Maass form invariants
Level: | \( 31 \) |
Weight: | \( 0 \) |
Character: | 31.1 |
Symmetry: | even |
Fricke sign: | $-1$ |
Spectral parameter: | \(4.56147272190425031369425246533 \pm 9 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +0.60303055 \pm 6.1 \cdot 10^{-8} \) | \(a_{3}= +0.45446526 \pm 5.4 \cdot 10^{-8} \) |
\(a_{4}= -0.63635415 \pm 6.1 \cdot 10^{-8} \) | \(a_{5}= +0.84530077 \pm 5.2 \cdot 10^{-8} \) | \(a_{6}= +0.27405643 \pm 6.1 \cdot 10^{-8} \) |
\(a_{7}= -1.49729790 \pm 5.3 \cdot 10^{-8} \) | \(a_{8}= -0.98677155 \pm 5.9 \cdot 10^{-8} \) | \(a_{9}= -0.79346133 \pm 5.2 \cdot 10^{-8} \) |
\(a_{10}= +0.50974219 \pm 5.0 \cdot 10^{-8} \) | \(a_{11}= +0.96654384 \pm 5.2 \cdot 10^{-8} \) | \(a_{12}= -0.28920085 \pm 5.8 \cdot 10^{-8} \) |
\(a_{13}= -1.30585237 \pm 4.2 \cdot 10^{-8} \) | \(a_{14}= -0.90291638 \pm 7.1 \cdot 10^{-8} \) | \(a_{15}= +0.38415983 \pm 5.6 \cdot 10^{-8} \) |
\(a_{16}= +0.04130076 \pm 6.3 \cdot 10^{-8} \) | \(a_{17}= -1.34782974 \pm 4.9 \cdot 10^{-8} \) | \(a_{18}= -0.47848143 \pm 4.6 \cdot 10^{-8} \) |
\(a_{19}= +0.40130482 \pm 4.8 \cdot 10^{-8} \) | \(a_{20}= -0.53791066 \pm 5.3 \cdot 10^{-8} \) | \(a_{21}= -0.68046987 \pm 5.3 \cdot 10^{-8} \) |
\(a_{22}= +0.58285547 \pm 6.2 \cdot 10^{-8} \) | \(a_{23}= +0.33431889 \pm 4.2 \cdot 10^{-8} \) | \(a_{24}= -0.44845338 \pm 6.3 \cdot 10^{-8} \) |
\(a_{25}= -0.28546660 \pm 5.6 \cdot 10^{-8} \) | \(a_{26}= -0.78746888 \pm 4.7 \cdot 10^{-8} \) | \(a_{27}= -0.81506586 \pm 5.4 \cdot 10^{-8} \) |
\(a_{28}= +0.95281173 \pm 7.6 \cdot 10^{-8} \) | \(a_{29}= +1.19314019 \pm 5.0 \cdot 10^{-8} \) | \(a_{30}= +0.23166012 \pm 5.7 \cdot 10^{-8} \) |
\(a_{31}= +0.17960530 \pm 1.0 \cdot 10^{-8} \) | \(a_{32}= +1.01167717 \pm 6.1 \cdot 10^{-8} \) | \(a_{33}= +0.43926059 \pm 5.9 \cdot 10^{-8} \) |
\(a_{34}= -0.81278251 \pm 5.2 \cdot 10^{-8} \) | \(a_{35}= -1.26566707 \pm 5.5 \cdot 10^{-8} \) | \(a_{36}= +0.50492241 \pm 4.6 \cdot 10^{-8} \) |
\(a_{37}= +1.03292118 \pm 5.2 \cdot 10^{-8} \) | \(a_{38}= +0.24199907 \pm 6.2 \cdot 10^{-8} \) | \(a_{39}= -0.59346453 \pm 5.3 \cdot 10^{-8} \) |
\(a_{40}= -0.83411876 \pm 4.9 \cdot 10^{-8} \) | \(a_{41}= -1.83785036 \pm 4.0 \cdot 10^{-8} \) | \(a_{42}= -0.41034412 \pm 7.0 \cdot 10^{-8} \) |
\(a_{43}= +1.28174198 \pm 5.3 \cdot 10^{-8} \) | \(a_{44}= -0.61506418 \pm 6.5 \cdot 10^{-8} \) | \(a_{45}= -0.67071348 \pm 5.4 \cdot 10^{-8} \) |
\(a_{46}= +0.20160451 \pm 5.3 \cdot 10^{-8} \) | \(a_{47}= -0.94443330 \pm 4.6 \cdot 10^{-8} \) | \(a_{48}= +0.01876976 \pm 5.7 \cdot 10^{-8} \) |
\(a_{49}= +1.24190100 \pm 4.6 \cdot 10^{-8} \) | \(a_{50}= -0.17214508 \pm 5.2 \cdot 10^{-8} \) | \(a_{51}= -0.61254179 \pm 4.7 \cdot 10^{-8} \) |
\(a_{52}= +0.83098458 \pm 4.6 \cdot 10^{-8} \) | \(a_{53}= +0.69832631 \pm 5.2 \cdot 10^{-8} \) | \(a_{54}= -0.49150962 \pm 5.8 \cdot 10^{-8} \) |
\(a_{55}= +0.81702026 \pm 5.4 \cdot 10^{-8} \) | \(a_{56}= +1.47749097 \pm 7.8 \cdot 10^{-8} \) | \(a_{57}= +0.18237910 \pm 4.4 \cdot 10^{-8} \) |
\(a_{58}= +0.71949999 \pm 6.2 \cdot 10^{-8} \) | \(a_{59}= -1.20918560 \pm 4.2 \cdot 10^{-8} \) | \(a_{60}= -0.24446170 \pm 5.3 \cdot 10^{-8} \) |
\(a_{61}= -1.26142815 \pm 4.6 \cdot 10^{-8} \) | \(a_{62}= +0.10830748 \pm 7.1 \cdot 10^{-8} \) | \(a_{63}= +1.18804798 \pm 3.8 \cdot 10^{-8} \) |
\(a_{64}= +0.56877149 \pm 6.4 \cdot 10^{-8} \) | \(a_{65}= -1.10383802 \pm 3.9 \cdot 10^{-8} \) | \(a_{66}= +0.26488756 \pm 7.0 \cdot 10^{-8} \) |
\(a_{67}= -0.32241115 \pm 4.6 \cdot 10^{-8} \) | \(a_{68}= +0.85769705 \pm 5.6 \cdot 10^{-8} \) | \(a_{69}= +0.15193632 \pm 4.9 \cdot 10^{-8} \) |
\(a_{70}= -0.76323592 \pm 6.0 \cdot 10^{-8} \) | \(a_{71}= -1.34823934 \pm 4.9 \cdot 10^{-8} \) | \(a_{72}= +0.78296507 \pm 5.0 \cdot 10^{-8} \) |
\(a_{73}= +1.12198761 \pm 4.2 \cdot 10^{-8} \) | \(a_{74}= +0.62288303 \pm 5.7 \cdot 10^{-8} \) | \(a_{75}= -0.12973465 \pm 5.5 \cdot 10^{-8} \) |
\(a_{76}= -0.25537199 \pm 5.4 \cdot 10^{-8} \) | \(a_{77}= -1.44720406 \pm 5.3 \cdot 10^{-8} \) | \(a_{78}= -0.35787725 \pm 5.1 \cdot 10^{-8} \) |
\(a_{79}= -0.33502095 \pm 4.5 \cdot 10^{-8} \) | \(a_{80}= +0.03491156 \pm 5.2 \cdot 10^{-8} \) | \(a_{81}= +0.42304222 \pm 5.0 \cdot 10^{-8} \) |
\(a_{82}= -1.10827992 \pm 5.1 \cdot 10^{-8} \) | \(a_{83}= +0.21472025 \pm 4.3 \cdot 10^{-8} \) | \(a_{84}= +0.43301983 \pm 7.3 \cdot 10^{-8} \) |
\(a_{85}= -1.13932152 \pm 5.6 \cdot 10^{-8} \) | \(a_{86}= +0.77292958 \pm 7.1 \cdot 10^{-8} \) | \(a_{87}= +0.54224076 \pm 5.2 \cdot 10^{-8} \) |
\(a_{88}= -0.95375796 \pm 6.0 \cdot 10^{-8} \) | \(a_{89}= +0.21311572 \pm 5.6 \cdot 10^{-8} \) | \(a_{90}= -0.40446072 \pm 4.2 \cdot 10^{-8} \) |
\(a_{91}= +1.95525001 \pm 3.8 \cdot 10^{-8} \) | \(a_{92}= -0.21274521 \pm 5.2 \cdot 10^{-8} \) | \(a_{93}= +0.08162437 \pm 6.5 \cdot 10^{-8} \) |
\(a_{94}= -0.56952214 \pm 5.3 \cdot 10^{-8} \) | \(a_{95}= +0.33922327 \pm 4.1 \cdot 10^{-8} \) | \(a_{96}= +0.45977212 \pm 5.2 \cdot 10^{-8} \) |
\(a_{97}= -1.17906492 \pm 4.8 \cdot 10^{-8} \) | \(a_{98}= +0.74890425 \pm 6.1 \cdot 10^{-8} \) | \(a_{99}= -0.76691516 \pm 5.6 \cdot 10^{-8} \) |
\(a_{100}= +0.18165786 \pm 6.2 \cdot 10^{-8} \) | \(a_{101}= +0.40793074 \pm 5.7 \cdot 10^{-8} \) | \(a_{102}= -0.36938141 \pm 4.8 \cdot 10^{-8} \) |
\(a_{103}= -1.27459690 \pm 4.7 \cdot 10^{-8} \) | \(a_{104}= +1.28857797 \pm 5.1 \cdot 10^{-8} \) | \(a_{105}= -0.57520171 \pm 6.0 \cdot 10^{-8} \) |
\(a_{106}= +0.42111210 \pm 5.7 \cdot 10^{-8} \) | \(a_{107}= +0.20752003 \pm 5.0 \cdot 10^{-8} \) | \(a_{108}= +0.51867054 \pm 5.7 \cdot 10^{-8} \) |
\(a_{109}= -0.27637785 \pm 4.9 \cdot 10^{-8} \) | \(a_{110}= +0.49268818 \pm 4.7 \cdot 10^{-8} \) | \(a_{111}= +0.46942679 \pm 6.1 \cdot 10^{-8} \) |
\(a_{112}= -0.06183953 \pm 7.6 \cdot 10^{-8} \) | \(a_{113}= +0.88241700 \pm 5.3 \cdot 10^{-8} \) | \(a_{114}= +0.10998017 \pm 5.5 \cdot 10^{-8} \) |
\(a_{115}= +0.28260002 \pm 4.7 \cdot 10^{-8} \) | \(a_{116}= -0.75925971 \pm 5.8 \cdot 10^{-8} \) | \(a_{117}= +1.03614336 \pm 5.9 \cdot 10^{-8} \) |
\(a_{118}= -0.72917586 \pm 4.7 \cdot 10^{-8} \) | \(a_{119}= +2.01810263 \pm 4.7 \cdot 10^{-8} \) | \(a_{120}= -0.37907799 \pm 5.9 \cdot 10^{-8} \) |
\(a_{121}= -0.06579301 \pm 4.9 \cdot 10^{-8} \) | \(a_{122}= -0.76067972 \pm 4.9 \cdot 10^{-8} \) | \(a_{123}= -0.83523913 \pm 3.7 \cdot 10^{-8} \) |
\(a_{124}= -0.11429258 \pm 7.1 \cdot 10^{-8} \) | \(a_{125}= -1.08660591 \pm 5.3 \cdot 10^{-8} \) | \(a_{126}= +0.71642923 \pm 3.9 \cdot 10^{-8} \) |
\(a_{127}= +0.79037647 \pm 4.6 \cdot 10^{-8} \) | \(a_{128}= -0.66869058 \pm 6.4 \cdot 10^{-8} \) | \(a_{129}= +0.58250720 \pm 5.1 \cdot 10^{-8} \) |
\(a_{130}= -0.66564805 \pm 4.2 \cdot 10^{-8} \) | \(a_{131}= -1.00628391 \pm 5.3 \cdot 10^{-8} \) | \(a_{132}= -0.27952530 \pm 6.9 \cdot 10^{-8} \) |
\(a_{133}= -0.60087286 \pm 4.9 \cdot 10^{-8} \) | \(a_{134}= -0.19442377 \pm 5.9 \cdot 10^{-8} \) | \(a_{135}= -0.68897580 \pm 4.8 \cdot 10^{-8} \) |
\(a_{136}= +1.33000004 \pm 5.1 \cdot 10^{-8} \) | \(a_{137}= +0.10555362 \pm 4.8 \cdot 10^{-8} \) | \(a_{138}= +0.09162224 \pm 6.0 \cdot 10^{-8} \) |
\(a_{139}= -0.67972829 \pm 5.6 \cdot 10^{-8} \) | \(a_{140}= +0.80541250 \pm 6.2 \cdot 10^{-8} \) | \(a_{141}= -0.42921212 \pm 4.5 \cdot 10^{-8} \) |
\(a_{142}= -0.81302951 \pm 5.8 \cdot 10^{-8} \) | \(a_{143}= -1.26216356 \pm 4.2 \cdot 10^{-8} \) | \(a_{144}= -0.03277055 \pm 4.4 \cdot 10^{-8} \) |
\(a_{145}= +1.00856233 \pm 4.3 \cdot 10^{-8} \) | \(a_{146}= +0.67659281 \pm 4.8 \cdot 10^{-8} \) | \(a_{147}= +0.56440085 \pm 4.9 \cdot 10^{-8} \) |
\(a_{148}= -0.65730368 \pm 5.5 \cdot 10^{-8} \) | \(a_{149}= -0.36187930 \pm 5.0 \cdot 10^{-8} \) | \(a_{150}= -0.07823396 \pm 5.4 \cdot 10^{-8} \) |
\(a_{151}= -1.18905905 \pm 4.2 \cdot 10^{-8} \) | \(a_{152}= -0.39599618 \pm 4.4 \cdot 10^{-8} \) | \(a_{153}= +1.06945078 \pm 4.9 \cdot 10^{-8} \) |
\(a_{154}= -0.87270827 \pm 7.6 \cdot 10^{-8} \) | \(a_{155}= +0.15182050 \pm 6.3 \cdot 10^{-8} \) | \(a_{156}= +0.37765362 \pm 4.6 \cdot 10^{-8} \) |
\(a_{157}= +0.89438341 \pm 4.5 \cdot 10^{-8} \) | \(a_{158}= -0.20202787 \pm 5.0 \cdot 10^{-8} \) | \(a_{159}= +0.31736505 \pm 5.6 \cdot 10^{-8} \) |
\(a_{160}= +0.85517149 \pm 3.8 \cdot 10^{-8} \) | \(a_{161}= -0.50057497 \pm 5.0 \cdot 10^{-8} \) | \(a_{162}= +0.25510738 \pm 5.6 \cdot 10^{-8} \) |
\(a_{163}= -0.20948522 \pm 5.0 \cdot 10^{-8} \) | \(a_{164}= +1.16952370 \pm 5.1 \cdot 10^{-8} \) | \(a_{165}= +0.37130732 \pm 5.7 \cdot 10^{-8} \) |
\(a_{166}= +0.12948287 \pm 4.0 \cdot 10^{-8} \) | \(a_{167}= +1.48028805 \pm 5.4 \cdot 10^{-8} \) | \(a_{168}= +0.67146831 \pm 7.6 \cdot 10^{-8} \) |
\(a_{169}= +0.70525041 \pm 4.2 \cdot 10^{-8} \) | \(a_{170}= -0.68704569 \pm 4.8 \cdot 10^{-8} \) | \(a_{171}= -0.31841985 \pm 3.5 \cdot 10^{-8} \) |
\(a_{172}= -0.81564183 \pm 5.9 \cdot 10^{-8} \) | \(a_{173}= -0.03025647 \pm 4.3 \cdot 10^{-8} \) | \(a_{174}= +0.32698775 \pm 5.8 \cdot 10^{-8} \) |
\(a_{175}= +0.42742854 \pm 5.2 \cdot 10^{-8} \) | \(a_{176}= +0.03991899 \pm 5.3 \cdot 10^{-8} \) | \(a_{177}= -0.54953284 \pm 4.1 \cdot 10^{-8} \) |
\(a_{178}= +0.12851529 \pm 7.1 \cdot 10^{-8} \) | \(a_{179}= -0.90209025 \pm 5.4 \cdot 10^{-8} \) | \(a_{180}= +0.42681131 \pm 4.6 \cdot 10^{-8} \) |
\(a_{181}= -1.36463321 \pm 4.8 \cdot 10^{-8} \) | \(a_{182}= +1.17907550 \pm 4.8 \cdot 10^{-8} \) | \(a_{183}= -0.57327527 \pm 5.6 \cdot 10^{-8} \) |
\(a_{184}= -0.32989637 \pm 5.2 \cdot 10^{-8} \) | \(a_{185}= +0.87312908 \pm 4.2 \cdot 10^{-8} \) | \(a_{186}= +0.04922199 \pm 1.2 \cdot 10^{-7} \) |
\(a_{187}= -1.30273653 \pm 4.7 \cdot 10^{-8} \) | \(a_{188}= +0.60099405 \pm 5.3 \cdot 10^{-8} \) | \(a_{189}= +1.22039640 \pm 4.7 \cdot 10^{-8} \) |
\(a_{190}= +0.20456200 \pm 4.6 \cdot 10^{-8} \) | \(a_{191}= -1.03824521 \pm 5.0 \cdot 10^{-8} \) | \(a_{192}= +0.25848688 \pm 6.0 \cdot 10^{-8} \) |
\(a_{193}= +1.75507327 \pm 6.1 \cdot 10^{-8} \) | \(a_{194}= -0.71101217 \pm 5.9 \cdot 10^{-8} \) | \(a_{195}= -0.50165603 \pm 4.3 \cdot 10^{-8} \) |
\(a_{196}= -0.79028885 \pm 6.8 \cdot 10^{-8} \) | \(a_{197}= +0.21519519 \pm 4.7 \cdot 10^{-8} \) | \(a_{198}= -0.46247327 \pm 4.7 \cdot 10^{-8} \) |
\(a_{199}= -0.53598318 \pm 5.7 \cdot 10^{-8} \) | \(a_{200}= +0.28169032 \pm 5.7 \cdot 10^{-8} \) | \(a_{201}= -0.14652466 \pm 4.1 \cdot 10^{-8} \) |
\(a_{202}= +0.24599470 \pm 7.2 \cdot 10^{-8} \) | \(a_{203}= -1.78648630 \pm 5.1 \cdot 10^{-8} \) | \(a_{204}= +0.38979351 \pm 4.9 \cdot 10^{-8} \) |
\(a_{205}= -1.55353633 \pm 4.2 \cdot 10^{-8} \) | \(a_{206}= -0.76862088 \pm 5.4 \cdot 10^{-8} \) | \(a_{207}= -0.26526911 \pm 3.9 \cdot 10^{-8} \) |
\(a_{208}= -0.05393269 \pm 5.1 \cdot 10^{-8} \) | \(a_{209}= +0.38787870 \pm 3.7 \cdot 10^{-8} \) | \(a_{210}= -0.34686421 \pm 6.7 \cdot 10^{-8} \) |
\(a_{211}= +1.06822106 \pm 4.2 \cdot 10^{-8} \) | \(a_{212}= -0.44438285 \pm 6.2 \cdot 10^{-8} \) | \(a_{213}= -0.61272793 \pm 5.7 \cdot 10^{-8} \) |
\(a_{214}= +0.12514092 \pm 4.8 \cdot 10^{-8} \) | \(a_{215}= +1.08345749 \pm 4.3 \cdot 10^{-8} \) | \(a_{216}= +0.80428380 \pm 6.3 \cdot 10^{-8} \) |
\(a_{217}= -0.26892264 \pm 6.3 \cdot 10^{-8} \) | \(a_{218}= -0.16666429 \pm 6.0 \cdot 10^{-8} \) | \(a_{219}= +0.50990439 \pm 4.3 \cdot 10^{-8} \) |
\(a_{220}= -0.51991423 \pm 5.1 \cdot 10^{-8} \) | \(a_{221}= +1.76006666 \pm 4.0 \cdot 10^{-8} \) | \(a_{222}= +0.28307870 \pm 5.8 \cdot 10^{-8} \) |
\(a_{223}= -0.20350311 \pm 5.7 \cdot 10^{-8} \) | \(a_{224}= -1.51478210 \pm 7.4 \cdot 10^{-8} \) | \(a_{225}= +0.22650671 \pm 5.7 \cdot 10^{-8} \) |
\(a_{226}= +0.53212441 \pm 6.0 \cdot 10^{-8} \) | \(a_{227}= -0.95768438 \pm 5.6 \cdot 10^{-8} \) | \(a_{228}= -0.11605769 \pm 4.8 \cdot 10^{-8} \) |
\(a_{229}= +0.41402242 \pm 5.6 \cdot 10^{-8} \) | \(a_{230}= +0.17041644 \pm 5.3 \cdot 10^{-8} \) | \(a_{231}= -0.65770396 \pm 5.7 \cdot 10^{-8} \) |
\(a_{232}= -1.17735680 \pm 4.8 \cdot 10^{-8} \) | \(a_{233}= +0.78130896 \pm 5.5 \cdot 10^{-8} \) | \(a_{234}= +0.62482611 \pm 4.9 \cdot 10^{-8} \) |
\(a_{235}= -0.79833020 \pm 4.7 \cdot 10^{-8} \) | \(a_{236}= +0.76947028 \pm 5.0 \cdot 10^{-8} \) | \(a_{237}= -0.15225538 \pm 4.6 \cdot 10^{-8} \) |
\(a_{238}= +1.21697755 \pm 6.0 \cdot 10^{-8} \) | \(a_{239}= +0.43240879 \pm 3.6 \cdot 10^{-8} \) | \(a_{240}= +0.01586609 \pm 5.2 \cdot 10^{-8} \) |
\(a_{241}= +1.77621672 \pm 5.6 \cdot 10^{-8} \) | \(a_{242}= -0.03967519 \pm 7.1 \cdot 10^{-8} \) | \(a_{243}= +1.00732385 \pm 4.1 \cdot 10^{-8} \) |
\(a_{244}= +0.80271504 \pm 3.5 \cdot 10^{-8} \) | \(a_{245}= +1.04977988 \pm 4.5 \cdot 10^{-8} \) | \(a_{246}= -0.50367472 \pm 4.6 \cdot 10^{-8} \) |
\(a_{247}= -0.52404485 \pm 3.5 \cdot 10^{-8} \) | \(a_{248}= -0.17722940 \pm 7.0 \cdot 10^{-8} \) | \(a_{249}= +0.09758289 \pm 3.9 \cdot 10^{-8} \) |
\(a_{250}= -0.65525657 \pm 4.7 \cdot 10^{-8} \) | \(a_{251}= +0.39111994 \pm 6.0 \cdot 10^{-8} \) | \(a_{252}= -0.75601927 \pm 4.0 \cdot 10^{-8} \) |
\(a_{253}= +0.32313386 \pm 4.6 \cdot 10^{-8} \) | \(a_{254}= +0.47662116 \pm 5.6 \cdot 10^{-8} \) | \(a_{255}= -0.51778205 \pm 5.3 \cdot 10^{-8} \) |
\(a_{256}= -0.97201234 \pm 6.9 \cdot 10^{-8} \) | \(a_{257}= -0.73991927 \pm 5.2 \cdot 10^{-8} \) | \(a_{258}= +0.35126964 \pm 6.6 \cdot 10^{-8} \) |
\(a_{259}= -1.54659072 \pm 4.1 \cdot 10^{-8} \) | \(a_{260}= +0.70243191 \pm 4.2 \cdot 10^{-8} \) | \(a_{261}= -0.94671060 \pm 4.8 \cdot 10^{-8} \) |
\(a_{262}= -0.60681995 \pm 5.7 \cdot 10^{-8} \) | \(a_{263}= +1.51735650 \pm 4.9 \cdot 10^{-8} \) | \(a_{264}= -0.43344986 \pm 7.0 \cdot 10^{-8} \) |
\(a_{265}= +0.59029577 \pm 6.2 \cdot 10^{-8} \) | \(a_{266}= -0.36234469 \pm 6.7 \cdot 10^{-8} \) | \(a_{267}= +0.09685369 \pm 5.7 \cdot 10^{-8} \) |
\(a_{268}= +0.20516767 \pm 6.0 \cdot 10^{-8} \) | \(a_{269}= -0.85314808 \pm 5.4 \cdot 10^{-8} \) | \(a_{270}= -0.41547346 \pm 4.7 \cdot 10^{-8} \) |
\(a_{271}= -0.42524926 \pm 5.1 \cdot 10^{-8} \) | \(a_{272}= -0.05566639 \pm 5.7 \cdot 10^{-8} \) | \(a_{273}= +0.88859320 \pm 3.8 \cdot 10^{-8} \) |
\(a_{274}= +0.06365206 \pm 5.9 \cdot 10^{-8} \) | \(a_{275}= -0.27591598 \pm 6.3 \cdot 10^{-8} \) | \(a_{276}= -0.09668531 \pm 5.9 \cdot 10^{-8} \) |
\(a_{277}= +0.06939243 \pm 4.8 \cdot 10^{-8} \) | \(a_{278}= -0.40989693 \pm 7.5 \cdot 10^{-8} \) | \(a_{279}= -0.14250986 \pm 6.2 \cdot 10^{-8} \) |
\(a_{280}= +1.24892426 \pm 6.4 \cdot 10^{-8} \) | \(a_{281}= -0.05513511 \pm 4.7 \cdot 10^{-8} \) | \(a_{282}= -0.25882802 \pm 5.0 \cdot 10^{-8} \) |
\(a_{283}= +0.57932697 \pm 5.4 \cdot 10^{-8} \) | \(a_{284}= +0.85795770 \pm 5.3 \cdot 10^{-8} \) | \(a_{285}= +0.15416519 \pm 4.2 \cdot 10^{-8} \) |
\(a_{286}= -0.76112319 \pm 4.4 \cdot 10^{-8} \) | \(a_{287}= +2.75180948 \pm 4.5 \cdot 10^{-8} \) | \(a_{288}= -0.80272671 \pm 4.7 \cdot 10^{-8} \) |
\(a_{289}= +0.81664500 \pm 3.8 \cdot 10^{-8} \) | \(a_{290}= +0.60819390 \pm 4.1 \cdot 10^{-8} \) | \(a_{291}= -0.53584404 \pm 4.6 \cdot 10^{-8} \) |
\(a_{292}= -0.71398147 \pm 4.6 \cdot 10^{-8} \) | \(a_{293}= -0.78332096 \pm 5.8 \cdot 10^{-8} \) | \(a_{294}= +0.34035096 \pm 6.3 \cdot 10^{-8} \) |
\(a_{295}= -1.02212552 \pm 4.8 \cdot 10^{-8} \) | \(a_{296}= -1.01925724 \pm 5.3 \cdot 10^{-8} \) | \(a_{297}= -0.78779689 \pm 5.6 \cdot 10^{-8} \) |
\(a_{298}= -0.21822427 \pm 6.5 \cdot 10^{-8} \) | \(a_{299}= -0.43657111 \pm 3.0 \cdot 10^{-8} \) | \(a_{300}= +0.08255718 \pm 5.1 \cdot 10^{-8} \) |
\(a_{301}= -1.91914958 \pm 5.4 \cdot 10^{-8} \) | \(a_{302}= -0.71703894 \pm 5.5 \cdot 10^{-8} \) | \(a_{303}= +0.18539035 \pm 5.2 \cdot 10^{-8} \) |
\(a_{304}= +0.01657419 \pm 6.0 \cdot 10^{-8} \) | \(a_{305}= -1.06628619 \pm 4.5 \cdot 10^{-8} \) | \(a_{306}= +0.64491149 \pm 4.0 \cdot 10^{-8} \) |
\(a_{307}= +0.05347804 \pm 4.0 \cdot 10^{-8} \) | \(a_{308}= +0.92093431 \pm 8.5 \cdot 10^{-8} \) | \(a_{309}= -0.57926001 \pm 4.2 \cdot 10^{-8} \) |
\(a_{310}= +0.09155240 \pm 1.2 \cdot 10^{-7} \) | \(a_{311}= -1.04956851 \pm 5.1 \cdot 10^{-8} \) | \(a_{312}= +0.58561392 \pm 6.0 \cdot 10^{-8} \) |
\(a_{313}= +1.01200344 \pm 5.2 \cdot 10^{-8} \) | \(a_{314}= +0.53934053 \pm 4.5 \cdot 10^{-8} \) | \(a_{315}= +1.00425788 \pm 4.6 \cdot 10^{-8} \) |
\(a_{316}= +0.21319197 \pm 4.6 \cdot 10^{-8} \) | \(a_{317}= -1.50149315 \pm 4.8 \cdot 10^{-8} \) | \(a_{318}= +0.19138082 \pm 6.2 \cdot 10^{-8} \) |
\(a_{319}= +1.15322230 \pm 5.0 \cdot 10^{-8} \) | \(a_{320}= +0.48078298 \pm 4.7 \cdot 10^{-8} \) | \(a_{321}= +0.09431065 \pm 5.9 \cdot 10^{-8} \) |
\(a_{322}= -0.30186200 \pm 6.7 \cdot 10^{-8} \) | \(a_{323}= -0.54089056 \pm 4.0 \cdot 10^{-8} \) | \(a_{324}= -0.26920467 \pm 5.4 \cdot 10^{-8} \) |
\(a_{325}= +0.37277724 \pm 3.5 \cdot 10^{-8} \) | \(a_{326}= -0.12632599 \pm 5.1 \cdot 10^{-8} \) | \(a_{327}= -0.12560413 \pm 5.1 \cdot 10^{-8} \) |
\(a_{328}= +1.81353845 \pm 5.1 \cdot 10^{-8} \) | \(a_{329}= +1.41409800 \pm 4.9 \cdot 10^{-8} \) | \(a_{330}= +0.22390966 \pm 6.1 \cdot 10^{-8} \) |
\(a_{331}= -1.37315314 \pm 4.8 \cdot 10^{-8} \) | \(a_{332}= -0.13663812 \pm 4.4 \cdot 10^{-8} \) | \(a_{333}= -0.81958302 \pm 7.0 \cdot 10^{-8} \) |
\(a_{334}= +0.89265893 \pm 5.3 \cdot 10^{-8} \) | \(a_{335}= -0.27253439 \pm 3.6 \cdot 10^{-8} \) | \(a_{336}= -0.02810392 \pm 6.6 \cdot 10^{-8} \) |
\(a_{337}= -0.22819535 \pm 6.2 \cdot 10^{-8} \) | \(a_{338}= +0.42528755 \pm 5.0 \cdot 10^{-8} \) | \(a_{339}= +0.40102787 \pm 4.9 \cdot 10^{-8} \) |
\(a_{340}= +0.72501198 \pm 5.9 \cdot 10^{-8} \) | \(a_{341}= +0.17359640 \pm 6.3 \cdot 10^{-8} \) | \(a_{342}= -0.19201690 \pm 3.8 \cdot 10^{-8} \) |
\(a_{343}= -0.36219786 \pm 4.5 \cdot 10^{-8} \) | \(a_{344}= -1.26478652 \pm 5.8 \cdot 10^{-8} \) | \(a_{345}= +0.12843189 \pm 5.9 \cdot 10^{-8} \) |
\(a_{346}= -0.01824557 \pm 4.4 \cdot 10^{-8} \) | \(a_{347}= +1.62028689 \pm 4.2 \cdot 10^{-8} \) | \(a_{348}= -0.34505716 \pm 5.8 \cdot 10^{-8} \) |
\(a_{349}= +0.62868899 \pm 4.1 \cdot 10^{-8} \) | \(a_{350}= +0.25775247 \pm 6.0 \cdot 10^{-8} \) | \(a_{351}= +1.06435569 \pm 5.9 \cdot 10^{-8} \) |
\(a_{352}= +0.97783033 \pm 3.6 \cdot 10^{-8} \) | \(a_{353}= +0.31174745 \pm 4.9 \cdot 10^{-8} \) | \(a_{354}= -0.33138509 \pm 4.8 \cdot 10^{-8} \) |
\(a_{355}= -1.13966776 \pm 4.9 \cdot 10^{-8} \) | \(a_{356}= -0.13561707 \pm 7.8 \cdot 10^{-8} \) | \(a_{357}= +0.91715753 \pm 4.5 \cdot 10^{-8} \) |
\(a_{358}= -0.54398798 \pm 6.4 \cdot 10^{-8} \) | \(a_{359}= +0.94737048 \pm 4.9 \cdot 10^{-8} \) | \(a_{360}= +0.66184098 \pm 4.6 \cdot 10^{-8} \) |
\(a_{361}= -0.83895444 \pm 4.6 \cdot 10^{-8} \) | \(a_{362}= -0.82291552 \pm 5.1 \cdot 10^{-8} \) | \(a_{363}= -0.02990064 \pm 5.3 \cdot 10^{-8} \) |
\(a_{364}= -1.24423146 \pm 5.0 \cdot 10^{-8} \) | \(a_{365}= +0.94841699 \pm 4.4 \cdot 10^{-8} \) | \(a_{366}= -0.34570250 \pm 5.6 \cdot 10^{-8} \) |
\(a_{367}= -1.69221805 \pm 4.2 \cdot 10^{-8} \) | \(a_{368}= +0.01380762 \pm 4.7 \cdot 10^{-8} \) | \(a_{369}= +1.45826319 \pm 3.2 \cdot 10^{-8} \) |
\(a_{370}= +0.52652351 \pm 4.6 \cdot 10^{-8} \) | \(a_{371}= -1.04560252 \pm 5.5 \cdot 10^{-8} \) | \(a_{372}= -0.05194201 \pm 1.2 \cdot 10^{-7} \) |
\(a_{373}= +0.52128855 \pm 4.1 \cdot 10^{-8} \) | \(a_{374}= -0.78558993 \pm 4.6 \cdot 10^{-8} \) | \(a_{375}= -0.49382463 \pm 5.5 \cdot 10^{-8} \) |
\(a_{376}= +0.93193992 \pm 4.8 \cdot 10^{-8} \) | \(a_{377}= -1.55806494 \pm 3.7 \cdot 10^{-8} \) | \(a_{378}= +0.73593632 \pm 6.6 \cdot 10^{-8} \) |
\(a_{379}= -0.46620154 \pm 4.4 \cdot 10^{-8} \) | \(a_{380}= -0.21586614 \pm 4.2 \cdot 10^{-8} \) | \(a_{381}= +0.35919864 \pm 4.0 \cdot 10^{-8} \) |
\(a_{382}= -0.62609358 \pm 6.2 \cdot 10^{-8} \) | \(a_{383}= -0.01512759 \pm 4.5 \cdot 10^{-8} \) | \(a_{384}= -0.30389664 \pm 5.9 \cdot 10^{-8} \) |
\(a_{385}= -1.22332271 \pm 5.1 \cdot 10^{-8} \) | \(a_{386}= +1.05836281 \pm 6.4 \cdot 10^{-8} \) | \(a_{387}= -1.01701270 \pm 3.0 \cdot 10^{-8} \) |
\(a_{388}= +0.75030286 \pm 5.6 \cdot 10^{-8} \) | \(a_{389}= +0.60025836 \pm 5.7 \cdot 10^{-8} \) | \(a_{390}= -0.30251391 \pm 4.4 \cdot 10^{-8} \) |
\(a_{391}= -0.45060494 \pm 3.9 \cdot 10^{-8} \) | \(a_{392}= -1.22547257 \pm 7.2 \cdot 10^{-8} \) | \(a_{393}= -0.45732108 \pm 5.1 \cdot 10^{-8} \) |
\(a_{394}= +0.12976928 \pm 5.1 \cdot 10^{-8} \) | \(a_{395}= -0.28319346 \pm 3.9 \cdot 10^{-8} \) | \(a_{396}= +0.48802965 \pm 4.8 \cdot 10^{-8} \) |
\(a_{397}= +1.43652569 \pm 5.2 \cdot 10^{-8} \) | \(a_{398}= -0.32321424 \pm 7.1 \cdot 10^{-8} \) | \(a_{399}= -0.27307584 \pm 4.4 \cdot 10^{-8} \) |
\(a_{400}= -0.01178999 \pm 6.4 \cdot 10^{-8} \) | \(a_{401}= -0.89002463 \pm 5.4 \cdot 10^{-8} \) | \(a_{402}= -0.08835885 \pm 4.7 \cdot 10^{-8} \) |
\(a_{403}= -0.23453801 \pm 5.3 \cdot 10^{-8} \) | \(a_{404}= -0.25958842 \pm 7.6 \cdot 10^{-8} \) | \(a_{405}= +0.35759791 \pm 4.4 \cdot 10^{-8} \) |
\(a_{406}= -1.07730582 \pm 6.6 \cdot 10^{-8} \) | \(a_{407}= +0.99836360 \pm 4.8 \cdot 10^{-8} \) | \(a_{408}= +0.60443881 \pm 5.2 \cdot 10^{-8} \) |
\(a_{409}= -1.48425977 \pm 4.9 \cdot 10^{-8} \) | \(a_{410}= -0.93682987 \pm 4.7 \cdot 10^{-8} \) | \(a_{411}= +0.04797045 \pm 4.9 \cdot 10^{-8} \) |
\(a_{412}= +0.81109503 \pm 5.2 \cdot 10^{-8} \) | \(a_{413}= +1.81051106 \pm 3.6 \cdot 10^{-8} \) | \(a_{414}= -0.15996538 \pm 4.0 \cdot 10^{-8} \) |
\(a_{415}= +0.18150319 \pm 5.9 \cdot 10^{-8} \) | \(a_{416}= -1.32110103 \pm 5.4 \cdot 10^{-8} \) | \(a_{417}= -0.30891289 \pm 6.5 \cdot 10^{-8} \) |
\(a_{418}= +0.23390271 \pm 4.4 \cdot 10^{-8} \) | \(a_{419}= -1.47007024 \pm 5.8 \cdot 10^{-8} \) | \(a_{420}= +0.36603200 \pm 6.4 \cdot 10^{-8} \) |
\(a_{421}= +1.27564814 \pm 5.3 \cdot 10^{-8} \) | \(a_{422}= +0.64416994 \pm 5.1 \cdot 10^{-8} \) | \(a_{423}= +0.74937131 \pm 4.2 \cdot 10^{-8} \) |
\(a_{424}= -0.68908854 \pm 5.7 \cdot 10^{-8} \) | \(a_{425}= +0.38476037 \pm 5.9 \cdot 10^{-8} \) | \(a_{426}= -0.36949367 \pm 5.6 \cdot 10^{-8} \) |
\(a_{427}= +1.88873372 \pm 4.8 \cdot 10^{-8} \) | \(a_{428}= -0.13205624 \pm 4.1 \cdot 10^{-8} \) | \(a_{429}= -0.57360949 \pm 5.3 \cdot 10^{-8} \) |
\(a_{430}= +0.65335797 \pm 5.3 \cdot 10^{-8} \) | \(a_{431}= +0.27166042 \pm 4.6 \cdot 10^{-8} \) | \(a_{432}= -0.03366284 \pm 6.3 \cdot 10^{-8} \) |
\(a_{433}= +1.42626749 \pm 4.9 \cdot 10^{-8} \) | \(a_{434}= -0.16216857 \pm 1.2 \cdot 10^{-7} \) | \(a_{435}= +0.45835654 \pm 5.3 \cdot 10^{-8} \) |
\(a_{436}= +0.17587419 \pm 6.0 \cdot 10^{-8} \) | \(a_{437}= +0.13416378 \pm 3.3 \cdot 10^{-8} \) | \(a_{438}= +0.30748792 \pm 4.9 \cdot 10^{-8} \) |
\(a_{439}= +1.56208684 \pm 5.3 \cdot 10^{-8} \) | \(a_{440}= -0.80621234 \pm 4.6 \cdot 10^{-8} \) | \(a_{441}= -0.98540042 \pm 3.9 \cdot 10^{-8} \) |
\(a_{442}= +1.06137397 \pm 4.4 \cdot 10^{-8} \) | \(a_{443}= -0.28928002 \pm 4.7 \cdot 10^{-8} \) | \(a_{444}= -0.29872169 \pm 4.9 \cdot 10^{-8} \) |
\(a_{445}= +0.18014688 \pm 4.2 \cdot 10^{-8} \) | \(a_{446}= -0.12271859 \pm 6.9 \cdot 10^{-8} \) | \(a_{447}= -0.16446157 \pm 5.2 \cdot 10^{-8} \) |
\(a_{448}= -0.85162035 \pm 7.7 \cdot 10^{-8} \) | \(a_{449}= +1.52413317 \pm 5.0 \cdot 10^{-8} \) | \(a_{450}= +0.13659047 \pm 4.3 \cdot 10^{-8} \) |
\(a_{451}= -1.77636294 \pm 3.7 \cdot 10^{-8} \) | \(a_{452}= -0.56152972 \pm 5.3 \cdot 10^{-8} \) | \(a_{453}= -0.54038602 \pm 4.2 \cdot 10^{-8} \) |
\(a_{454}= -0.57751294 \pm 6.3 \cdot 10^{-8} \) | \(a_{455}= +1.65277435 \pm 3.6 \cdot 10^{-8} \) | \(a_{456}= -0.17996650 \pm 4.3 \cdot 10^{-8} \) |
\(a_{457}= +0.18688624 \pm 5.0 \cdot 10^{-8} \) | \(a_{458}= +0.24966817 \pm 6.6 \cdot 10^{-8} \) | \(a_{459}= +1.09857001 \pm 4.9 \cdot 10^{-8} \) |
\(a_{460}= -0.17983369 \pm 4.8 \cdot 10^{-8} \) | \(a_{461}= +0.29412865 \pm 5.6 \cdot 10^{-8} \) | \(a_{462}= -0.39661558 \pm 8.3 \cdot 10^{-8} \) |
\(a_{463}= +0.01376003 \pm 5.0 \cdot 10^{-8} \) | \(a_{464}= +0.04927759 \pm 4.9 \cdot 10^{-8} \) | \(a_{465}= +0.06899714 \pm 1.1 \cdot 10^{-7} \) |
\(a_{466}= +0.47115318 \pm 5.8 \cdot 10^{-8} \) | \(a_{467}= -1.43225063 \pm 5.1 \cdot 10^{-8} \) | \(a_{468}= -0.65935413 \pm 4.4 \cdot 10^{-8} \) |
\(a_{469}= +0.48274553 \pm 4.5 \cdot 10^{-8} \) | \(a_{470}= -0.48141750 \pm 4.4 \cdot 10^{-8} \) | \(a_{471}= +0.40646619 \pm 4.7 \cdot 10^{-8} \) |
\(a_{472}= +1.19318995 \pm 5.3 \cdot 10^{-8} \) | \(a_{473}= +1.23885981 \pm 4.8 \cdot 10^{-8} \) | \(a_{474}= -0.09181465 \pm 4.7 \cdot 10^{-8} \) |
\(a_{475}= -0.11455912 \pm 4.1 \cdot 10^{-8} \) | \(a_{476}= -1.28422799 \pm 6.7 \cdot 10^{-8} \) | \(a_{477}= -0.55409493 \pm 5.0 \cdot 10^{-8} \) |
\(a_{478}= +0.26075571 \pm 4.5 \cdot 10^{-8} \) | \(a_{479}= -1.43015019 \pm 4.3 \cdot 10^{-8} \) | \(a_{480}= +0.38864573 \pm 3.9 \cdot 10^{-8} \) |
\(a_{481}= -1.34884258 \pm 5.1 \cdot 10^{-8} \) | \(a_{482}= +1.07111295 \pm 6.4 \cdot 10^{-8} \) | \(a_{483}= -0.22749393 \pm 5.5 \cdot 10^{-8} \) |
\(a_{484}= +0.04186765 \pm 7.8 \cdot 10^{-8} \) | \(a_{485}= -0.99666449 \pm 4.7 \cdot 10^{-8} \) | \(a_{486}= +0.60744706 \pm 4.3 \cdot 10^{-8} \) |
\(a_{487}= -1.59255556 \pm 5.1 \cdot 10^{-8} \) | \(a_{488}= +1.24474141 \pm 4.3 \cdot 10^{-8} \) | \(a_{489}= -0.09520375 \pm 6.5 \cdot 10^{-8} \) |
\(a_{490}= +0.63304934 \pm 5.6 \cdot 10^{-8} \) | \(a_{491}= +0.41380082 \pm 4.0 \cdot 10^{-8} \) | \(a_{492}= +0.53150789 \pm 4.5 \cdot 10^{-8} \) |
\(a_{493}= -1.60814983 \pm 4.6 \cdot 10^{-8} \) | \(a_{494}= -0.31601505 \pm 4.6 \cdot 10^{-8} \) | \(a_{495}= -0.64827398 \pm 6.0 \cdot 10^{-8} \) |
\(a_{496}= +0.00741783 \pm 7.3 \cdot 10^{-8} \) | \(a_{497}= +2.01871593 \pm 4.7 \cdot 10^{-8} \) | \(a_{498}= +0.05884547 \pm 4.1 \cdot 10^{-8} \) |
\(a_{499}= +0.28412385 \pm 5.5 \cdot 10^{-8} \) | \(a_{500}= +0.69146618 \pm 5.0 \cdot 10^{-8} \) | \(a_{501}= +0.67273949 \pm 5.8 \cdot 10^{-8} \) |
\(a_{502}= +0.23585727 \pm 7.2 \cdot 10^{-8} \) | \(a_{503}= -0.80112158 \pm 4.0 \cdot 10^{-8} \) | \(a_{504}= -1.17233195 \pm 4.3 \cdot 10^{-8} \) |
\(a_{505}= +0.34482417 \pm 5.5 \cdot 10^{-8} \) | \(a_{506}= +0.19485959 \pm 6.6 \cdot 10^{-8} \) | \(a_{507}= +0.32051181 \pm 4.9 \cdot 10^{-8} \) |
\(a_{508}= -0.50295935 \pm 5.1 \cdot 10^{-8} \) | \(a_{509}= -1.13659016 \pm 4.8 \cdot 10^{-8} \) | \(a_{510}= -0.31223839 \pm 4.9 \cdot 10^{-8} \) |
\(a_{511}= -1.67994969 \pm 3.9 \cdot 10^{-8} \) | \(a_{512}= +0.08253744 \pm 6.7 \cdot 10^{-8} \) | \(a_{513}= -0.32708986 \pm 4.5 \cdot 10^{-8} \) |
\(a_{514}= -0.44619393 \pm 5.9 \cdot 10^{-8} \) | \(a_{515}= -1.07741775 \pm 5.1 \cdot 10^{-8} \) | \(a_{516}= -0.37068087 \pm 5.4 \cdot 10^{-8} \) |
\(a_{517}= -0.91283619 \pm 3.7 \cdot 10^{-8} \) | \(a_{518}= -0.93264146 \pm 5.3 \cdot 10^{-8} \) | \(a_{519}= -0.01375051 \pm 5.0 \cdot 10^{-8} \) |
\(a_{520}= +1.08923595 \pm 4.3 \cdot 10^{-8} \) | \(a_{521}= +1.24972825 \pm 4.2 \cdot 10^{-8} \) | \(a_{522}= -0.57089542 \pm 4.9 \cdot 10^{-8} \) |
\(a_{523}= -0.03741105 \pm 5.1 \cdot 10^{-8} \) | \(a_{524}= +0.64035295 \pm 5.6 \cdot 10^{-8} \) | \(a_{525}= +0.19425142 \pm 5.6 \cdot 10^{-8} \) |
\(a_{526}= +0.91501233 \pm 6.5 \cdot 10^{-8} \) | \(a_{527}= -0.24207737 \pm 6.0 \cdot 10^{-8} \) | \(a_{528}= +0.01814179 \pm 5.6 \cdot 10^{-8} \) |
\(a_{529}= -0.88823088 \pm 4.2 \cdot 10^{-8} \) | \(a_{530}= +0.35596639 \pm 5.1 \cdot 10^{-8} \) | \(a_{531}= +0.95944202 \pm 4.0 \cdot 10^{-8} \) |
\(a_{532}= +0.38236794 \pm 6.0 \cdot 10^{-8} \) | \(a_{533}= +2.39996124 \pm 3.3 \cdot 10^{-8} \) | \(a_{534}= +0.05840573 \pm 7.3 \cdot 10^{-8} \) |
\(a_{535}= +0.17541685 \pm 4.9 \cdot 10^{-8} \) | \(a_{536}= +0.31814615 \pm 6.0 \cdot 10^{-8} \) | \(a_{537}= -0.40996868 \pm 5.0 \cdot 10^{-8} \) |
\(a_{538}= -0.51447436 \pm 6.3 \cdot 10^{-8} \) | \(a_{539}= +1.20035176 \pm 4.9 \cdot 10^{-8} \) | \(a_{540}= +0.43843261 \pm 4.7 \cdot 10^{-8} \) |
\(a_{541}= -1.11558691 \pm 4.9 \cdot 10^{-8} \) | \(a_{542}= -0.25643829 \pm 5.5 \cdot 10^{-8} \) | \(a_{543}= -0.62017838 \pm 5.7 \cdot 10^{-8} \) |
\(a_{544}= -1.36356857 \pm 5.2 \cdot 10^{-8} \) | \(a_{545}= -0.23362241 \pm 5.7 \cdot 10^{-8} \) | \(a_{546}= +0.53584885 \pm 4.6 \cdot 10^{-8} \) |
\(a_{547}= +1.11957462 \pm 4.6 \cdot 10^{-8} \) | \(a_{548}= -0.06716948 \pm 5.4 \cdot 10^{-8} \) | \(a_{549}= +1.00089446 \pm 5.2 \cdot 10^{-8} \) |
\(a_{550}= -0.16638577 \pm 5.9 \cdot 10^{-8} \) | \(a_{551}= +0.47881290 \pm 4.9 \cdot 10^{-8} \) | \(a_{552}= -0.14992644 \pm 5.9 \cdot 10^{-8} \) |
\(a_{553}= +0.50162616 \pm 4.1 \cdot 10^{-8} \) | \(a_{554}= +0.04184576 \pm 4.9 \cdot 10^{-8} \) | \(a_{555}= +0.39680683 \pm 5.4 \cdot 10^{-8} \) |
\(a_{556}= +0.43254792 \pm 7.9 \cdot 10^{-8} \) | \(a_{557}= -0.75651994 \pm 5.9 \cdot 10^{-8} \) | \(a_{558}= -0.08593780 \pm 1.2 \cdot 10^{-7} \) |
\(a_{559}= -1.67376580 \pm 3.8 \cdot 10^{-8} \) | \(a_{560}= -0.05227301 \pm 5.7 \cdot 10^{-8} \) | \(a_{561}= -0.59204849 \pm 4.5 \cdot 10^{-8} \) |
\(a_{562}= -0.03324816 \pm 6.2 \cdot 10^{-8} \) | \(a_{563}= -1.61888118 \pm 4.8 \cdot 10^{-8} \) | \(a_{564}= +0.27313092 \pm 4.8 \cdot 10^{-8} \) |
\(a_{565}= +0.74590777 \pm 6.0 \cdot 10^{-8} \) | \(a_{566}= +0.34935186 \pm 6.3 \cdot 10^{-8} \) | \(a_{567}= -0.63342022 \pm 4.8 \cdot 10^{-8} \) |
\(a_{568}= +1.33040422 \pm 4.9 \cdot 10^{-8} \) | \(a_{569}= +0.04206367 \pm 4.6 \cdot 10^{-8} \) | \(a_{570}= +0.09296632 \pm 4.8 \cdot 10^{-8} \) |
\(a_{571}= -0.12421379 \pm 5.0 \cdot 10^{-8} \) | \(a_{572}= +0.80318302 \pm 4.2 \cdot 10^{-8} \) | \(a_{573}= -0.47184637 \pm 5.4 \cdot 10^{-8} \) |
\(a_{574}= +1.65942519 \pm 6.0 \cdot 10^{-8} \) | \(a_{575}= -0.09543688 \pm 4.3 \cdot 10^{-8} \) | \(a_{576}= -0.45129818 \pm 5.8 \cdot 10^{-8} \) |
\(a_{577}= +1.14913523 \pm 4.9 \cdot 10^{-8} \) | \(a_{578}= +0.49246189 \pm 3.9 \cdot 10^{-8} \) | \(a_{579}= +0.79761982 \pm 5.1 \cdot 10^{-8} \) |
\(a_{580}= -0.64180282 \pm 4.1 \cdot 10^{-8} \) | \(a_{581}= -0.32150018 \pm 4.0 \cdot 10^{-8} \) | \(a_{582}= -0.32313033 \pm 5.9 \cdot 10^{-8} \) |
\(a_{583}= +0.67496299 \pm 6.0 \cdot 10^{-8} \) | \(a_{584}= -1.10714545 \pm 4.9 \cdot 10^{-8} \) | \(a_{585}= +0.87585279 \pm 4.6 \cdot 10^{-8} \) |
\(a_{586}= -0.47236647 \pm 6.9 \cdot 10^{-8} \) | \(a_{587}= -0.60857192 \pm 5.3 \cdot 10^{-8} \) | \(a_{588}= -0.35915883 \pm 6.7 \cdot 10^{-8} \) |
\(a_{589}= +0.07207647 \pm 5.8 \cdot 10^{-8} \) | \(a_{590}= -0.61637292 \pm 4.6 \cdot 10^{-8} \) | \(a_{591}= +0.09779874 \pm 4.4 \cdot 10^{-8} \) |
\(a_{592}= +0.04266042 \pm 5.2 \cdot 10^{-8} \) | \(a_{593}= +1.97225894 \pm 6.0 \cdot 10^{-8} \) | \(a_{594}= -0.47506559 \pm 5.8 \cdot 10^{-8} \) |
\(a_{595}= +1.70590372 \pm 5.5 \cdot 10^{-8} \) | \(a_{596}= +0.23028339 \pm 6.6 \cdot 10^{-8} \) | \(a_{597}= -0.24358573 \pm 5.8 \cdot 10^{-8} \) |
\(a_{598}= -0.26326572 \pm 3.6 \cdot 10^{-8} \) | \(a_{599}= -0.45820396 \pm 5.4 \cdot 10^{-8} \) | \(a_{600}= +0.12801846 \pm 5.9 \cdot 10^{-8} \) |
\(a_{601}= -0.55289147 \pm 5.1 \cdot 10^{-8} \) | \(a_{602}= -1.15730583 \pm 7.6 \cdot 10^{-8} \) | \(a_{603}= +0.25582078 \pm 3.9 \cdot 10^{-8} \) |
\(a_{604}= +0.75666266 \pm 5.6 \cdot 10^{-8} \) | \(a_{605}= -0.05561488 \pm 3.9 \cdot 10^{-8} \) | \(a_{606}= +0.11179604 \pm 6.5 \cdot 10^{-8} \) |
\(a_{607}= -0.68459534 \pm 4.6 \cdot 10^{-8} \) | \(a_{608}= +0.40599092 \pm 6.5 \cdot 10^{-8} \) | \(a_{609}= -0.81189595 \pm 5.2 \cdot 10^{-8} \) |
\(a_{610}= -0.64300315 \pm 4.3 \cdot 10^{-8} \) | \(a_{611}= +1.23329047 \pm 3.5 \cdot 10^{-8} \) | \(a_{612}= -0.68054944 \pm 4.5 \cdot 10^{-8} \) |
\(a_{613}= -1.14890019 \pm 5.1 \cdot 10^{-8} \) | \(a_{614}= +0.03224889 \pm 5.4 \cdot 10^{-8} \) | \(a_{615}= -0.70602829 \pm 4.0 \cdot 10^{-8} \) |
\(a_{616}= +1.42805979 \pm 8.0 \cdot 10^{-8} \) | \(a_{617}= +0.48287048 \pm 4.5 \cdot 10^{-8} \) | \(a_{618}= -0.34931148 \pm 5.0 \cdot 10^{-8} \) |
\(a_{619}= +1.53184445 \pm 6.2 \cdot 10^{-8} \) | \(a_{620}= -0.09661161 \pm 1.2 \cdot 10^{-7} \) | \(a_{621}= -0.27249191 \pm 3.9 \cdot 10^{-8} \) |
\(a_{622}= -0.63292188 \pm 5.1 \cdot 10^{-8} \) | \(a_{623}= -0.31909771 \pm 6.1 \cdot 10^{-8} \) | \(a_{624}= -0.02451053 \pm 4.8 \cdot 10^{-8} \) |
\(a_{625}= -0.63304222 \pm 4.5 \cdot 10^{-8} \) | \(a_{626}= +0.61026899 \pm 6.0 \cdot 10^{-8} \) | \(a_{627}= +0.17627739 \pm 4.1 \cdot 10^{-8} \) |
\(a_{628}= -0.56914460 \pm 4.6 \cdot 10^{-8} \) | \(a_{629}= -1.39220189 \pm 5.0 \cdot 10^{-8} \) | \(a_{630}= +0.60559819 \pm 3.8 \cdot 10^{-8} \) |
\(a_{631}= -0.53720339 \pm 5.4 \cdot 10^{-8} \) | \(a_{632}= +0.33058914 \pm 4.5 \cdot 10^{-8} \) | \(a_{633}= +0.48546936 \pm 4.7 \cdot 10^{-8} \) |
\(a_{634}= -0.90544625 \pm 5.2 \cdot 10^{-8} \) | \(a_{635}= +0.66810584 \pm 3.9 \cdot 10^{-8} \) | \(a_{636}= -0.20195656 \pm 6.3 \cdot 10^{-8} \) |
\(a_{637}= -1.62173936 \pm 3.7 \cdot 10^{-8} \) | \(a_{638}= +0.69542828 \pm 6.6 \cdot 10^{-8} \) | \(a_{639}= +1.06977578 \pm 6.3 \cdot 10^{-8} \) |
\(a_{640}= -0.56524467 \pm 4.4 \cdot 10^{-8} \) | \(a_{641}= -0.05332795 \pm 4.8 \cdot 10^{-8} \) | \(a_{642}= +0.05687220 \pm 5.4 \cdot 10^{-8} \) |
\(a_{643}= -0.66163358 \pm 4.7 \cdot 10^{-8} \) | \(a_{644}= +0.31854296 \pm 6.9 \cdot 10^{-8} \) | \(a_{645}= +0.49239378 \pm 4.6 \cdot 10^{-8} \) |
\(a_{646}= -0.32617354 \pm 4.8 \cdot 10^{-8} \) | \(a_{647}= +0.41801433 \pm 5.7 \cdot 10^{-8} \) | \(a_{648}= -0.41744602 \pm 5.3 \cdot 10^{-8} \) |
\(a_{649}= -1.16873089 \pm 4.5 \cdot 10^{-8} \) | \(a_{650}= +0.22479606 \pm 3.7 \cdot 10^{-8} \) | \(a_{651}= -0.12221600 \pm 1.1 \cdot 10^{-7} \) |
\(a_{652}= +0.13330679 \pm 5.3 \cdot 10^{-8} \) | \(a_{653}= +1.64270471 \pm 4.7 \cdot 10^{-8} \) | \(a_{654}= -0.07574313 \pm 6.5 \cdot 10^{-8} \) |
\(a_{655}= -0.85061257 \pm 6.0 \cdot 10^{-8} \) | \(a_{656}= -0.07590461 \pm 5.4 \cdot 10^{-8} \) | \(a_{657}= -0.89025378 \pm 3.9 \cdot 10^{-8} \) |
\(a_{658}= +0.85274430 \pm 6.3 \cdot 10^{-8} \) | \(a_{659}= +0.30646276 \pm 4.9 \cdot 10^{-8} \) | \(a_{660}= -0.23628295 \pm 4.9 \cdot 10^{-8} \) |
\(a_{661}= -0.66679001 \pm 4.4 \cdot 10^{-8} \) | \(a_{662}= -0.82805330 \pm 5.5 \cdot 10^{-8} \) | \(a_{663}= +0.79988914 \pm 4.6 \cdot 10^{-8} \) |
\(a_{664}= -0.21187983 \pm 3.6 \cdot 10^{-8} \) | \(a_{665}= -0.50791829 \pm 4.5 \cdot 10^{-8} \) | \(a_{666}= -0.49423360 \pm 6.1 \cdot 10^{-8} \) |
\(a_{667}= +0.39888930 \pm 4.4 \cdot 10^{-8} \) | \(a_{668}= -0.94198745 \pm 5.4 \cdot 10^{-8} \) | \(a_{669}= -0.09248509 \pm 5.7 \cdot 10^{-8} \) |
\(a_{670}= -0.16434657 \pm 4.0 \cdot 10^{-8} \) | \(a_{671}= -1.21922560 \pm 4.5 \cdot 10^{-8} \) | \(a_{672}= -0.68841583 \pm 5.6 \cdot 10^{-8} \) |
\(a_{673}= -1.71339061 \pm 4.6 \cdot 10^{-8} \) | \(a_{674}= -0.13760877 \pm 7.7 \cdot 10^{-8} \) | \(a_{675}= +0.23267408 \pm 4.6 \cdot 10^{-8} \) |
\(a_{676}= -0.44878903 \pm 4.9 \cdot 10^{-8} \) | \(a_{677}= +0.48982033 \pm 5.9 \cdot 10^{-8} \) | \(a_{678}= +0.24183206 \pm 5.8 \cdot 10^{-8} \) |
\(a_{679}= +1.76541143 \pm 4.9 \cdot 10^{-8} \) | \(a_{680}= +1.12425006 \pm 4.9 \cdot 10^{-8} \) | \(a_{681}= -0.43523428 \pm 6.9 \cdot 10^{-8} \) |
\(a_{682}= +0.10468393 \pm 1.2 \cdot 10^{-7} \) | \(a_{683}= +1.46456986 \pm 5.6 \cdot 10^{-8} \) | \(a_{684}= +0.20262780 \pm 4.2 \cdot 10^{-8} \) |
\(a_{685}= +0.08922456 \pm 4.1 \cdot 10^{-8} \) | \(a_{686}= -0.21841637 \pm 5.4 \cdot 10^{-8} \) | \(a_{687}= +0.18815881 \pm 5.6 \cdot 10^{-8} \) |
\(a_{688}= +0.05293691 \pm 7.1 \cdot 10^{-8} \) | \(a_{689}= -0.91191107 \pm 3.7 \cdot 10^{-8} \) | \(a_{690}= +0.07744835 \pm 6.5 \cdot 10^{-8} \) |
\(a_{691}= +1.41472322 \pm 5.1 \cdot 10^{-8} \) | \(a_{692}= +0.01925383 \pm 4.3 \cdot 10^{-8} \) | \(a_{693}= +1.14830046 \pm 3.8 \cdot 10^{-8} \) |
\(a_{694}= +0.97708250 \pm 4.3 \cdot 10^{-8} \) | \(a_{695}= -0.57457485 \pm 5.1 \cdot 10^{-8} \) | \(a_{696}= -0.53506776 \pm 5.3 \cdot 10^{-8} \) |
\(a_{697}= +2.47710936 \pm 4.4 \cdot 10^{-8} \) | \(a_{698}= +0.37911867 \pm 4.5 \cdot 10^{-8} \) | \(a_{699}= +0.35507778 \pm 6.6 \cdot 10^{-8} \) |
\(a_{700}= -0.27199593 \pm 7.1 \cdot 10^{-8} \) | \(a_{701}= -1.33980502 \pm 5.2 \cdot 10^{-8} \) | \(a_{702}= +0.64183900 \pm 5.4 \cdot 10^{-8} \) |
\(a_{703}= +0.41451625 \pm 4.6 \cdot 10^{-8} \) | \(a_{704}= +0.54974258 \pm 4.9 \cdot 10^{-8} \) | \(a_{705}= -0.36281334 \pm 5.1 \cdot 10^{-8} \) |
\(a_{706}= +0.18799324 \pm 6.4 \cdot 10^{-8} \) | \(a_{707}= -0.61079384 \pm 5.8 \cdot 10^{-8} \) | \(a_{708}= +0.34969751 \pm 5.0 \cdot 10^{-8} \) |
\(a_{709}= +1.73809215 \pm 5.8 \cdot 10^{-8} \) | \(a_{710}= -0.68725448 \pm 4.6 \cdot 10^{-8} \) | \(a_{711}= +0.26582617 \pm 4.7 \cdot 10^{-8} \) |
\(a_{712}= -0.21029653 \pm 7.6 \cdot 10^{-8} \) | \(a_{713}= +0.06004545 \pm 5.2 \cdot 10^{-8} \) | \(a_{714}= +0.55307401 \pm 5.7 \cdot 10^{-8} \) |
\(a_{715}= -1.06690784 \pm 3.8 \cdot 10^{-8} \) | \(a_{716}= +0.57404887 \pm 7.1 \cdot 10^{-8} \) | \(a_{717}= +0.19651477 \pm 4.1 \cdot 10^{-8} \) |
\(a_{718}= +0.57129335 \pm 6.0 \cdot 10^{-8} \) | \(a_{719}= +0.63978251 \pm 5.3 \cdot 10^{-8} \) | \(a_{720}= -0.02770097 \pm 4.7 \cdot 10^{-8} \) |
\(a_{721}= +1.90845126 \pm 4.7 \cdot 10^{-8} \) | \(a_{722}= -0.50591516 \pm 5.6 \cdot 10^{-8} \) | \(a_{723}= +0.80722878 \pm 6.2 \cdot 10^{-8} \) |
\(a_{724}= +0.86839001 \pm 4.6 \cdot 10^{-8} \) | \(a_{725}= -0.34060167 \pm 5.0 \cdot 10^{-8} \) | \(a_{726}= -0.01803100 \pm 7.0 \cdot 10^{-8} \) |
\(a_{727}= -1.01243738 \pm 5.0 \cdot 10^{-8} \) | \(a_{728}= -1.92938508 \pm 5.6 \cdot 10^{-8} \) | \(a_{729}= +0.03475148 \pm 4.4 \cdot 10^{-8} \) |
\(a_{730}= +0.57192443 \pm 4.5 \cdot 10^{-8} \) | \(a_{731}= -1.72756996 \pm 4.3 \cdot 10^{-8} \) | \(a_{732}= +0.36480609 \pm 3.6 \cdot 10^{-8} \) |
\(a_{733}= -1.05085992 \pm 4.9 \cdot 10^{-8} \) | \(a_{734}= -1.02045919 \pm 5.1 \cdot 10^{-8} \) | \(a_{735}= +0.47708848 \pm 4.9 \cdot 10^{-8} \) |
\(a_{736}= +0.33822279 \pm 3.8 \cdot 10^{-8} \) | \(a_{737}= -0.31162451 \pm 3.9 \cdot 10^{-8} \) | \(a_{738}= +0.87937726 \pm 3.6 \cdot 10^{-8} \) |
\(a_{739}= +1.48267704 \pm 4.5 \cdot 10^{-8} \) | \(a_{740}= -0.55561931 \pm 4.4 \cdot 10^{-8} \) | \(a_{741}= -0.23816017 \pm 3.4 \cdot 10^{-8} \) |
\(a_{742}= -0.63053027 \pm 7.2 \cdot 10^{-8} \) | \(a_{743}= -0.31442972 \pm 5.2 \cdot 10^{-8} \) | \(a_{744}= -0.08054461 \pm 1.2 \cdot 10^{-7} \) |
\(a_{745}= -0.30589685 \pm 4.6 \cdot 10^{-8} \) | \(a_{746}= +0.31435292 \pm 4.7 \cdot 10^{-8} \) | \(a_{747}= -0.17037221 \pm 3.9 \cdot 10^{-8} \) |
\(a_{748}= +0.82900180 \pm 4.9 \cdot 10^{-8} \) | \(a_{749}= -0.31071931 \pm 4.6 \cdot 10^{-8} \) | \(a_{750}= -0.29779134 \pm 5.1 \cdot 10^{-8} \) |
\(a_{751}= -1.99143081 \pm 6.2 \cdot 10^{-8} \) | \(a_{752}= -0.03900581 \pm 5.4 \cdot 10^{-8} \) | \(a_{753}= +0.17775042 \pm 5.8 \cdot 10^{-8} \) |
\(a_{754}= -0.93956077 \pm 4.3 \cdot 10^{-8} \) | \(a_{755}= -1.00511253 \pm 3.6 \cdot 10^{-8} \) | \(a_{756}= -0.77660432 \pm 7.1 \cdot 10^{-8} \) |
\(a_{757}= +0.27571148 \pm 5.0 \cdot 10^{-8} \) | \(a_{758}= -0.28113377 \pm 5.4 \cdot 10^{-8} \) | \(a_{759}= +0.14685311 \pm 5.7 \cdot 10^{-8} \) |
\(a_{760}= -0.33473587 \pm 3.3 \cdot 10^{-8} \) | \(a_{761}= +0.41032256 \pm 4.2 \cdot 10^{-8} \) | \(a_{762}= +0.21660776 \pm 4.9 \cdot 10^{-8} \) |
\(a_{763}= +0.41381998 \pm 5.3 \cdot 10^{-8} \) | \(a_{764}= +0.66069165 \pm 6.2 \cdot 10^{-8} \) | \(a_{765}= +0.90400757 \pm 5.5 \cdot 10^{-8} \) |
\(a_{766}= -0.00912240 \pm 6.1 \cdot 10^{-8} \) | \(a_{767}= +1.57901788 \pm 3.7 \cdot 10^{-8} \) | \(a_{768}= -0.44174584 \pm 6.6 \cdot 10^{-8} \) |
\(a_{769}= +0.53045163 \pm 4.6 \cdot 10^{-8} \) | \(a_{770}= -0.73770097 \pm 5.0 \cdot 10^{-8} \) | \(a_{771}= -0.33626760 \pm 6.1 \cdot 10^{-8} \) |
\(a_{772}= -1.11684816 \pm 6.0 \cdot 10^{-8} \) | \(a_{773}= -0.13342297 \pm 5.2 \cdot 10^{-8} \) | \(a_{774}= -0.61328973 \pm 3.6 \cdot 10^{-8} \) |
\(a_{775}= -0.05127131 \pm 6.6 \cdot 10^{-8} \) | \(a_{776}= +1.16346772 \pm 5.7 \cdot 10^{-8} \) | \(a_{777}= -0.70287175 \pm 4.3 \cdot 10^{-8} \) |
\(a_{778}= +0.36197413 \pm 7.3 \cdot 10^{-8} \) | \(a_{779}= -0.73753820 \pm 3.9 \cdot 10^{-8} \) | \(a_{780}= +0.31923090 \pm 4.1 \cdot 10^{-8} \) |
\(a_{781}= -1.30313242 \pm 4.7 \cdot 10^{-8} \) | \(a_{782}= -0.27172855 \pm 4.6 \cdot 10^{-8} \) | \(a_{783}= -0.97248784 \pm 4.4 \cdot 10^{-8} \) |
\(a_{784}= +0.05129145 \pm 6.5 \cdot 10^{-8} \) | \(a_{785}= +0.75602299 \pm 5.0 \cdot 10^{-8} \) | \(a_{786}= -0.27577858 \pm 5.5 \cdot 10^{-8} \) |
\(a_{787}= -1.43042070 \pm 5.0 \cdot 10^{-8} \) | \(a_{788}= -0.13694035 \pm 6.4 \cdot 10^{-8} \) | \(a_{789}= +0.68958581 \pm 5.2 \cdot 10^{-8} \) |
\(a_{790}= -0.17077431 \pm 4.1 \cdot 10^{-8} \) | \(a_{791}= -1.32124111 \pm 5.4 \cdot 10^{-8} \) | \(a_{792}= +0.75677006 \pm 4.9 \cdot 10^{-8} \) |
\(a_{793}= +1.64723894 \pm 4.5 \cdot 10^{-8} \) | \(a_{794}= +0.86626889 \pm 6.7 \cdot 10^{-8} \) | \(a_{795}= +0.26826892 \pm 6.4 \cdot 10^{-8} \) |
\(a_{796}= +0.34107512 \pm 6.0 \cdot 10^{-8} \) | \(a_{797}= -0.84701606 \pm 4.2 \cdot 10^{-8} \) | \(a_{798}= -0.16467307 \pm 5.9 \cdot 10^{-8} \) |
\(a_{799}= +1.27293529 \pm 4.9 \cdot 10^{-8} \) | \(a_{800}= -0.28880004 \pm 5.4 \cdot 10^{-8} \) | \(a_{801}= -0.16909908 \pm 4.8 \cdot 10^{-8} \) |
\(a_{802}= -0.53671205 \pm 7.1 \cdot 10^{-8} \) | \(a_{803}= +1.08445021 \pm 4.6 \cdot 10^{-8} \) | \(a_{804}= +0.09324158 \pm 4.7 \cdot 10^{-8} \) |
\(a_{805}= -0.42313641 \pm 5.7 \cdot 10^{-8} \) | \(a_{806}= -0.14143359 \pm 1.1 \cdot 10^{-7} \) | \(a_{807}= -0.38772616 \pm 6.2 \cdot 10^{-8} \) |
\(a_{808}= -0.40253445 \pm 6.4 \cdot 10^{-8} \) | \(a_{809}= -1.13332514 \pm 4.5 \cdot 10^{-8} \) | \(a_{810}= +0.21564247 \pm 4.5 \cdot 10^{-8} \) |
\(a_{811}= +0.52901550 \pm 5.3 \cdot 10^{-8} \) | \(a_{812}= +1.13683797 \pm 6.5 \cdot 10^{-8} \) | \(a_{813}= -0.19326101 \pm 5.2 \cdot 10^{-8} \) |
\(a_{814}= +0.60204376 \pm 4.8 \cdot 10^{-8} \) | \(a_{815}= -0.17707802 \pm 4.7 \cdot 10^{-8} \) | \(a_{816}= -0.02529844 \pm 4.9 \cdot 10^{-8} \) |
\(a_{817}= +0.51436923 \pm 6.2 \cdot 10^{-8} \) | \(a_{818}= -0.89505399 \pm 5.8 \cdot 10^{-8} \) | \(a_{819}= -1.55141528 \pm 3.5 \cdot 10^{-8} \) |
\(a_{820}= +0.98859929 \pm 4.8 \cdot 10^{-8} \) | \(a_{821}= -0.23539881 \pm 4.5 \cdot 10^{-8} \) | \(a_{822}= +0.02892765 \pm 5.8 \cdot 10^{-8} \) |
\(a_{823}= -0.12284737 \pm 5.1 \cdot 10^{-8} \) | \(a_{824}= +1.25773596 \pm 4.9 \cdot 10^{-8} \) | \(a_{825}= -0.12539423 \pm 6.2 \cdot 10^{-8} \) |
\(a_{826}= +1.09179349 \pm 4.6 \cdot 10^{-8} \) | \(a_{827}= +0.07977979 \pm 4.9 \cdot 10^{-8} \) | \(a_{828}= +0.16880510 \pm 4.0 \cdot 10^{-8} \) |
\(a_{829}= -1.08358237 \pm 5.4 \cdot 10^{-8} \) | \(a_{830}= +0.10945197 \pm 3.3 \cdot 10^{-8} \) | \(a_{831}= +0.03153645 \pm 3.7 \cdot 10^{-8} \) |
\(a_{832}= -0.74273160 \pm 5.6 \cdot 10^{-8} \) | \(a_{833}= -1.67387109 \pm 4.4 \cdot 10^{-8} \) | \(a_{834}= -0.18628391 \pm 7.7 \cdot 10^{-8} \) |
\(a_{835}= +1.25128864 \pm 6.2 \cdot 10^{-8} \) | \(a_{836}= -0.24682822 \pm 4.2 \cdot 10^{-8} \) | \(a_{837}= -0.14639015 \pm 6.4 \cdot 10^{-8} \) |
\(a_{838}= -0.88649727 \pm 7.5 \cdot 10^{-8} \) | \(a_{839}= +0.59508377 \pm 4.7 \cdot 10^{-8} \) | \(a_{840}= +0.56759268 \pm 7.2 \cdot 10^{-8} \) |
\(a_{841}= +0.42358351 \pm 4.6 \cdot 10^{-8} \) | \(a_{842}= +0.76925481 \pm 6.2 \cdot 10^{-8} \) | \(a_{843}= -0.02505699 \pm 5.5 \cdot 10^{-8} \) |
\(a_{844}= -0.67976690 \pm 5.7 \cdot 10^{-8} \) | \(a_{845}= +0.59614872 \pm 4.1 \cdot 10^{-8} \) | \(a_{846}= +0.45189379 \pm 3.9 \cdot 10^{-8} \) |
\(a_{847}= +0.09851173 \pm 5.9 \cdot 10^{-8} \) | \(a_{848}= +0.02884140 \pm 5.1 \cdot 10^{-8} \) | \(a_{849}= +0.26328398 \pm 7.4 \cdot 10^{-8} \) |
\(a_{850}= +0.23202226 \pm 4.2 \cdot 10^{-8} \) | \(a_{851}= +0.34532506 \pm 3.7 \cdot 10^{-8} \) | \(a_{852}= +0.38991196 \pm 4.7 \cdot 10^{-8} \) |
\(a_{853}= +0.26174800 \pm 6.3 \cdot 10^{-8} \) | \(a_{854}= +1.13896414 \pm 4.7 \cdot 10^{-8} \) | \(a_{855}= -0.26916055 \pm 3.6 \cdot 10^{-8} \) |
\(a_{856}= -0.20477487 \pm 4.9 \cdot 10^{-8} \) | \(a_{857}= -0.53976095 \pm 5.2 \cdot 10^{-8} \) | \(a_{858}= -0.34590405 \pm 4.6 \cdot 10^{-8} \) |
\(a_{859}= +0.39169253 \pm 4.9 \cdot 10^{-8} \) | \(a_{860}= -0.68946267 \pm 3.9 \cdot 10^{-8} \) | \(a_{861}= +1.25060180 \pm 4.1 \cdot 10^{-8} \) |
\(a_{862}= +0.16381953 \pm 6.3 \cdot 10^{-8} \) | \(a_{863}= -0.68720307 \pm 4.3 \cdot 10^{-8} \) | \(a_{864}= -0.82458352 \pm 6.3 \cdot 10^{-8} \) |
\(a_{865}= -0.02557581 \pm 3.3 \cdot 10^{-8} \) | \(a_{866}= +0.86008288 \pm 4.7 \cdot 10^{-8} \) | \(a_{867}= +0.37113678 \pm 3.4 \cdot 10^{-8} \) |
\(a_{868}= +0.17113004 \pm 1.2 \cdot 10^{-7} \) | \(a_{869}= -0.32381243 \pm 4.3 \cdot 10^{-8} \) | \(a_{870}= +0.27640300 \pm 4.6 \cdot 10^{-8} \) |
\(a_{871}= +0.42102136 \pm 3.7 \cdot 10^{-8} \) | \(a_{872}= +0.27272180 \pm 5.8 \cdot 10^{-8} \) | \(a_{873}= +0.93554242 \pm 3.5 \cdot 10^{-8} \) |
\(a_{874}= +0.08090486 \pm 4.2 \cdot 10^{-8} \) | \(a_{875}= +1.62697275 \pm 4.8 \cdot 10^{-8} \) | \(a_{876}= -0.32447977 \pm 4.3 \cdot 10^{-8} \) |
\(a_{877}= +0.18183652 \pm 5.9 \cdot 10^{-8} \) | \(a_{878}= +0.94198609 \pm 6.1 \cdot 10^{-8} \) | \(a_{879}= -0.35599216 \pm 6.8 \cdot 10^{-8} \) |
\(a_{880}= +0.03374355 \pm 5.2 \cdot 10^{-8} \) | \(a_{881}= +1.45231567 \pm 4.0 \cdot 10^{-8} \) | \(a_{882}= -0.59422656 \pm 3.3 \cdot 10^{-8} \) |
\(a_{883}= -0.90564984 \pm 4.4 \cdot 10^{-8} \) | \(a_{884}= -1.12002572 \pm 4.6 \cdot 10^{-8} \) | \(a_{885}= -0.46452054 \pm 4.2 \cdot 10^{-8} \) |
\(a_{886}= -0.17444469 \pm 5.8 \cdot 10^{-8} \) | \(a_{887}= -0.02968147 \pm 5.6 \cdot 10^{-8} \) | \(a_{888}= -0.46321700 \pm 6.7 \cdot 10^{-8} \) |
\(a_{889}= -1.18342903 \pm 4.7 \cdot 10^{-8} \) | \(a_{890}= +0.10863407 \pm 5.8 \cdot 10^{-8} \) | \(a_{891}= +0.40888885 \pm 5.7 \cdot 10^{-8} \) |
\(a_{892}= +0.12950005 \pm 6.9 \cdot 10^{-8} \) | \(a_{893}= -0.37900563 \pm 4.6 \cdot 10^{-8} \) | \(a_{894}= -0.09917535 \pm 6.5 \cdot 10^{-8} \) |
\(a_{895}= -0.76253759 \pm 5.7 \cdot 10^{-8} \) | \(a_{896}= +1.00122900 \pm 8.1 \cdot 10^{-8} \) | \(a_{897}= -0.19840640 \pm 3.8 \cdot 10^{-8} \) |
\(a_{898}= +0.91909887 \pm 6.3 \cdot 10^{-8} \) | \(a_{899}= +0.21429430 \pm 6.0 \cdot 10^{-8} \) | \(a_{900}= -0.14413848 \pm 4.9 \cdot 10^{-8} \) |
\(a_{901}= -0.94122497 \pm 5.1 \cdot 10^{-8} \) | \(a_{902}= -1.07120113 \pm 4.2 \cdot 10^{-8} \) | \(a_{903}= -0.87218680 \pm 5.0 \cdot 10^{-8} \) |
\(a_{904}= -0.87074399 \pm 4.0 \cdot 10^{-8} \) | \(a_{905}= -1.15352551 \pm 4.2 \cdot 10^{-8} \) | \(a_{906}= -0.32586928 \pm 5.1 \cdot 10^{-8} \) |
\(a_{907}= -0.86789642 \pm 4.9 \cdot 10^{-8} \) | \(a_{908}= +0.60942643 \pm 4.9 \cdot 10^{-8} \) | \(a_{909}= -0.32367727 \pm 5.0 \cdot 10^{-8} \) |
\(a_{910}= +0.99667343 \pm 4.1 \cdot 10^{-8} \) | \(a_{911}= -0.49008874 \pm 6.7 \cdot 10^{-8} \) | \(a_{912}= +0.00753239 \pm 5.4 \cdot 10^{-8} \) |
\(a_{913}= +0.20753653 \pm 4.8 \cdot 10^{-8} \) | \(a_{914}= +0.11269811 \pm 6.0 \cdot 10^{-8} \) | \(a_{915}= -0.48459003 \pm 5.2 \cdot 10^{-8} \) |
\(a_{916}= -0.26346489 \pm 7.3 \cdot 10^{-8} \) | \(a_{917}= +1.50670679 \pm 5.9 \cdot 10^{-8} \) | \(a_{918}= +0.66247128 \pm 4.8 \cdot 10^{-8} \) |
\(a_{919}= -0.73202012 \pm 4.9 \cdot 10^{-8} \) | \(a_{920}= -0.27886166 \pm 5.1 \cdot 10^{-8} \) | \(a_{921}= +0.02430391 \pm 4.3 \cdot 10^{-8} \) |
\(a_{922}= +0.17736856 \pm 7.1 \cdot 10^{-8} \) | \(a_{923}= +1.76060153 \pm 4.1 \cdot 10^{-8} \) | \(a_{924}= +0.41853265 \pm 8.9 \cdot 10^{-8} \) |
\(a_{925}= -0.29486450 \pm 4.6 \cdot 10^{-8} \) | \(a_{926}= +0.00829772 \pm 5.1 \cdot 10^{-8} \) | \(a_{927}= +1.01134336 \pm 3.7 \cdot 10^{-8} \) |
\(a_{928}= +1.20707269 \pm 5.1 \cdot 10^{-8} \) | \(a_{929}= +1.19532093 \pm 4.5 \cdot 10^{-8} \) | \(a_{930}= +0.04160739 \pm 1.7 \cdot 10^{-7} \) |
\(a_{931}= +0.49838085 \pm 3.3 \cdot 10^{-8} \) | \(a_{932}= -0.49718920 \pm 5.0 \cdot 10^{-8} \) | \(a_{933}= -0.47699242 \pm 6.7 \cdot 10^{-8} \) |
\(a_{934}= -0.86369089 \pm 6.4 \cdot 10^{-8} \) | \(a_{935}= -1.10120419 \pm 5.8 \cdot 10^{-8} \) | \(a_{936}= -1.02243679 \pm 6.2 \cdot 10^{-8} \) |
\(a_{937}= -0.07431579 \pm 4.4 \cdot 10^{-8} \) | \(a_{938}= +0.29111031 \pm 6.5 \cdot 10^{-8} \) | \(a_{939}= +0.45992040 \pm 5.0 \cdot 10^{-8} \) |
\(a_{940}= +0.50802074 \pm 5.0 \cdot 10^{-8} \) | \(a_{941}= +0.35792941 \pm 5.2 \cdot 10^{-8} \) | \(a_{942}= +0.24511153 \pm 4.8 \cdot 10^{-8} \) |
\(a_{943}= -0.61442809 \pm 3.2 \cdot 10^{-8} \) | \(a_{944}= -0.04994028 \pm 6.0 \cdot 10^{-8} \) | \(a_{945}= +1.03160202 \pm 4.4 \cdot 10^{-8} \) |
\(a_{946}= +0.74707032 \pm 6.5 \cdot 10^{-8} \) | \(a_{947}= +1.00900828 \pm 4.9 \cdot 10^{-8} \) | \(a_{948}= +0.09688834 \pm 4.0 \cdot 10^{-8} \) |
\(a_{949}= -1.46515018 \pm 3.5 \cdot 10^{-8} \) | \(a_{950}= -0.06908265 \pm 4.4 \cdot 10^{-8} \) | \(a_{951}= -0.68237647 \pm 4.9 \cdot 10^{-8} \) |
\(a_{952}= -1.99140626 \pm 6.8 \cdot 10^{-8} \) | \(a_{953}= -1.46566694 \pm 4.1 \cdot 10^{-8} \) | \(a_{954}= -0.33413617 \pm 3.8 \cdot 10^{-8} \) |
\(a_{955}= -0.87762948 \pm 4.4 \cdot 10^{-8} \) | \(a_{956}= -0.27516513 \pm 4.6 \cdot 10^{-8} \) | \(a_{957}= +0.52409947 \pm 5.9 \cdot 10^{-8} \) |
\(a_{958}= -0.86242426 \pm 4.8 \cdot 10^{-8} \) | \(a_{959}= -0.15804521 \pm 4.5 \cdot 10^{-8} \) | \(a_{960}= +0.21849916 \pm 5.4 \cdot 10^{-8} \) |
\(a_{961}= +0.03225806 \pm 1.7 \cdot 10^{-6} \) | \(a_{962}= -0.81339329 \pm 4.8 \cdot 10^{-8} \) | \(a_{963}= -0.16465912 \pm 6.1 \cdot 10^{-8} \) |
\(a_{964}= -1.13030288 \pm 5.7 \cdot 10^{-8} \) | \(a_{965}= +1.48356480 \pm 6.6 \cdot 10^{-8} \) | \(a_{966}= -0.13718579 \pm 7.1 \cdot 10^{-8} \) |
\(a_{967}= -0.38935720 \pm 5.5 \cdot 10^{-8} \) | \(a_{968}= +0.06492267 \pm 7.0 \cdot 10^{-8} \) | \(a_{969}= -0.24581597 \pm 3.4 \cdot 10^{-8} \) |
\(a_{970}= -0.60101914 \pm 5.9 \cdot 10^{-8} \) | \(a_{971}= +0.54240365 \pm 5.5 \cdot 10^{-8} \) | \(a_{972}= -0.64101471 \pm 4.5 \cdot 10^{-8} \) |
\(a_{973}= +1.01775574 \pm 6.4 \cdot 10^{-8} \) | \(a_{974}= -0.96035966 \pm 6.1 \cdot 10^{-8} \) | \(a_{975}= +0.16941430 \pm 3.5 \cdot 10^{-8} \) |
\(a_{976}= -0.05209793 \pm 4.2 \cdot 10^{-8} \) | \(a_{977}= +0.30698148 \pm 5.3 \cdot 10^{-8} \) | \(a_{978}= -0.05741077 \pm 6.0 \cdot 10^{-8} \) |
\(a_{979}= +0.20598568 \pm 5.4 \cdot 10^{-8} \) | \(a_{980}= -0.66803178 \pm 6.1 \cdot 10^{-8} \) | \(a_{981}= +0.21929514 \pm 4.1 \cdot 10^{-8} \) |
\(a_{982}= +0.24953454 \pm 5.4 \cdot 10^{-8} \) | \(a_{983}= +0.38440920 \pm 4.4 \cdot 10^{-8} \) | \(a_{984}= +0.82419021 \pm 4.7 \cdot 10^{-8} \) |
\(a_{985}= +0.18190466 \pm 5.8 \cdot 10^{-8} \) | \(a_{986}= -0.96976348 \pm 5.3 \cdot 10^{-8} \) | \(a_{987}= +0.64265841 \pm 4.9 \cdot 10^{-8} \) |
\(a_{988}= +0.33347811 \pm 4.2 \cdot 10^{-8} \) | \(a_{989}= +0.42851056 \pm 4.1 \cdot 10^{-8} \) | \(a_{990}= -0.39092902 \pm 5.1 \cdot 10^{-8} \) |
\(a_{991}= -1.30270176 \pm 5.8 \cdot 10^{-8} \) | \(a_{992}= +0.18170258 \pm 7.1 \cdot 10^{-8} \) | \(a_{993}= -0.62405039 \pm 5.5 \cdot 10^{-8} \) |
\(a_{994}= +1.21734738 \pm 6.2 \cdot 10^{-8} \) | \(a_{995}= -0.45306700 \pm 5.3 \cdot 10^{-8} \) | \(a_{996}= -0.06209728 \pm 3.6 \cdot 10^{-8} \) |
\(a_{997}= +1.82444242 \pm 5.0 \cdot 10^{-8} \) | \(a_{998}= +0.17133536 \pm 7.0 \cdot 10^{-8} \) | \(a_{999}= -0.84189879 \pm 6.5 \cdot 10^{-8} \) |
\(a_{1000}= +1.07223180 \pm 3.8 \cdot 10^{-8} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000