2.9 \cdot 10^{-5} \) |
\(a_{472}= -0.10111201 \pm 4.3 \cdot 10^{-5} \) | \(a_{473}= +1.21094852 \pm 2.4 \cdot 10^{-5} \) | \(a_{474}= +1.18797868 \pm 4.0 \cdot 10^{-5} \) |
\(a_{475}= -0.05424364 \pm 3.1 \cdot 10^{-5} \) | \(a_{476}= +0.39970447 \pm 2.1 \cdot 10^{-5} \) | \(a_{477}= +0.01055542 \pm 2.9 \cdot 10^{-5} \) |
\(a_{478}= +1.38051416 \pm 3.1 \cdot 10^{-5} \) | \(a_{479}= +0.22538621 \pm 2.7 \cdot 10^{-5} \) | \(a_{480}= +1.18845192 \pm 4.1 \cdot 10^{-5} \) |
\(a_{481}= -1.07240503 \pm 2.5 \cdot 10^{-5} \) | \(a_{482}= +0.71659657 \pm 2.5 \cdot 10^{-5} \) | \(a_{483}= +1.02192460 \pm 2.6 \cdot 10^{-5} \) |
\(a_{484}= -0.47744849 \pm 3.3 \cdot 10^{-5} \) | \(a_{485}= +1.39783559 \pm 2.4 \cdot 10^{-5} \) | \(a_{486}= -0.15505557 \pm 3.9 \cdot 10^{-5} \) |
\(a_{487}= +1.26367425 \pm 2.9 \cdot 10^{-5} \) | \(a_{488}= +0.13844949 \pm 4.8 \cdot 10^{-5} \) | \(a_{489}= +0.16338799 \pm 3.0 \cdot 10^{-5} \) |
\(a_{490}= -0.02014388 \pm 2.9 \cdot 10^{-5} \) | \(a_{491}= +0.95979096 \pm 2.4 \cdot 10^{-5} \) | \(a_{492}= -1.23156413 \pm 5.8 \cdot 10^{-5} \) |
\(a_{493}= +0.01615363 \pm 2.6 \cdot 10^{-5} \) | \(a_{494}= -0.26774486 \pm 3.2 \cdot 10^{-5} \) | \(a_{495}= +0.03425136 \pm 2.3 \cdot 10^{-5} \) |
\(a_{496}= +0.16976660 \pm 3.4 \cdot 10^{-5} \) | \(a_{497}= -0.07315317 \pm 2.6 \cdot 10^{-5} \) | \(a_{498}= +0.29456993 \pm 3.4 \cdot 10^{-5} \) |
\(a_{499}= -0.20009989 \pm 2.8 \cdot 10^{-5} \) | \(a_{500}= -1.14138827 \pm 4.1 \cdot 10^{-5} \) | \(a_{501}= +1.91007663 \pm 2.8 \cdot 10^{-5} \) |
\(a_{502}= -1.65861143 \pm 3.2 \cdot 10^{-5} \) | \(a_{503}= +0.72210445 \pm 3.4 \cdot 10^{-5} \) | \(a_{504}= +0.00400793 \pm 3.4 \cdot 10^{-5} \) |
\(a_{505}= +0.09277243 \pm 3.3 \cdot 10^{-5} \) | \(a_{506}= -1.12170487 \pm 1.8 \cdot 10^{-5} \) | \(a_{507}= +0.14122592 \pm 2.5 \cdot 10^{-5} \) |
\(a_{508}= +0.32466426 \pm 3.2 \cdot 10^{-5} \) | \(a_{509}= -0.36901437 \pm 2.7 \cdot 10^{-5} \) | \(a_{510}= +0.45651504 \pm 3.8 \cdot 10^{-5} \) |
\(a_{511}= -1.16701161 \pm 2.5 \cdot 10^{-5} \) | \(a_{512}= +1.42086370 \pm 3.0 \cdot 10^{-5} \) | \(a_{513}= +0.20726020 \pm 2.3 \cdot 10^{-5} \) |
\(a_{514}= -1.18418727 \pm 3.4 \cdot 10^{-5} \) | \(a_{515}= -0.87801025 \pm 2.6 \cdot 10^{-5} \) | \(a_{516}= +1.67650668 \pm 3.4 \cdot 10^{-5} \) |
\(a_{517}= +0.93678859 \pm 2.2 \cdot 10^{-5} \) | \(a_{518}= -1.64788458 \pm 2.7 \cdot 10^{-5} \) | \(a_{519}= +1.09022646 \pm 3.3 \cdot 10^{-5} \) |
\(a_{520}= -0.05898748 \pm 3.4 \cdot 10^{-5} \) | \(a_{521}= -1.82740576 \pm 2.8 \cdot 10^{-5} \) | \(a_{522}= +0.00327281 \pm 3.2 \cdot 10^{-5} \) |
\(a_{523}= +0.60506848 \pm 2.5 \cdot 10^{-5} \) | \(a_{524}= -1.58300280 \pm 3.8 \cdot 10^{-5} \) | \(a_{525}= -0.25879549 \pm 2.8 \cdot 10^{-5} \) |
\(a_{526}= +0.01545880 \pm 3.3 \cdot 10^{-5} \) | \(a_{527}= +0.06880399 \pm 2.6 \cdot 10^{-5} \) | \(a_{528}= -0.67936853 \pm 1.9 \cdot 10^{-5} \) |
\(a_{529}= +0.12260935 \pm 2.8 \cdot 10^{-5} \) | \(a_{530}= -0.23871695 \pm 3.2 \cdot 10^{-5} \) | \(a_{531}= +0.07344816 \pm 2.8 \cdot 10^{-5} \) |
\(a_{532}= -0.21093140 \pm 3.0 \cdot 10^{-5} \) | \(a_{533}= -1.11285249 \pm 2.5 \cdot 10^{-5} \) | \(a_{534}= +2.20375233 \pm 3.2 \cdot 10^{-5} \) |
\(a_{535}= -1.20277660 \pm 2.7 \cdot 10^{-5} \) | \(a_{536}= +0.04559340 \pm 2.4 \cdot 10^{-5} \) | \(a_{537}= -1.48185107 \pm 3.5 \cdot 10^{-5} \) |
\(a_{538}= +0.90627435 \pm 3.1 \cdot 10^{-5} \) | \(a_{539}= +0.01214940 \pm 2.3 \cdot 10^{-5} \) | \(a_{540}= +0.92262239 \pm 3.2 \cdot 10^{-5} \) |
\(a_{541}= -0.14431488 \pm 2.8 \cdot 10^{-5} \) | \(a_{542}= -1.31174324 \pm 3.2 \cdot 10^{-5} \) | \(a_{543}= +1.70959864 \pm 3.0 \cdot 10^{-5} \) |
\(a_{544}= +0.54728222 \pm 3.8 \cdot 10^{-5} \) | \(a_{545}= -0.43800317 \pm 2.7 \cdot 10^{-5} \) | \(a_{546}= -1.27740608 \pm 2.7 \cdot 10^{-5} \) |
\(a_{547}= +1.59331730 \pm 2.7 \cdot 10^{-5} \) | \(a_{548}= +1.46001217 \pm 3.6 \cdot 10^{-5} \) | \(a_{549}= -0.10057026 \pm 2.3 \cdot 10^{-5} \) |
\(a_{550}= +0.28406417 \pm 3.5 \cdot 10^{-5} \) | \(a_{551}= -0.00852457 \pm 2.7 \cdot 10^{-5} \) | \(a_{552}= -0.07685796 \pm 3.9 \cdot 10^{-5} \) |
\(a_{553}= +0.84568634 \pm 3.2 \cdot 10^{-5} \) | \(a_{554}= +1.14606678 \pm 2.8 \cdot 10^{-5} \) | \(a_{555}= -0.96492827 \pm 2.3 \cdot 10^{-5} \) |
\(a_{556}= -0.77729675 \pm 3.0 \cdot 10^{-5} \) | \(a_{557}= +0.36379005 \pm 2.4 \cdot 10^{-5} \) | \(a_{558}= +0.01394003 \pm 6.3 \cdot 10^{-5} \) |
\(a_{559}= +1.51490660 \pm 3.0 \cdot 10^{-5} \) | \(a_{560}= +0.80185235 \pm 2.0 \cdot 10^{-5} \) | \(a_{561}= -0.27533839 \pm 2.5 \cdot 10^{-5} \) |
\(a_{562}= +0.51550964 \pm 3.0 \cdot 10^{-5} \) | \(a_{563}= +0.55394431 \pm 2.6 \cdot 10^{-5} \) | \(a_{564}= +1.29694393 \pm 5.4 \cdot 10^{-5} \) |
\(a_{565}= -0.23883176 \pm 2.5 \cdot 10^{-5} \) | \(a_{566}= -2.19310704 \pm 3.6 \cdot 10^{-5} \) | \(a_{567}= +0.93510084 \pm 3.1 \cdot 10^{-5} \) |
\(a_{568}= +0.00550178 \pm 2.1 \cdot 10^{-5} \) | \(a_{569}= -0.50503411 \pm 2.5 \cdot 10^{-5} \) | \(a_{570}= -0.24091138 \pm 3.9 \cdot 10^{-5} \) |
\(a_{571}= -0.42781898 \pm 2.7 \cdot 10^{-5} \) | \(a_{572}= +0.71885432 \pm 2.7 \cdot 10^{-5} \) | \(a_{573}= -0.82193371 \pm 3.0 \cdot 10^{-5} \) |
\(a_{574}= -1.71003716 \pm 2.8 \cdot 10^{-5} \) | \(a_{575}= -0.28429322 \pm 2.2 \cdot 10^{-5} \) | \(a_{576}= +0.05966894 \pm 3.9 \cdot 10^{-5} \) |
\(a_{577}= +1.06519599 \pm 2.5 \cdot 10^{-5} \) | \(a_{578}= -1.22227904 \pm 4.3 \cdot 10^{-5} \) | \(a_{579}= -1.53242477 \pm 2.4 \cdot 10^{-5} \) |
\(a_{580}= -0.03794726 \pm 3.4 \cdot 10^{-5} \) | \(a_{581}= +0.20969548 \pm 2.2 \cdot 10^{-5} \) | \(a_{582}= -2.27664456 \pm 4.3 \cdot 10^{-5} \) |
\(a_{583}= +0.14397761 \pm 2.0 \cdot 10^{-5} \) | \(a_{584}= +0.08776981 \pm 3.4 \cdot 10^{-5} \) | \(a_{585}= +0.04284874 \pm 2.7 \cdot 10^{-5} \) |
\(a_{586}= +2.29440742 \pm 2.7 \cdot 10^{-5} \) | \(a_{587}= -0.04218917 \pm 2.7 \cdot 10^{-5} \) | \(a_{588}= +0.01682032 \pm 4.0 \cdot 10^{-5} \) |
\(a_{589}= -0.03630913 \pm 2.9 \cdot 10^{-5} \) | \(a_{590}= -1.66107352 \pm 3.3 \cdot 10^{-5} \) | \(a_{591}= -1.31152181 \pm 2.4 \cdot 10^{-5} \) |
\(a_{592}= -1.09638582 \pm 3.2 \cdot 10^{-5} \) | \(a_{593}= -0.11397639 \pm 3.1 \cdot 10^{-5} \) | \(a_{594}= -1.08538426 \pm 2.5 \cdot 10^{-5} \) |
\(a_{595}= +0.32497934 \pm 1.9 \cdot 10^{-5} \) | \(a_{596}= +0.42102853 \pm 3.2 \cdot 10^{-5} \) | \(a_{597}= -0.52359792 \pm 2.8 \cdot 10^{-5} \) |
\(a_{598}= -1.40326206 \pm 2.6 \cdot 10^{-5} \) | \(a_{599}= +0.32897901 \pm 3.1 \cdot 10^{-5} \) | \(a_{600}= +0.01946376 \pm 2.6 \cdot 10^{-5} \) |
\(a_{601}= -0.20386843 \pm 3.0 \cdot 10^{-5} \) | \(a_{602}= +2.32784363 \pm 2.6 \cdot 10^{-5} \) | \(a_{603}= -0.03311922 \pm 2.2 \cdot 10^{-5} \) |
\(a_{604}= +0.33685274 \pm 2.7 \cdot 10^{-5} \) | \(a_{605}= -0.38818905 \pm 3.3 \cdot 10^{-5} \) | \(a_{606}= -0.15109778 \pm 3.9 \cdot 10^{-5} \) |
\(a_{607}= -0.82110145 \pm 2.6 \cdot 10^{-5} \) | \(a_{608}= -0.28881090 \pm 2.9 \cdot 10^{-5} \) | \(a_{609}= -0.04067057 \pm 3.1 \cdot 10^{-5} \) |
\(a_{610}= +2.27445573 \pm 3.5 \cdot 10^{-5} \) | \(a_{611}= +1.17193026 \pm 2.1 \cdot 10^{-5} \) | \(a_{612}= +0.02183671 \pm 3.2 \cdot 10^{-5} \) |
\(a_{613}= -0.59948780 \pm 2.9 \cdot 10^{-5} \) | \(a_{614}= +0.17799965 \pm 4.1 \cdot 10^{-5} \) | \(a_{615}= -1.00132206 \pm 2.8 \cdot 10^{-5} \) |
\(a_{616}= +0.05466879 \pm 2.2 \cdot 10^{-5} \) | \(a_{617}= -0.35462068 \pm 2.8 \cdot 10^{-5} \) | \(a_{618}= +1.43000885 \pm 3.4 \cdot 10^{-5} \) |
\(a_{619}= +0.88942892 \pm 2.8 \cdot 10^{-5} \) | \(a_{620}= -0.16163072 \pm 6.6 \cdot 10^{-5} \) | \(a_{621}= +1.08625945 \pm 1.8 \cdot 10^{-5} \) |
\(a_{622}= +2.00638400 \pm 2.3 \cdot 10^{-5} \) | \(a_{623}= +1.56878509 \pm 2.3 \cdot 10^{-5} \) | \(a_{624}= -0.84989564 \pm 2.8 \cdot 10^{-5} \) |
\(a_{625}= -0.65968520 \pm 2.6 \cdot 10^{-5} \) | \(a_{626}= -2.51681031 \pm 3.7 \cdot 10^{-5} \) | \(a_{627}= +0.14530113 \pm 3.2 \cdot 10^{-5} \) |
\(a_{628}= -1.14328308 \pm 3.2 \cdot 10^{-5} \) | \(a_{629}= -0.44434956 \pm 2.5 \cdot 10^{-5} \) | \(a_{630}= +0.06584245 \pm 3.8 \cdot 10^{-5} \) |
\(a_{631}= -0.66718996 \pm 2.9 \cdot 10^{-5} \) | \(a_{632}= -0.06360325 \pm 4.5 \cdot 10^{-5} \) | \(a_{633}= +0.73779225 \pm 2.1 \cdot 10^{-5} \) |
\(a_{634}= +1.33380705 \pm 3.2 \cdot 10^{-5} \) | \(a_{635}= +0.26396797 \pm 2.9 \cdot 10^{-5} \) | \(a_{636}= +0.19933087 \pm 4.0 \cdot 10^{-5} \) |
\(a_{637}= +0.01519900 \pm 2.6 \cdot 10^{-5} \) | \(a_{638}= +0.04464163 \pm 3.1 \cdot 10^{-5} \) | \(a_{639}= -0.00399651 \pm 2.9 \cdot 10^{-5} \) |
\(a_{640}= -0.12743015 \pm 3.3 \cdot 10^{-5} \) | \(a_{641}= -0.37455765 \pm 3.1 \cdot 10^{-5} \) | \(a_{642}= +1.95895341 \pm 2.3 \cdot 10^{-5} \) |
\(a_{643}= +0.89503143 \pm 2.7 \cdot 10^{-5} \) | \(a_{644}= -1.10550034 \pm 2.4 \cdot 10^{-5} \) | \(a_{645}= +1.36308219 \pm 2.1 \cdot 10^{-5} \) |
\(a_{646}= -0.11093972 \pm 2.8 \cdot 10^{-5} \) | \(a_{647}= -0.12101205 \pm 3.1 \cdot 10^{-5} \) | \(a_{648}= -0.07032803 \pm 4.0 \cdot 10^{-5} \) |
\(a_{649}= +1.00184501 \pm 2.7 \cdot 10^{-5} \) | \(a_{650}= +0.35536662 \pm 2.7 \cdot 10^{-5} \) | \(a_{651}= -0.17323023 \pm 5.9 \cdot 10^{-5} \) |
\(a_{652}= -0.17675030 \pm 3.4 \cdot 10^{-5} \) | \(a_{653}= +0.88144076 \pm 2.7 \cdot 10^{-5} \) | \(a_{654}= +0.71337254 \pm 3.4 \cdot 10^{-5} \) |
\(a_{655}= -1.28705894 \pm 3.0 \cdot 10^{-5} \) | \(a_{656}= -1.13773775 \pm 4.7 \cdot 10^{-5} \) | \(a_{657}= -0.06375634 \pm 2.5 \cdot 10^{-5} \) |
\(a_{658}= +1.80081756 \pm 2.5 \cdot 10^{-5} \) | \(a_{659}= +0.97591327 \pm 2.9 \cdot 10^{-5} \) | \(a_{660}= +0.64681052 \pm 2.8 \cdot 10^{-5} \) |
\(a_{661}= +0.41949059 \pm 2.9 \cdot 10^{-5} \) | \(a_{662}= +0.54254408 \pm 2.8 \cdot 10^{-5} \) | \(a_{663}= -0.34445060 \pm 2.7 \cdot 10^{-5} \) |
\(a_{664}= -0.01577099 \pm 3.6 \cdot 10^{-5} \) | \(a_{665}= -0.17149758 \pm 2.6 \cdot 10^{-5} \) | \(a_{666}= -0.09002746 \pm 3.1 \cdot 10^{-5} \) |
\(a_{667}= -0.04467762 \pm 2.6 \cdot 10^{-5} \) | \(a_{668}= -2.06628784 \pm 3.4 \cdot 10^{-5} \) | \(a_{669}= -1.36251119 \pm 3.6 \cdot 10^{-5} \) |
\(a_{670}= +0.74901076 \pm 2.7 \cdot 10^{-5} \) | \(a_{671}= -1.37179486 \pm 2.4 \cdot 10^{-5} \) | \(a_{672}= -1.37791181 \pm 3.0 \cdot 10^{-5} \) |
\(a_{673}= -0.47656980 \pm 2.4 \cdot 10^{-5} \) | \(a_{674}= +1.58950661 \pm 3.5 \cdot 10^{-5} \) | \(a_{675}= -0.27508786 \pm 2.3 \cdot 10^{-5} \) |
\(a_{676}= -0.15277576 \pm 3.0 \cdot 10^{-5} \) | \(a_{677}= +1.66821903 \pm 2.6 \cdot 10^{-5} \) | \(a_{678}= +0.38898354 \pm 3.4 \cdot 10^{-5} \) |
\(a_{679}= -1.62067488 \pm 2.6 \cdot 10^{-5} \) | \(a_{680}= -0.02444138 \pm 4.1 \cdot 10^{-5} \) | \(a_{681}= -0.56164641 \pm 2.7 \cdot 10^{-5} \) |
\(a_{682}= +0.19014435 \pm 6.2 \cdot 10^{-5} \) | \(a_{683}= +0.01082270 \pm 2.6 \cdot 10^{-5} \) | \(a_{684}= -0.01152363 \pm 3.5 \cdot 10^{-5} \) |
\(a_{685}= +1.18706153 \pm 2.4 \cdot 10^{-5} \) | \(a_{686}= +1.44403586 \pm 2.5 \cdot 10^{-5} \) | \(a_{687}= -1.01470896 \pm 3.1 \cdot 10^{-5} \) |
\(a_{688}= +1.54878247 \pm 2.8 \cdot 10^{-5} \) | \(a_{689}= +0.18011717 \pm 2.8 \cdot 10^{-5} \) | \(a_{690}= -1.26262670 \pm 2.2 \cdot 10^{-5} \) |
\(a_{691}= -1.96845079 \pm 2.7 \cdot 10^{-5} \) | \(a_{692}= -1.17938812 \pm 4.5 \cdot 10^{-5} \) | \(a_{693}= -0.03971162 \pm 2.6 \cdot 10^{-5} \) |
\(a_{694}= +0.01803920 \pm 3.6 \cdot 10^{-5} \) | \(a_{695}= -0.63198039 \pm 1.9 \cdot 10^{-5} \) | \(a_{696}= +0.00305879 \pm 3.7 \cdot 10^{-5} \) |
\(a_{697}= -0.46110891 \pm 2.2 \cdot 10^{-5} \) | \(a_{698}= +0.12737495 \pm 3.1 \cdot 10^{-5} \) | \(a_{699}= +0.80515379 \pm 2.6 \cdot 10^{-5} \) |
\(a_{700}= +0.27996048 \pm 2.9 \cdot 10^{-5} \) | \(a_{701}= +1.09975196 \pm 3.0 \cdot 10^{-5} \) | \(a_{702}= -1.35782467 \pm 2.5 \cdot 10^{-5} \) |
\(a_{703}= +0.23449144 \pm 2.6 \cdot 10^{-5} \) | \(a_{704}= +0.81389415 \pm 3.1 \cdot 10^{-5} \) | \(a_{705}= +1.05447905 \pm 3.1 \cdot 10^{-5} \) |
\(a_{706}= -2.26139039 \pm 3.9 \cdot 10^{-5} \) | \(a_{707}= -0.10756197 \pm 2.6 \cdot 10^{-5} \) | \(a_{708}= +1.38701177 \pm 4.7 \cdot 10^{-5} \) |
\(a_{709}= -0.86550904 \pm 2.3 \cdot 10^{-5} \) | \(a_{710}= +0.09038352 \pm 1.8 \cdot 10^{-5} \) | \(a_{711}= +0.04620165 \pm 3.2 \cdot 10^{-5} \) |
\(a_{712}= -0.11798681 \pm 3.5 \cdot 10^{-5} \) | \(a_{713}= -0.19029767 \pm 2.6 \cdot 10^{-5} \) | \(a_{714}= -0.52929147 \pm 2.4 \cdot 10^{-5} \) |
\(a_{715}= +0.58446383 \pm 3.1 \cdot 10^{-5} \) | \(a_{716}= +1.60304084 \pm 4.2 \cdot 10^{-5} \) | \(a_{717}= -0.93723589 \pm 3.1 \cdot 10^{-5} \) |
\(a_{718}= -1.49073095 \pm 3.3 \cdot 10^{-5} \) | \(a_{719}= -1.14820535 \pm 2.3 \cdot 10^{-5} \) | \(a_{720}= +0.04380691 \pm 3.3 \cdot 10^{-5} \) |
\(a_{721}= +1.01798035 \pm 2.5 \cdot 10^{-5} \) | \(a_{722}= -1.37395933 \pm 3.7 \cdot 10^{-5} \) | \(a_{723}= -0.48649992 \pm 2.4 \cdot 10^{-5} \) |
\(a_{724}= -1.84941422 \pm 3.6 \cdot 10^{-5} \) | \(a_{725}= +0.01131431 \pm 2.5 \cdot 10^{-5} \) | \(a_{726}= +0.63224065 \pm 3.6 \cdot 10^{-5} \) |
\(a_{727}= -0.65382411 \pm 2.0 \cdot 10^{-5} \) | \(a_{728}= +0.06839111 \pm 2.9 \cdot 10^{-5} \) | \(a_{729}= +1.04815095 \pm 2.6 \cdot 10^{-5} \) |
\(a_{730}= +1.44188722 \pm 3.6 \cdot 10^{-5} \) | \(a_{731}= +0.62769948 \pm 2.1 \cdot 10^{-5} \) | \(a_{732}= -1.89919159 \pm 5.3 \cdot 10^{-5} \) |
\(a_{733}= -0.50654878 \pm 3.1 \cdot 10^{-5} \) | \(a_{734}= +0.31668928 \pm 3.7 \cdot 10^{-5} \) | \(a_{735}= +0.01367575 \pm 2.3 \cdot 10^{-5} \) |
\(a_{736}= -1.51367007 \pm 3.5 \cdot 10^{-5} \) | \(a_{737}= -0.45175164 \pm 2.7 \cdot 10^{-5} \) | \(a_{738}= -0.09342298 \pm 4.4 \cdot 10^{-5} \) |
\(a_{739}= -0.70189055 \pm 2.7 \cdot 10^{-5} \) | \(a_{740}= +1.04384270 \pm 3.1 \cdot 10^{-5} \) | \(a_{741}= +0.18177292 \pm 2.6 \cdot 10^{-5} \) |
\(a_{742}= +0.27677259 \pm 3.0 \cdot 10^{-5} \) | \(a_{743}= -1.73471151 \pm 2.8 \cdot 10^{-5} \) | \(a_{744}= +0.01302848 \pm 7.0 \cdot 10^{-5} \) |
\(a_{745}= +0.34231685 \pm 2.7 \cdot 10^{-5} \) | \(a_{746}= -1.08066042 \pm 3.1 \cdot 10^{-5} \) | \(a_{747}= +0.01145611 \pm 2.6 \cdot 10^{-5} \) |
\(a_{748}= +0.29785631 \pm 2.7 \cdot 10^{-5} \) | \(a_{749}= +1.39452009 \pm 2.1 \cdot 10^{-5} \) | \(a_{750}= +1.51143438 \pm 4.7 \cdot 10^{-5} \) |
\(a_{751}= -0.31377704 \pm 2.5 \cdot 10^{-5} \) | \(a_{752}= +1.19813660 \pm 4.7 \cdot 10^{-5} \) | \(a_{753}= +1.12603710 \pm 3.0 \cdot 10^{-5} \) |
\(a_{754}= +0.05584704 \pm 2.5 \cdot 10^{-5} \) | \(a_{755}= +0.27387781 \pm 2.9 \cdot 10^{-5} \) | \(a_{756}= -1.06970443 \pm 3.9 \cdot 10^{-5} \) |
\(a_{757}= -0.64274638 \pm 2.7 \cdot 10^{-5} \) | \(a_{758}= -1.36187249 \pm 2.6 \cdot 10^{-5} \) | \(a_{759}= +0.76152936 \pm 3.0 \cdot 10^{-5} \) |
\(a_{760}= +0.01289817 \pm 3.1 \cdot 10^{-5} \) | \(a_{761}= +1.01514202 \pm 3.2 \cdot 10^{-5} \) | \(a_{762}= -0.42992270 \pm 3.6 \cdot 10^{-5} \) |
\(a_{763}= +0.50782849 \pm 3.1 \cdot 10^{-5} \) | \(a_{764}= +0.88915366 \pm 4.1 \cdot 10^{-5} \) | \(a_{765}= +0.01775432 \pm 2.3 \cdot 10^{-5} \) |
\(a_{766}= +1.07058725 \pm 3.1 \cdot 10^{-5} \) | \(a_{767}= +1.25331638 \pm 2.9 \cdot 10^{-5} \) | \(a_{768}= -0.86349014 \pm 4.3 \cdot 10^{-5} \) |
\(a_{769}= -1.64722009 \pm 2.4 \cdot 10^{-5} \) | \(a_{770}= +0.89810184 \pm 2.4 \cdot 10^{-5} \) | \(a_{771}= +0.80394888 \pm 3.1 \cdot 10^{-5} \) |
\(a_{772}= +1.65775060 \pm 2.7 \cdot 10^{-5} \) | \(a_{773}= +0.57685279 \pm 2.3 \cdot 10^{-5} \) | \(a_{774}= +0.12717507 \pm 3.3 \cdot 10^{-5} \) |
\(a_{775}= +0.04819160 \pm 2.7 \cdot 10^{-5} \) | \(a_{776}= +0.12188939 \pm 4.2 \cdot 10^{-5} \) | \(a_{777}= +1.11875460 \pm 2.4 \cdot 10^{-5} \) |
\(a_{778}= +0.42393570 \pm 2.6 \cdot 10^{-5} \) | \(a_{779}= +0.24333565 \pm 2.6 \cdot 10^{-5} \) | \(a_{780}= +0.80916530 \pm 2.6 \cdot 10^{-5} \) |
\(a_{781}= -0.05451311 \pm 2.4 \cdot 10^{-5} \) | \(a_{782}= -0.58143972 \pm 2.1 \cdot 10^{-5} \) | \(a_{783}= -0.04323097 \pm 2.2 \cdot 10^{-5} \) |
\(a_{784}= +0.01553887 \pm 3.2 \cdot 10^{-5} \) | \(a_{785}= -0.92954524 \pm 2.2 \cdot 10^{-5} \) | \(a_{786}= +2.09622345 \pm 3.9 \cdot 10^{-5} \) |
\(a_{787}= +1.63969543 \pm 2.8 \cdot 10^{-5} \) | \(a_{788}= +1.41878159 \pm 2.6 \cdot 10^{-5} \) | \(a_{789}= -0.01049503 \pm 3.0 \cdot 10^{-5} \) |
\(a_{790}= -1.04487762 \pm 3.0 \cdot 10^{-5} \) | \(a_{791}= +0.27690570 \pm 2.1 \cdot 10^{-5} \) | \(a_{792}= +0.00298667 \pm 2.2 \cdot 10^{-5} \) |
\(a_{793}= -1.71612670 \pm 2.6 \cdot 10^{-5} \) | \(a_{794}= -0.20405568 \pm 3.4 \cdot 10^{-5} \) | \(a_{795}= +0.16206578 \pm 2.4 \cdot 10^{-5} \) |
\(a_{796}= +0.56641917 \pm 3.2 \cdot 10^{-5} \) | \(a_{797}= -0.81817521 \pm 2.9 \cdot 10^{-5} \) | \(a_{798}= +0.27931684 \pm 3.1 \cdot 10^{-5} \) |
\(a_{799}= +0.48558770 \pm 2.3 \cdot 10^{-5} \) | \(a_{800}= +0.38332670 \pm 2.7 \cdot 10^{-5} \) | \(a_{801}= +0.08570608 \pm 2.3 \cdot 10^{-5} \) |
\(a_{802}= -0.52809522 \pm 2.8 \cdot 10^{-5} \) | \(a_{803}= -0.86964695 \pm 2.2 \cdot 10^{-5} \) | \(a_{804}= -0.62543092 \pm 3.1 \cdot 10^{-5} \) |
\(a_{805}= -0.89882602 \pm 1.9 \cdot 10^{-5} \) | \(a_{806}= +0.23787216 \pm 6.3 \cdot 10^{-5} \) | \(a_{807}= -0.61527283 \pm 2.4 \cdot 10^{-5} \) |
\(a_{808}= +0.00808963 \pm 3.9 \cdot 10^{-5} \) | \(a_{809}= -0.63192025 \pm 2.8 \cdot 10^{-5} \) | \(a_{810}= -1.15535264 \pm 3.9 \cdot 10^{-5} \) |
\(a_{811}= -0.66574178 \pm 3.0 \cdot 10^{-5} \) | \(a_{812}= +0.04399672 \pm 2.8 \cdot 10^{-5} \) | \(a_{813}= +0.89054707 \pm 3.8 \cdot 10^{-5} \) |
\(a_{814}= -1.22798932 \pm 2.9 \cdot 10^{-5} \) | \(a_{815}= -0.14370667 \pm 2.6 \cdot 10^{-5} \) | \(a_{816}= -0.35215310 \pm 5.2 \cdot 10^{-5} \) |
\(a_{817}= -0.33124856 \pm 2.1 \cdot 10^{-5} \) | \(a_{818}= -1.47663388 \pm 2.8 \cdot 10^{-5} \) | \(a_{819}= -0.04967957 \pm 3.2 \cdot 10^{-5} \) |
\(a_{820}= +1.08321288 \pm 3.7 \cdot 10^{-5} \) | \(a_{821}= +1.60652040 \pm 3.1 \cdot 10^{-5} \) | \(a_{822}= -1.93335840 \pm 3.9 \cdot 10^{-5} \) |
\(a_{823}= -0.15245766 \pm 2.6 \cdot 10^{-5} \) | \(a_{824}= -0.07656132 \pm 3.1 \cdot 10^{-5} \) | \(a_{825}= -0.19285216 \pm 2.8 \cdot 10^{-5} \) |
\(a_{826}= +1.92587751 \pm 3.1 \cdot 10^{-5} \) | \(a_{827}= +0.87287912 \pm 2.8 \cdot 10^{-5} \) | \(a_{828}= -0.06039585 \pm 2.9 \cdot 10^{-5} \) |
\(a_{829}= -1.35515999 \pm 2.9 \cdot 10^{-5} \) | \(a_{830}= -0.25908674 \pm 3.5 \cdot 10^{-5} \) | \(a_{831}= -0.77806875 \pm 2.6 \cdot 10^{-5} \) |
\(a_{832}= +1.01818830 \pm 3.0 \cdot 10^{-5} \) | \(a_{833}= +0.00629768 \pm 2.5 \cdot 10^{-5} \) | \(a_{834}= +1.02930183 \pm 3.4 \cdot 10^{-5} \) |
\(a_{835}= -1.67999340 \pm 2.6 \cdot 10^{-5} \) | \(a_{836}= -0.15718425 \pm 3.5 \cdot 10^{-5} \) | \(a_{837}= -0.18413587 \pm 2.5 \cdot 10^{-5} \) |
\(a_{838}= -0.85201600 \pm 3.3 \cdot 10^{-5} \) | \(a_{839}= -0.10453008 \pm 2.4 \cdot 10^{-5} \) | \(a_{840}= +0.06153693 \pm 3.2 \cdot 10^{-5} \) |
\(a_{841}= -0.99822192 \pm 1.9 \cdot 10^{-5} \) | \(a_{842}= +1.54521482 \pm 3.8 \cdot 10^{-5} \) | \(a_{843}= -0.34998130 \pm 2.7 \cdot 10^{-5} \) |
\(a_{844}= -0.79813089 \pm 2.6 \cdot 10^{-5} \) | \(a_{845}= -0.12421419 \pm 2.8 \cdot 10^{-5} \) | \(a_{846}= +0.09838251 \pm 3.9 \cdot 10^{-5} \) |
\(a_{847}= +0.45007313 \pm 2.7 \cdot 10^{-5} \) | \(a_{848}= +0.18414490 \pm 2.5 \cdot 10^{-5} \) | \(a_{849}= +1.48890804 \pm 2.7 \cdot 10^{-5} \) |
\(a_{850}= +0.14724567 \pm 2.2 \cdot 10^{-5} \) | \(a_{851}= +1.22897950 \pm 2.6 \cdot 10^{-5} \) | \(a_{852}= -0.07547108 \pm 2.7 \cdot 10^{-5} \) |
\(a_{853}= +1.73572722 \pm 2.6 \cdot 10^{-5} \) | \(a_{854}= -2.63704351 \pm 2.1 \cdot 10^{-5} \) | \(a_{855}= -0.00936928 \pm 2.9 \cdot 10^{-5} \) |
\(a_{856}= -0.10488051 \pm 2.8 \cdot 10^{-5} \) | \(a_{857}= +1.69600704 \pm 2.5 \cdot 10^{-5} \) | \(a_{858}= -0.95191195 \pm 3.0 \cdot 10^{-5} \) |
\(a_{859}= -0.47182720 \pm 2.8 \cdot 10^{-5} \) | \(a_{860}= -1.47455872 \pm 2.5 \cdot 10^{-5} \) | \(a_{861}= +1.16095021 \pm 2.9 \cdot 10^{-5} \) |
\(a_{862}= -0.82399456 \pm 3.2 \cdot 10^{-5} \) | \(a_{863}= -0.74256067 \pm 2.8 \cdot 10^{-5} \) | \(a_{864}= -1.46465769 \pm 2.6 \cdot 10^{-5} \) |
\(a_{865}= -0.95890041 \pm 3.6 \cdot 10^{-5} \) | \(a_{866}= +0.38694432 \pm 3.5 \cdot 10^{-5} \) | \(a_{867}= +0.82980951 \pm 3.3 \cdot 10^{-5} \) |
\(a_{868}= +0.18739746 \pm 6.5 \cdot 10^{-5} \) | \(a_{869}= +0.63019813 \pm 3.0 \cdot 10^{-5} \) | \(a_{870}= +0.05025004 \pm 4.0 \cdot 10^{-5} \) |
\(a_{871}= -0.56514503 \pm 2.2 \cdot 10^{-5} \) | \(a_{872}= -0.03819329 \pm 3.5 \cdot 10^{-5} \) | \(a_{873}= -0.08854093 \pm 3.0 \cdot 10^{-5} \) |
\(a_{874}= +0.30683644 \pm 2.7 \cdot 10^{-5} \) | \(a_{875}= +1.07594474 \pm 2.9 \cdot 10^{-5} \) | \(a_{876}= -1.20398918 \pm 3.8 \cdot 10^{-5} \) |
\(a_{877}= -1.06646083 \pm 3.0 \cdot 10^{-5} \) | \(a_{878}= +1.43374878 \pm 3.4 \cdot 10^{-5} \) | \(a_{879}= -1.55768122 \pm 2.5 \cdot 10^{-5} \) |
\(a_{880}= +0.59753343 \pm 1.9 \cdot 10^{-5} \) | \(a_{881}= -1.14086522 \pm 2.8 \cdot 10^{-5} \) | \(a_{882}= +0.00127594 \pm 3.2 \cdot 10^{-5} \) |
\(a_{883}= +0.86259235 \pm 2.8 \cdot 10^{-5} \) | \(a_{884}= +0.37262070 \pm 3.0 \cdot 10^{-5} \) | \(a_{885}= +1.12770862 \pm 2.9 \cdot 10^{-5} \) |
\(a_{886}= +0.53826749 \pm 3.8 \cdot 10^{-5} \) | \(a_{887}= +1.98641029 \pm 2.5 \cdot 10^{-5} \) | \(a_{888}= -0.08414045 \pm 3.8 \cdot 10^{-5} \) |
\(a_{889}= -0.30604905 \pm 2.6 \cdot 10^{-5} \) | \(a_{890}= -1.93829363 \pm 2.7 \cdot 10^{-5} \) | \(a_{891}= +0.69682905 \pm 2.2 \cdot 10^{-5} \) |
\(a_{892}= +1.47394102 \pm 3.8 \cdot 10^{-5} \) | \(a_{893}= -0.25625357 \pm 1.9 \cdot 10^{-5} \) | \(a_{894}= -0.55752894 \pm 3.3 \cdot 10^{-5} \) |
\(a_{895}= +1.30335086 \pm 3.1 \cdot 10^{-5} \) | \(a_{896}= +0.14774473 \pm 2.6 \cdot 10^{-5} \) | \(a_{897}= +0.95267952 \pm 3.1 \cdot 10^{-5} \) |
\(a_{898}= +1.71684514 \pm 3.3 \cdot 10^{-5} \) | \(a_{899}= +0.00757347 \pm 2.6 \cdot 10^{-5} \) | \(a_{900}= +0.01529484 \pm 3.1 \cdot 10^{-5} \) |
\(a_{901}= +0.07463131 \pm 2.1 \cdot 10^{-5} \) | \(a_{902}= -1.27430488 \pm 2.3 \cdot 10^{-5} \) | \(a_{903}= -1.58038118 \pm 2.5 \cdot 10^{-5} \) |
\(a_{904}= -0.02082581 \pm 3.3 \cdot 10^{-5} \) | \(a_{905}= -1.50366450 \pm 2.2 \cdot 10^{-5} \) | \(a_{906}= -0.44606278 \pm 3.1 \cdot 10^{-5} \) |
\(a_{907}= +1.49260235 \pm 2.3 \cdot 10^{-5} \) | \(a_{908}= +0.60757936 \pm 3.8 \cdot 10^{-5} \) | \(a_{909}= -0.00587634 \pm 2.8 \cdot 10^{-5} \) |
\(a_{910}= +1.12353282 \pm 2.5 \cdot 10^{-5} \) | \(a_{911}= -1.13388410 \pm 2.7 \cdot 10^{-5} \) | \(a_{912}= +0.18583767 \pm 2.2 \cdot 10^{-5} \) |
\(a_{913}= +0.15626326 \pm 1.9 \cdot 10^{-5} \) | \(a_{914}= -0.33736536 \pm 3.3 \cdot 10^{-5} \) | \(a_{915}= -1.54413595 \pm 2.5 \cdot 10^{-5} \) |
\(a_{916}= +1.09769460 \pm 4.3 \cdot 10^{-5} \) | \(a_{917}= +1.49223851 \pm 3.3 \cdot 10^{-5} \) | \(a_{918}= -0.56261280 \pm 3.1 \cdot 10^{-5} \) |
\(a_{919}= +1.22679331 \pm 2.9 \cdot 10^{-5} \) | \(a_{920}= +0.06759984 \pm 2.9 \cdot 10^{-5} \) | \(a_{921}= -0.12084459 \pm 3.1 \cdot 10^{-5} \) |
\(a_{922}= -1.77858958 \pm 2.6 \cdot 10^{-5} \) | \(a_{923}= -0.06819635 \pm 2.7 \cdot 10^{-5} \) | \(a_{924}= -0.74992335 \pm 3.2 \cdot 10^{-5} \) |
\(a_{925}= -0.31123074 \pm 2.1 \cdot 10^{-5} \) | \(a_{926}= -2.35394500 \pm 3.6 \cdot 10^{-5} \) | \(a_{927}= +0.05561444 \pm 2.9 \cdot 10^{-5} \) |
\(a_{928}= +0.06024106 \pm 2.8 \cdot 10^{-5} \) | \(a_{929}= +0.55878359 \pm 2.7 \cdot 10^{-5} \) | \(a_{930}= +0.21403253 \pm 9.4 \cdot 10^{-5} \) |
\(a_{931}= -0.00332340 \pm 2.1 \cdot 10^{-5} \) | \(a_{932}= -0.87100143 \pm 3.9 \cdot 10^{-5} \) | \(a_{933}= -1.36214112 \pm 2.0 \cdot 10^{-5} \) |
\(a_{934}= -0.69395103 \pm 3.4 \cdot 10^{-5} \) | \(a_{935}= +0.24217179 \pm 1.9 \cdot 10^{-5} \) | \(a_{936}= +0.00373635 \pm 3.1 \cdot 10^{-5} \) |
\(a_{937}= -1.51385681 \pm 2.7 \cdot 10^{-5} \) | \(a_{938}= -0.86841609 \pm 2.5 \cdot 10^{-5} \) | \(a_{939}= +1.70867132 \pm 3.2 \cdot 10^{-5} \) |
\(a_{940}= -1.14071718 \pm 3.7 \cdot 10^{-5} \) | \(a_{941}= +0.00326575 \pm 2.7 \cdot 10^{-5} \) | \(a_{942}= +1.51394350 \pm 3.5 \cdot 10^{-5} \) |
\(a_{943}= +1.27533241 \pm 2.4 \cdot 10^{-5} \) | \(a_{944}= +1.28134265 \pm 3.3 \cdot 10^{-5} \) | \(a_{945}= -0.86972219 \pm 2.7 \cdot 10^{-5} \) |
\(a_{946}= +1.73468891 \pm 2.6 \cdot 10^{-5} \) | \(a_{947}= +0.06062315 \pm 2.9 \cdot 10^{-5} \) | \(a_{948}= +0.87248249 \pm 5.1 \cdot 10^{-5} \) |
\(a_{949}= -1.08793551 \pm 2.8 \cdot 10^{-5} \) | \(a_{950}= -0.07770425 \pm 4.3 \cdot 10^{-5} \) | \(a_{951}= -0.90552627 \pm 2.7 \cdot 10^{-5} \) |
\(a_{952}= +0.02833776 \pm 2.1 \cdot 10^{-5} \) | \(a_{953}= +0.45306232 \pm 3.2 \cdot 10^{-5} \) | \(a_{954}= +0.01512068 \pm 4.2 \cdot 10^{-5} \) |
\(a_{955}= +0.72292555 \pm 3.2 \cdot 10^{-5} \) | \(a_{956}= +1.01388557 \pm 3.5 \cdot 10^{-5} \) | \(a_{957}= -0.03030736 \pm 3.5 \cdot 10^{-5} \) |
\(a_{958}= +0.32286670 \pm 3.8 \cdot 10^{-5} \) | \(a_{959}= -1.37629977 \pm 2.9 \cdot 10^{-5} \) | \(a_{960}= +0.91614515 \pm 4.3 \cdot 10^{-5} \) |
\(a_{961}= +0.03225806 \pm 1.7 \cdot 10^{-6} \) | \(a_{962}= -1.53622477 \pm 2.9 \cdot 10^{-5} \) | \(a_{963}= +0.07618561 \pm 2.3 \cdot 10^{-5} \) |
\(a_{964}= +0.52628719 \pm 2.2 \cdot 10^{-5} \) | \(a_{965}= +1.34783257 \pm 2.4 \cdot 10^{-5} \) | \(a_{966}= +1.46391134 \pm 1.9 \cdot 10^{-5} \) |
\(a_{967}= -0.43209974 \pm 2.6 \cdot 10^{-5} \) | \(a_{968}= -0.03384956 \pm 3.7 \cdot 10^{-5} \) | \(a_{969}= +0.07531736 \pm 2.2 \cdot 10^{-5} \) |
\(a_{970}= +2.00240544 \pm 3.0 \cdot 10^{-5} \) | \(a_{971}= -1.37211302 \pm 2.8 \cdot 10^{-5} \) | \(a_{972}= -0.11387685 \pm 4.1 \cdot 10^{-5} \) |
\(a_{973}= +0.73272905 \pm 2.2 \cdot 10^{-5} \) | \(a_{974}= +1.81021874 \pm 4.0 \cdot 10^{-5} \) | \(a_{975}= -0.24125964 \pm 2.0 \cdot 10^{-5} \) |
\(a_{976}= -1.75450219 \pm 4.6 \cdot 10^{-5} \) | \(a_{977}= -0.48887861 \pm 3.2 \cdot 10^{-5} \) | \(a_{978}= +0.23405400 \pm 3.5 \cdot 10^{-5} \) |
\(a_{979}= +1.16904506 \pm 2.6 \cdot 10^{-5} \) | \(a_{980}= -0.01479419 \pm 3.0 \cdot 10^{-5} \) | \(a_{981}= +0.02774376 \pm 3.0 \cdot 10^{-5} \) |
\(a_{982}= +1.37490464 \pm 2.7 \cdot 10^{-5} \) | \(a_{983}= +1.01553672 \pm 2.1 \cdot 10^{-5} \) | \(a_{984}= -0.08731394 \pm 6.6 \cdot 10^{-5} \) |
\(a_{985}= +1.15353905 \pm 2.1 \cdot 10^{-5} \) | \(a_{986}= +0.02314015 \pm 3.5 \cdot 10^{-5} \) | \(a_{987}= -1.22258134 \pm 2.5 \cdot 10^{-5} \) |
\(a_{988}= -0.19663880 \pm 2.8 \cdot 10^{-5} \) | \(a_{989}= -1.73608767 \pm 2.1 \cdot 10^{-5} \) | \(a_{990}= +0.04906522 \pm 2.3 \cdot 10^{-5} \) |
\(a_{991}= -1.28402011 \pm 2.7 \cdot 10^{-5} \) | \(a_{992}= +0.25658783 \pm 3.7 \cdot 10^{-5} \) | \(a_{993}= -0.36833507 \pm 3.1 \cdot 10^{-5} \) |
\(a_{994}= -0.10479222 \pm 2.5 \cdot 10^{-5} \) | \(a_{995}= +0.46052657 \pm 2.4 \cdot 10^{-5} \) | \(a_{996}= +0.21633983 \pm 4.1 \cdot 10^{-5} \) |
\(a_{997}= -0.33627721 \pm 2.9 \cdot 10^{-5} \) | \(a_{998}= -0.28664394 \pm 3.4 \cdot 10^{-5} \) | \(a_{999}= +1.18918535 \pm 1.9 \cdot 10^{-5} \) |
\(a_{1000}= -0.08092076 \pm 4.2 \cdot 10^{-5} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000