Maass form invariants
Level: | \( 31 \) |
Weight: | \( 0 \) |
Character: | 31.1 |
Symmetry: | even |
Fricke sign: | $+1$ |
Spectral parameter: | \(4.43140273993212913402678292432 \pm 5 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +0.16244726 \pm 4.9 \cdot 10^{-7} \) | \(a_{3}= -1.84226247 \pm 4.4 \cdot 10^{-7} \) |
\(a_{4}= -0.97361089 \pm 4.9 \cdot 10^{-7} \) | \(a_{5}= -0.77206094 \pm 4.2 \cdot 10^{-7} \) | \(a_{6}= -0.29927049 \pm 5.0 \cdot 10^{-7} \) |
\(a_{7}= -0.24107916 \pm 4.3 \cdot 10^{-7} \) | \(a_{8}= -0.32060768 \pm 4.8 \cdot 10^{-7} \) | \(a_{9}= +2.39393099 \pm 4.2 \cdot 10^{-7} \) |
\(a_{10}= -0.12541918 \pm 4.1 \cdot 10^{-7} \) | \(a_{11}= -1.65546023 \pm 4.2 \cdot 10^{-7} \) | \(a_{12}= +1.79364680 \pm 4.7 \cdot 10^{-7} \) |
\(a_{13}= -1.21223782 \pm 3.4 \cdot 10^{-7} \) | \(a_{14}= -0.03916265 \pm 5.8 \cdot 10^{-7} \) | \(a_{15}= +1.42233889 \pm 4.5 \cdot 10^{-7} \) |
\(a_{16}= +0.92152905 \pm 5.1 \cdot 10^{-7} \) | \(a_{17}= -0.85657269 \pm 4.0 \cdot 10^{-7} \) | \(a_{18}= +0.38888753 \pm 3.7 \cdot 10^{-7} \) |
\(a_{19}= +0.85745397 \pm 3.9 \cdot 10^{-7} \) | \(a_{20}= +0.75168694 \pm 4.3 \cdot 10^{-7} \) | \(a_{21}= +0.44413109 \pm 4.3 \cdot 10^{-7} \) |
\(a_{22}= -0.26892498 \pm 5.0 \cdot 10^{-7} \) | \(a_{23}= +0.61582761 \pm 3.4 \cdot 10^{-7} \) | \(a_{24}= +0.59064349 \pm 5.1 \cdot 10^{-7} \) |
\(a_{25}= -0.40392191 \pm 4.5 \cdot 10^{-7} \) | \(a_{26}= -0.19692471 \pm 3.8 \cdot 10^{-7} \) | \(a_{27}= -2.56798675 \pm 4.4 \cdot 10^{-7} \) |
\(a_{28}= +0.23471730 \pm 6.2 \cdot 10^{-7} \) | \(a_{29}= -1.21365555 \pm 4.0 \cdot 10^{-7} \) | \(a_{30}= +0.23105505 \pm 4.6 \cdot 10^{-7} \) |
\(a_{31}= -0.17960530 \pm 1.0 \cdot 10^{-8} \) | \(a_{32}= +0.47030755 \pm 4.9 \cdot 10^{-7} \) | \(a_{33}= +3.04979224 \pm 4.8 \cdot 10^{-7} \) |
\(a_{34}= -0.13914788 \pm 4.2 \cdot 10^{-7} \) | \(a_{35}= +0.18612780 \pm 4.4 \cdot 10^{-7} \) | \(a_{36}= -2.33075728 \pm 3.7 \cdot 10^{-7} \) |
\(a_{37}= -0.89138613 \pm 4.2 \cdot 10^{-7} \) | \(a_{38}= +0.13929105 \pm 5.0 \cdot 10^{-7} \) | \(a_{39}= +2.23326024 \pm 4.3 \cdot 10^{-7} \) |
\(a_{40}= +0.24752867 \pm 4.0 \cdot 10^{-7} \) | \(a_{41}= +0.78819462 \pm 3.3 \cdot 10^{-7} \) | \(a_{42}= +0.07214788 \pm 5.7 \cdot 10^{-7} \) |
\(a_{43}= +0.08051649 \pm 4.3 \cdot 10^{-7} \) | \(a_{44}= +1.61177410 \pm 5.3 \cdot 10^{-7} \) | \(a_{45}= -1.84826061 \pm 4.3 \cdot 10^{-7} \) |
\(a_{46}= +0.10003951 \pm 4.3 \cdot 10^{-7} \) | \(a_{47}= -0.25982956 \pm 3.7 \cdot 10^{-7} \) | \(a_{48}= -1.69769838 \pm 4.6 \cdot 10^{-7} \) |
\(a_{49}= -0.94188084 \pm 3.8 \cdot 10^{-7} \) | \(a_{50}= -0.06561601 \pm 4.2 \cdot 10^{-7} \) | \(a_{51}= +1.57803171 \pm 3.8 \cdot 10^{-7} \) |
\(a_{52}= +1.18024794 \pm 3.8 \cdot 10^{-7} \) | \(a_{53}= -0.26963702 \pm 4.2 \cdot 10^{-7} \) | \(a_{54}= -0.41716241 \pm 4.7 \cdot 10^{-7} \) |
\(a_{55}= +1.27811618 \pm 4.4 \cdot 10^{-7} \) | \(a_{56}= +0.07729183 \pm 6.3 \cdot 10^{-7} \) | \(a_{57}= -1.57965526 \pm 3.5 \cdot 10^{-7} \) |
\(a_{58}= -0.19715502 \pm 5.0 \cdot 10^{-7} \) | \(a_{59}= +1.08480985 \pm 3.4 \cdot 10^{-7} \) | \(a_{60}= -1.38480463 \pm 4.3 \cdot 10^{-7} \) |
\(a_{61}= +0.28490303 \pm 3.7 \cdot 10^{-7} \) | \(a_{62}= -0.02917639 \pm 5.0 \cdot 10^{-7} \) | \(a_{63}= -0.57712687 \pm 3.1 \cdot 10^{-7} \) |
\(a_{64}= -0.84512888 \pm 5.2 \cdot 10^{-7} \) | \(a_{65}= +0.93592147 \pm 3.1 \cdot 10^{-7} \) | \(a_{66}= +0.49543039 \pm 5.7 \cdot 10^{-7} \) |
\(a_{67}= -1.16016325 \pm 3.7 \cdot 10^{-7} \) | \(a_{68}= +0.83396849 \pm 4.5 \cdot 10^{-7} \) | \(a_{69}= -1.13451610 \pm 4.0 \cdot 10^{-7} \) |
\(a_{70}= +0.03023595 \pm 4.9 \cdot 10^{-7} \) | \(a_{71}= -0.31120973 \pm 3.9 \cdot 10^{-7} \) | \(a_{72}= -0.76751266 \pm 4.0 \cdot 10^{-7} \) |
\(a_{73}= +0.91573369 \pm 3.4 \cdot 10^{-7} \) | \(a_{74}= -0.14480323 \pm 4.6 \cdot 10^{-7} \) | \(a_{75}= +0.74413017 \pm 4.5 \cdot 10^{-7} \) |
\(a_{76}= -0.83482652 \pm 4.4 \cdot 10^{-7} \) | \(a_{77}= +0.39909696 \pm 4.3 \cdot 10^{-7} \) | \(a_{78}= +0.36278700 \pm 4.1 \cdot 10^{-7} \) |
\(a_{79}= +1.32181386 \pm 3.6 \cdot 10^{-7} \) | \(a_{80}= -0.71147658 \pm 4.2 \cdot 10^{-7} \) | \(a_{81}= +2.33697461 \pm 4.0 \cdot 10^{-7} \) |
\(a_{82}= +0.12804006 \pm 4.1 \cdot 10^{-7} \) | \(a_{83}= -0.48562913 \pm 3.5 \cdot 10^{-7} \) | \(a_{84}= -0.43241086 \pm 5.9 \cdot 10^{-7} \) |
\(a_{85}= +0.66132631 \pm 4.5 \cdot 10^{-7} \) | \(a_{86}= +0.01307968 \pm 5.7 \cdot 10^{-7} \) | \(a_{87}= +2.23587206 \pm 4.2 \cdot 10^{-7} \) |
\(a_{88}= +0.53075326 \pm 4.9 \cdot 10^{-7} \) | \(a_{89}= -1.80291694 \pm 4.5 \cdot 10^{-7} \) | \(a_{90}= -0.30024487 \pm 3.4 \cdot 10^{-7} \) |
\(a_{91}= +0.29224528 \pm 3.1 \cdot 10^{-7} \) | \(a_{92}= -0.59957647 \pm 4.2 \cdot 10^{-7} \) | \(a_{93}= +0.33088011 \pm 4.5 \cdot 10^{-7} \) |
\(a_{94}= -0.04220860 \pm 4.3 \cdot 10^{-7} \) | \(a_{95}= -0.66200671 \pm 3.3 \cdot 10^{-7} \) | \(a_{96}= -0.86642994 \pm 4.2 \cdot 10^{-7} \) |
\(a_{97}= +0.59283684 \pm 3.9 \cdot 10^{-7} \) | \(a_{98}= -0.15300596 \pm 4.9 \cdot 10^{-7} \) | \(a_{99}= -3.96305754 \pm 4.5 \cdot 10^{-7} \) |
\(a_{100}= +0.39326276 \pm 5.0 \cdot 10^{-7} \) | \(a_{101}= -1.09889371 \pm 4.6 \cdot 10^{-7} \) | \(a_{102}= +0.25634693 \pm 3.9 \cdot 10^{-7} \) |
\(a_{103}= +0.50426143 \pm 3.8 \cdot 10^{-7} \) | \(a_{104}= +0.38865275 \pm 4.1 \cdot 10^{-7} \) | \(a_{105}= -0.34289627 \pm 4.8 \cdot 10^{-7} \) |
\(a_{106}= -0.04380180 \pm 4.6 \cdot 10^{-7} \) | \(a_{107}= -0.37165281 \pm 4.0 \cdot 10^{-7} \) | \(a_{108}= +2.50021986 \pm 4.6 \cdot 10^{-7} \) |
\(a_{109}= +0.67427284 \pm 4.0 \cdot 10^{-7} \) | \(a_{110}= +0.20762647 \pm 3.8 \cdot 10^{-7} \) | \(a_{111}= +1.64216722 \pm 4.9 \cdot 10^{-7} \) |
\(a_{112}= -0.22216145 \pm 6.2 \cdot 10^{-7} \) | \(a_{113}= -0.87116424 \pm 4.3 \cdot 10^{-7} \) | \(a_{114}= -0.25661067 \pm 4.5 \cdot 10^{-7} \) |
\(a_{115}= -0.47545645 \pm 3.8 \cdot 10^{-7} \) | \(a_{116}= +1.18162825 \pm 4.7 \cdot 10^{-7} \) | \(a_{117}= -2.90201369 \pm 4.8 \cdot 10^{-7} \) |
\(a_{118}= +0.17622439 \pm 3.8 \cdot 10^{-7} \) | \(a_{119}= +0.20650182 \pm 3.8 \cdot 10^{-7} \) | \(a_{120}= -0.45601277 \pm 4.8 \cdot 10^{-7} \) |
\(a_{121}= +1.74054856 \pm 4.0 \cdot 10^{-7} \) | \(a_{122}= +0.04628172 \pm 4.0 \cdot 10^{-7} \) | \(a_{123}= -1.45206137 \pm 3.0 \cdot 10^{-7} \) |
\(a_{124}= +0.17486568 \pm 5.0 \cdot 10^{-7} \) | \(a_{125}= +1.08391327 \pm 4.3 \cdot 10^{-7} \) | \(a_{126}= -0.09375268 \pm 3.2 \cdot 10^{-7} \) |
\(a_{127}= +0.70504822 \pm 3.7 \cdot 10^{-7} \) | \(a_{128}= -0.60759642 \pm 5.2 \cdot 10^{-7} \) | \(a_{129}= -0.14833250 \pm 4.1 \cdot 10^{-7} \) |
\(a_{130}= +0.15203788 \pm 3.4 \cdot 10^{-7} \) | \(a_{131}= +0.50585631 \pm 4.3 \cdot 10^{-7} \) | \(a_{132}= -2.96931093 \pm 5.6 \cdot 10^{-7} \) |
\(a_{133}= -0.20671428 \pm 4.0 \cdot 10^{-7} \) | \(a_{134}= -0.18846534 \pm 4.7 \cdot 10^{-7} \) | \(a_{135}= +1.98264226 \pm 3.9 \cdot 10^{-7} \) |
\(a_{136}= +0.27462378 \pm 4.2 \cdot 10^{-7} \) | \(a_{137}= -0.97405933 \pm 3.9 \cdot 10^{-7} \) | \(a_{138}= -0.18429903 \pm 4.9 \cdot 10^{-7} \) |
\(a_{139}= +0.02801313 \pm 4.5 \cdot 10^{-7} \) | \(a_{140}= -0.18121606 \pm 5.0 \cdot 10^{-7} \) | \(a_{141}= +0.47867424 \pm 3.7 \cdot 10^{-7} \) |
\(a_{142}= -0.05055517 \pm 4.7 \cdot 10^{-7} \) | \(a_{143}= +2.00681150 \pm 3.4 \cdot 10^{-7} \) | \(a_{144}= +2.20607695 \pm 3.6 \cdot 10^{-7} \) |
\(a_{145}= +0.93701604 \pm 3.5 \cdot 10^{-7} \) | \(a_{146}= +0.14875843 \pm 3.9 \cdot 10^{-7} \) | \(a_{147}= +1.73519172 \pm 4.0 \cdot 10^{-7} \) |
\(a_{148}= +0.86786325 \pm 4.4 \cdot 10^{-7} \) | \(a_{149}= +0.05714873 \pm 4.1 \cdot 10^{-7} \) | \(a_{150}= +0.12088191 \pm 4.4 \cdot 10^{-7} \) |
\(a_{151}= -1.12307183 \pm 3.4 \cdot 10^{-7} \) | \(a_{152}= -0.27490633 \pm 3.6 \cdot 10^{-7} \) | \(a_{153}= -2.05057590 \pm 4.0 \cdot 10^{-7} \) |
\(a_{154}= +0.06483221 \pm 6.2 \cdot 10^{-7} \) | \(a_{155}= +0.13866624 \pm 4.3 \cdot 10^{-7} \) | \(a_{156}= -2.17432648 \pm 3.7 \cdot 10^{-7} \) |
\(a_{157}= -1.81300697 \pm 3.7 \cdot 10^{-7} \) | \(a_{158}= +0.21472504 \pm 4.0 \cdot 10^{-7} \) | \(a_{159}= +0.49674217 \pm 4.6 \cdot 10^{-7} \) |
\(a_{160}= -0.36310609 \pm 3.1 \cdot 10^{-7} \) | \(a_{161}= -0.14846320 \pm 4.0 \cdot 10^{-7} \) | \(a_{162}= +0.37963512 \pm 4.6 \cdot 10^{-7} \) |
\(a_{163}= -0.57759709 \pm 4.0 \cdot 10^{-7} \) | \(a_{164}= -0.76739487 \pm 4.1 \cdot 10^{-7} \) | \(a_{165}= -2.35462546 \pm 4.6 \cdot 10^{-7} \) |
\(a_{166}= -0.07888912 \pm 3.3 \cdot 10^{-7} \) | \(a_{167}= +1.33409836 \pm 4.4 \cdot 10^{-7} \) | \(a_{168}= -0.14239184 \pm 6.1 \cdot 10^{-7} \) |
\(a_{169}= +0.46952054 \pm 3.4 \cdot 10^{-7} \) | \(a_{170}= +0.10743065 \pm 3.9 \cdot 10^{-7} \) | \(a_{171}= +2.05268562 \pm 2.8 \cdot 10^{-7} \) |
\(a_{172}= -0.07839173 \pm 4.8 \cdot 10^{-7} \) | \(a_{173}= -0.11361726 \pm 3.5 \cdot 10^{-7} \) | \(a_{174}= +0.36321129 \pm 4.7 \cdot 10^{-7} \) |
\(a_{175}= +0.09737715 \pm 4.2 \cdot 10^{-7} \) | \(a_{176}= -1.52555469 \pm 4.3 \cdot 10^{-7} \) | \(a_{177}= -1.99850447 \pm 3.3 \cdot 10^{-7} \) |
\(a_{178}= -0.29287891 \pm 5.8 \cdot 10^{-7} \) | \(a_{179}= -1.49939231 \pm 4.4 \cdot 10^{-7} \) | \(a_{180}= +1.79948666 \pm 3.7 \cdot 10^{-7} \) |
\(a_{181}= +0.76039524 \pm 3.9 \cdot 10^{-7} \) | \(a_{182}= +0.04747444 \pm 3.9 \cdot 10^{-7} \) | \(a_{183}= -0.52486616 \pm 4.5 \cdot 10^{-7} \) |
\(a_{184}= -0.19743906 \pm 4.2 \cdot 10^{-7} \) | \(a_{185}= +0.68820442 \pm 3.4 \cdot 10^{-7} \) | \(a_{186}= +0.05375057 \pm 9.5 \cdot 10^{-7} \) |
\(a_{187}= +1.41802201 \pm 3.8 \cdot 10^{-7} \) | \(a_{188}= +0.25297289 \pm 4.3 \cdot 10^{-7} \) | \(a_{189}= +0.61908809 \pm 3.8 \cdot 10^{-7} \) |
\(a_{190}= -0.10754118 \pm 3.7 \cdot 10^{-7} \) | \(a_{191}= +0.35419855 \pm 4.1 \cdot 10^{-7} \) | \(a_{192}= +1.55694921 \pm 4.9 \cdot 10^{-7} \) |
\(a_{193}= +0.35545064 \pm 5.0 \cdot 10^{-7} \) | \(a_{194}= +0.09630472 \pm 4.8 \cdot 10^{-7} \) | \(a_{195}= -1.72421300 \pm 3.5 \cdot 10^{-7} \) |
\(a_{196}= +0.91702544 \pm 5.5 \cdot 10^{-7} \) | \(a_{197}= -1.58718069 \pm 3.8 \cdot 10^{-7} \) | \(a_{198}= -0.64378783 \pm 3.8 \cdot 10^{-7} \) |
\(a_{199}= +1.27128046 \pm 4.6 \cdot 10^{-7} \) | \(a_{200}= +0.12950046 \pm 4.6 \cdot 10^{-7} \) | \(a_{201}= +2.13732520 \pm 3.3 \cdot 10^{-7} \) |
\(a_{202}= -0.17851227 \pm 5.8 \cdot 10^{-7} \) | \(a_{203}= +0.29258706 \pm 4.1 \cdot 10^{-7} \) | \(a_{204}= -1.53638885 \pm 4.0 \cdot 10^{-7} \) |
\(a_{205}= -0.60853428 \pm 3.4 \cdot 10^{-7} \) | \(a_{206}= +0.08191589 \pm 4.4 \cdot 10^{-7} \) | \(a_{207}= +1.47424881 \pm 3.2 \cdot 10^{-7} \) |
\(a_{208}= -1.11711237 \pm 4.2 \cdot 10^{-7} \) | \(a_{209}= -1.41948094 \pm 3.0 \cdot 10^{-7} \) | \(a_{210}= -0.05570256 \pm 5.4 \cdot 10^{-7} \) |
\(a_{211}= +1.67031612 \pm 3.4 \cdot 10^{-7} \) | \(a_{212}= +0.26252154 \pm 5.1 \cdot 10^{-7} \) | \(a_{213}= +0.57333001 \pm 4.6 \cdot 10^{-7} \) |
\(a_{214}= -0.06037398 \pm 3.9 \cdot 10^{-7} \) | \(a_{215}= -0.06216364 \pm 3.5 \cdot 10^{-7} \) | \(a_{216}= +0.82331627 \pm 5.1 \cdot 10^{-7} \) |
\(a_{217}= +0.04329910 \pm 4.4 \cdot 10^{-7} \) | \(a_{218}= +0.10953377 \pm 4.8 \cdot 10^{-7} \) | \(a_{219}= -1.68702180 \pm 3.5 \cdot 10^{-7} \) |
\(a_{220}= -1.24438783 \pm 4.1 \cdot 10^{-7} \) | \(a_{221}= +1.03836981 \pm 3.2 \cdot 10^{-7} \) | \(a_{222}= +0.26676556 \pm 4.7 \cdot 10^{-7} \) |
\(a_{223}= -1.40504200 \pm 4.6 \cdot 10^{-7} \) | \(a_{224}= -0.11338135 \pm 6.0 \cdot 10^{-7} \) | \(a_{225}= -0.96696117 \pm 4.6 \cdot 10^{-7} \) |
\(a_{226}= -0.14151824 \pm 4.8 \cdot 10^{-7} \) | \(a_{227}= +0.56302517 \pm 4.6 \cdot 10^{-7} \) | \(a_{228}= +1.53796956 \pm 3.9 \cdot 10^{-7} \) |
\(a_{229}= +1.13810266 \pm 4.5 \cdot 10^{-7} \) | \(a_{230}= -0.07723660 \pm 4.3 \cdot 10^{-7} \) | \(a_{231}= -0.73524135 \pm 4.6 \cdot 10^{-7} \) |
\(a_{232}= +0.38910729 \pm 3.9 \cdot 10^{-7} \) | \(a_{233}= +0.78886409 \pm 4.4 \cdot 10^{-7} \) | \(a_{234}= -0.47142417 \pm 4.0 \cdot 10^{-7} \) |
\(a_{235}= +0.20060425 \pm 3.8 \cdot 10^{-7} \) | \(a_{236}= -1.05618268 \pm 4.1 \cdot 10^{-7} \) | \(a_{237}= -2.43512806 \pm 3.7 \cdot 10^{-7} \) |
\(a_{238}= +0.03354566 \pm 4.9 \cdot 10^{-7} \) | \(a_{239}= +0.43526280 \pm 2.9 \cdot 10^{-7} \) | \(a_{240}= +1.31072661 \pm 4.2 \cdot 10^{-7} \) |
\(a_{241}= +0.85043233 \pm 4.5 \cdot 10^{-7} \) | \(a_{242}= +0.28274734 \pm 5.8 \cdot 10^{-7} \) | \(a_{243}= -1.73733385 \pm 3.3 \cdot 10^{-7} \) |
\(a_{244}= -0.27738469 \pm 2.8 \cdot 10^{-7} \) | \(a_{245}= +0.72718941 \pm 3.7 \cdot 10^{-7} \) | \(a_{246}= -0.23588339 \pm 3.7 \cdot 10^{-7} \) |
\(a_{247}= -1.03943813 \pm 2.9 \cdot 10^{-7} \) | \(a_{248}= +0.05758284 \pm 4.9 \cdot 10^{-7} \) | \(a_{249}= +0.89465631 \pm 3.2 \cdot 10^{-7} \) |
\(a_{250}= +0.17607874 \pm 3.8 \cdot 10^{-7} \) | \(a_{251}= +0.92212001 \pm 4.9 \cdot 10^{-7} \) | \(a_{252}= +0.56189701 \pm 3.2 \cdot 10^{-7} \) |
\(a_{253}= -1.01947812 \pm 3.8 \cdot 10^{-7} \) | \(a_{254}= +0.11453315 \pm 4.5 \cdot 10^{-7} \) | \(a_{255}= -1.21833664 \pm 4.3 \cdot 10^{-7} \) |
\(a_{256}= +0.74642651 \pm 5.6 \cdot 10^{-7} \) | \(a_{257}= -0.07884368 \pm 4.2 \cdot 10^{-7} \) | \(a_{258}= -0.02409621 \pm 5.4 \cdot 10^{-7} \) |
\(a_{259}= +0.21489462 \pm 3.3 \cdot 10^{-7} \) | \(a_{260}= -0.91122334 \pm 3.4 \cdot 10^{-7} \) | \(a_{261}= -2.90540763 \pm 3.9 \cdot 10^{-7} \) |
\(a_{262}= +0.08217497 \pm 4.6 \cdot 10^{-7} \) | \(a_{263}= -1.64495641 \pm 4.0 \cdot 10^{-7} \) | \(a_{264}= -0.97778681 \pm 5.7 \cdot 10^{-7} \) |
\(a_{265}= +0.20817621 \pm 5.1 \cdot 10^{-7} \) | \(a_{266}= -0.03358017 \pm 5.4 \cdot 10^{-7} \) | \(a_{267}= +3.32144620 \pm 4.6 \cdot 10^{-7} \) |
\(a_{268}= +1.12954757 \pm 4.9 \cdot 10^{-7} \) | \(a_{269}= -1.54144730 \pm 4.3 \cdot 10^{-7} \) | \(a_{270}= +0.32207480 \pm 3.8 \cdot 10^{-7} \) |
\(a_{271}= +1.23770937 \pm 4.2 \cdot 10^{-7} \) | \(a_{272}= -0.78935661 \pm 4.6 \cdot 10^{-7} \) | \(a_{273}= -0.53839250 \pm 3.1 \cdot 10^{-7} \) |
\(a_{274}= -0.15823327 \pm 4.8 \cdot 10^{-7} \) | \(a_{275}= +0.66867665 \pm 5.1 \cdot 10^{-7} \) | \(a_{276}= +1.10457723 \pm 4.8 \cdot 10^{-7} \) |
\(a_{277}= +0.44197061 \pm 3.9 \cdot 10^{-7} \) | \(a_{278}= +0.00455066 \pm 6.1 \cdot 10^{-7} \) | \(a_{279}= -0.42996270 \pm 4.3 \cdot 10^{-7} \) |
\(a_{280}= -0.05967400 \pm 5.2 \cdot 10^{-7} \) | \(a_{281}= +0.58685870 \pm 3.8 \cdot 10^{-7} \) | \(a_{282}= +0.07775932 \pm 4.0 \cdot 10^{-7} \) |
\(a_{283}= +1.07923693 \pm 4.4 \cdot 10^{-7} \) | \(a_{284}= +0.30299719 \pm 4.3 \cdot 10^{-7} \) | \(a_{285}= +1.21959012 \pm 3.4 \cdot 10^{-7} \) |
\(a_{286}= +0.32600103 \pm 3.6 \cdot 10^{-7} \) | \(a_{287}= -0.19001730 \pm 3.7 \cdot 10^{-7} \) | \(a_{288}= +1.12588381 \pm 3.8 \cdot 10^{-7} \) |
\(a_{289}= -0.26628323 \pm 3.1 \cdot 10^{-7} \) | \(a_{290}= +0.15221569 \pm 3.4 \cdot 10^{-7} \) | \(a_{291}= -1.09216105 \pm 3.7 \cdot 10^{-7} \) |
\(a_{292}= -0.89156829 \pm 3.8 \cdot 10^{-7} \) | \(a_{293}= -1.02913370 \pm 4.7 \cdot 10^{-7} \) | \(a_{294}= +0.28187714 \pm 5.1 \cdot 10^{-7} \) |
\(a_{295}= -0.83753931 \pm 3.9 \cdot 10^{-7} \) | \(a_{296}= +0.28578524 \pm 4.3 \cdot 10^{-7} \) | \(a_{297}= +4.25119992 \pm 4.5 \cdot 10^{-7} \) |
\(a_{298}= +0.00928365 \pm 5.2 \cdot 10^{-7} \) | \(a_{299}= -0.74652953 \pm 2.4 \cdot 10^{-7} \) | \(a_{300}= -0.72449323 \pm 4.1 \cdot 10^{-7} \) |
\(a_{301}= -0.01941085 \pm 4.4 \cdot 10^{-7} \) | \(a_{302}= -0.18243994 \pm 4.4 \cdot 10^{-7} \) | \(a_{303}= +2.02445064 \pm 4.2 \cdot 10^{-7} \) |
\(a_{304}= +0.79016874 \pm 4.8 \cdot 10^{-7} \) | \(a_{305}= -0.21996250 \pm 3.6 \cdot 10^{-7} \) | \(a_{306}= -0.33311043 \pm 3.3 \cdot 10^{-7} \) |
\(a_{307}= -0.48342259 \pm 3.3 \cdot 10^{-7} \) | \(a_{308}= -0.38856515 \pm 6.9 \cdot 10^{-7} \) | \(a_{309}= -0.92898191 \pm 3.4 \cdot 10^{-7} \) |
\(a_{310}= +0.02252595 \pm 9.3 \cdot 10^{-7} \) | \(a_{311}= -0.27827601 \pm 4.2 \cdot 10^{-7} \) | \(a_{312}= -0.71600038 \pm 4.9 \cdot 10^{-7} \) |
\(a_{313}= -1.84084964 \pm 4.2 \cdot 10^{-7} \) | \(a_{314}= -0.29451801 \pm 3.7 \cdot 10^{-7} \) | \(a_{315}= +0.44557712 \pm 3.7 \cdot 10^{-7} \) |
\(a_{316}= -1.28693237 \pm 3.8 \cdot 10^{-7} \) | \(a_{317}= +0.13380619 \pm 3.9 \cdot 10^{-7} \) | \(a_{318}= +0.08069440 \pm 5.0 \cdot 10^{-7} \) |
\(a_{319}= +2.00915848 \pm 4.1 \cdot 10^{-7} \) | \(a_{320}= +0.65249100 \pm 3.8 \cdot 10^{-7} \) | \(a_{321}= +0.68468202 \pm 4.8 \cdot 10^{-7} \) |
\(a_{322}= -0.02411744 \pm 5.4 \cdot 10^{-7} \) | \(a_{323}= -0.73447165 \pm 3.2 \cdot 10^{-7} \) | \(a_{324}= -2.27530392 \pm 4.3 \cdot 10^{-7} \) |
\(a_{325}= +0.48964941 \pm 2.9 \cdot 10^{-7} \) | \(a_{326}= -0.09382906 \pm 4.1 \cdot 10^{-7} \) | \(a_{327}= -1.24218755 \pm 4.2 \cdot 10^{-7} \) |
\(a_{328}= -0.25270125 \pm 4.1 \cdot 10^{-7} \) | \(a_{329}= +0.06263949 \pm 4.0 \cdot 10^{-7} \) | \(a_{330}= -0.38250245 \pm 4.9 \cdot 10^{-7} \) |
\(a_{331}= -0.15753664 \pm 3.9 \cdot 10^{-7} \) | \(a_{332}= +0.47281380 \pm 3.6 \cdot 10^{-7} \) | \(a_{333}= -2.13391689 \pm 5.7 \cdot 10^{-7} \) |
\(a_{334}= +0.21672062 \pm 4.3 \cdot 10^{-7} \) | \(a_{335}= +0.89571673 \pm 2.9 \cdot 10^{-7} \) | \(a_{336}= +0.40927970 \pm 5.3 \cdot 10^{-7} \) |
\(a_{337}= -0.66639906 \pm 5.0 \cdot 10^{-7} \) | \(a_{338}= +0.07627232 \pm 4.1 \cdot 10^{-7} \) | \(a_{339}= +1.60491318 \pm 4.0 \cdot 10^{-7} \) |
\(a_{340}= -0.64387450 \pm 4.8 \cdot 10^{-7} \) | \(a_{341}= +0.29732943 \pm 4.3 \cdot 10^{-7} \) | \(a_{342}= +0.33345315 \pm 3.1 \cdot 10^{-7} \) |
\(a_{343}= +0.46814700 \pm 3.7 \cdot 10^{-7} \) | \(a_{344}= -0.02581420 \pm 4.7 \cdot 10^{-7} \) | \(a_{345}= +0.87591557 \pm 4.8 \cdot 10^{-7} \) |
\(a_{346}= -0.01845681 \pm 3.6 \cdot 10^{-7} \) | \(a_{347}= +0.32949375 \pm 3.4 \cdot 10^{-7} \) | \(a_{348}= -2.17686938 \pm 4.7 \cdot 10^{-7} \) |
\(a_{349}= +0.47832077 \pm 3.3 \cdot 10^{-7} \) | \(a_{350}= +0.01581865 \pm 4.9 \cdot 10^{-7} \) | \(a_{351}= +3.11301066 \pm 4.8 \cdot 10^{-7} \) |
\(a_{352}= -0.77857544 \pm 2.9 \cdot 10^{-7} \) | \(a_{353}= -0.85201699 \pm 4.0 \cdot 10^{-7} \) | \(a_{354}= -0.32465157 \pm 3.9 \cdot 10^{-7} \) |
\(a_{355}= +0.24027288 \pm 3.9 \cdot 10^{-7} \) | \(a_{356}= +1.75533956 \pm 6.3 \cdot 10^{-7} \) | \(a_{357}= -0.38043056 \pm 3.6 \cdot 10^{-7} \) |
\(a_{358}= -0.24357217 \pm 5.2 \cdot 10^{-7} \) | \(a_{359}= -1.33884534 \pm 4.0 \cdot 10^{-7} \) | \(a_{360}= +0.59256654 \pm 3.7 \cdot 10^{-7} \) |
\(a_{361}= -0.26477270 \pm 3.7 \cdot 10^{-7} \) | \(a_{362}= +0.12352412 \pm 4.1 \cdot 10^{-7} \) | \(a_{363}= -3.20654728 \pm 4.3 \cdot 10^{-7} \) |
\(a_{364}= -0.28453318 \pm 4.1 \cdot 10^{-7} \) | \(a_{365}= -0.70700221 \pm 3.6 \cdot 10^{-7} \) | \(a_{366}= -0.08526307 \pm 4.5 \cdot 10^{-7} \) |
\(a_{367}= +0.13103360 \pm 3.4 \cdot 10^{-7} \) | \(a_{368}= +0.56750304 \pm 3.8 \cdot 10^{-7} \) | \(a_{369}= +1.88688354 \pm 2.6 \cdot 10^{-7} \) |
\(a_{370}= +0.11179692 \pm 3.8 \cdot 10^{-7} \) | \(a_{371}= +0.06500387 \pm 4.5 \cdot 10^{-7} \) | \(a_{372}= -0.32214847 \pm 9.5 \cdot 10^{-7} \) |
\(a_{373}= +0.61234923 \pm 3.3 \cdot 10^{-7} \) | \(a_{374}= +0.23035379 \pm 3.7 \cdot 10^{-7} \) | \(a_{375}= -1.99685273 \pm 4.5 \cdot 10^{-7} \) |
\(a_{376}= +0.08330335 \pm 3.9 \cdot 10^{-7} \) | \(a_{377}= +1.47123916 \pm 3.0 \cdot 10^{-7} \) | \(a_{378}= +0.10056916 \pm 5.4 \cdot 10^{-7} \) |
\(a_{379}= +0.42587811 \pm 3.5 \cdot 10^{-7} \) | \(a_{380}= +0.64453695 \pm 3.4 \cdot 10^{-7} \) | \(a_{381}= -1.29888387 \pm 3.2 \cdot 10^{-7} \) |
\(a_{382}= +0.05753858 \pm 5.1 \cdot 10^{-7} \) | \(a_{383}= -0.53681946 \pm 3.6 \cdot 10^{-7} \) | \(a_{384}= +1.11935207 \pm 4.8 \cdot 10^{-7} \) |
\(a_{385}= -0.30812718 \pm 4.1 \cdot 10^{-7} \) | \(a_{386}= +0.05774198 \pm 5.2 \cdot 10^{-7} \) | \(a_{387}= +0.19275092 \pm 2.5 \cdot 10^{-7} \) |
\(a_{388}= -0.57719240 \pm 4.6 \cdot 10^{-7} \) | \(a_{389}= +1.91501494 \pm 4.7 \cdot 10^{-7} \) | \(a_{390}= -0.28009367 \pm 3.6 \cdot 10^{-7} \) |
\(a_{391}= -0.52750111 \pm 3.2 \cdot 10^{-7} \) | \(a_{392}= +0.30197423 \pm 5.8 \cdot 10^{-7} \) | \(a_{393}= -0.93192009 \pm 4.1 \cdot 10^{-7} \) |
\(a_{394}= -0.25783315 \pm 4.2 \cdot 10^{-7} \) | \(a_{395}= -1.02052085 \pm 3.2 \cdot 10^{-7} \) | \(a_{396}= +3.85847597 \pm 3.9 \cdot 10^{-7} \) |
\(a_{397}= -0.65750359 \pm 4.2 \cdot 10^{-7} \) | \(a_{398}= +0.20651603 \pm 5.8 \cdot 10^{-7} \) | \(a_{399}= +0.38082196 \pm 3.6 \cdot 10^{-7} \) |
\(a_{400}= -0.37222577 \pm 5.2 \cdot 10^{-7} \) | \(a_{401}= -0.21351179 \pm 4.4 \cdot 10^{-7} \) | \(a_{402}= +0.34720262 \pm 3.8 \cdot 10^{-7} \) |
\(a_{403}= +0.21772434 \pm 3.5 \cdot 10^{-7} \) | \(a_{404}= +1.06989489 \pm 6.2 \cdot 10^{-7} \) | \(a_{405}= -1.80428681 \pm 3.6 \cdot 10^{-7} \) |
\(a_{406}= +0.04752997 \pm 5.4 \cdot 10^{-7} \) | \(a_{407}= +1.47565429 \pm 3.9 \cdot 10^{-7} \) | \(a_{408}= -0.50592908 \pm 4.2 \cdot 10^{-7} \) |
\(a_{409}= +1.53998274 \pm 4.0 \cdot 10^{-7} \) | \(a_{410}= -0.09885473 \pm 3.8 \cdot 10^{-7} \) | \(a_{411}= +1.79447294 \pm 4.0 \cdot 10^{-7} \) |
\(a_{412}= -0.49095442 \pm 4.3 \cdot 10^{-7} \) | \(a_{413}= -0.26152505 \pm 2.9 \cdot 10^{-7} \) | \(a_{414}= +0.23948768 \pm 3.2 \cdot 10^{-7} \) |
\(a_{415}= +0.37493528 \pm 4.8 \cdot 10^{-7} \) | \(a_{416}= -0.57012460 \pm 4.4 \cdot 10^{-7} \) | \(a_{417}= -0.05160754 \pm 5.2 \cdot 10^{-7} \) |
\(a_{418}= -0.23059079 \pm 3.5 \cdot 10^{-7} \) | \(a_{419}= +1.14591314 \pm 4.7 \cdot 10^{-7} \) | \(a_{420}= +0.33384754 \pm 5.2 \cdot 10^{-7} \) |
\(a_{421}= -0.45320644 \pm 4.3 \cdot 10^{-7} \) | \(a_{422}= +0.27133827 \pm 4.2 \cdot 10^{-7} \) | \(a_{423}= -0.62201403 \pm 3.4 \cdot 10^{-7} \) |
\(a_{424}= +0.08644770 \pm 4.6 \cdot 10^{-7} \) | \(a_{425}= +0.34598847 \pm 4.8 \cdot 10^{-7} \) | \(a_{426}= +0.09313589 \pm 4.6 \cdot 10^{-7} \) |
\(a_{427}= -0.06868418 \pm 3.9 \cdot 10^{-7} \) | \(a_{428}= +0.36184522 \pm 3.3 \cdot 10^{-7} \) | \(a_{429}= -3.69707350 \pm 4.3 \cdot 10^{-7} \) |
\(a_{430}= -0.01009831 \pm 4.3 \cdot 10^{-7} \) | \(a_{431}= -0.92451001 \pm 3.7 \cdot 10^{-7} \) | \(a_{432}= -2.36647439 \pm 5.1 \cdot 10^{-7} \) |
\(a_{433}= +1.36745002 \pm 3.9 \cdot 10^{-7} \) | \(a_{434}= +0.00703382 \pm 9.3 \cdot 10^{-7} \) | \(a_{435}= -1.72622948 \pm 4.3 \cdot 10^{-7} \) |
\(a_{436}= -0.65647938 \pm 4.9 \cdot 10^{-7} \) | \(a_{437}= +0.52804383 \pm 2.7 \cdot 10^{-7} \) | \(a_{438}= -0.27405207 \pm 4.0 \cdot 10^{-7} \) |
\(a_{439}= +0.96945960 \pm 4.3 \cdot 10^{-7} \) | \(a_{440}= -0.40977386 \pm 3.7 \cdot 10^{-7} \) | \(a_{441}= -2.25479773 \pm 3.2 \cdot 10^{-7} \) |
\(a_{442}= +0.16868033 \pm 3.6 \cdot 10^{-7} \) | \(a_{443}= -0.86792764 \pm 3.8 \cdot 10^{-7} \) | \(a_{444}= -1.59883188 \pm 3.9 \cdot 10^{-7} \) |
\(a_{445}= +1.39196175 \pm 3.4 \cdot 10^{-7} \) | \(a_{446}= -0.22824522 \pm 5.6 \cdot 10^{-7} \) | \(a_{447}= -0.10528296 \pm 4.2 \cdot 10^{-7} \) |
\(a_{448}= +0.20374296 \pm 6.2 \cdot 10^{-7} \) | \(a_{449}= -1.02556092 \pm 4.0 \cdot 10^{-7} \) | \(a_{450}= -0.15708019 \pm 3.5 \cdot 10^{-7} \) |
\(a_{451}= -1.30482485 \pm 3.0 \cdot 10^{-7} \) | \(a_{452}= +0.84817499 \pm 4.3 \cdot 10^{-7} \) | \(a_{453}= +2.06899307 \pm 3.4 \cdot 10^{-7} \) |
\(a_{454}= +0.09146190 \pm 5.1 \cdot 10^{-7} \) | \(a_{455}= -0.22563116 \pm 2.9 \cdot 10^{-7} \) | \(a_{456}= +0.50644960 \pm 3.5 \cdot 10^{-7} \) |
\(a_{457}= -0.92794166 \pm 4.0 \cdot 10^{-7} \) | \(a_{458}= +0.18488166 \pm 5.4 \cdot 10^{-7} \) | \(a_{459}= +2.19966731 \pm 3.9 \cdot 10^{-7} \) |
\(a_{460}= +0.46290957 \pm 3.9 \cdot 10^{-7} \) | \(a_{461}= +0.38592332 \pm 4.5 \cdot 10^{-7} \) | \(a_{462}= -0.11943794 \pm 6.7 \cdot 10^{-7} \) |
\(a_{463}= +0.55853621 \pm 4.0 \cdot 10^{-7} \) | \(a_{464}= -1.11841884 \pm 3.9 \cdot 10^{-7} \) | \(a_{465}= -0.25545961 \pm 8.8 \cdot 10^{-7} \) |
\(a_{466}= +0.12814881 \pm 4.7 \cdot 10^{-7} \) | \(a_{467}= -1.74991634 \pm 4.2 \cdot 10^{-7} \) | \(a_{468}= +2.82543213 \pm 3.6 \cdot 10^{-7} \) |
\(a_{469}= +0.27969118 \pm 3.6 \cdot 10^{-7} \) | \(a_{470}= +0.03258761 \pm 3.6 \cdot 10^{-7} \) | \(a_{471}= +3.34003469 \pm 3.8 \cdot 10^{-7} \) |
\(a_{472}= -0.34779837 \pm 4.3 \cdot 10^{-7} \) | \(a_{473}= -0.13329184 \pm 3.9 \cdot 10^{-7} \) | \(a_{474}= -0.39557988 \pm 3.8 \cdot 10^{-7} \) |
\(a_{475}= -0.34634444 \pm 3.3 \cdot 10^{-7} \) | \(a_{476}= -0.20105242 \pm 5.4 \cdot 10^{-7} \) | \(a_{477}= -0.64549243 \pm 4.0 \cdot 10^{-7} \) |
\(a_{478}= +0.07070725 \pm 3.7 \cdot 10^{-7} \) | \(a_{479}= -0.97001734 \pm 3.5 \cdot 10^{-7} \) | \(a_{480}= +0.66893671 \pm 3.1 \cdot 10^{-7} \) |
\(a_{481}= +1.08057198 \pm 4.1 \cdot 10^{-7} \) | \(a_{482}= +0.13815040 \pm 5.2 \cdot 10^{-7} \) | \(a_{483}= +0.27350819 \pm 4.5 \cdot 10^{-7} \) |
\(a_{484}= -1.69461703 \pm 6.3 \cdot 10^{-7} \) | \(a_{485}= -0.45770616 \pm 3.8 \cdot 10^{-7} \) | \(a_{486}= -0.28222512 \pm 3.5 \cdot 10^{-7} \) |
\(a_{487}= -1.00657302 \pm 4.1 \cdot 10^{-7} \) | \(a_{488}= -0.09134210 \pm 3.5 \cdot 10^{-7} \) | \(a_{489}= +1.06408544 \pm 5.3 \cdot 10^{-7} \) |
\(a_{490}= +0.11812993 \pm 4.5 \cdot 10^{-7} \) | \(a_{491}= +0.51439684 \pm 3.3 \cdot 10^{-7} \) | \(a_{492}= +1.41374276 \pm 3.7 \cdot 10^{-7} \) |
\(a_{493}= +1.03958419 \pm 3.7 \cdot 10^{-7} \) | \(a_{494}= -0.16885387 \pm 3.7 \cdot 10^{-7} \) | \(a_{495}= +3.05972193 \pm 4.9 \cdot 10^{-7} \) |
\(a_{496}= -0.16551150 \pm 5.2 \cdot 10^{-7} \) | \(a_{497}= +0.07502618 \pm 3.8 \cdot 10^{-7} \) | \(a_{498}= +0.14533446 \pm 3.3 \cdot 10^{-7} \) |
\(a_{499}= -1.20933121 \pm 4.5 \cdot 10^{-7} \) | \(a_{500}= -1.05530976 \pm 4.0 \cdot 10^{-7} \) | \(a_{501}= -2.45775933 \pm 4.7 \cdot 10^{-7} \) |
\(a_{502}= +0.14979587 \pm 5.9 \cdot 10^{-7} \) | \(a_{503}= +0.17268573 \pm 3.2 \cdot 10^{-7} \) | \(a_{504}= +0.18503131 \pm 3.5 \cdot 10^{-7} \) |
\(a_{505}= +0.84841291 \pm 4.5 \cdot 10^{-7} \) | \(a_{506}= -0.16561143 \pm 5.4 \cdot 10^{-7} \) | \(a_{507}= -0.86498006 \pm 4.0 \cdot 10^{-7} \) |
\(a_{508}= -0.68644262 \pm 4.2 \cdot 10^{-7} \) | \(a_{509}= -0.12967588 \pm 3.9 \cdot 10^{-7} \) | \(a_{510}= -0.19791545 \pm 3.9 \cdot 10^{-7} \) |
\(a_{511}= -0.22076431 \pm 3.2 \cdot 10^{-7} \) | \(a_{512}= +0.72885136 \pm 5.4 \cdot 10^{-7} \) | \(a_{513}= -2.20193042 \pm 3.6 \cdot 10^{-7} \) |
\(a_{514}= -0.01280794 \pm 4.8 \cdot 10^{-7} \) | \(a_{515}= -0.38932056 \pm 4.1 \cdot 10^{-7} \) | \(a_{516}= +0.14441814 \pm 4.4 \cdot 10^{-7} \) |
\(a_{517}= +0.43013750 \pm 3.0 \cdot 10^{-7} \) | \(a_{518}= +0.03490904 \pm 4.3 \cdot 10^{-7} \) | \(a_{519}= +0.20931282 \pm 4.0 \cdot 10^{-7} \) |
\(a_{520}= -0.30006361 \pm 3.5 \cdot 10^{-7} \) | \(a_{521}= +0.94501239 \pm 3.4 \cdot 10^{-7} \) | \(a_{522}= -0.47197550 \pm 3.9 \cdot 10^{-7} \) |
\(a_{523}= -0.00429293 \pm 4.2 \cdot 10^{-7} \) | \(a_{524}= -0.49250721 \pm 4.5 \cdot 10^{-7} \) | \(a_{525}= -0.17939428 \pm 4.5 \cdot 10^{-7} \) |
\(a_{526}= -0.26721866 \pm 5.2 \cdot 10^{-7} \) | \(a_{527}= +0.15384500 \pm 4.1 \cdot 10^{-7} \) | \(a_{528}= +2.81047214 \pm 4.6 \cdot 10^{-7} \) |
\(a_{529}= -0.62075635 \pm 3.4 \cdot 10^{-7} \) | \(a_{530}= +0.03381766 \pm 4.1 \cdot 10^{-7} \) | \(a_{531}= +2.59695993 \pm 3.2 \cdot 10^{-7} \) |
\(a_{532}= +0.20125928 \pm 4.9 \cdot 10^{-7} \) | \(a_{533}= -0.95547933 \pm 2.6 \cdot 10^{-7} \) | \(a_{534}= +0.53955983 \pm 5.9 \cdot 10^{-7} \) |
\(a_{535}= +0.28693862 \pm 4.0 \cdot 10^{-7} \) | \(a_{536}= +0.37195725 \pm 4.9 \cdot 10^{-7} \) | \(a_{537}= +2.76227418 \pm 4.0 \cdot 10^{-7} \) |
\(a_{538}= -0.25040389 \pm 5.1 \cdot 10^{-7} \) | \(a_{539}= +1.55924627 \pm 4.0 \cdot 10^{-7} \) | \(a_{540}= -1.93032209 \pm 3.8 \cdot 10^{-7} \) |
\(a_{541}= +1.38699834 \pm 3.9 \cdot 10^{-7} \) | \(a_{542}= +0.20106249 \pm 4.4 \cdot 10^{-7} \) | \(a_{543}= -1.40084762 \pm 4.6 \cdot 10^{-7} \) |
\(a_{544}= -0.40285260 \pm 4.2 \cdot 10^{-7} \) | \(a_{545}= -0.52057972 \pm 4.6 \cdot 10^{-7} \) | \(a_{546}= -0.08746039 \pm 3.8 \cdot 10^{-7} \) |
\(a_{547}= -1.42376841 \pm 3.8 \cdot 10^{-7} \) | \(a_{548}= +0.94835477 \pm 4.4 \cdot 10^{-7} \) | \(a_{549}= +0.68203819 \pm 4.2 \cdot 10^{-7} \) |
\(a_{550}= +0.10862469 \pm 4.8 \cdot 10^{-7} \) | \(a_{551}= -1.04065376 \pm 4.0 \cdot 10^{-7} \) | \(a_{552}= +0.36373457 \pm 4.8 \cdot 10^{-7} \) |
\(a_{553}= -0.31866178 \pm 3.3 \cdot 10^{-7} \) | \(a_{554}= +0.07179691 \pm 4.0 \cdot 10^{-7} \) | \(a_{555}= -1.26785316 \pm 4.4 \cdot 10^{-7} \) |
\(a_{556}= -0.02727389 \pm 6.4 \cdot 10^{-7} \) | \(a_{557}= -1.59203821 \pm 4.8 \cdot 10^{-7} \) | \(a_{558}= -0.06984626 \pm 9.3 \cdot 10^{-7} \) |
\(a_{559}= -0.09760513 \pm 3.1 \cdot 10^{-7} \) | \(a_{560}= +0.17152218 \pm 4.6 \cdot 10^{-7} \) | \(a_{561}= -2.61236873 \pm 3.7 \cdot 10^{-7} \) |
\(a_{562}= +0.09533359 \pm 5.0 \cdot 10^{-7} \) | \(a_{563}= +0.21643315 \pm 3.9 \cdot 10^{-7} \) | \(a_{564}= -0.46604245 \pm 3.9 \cdot 10^{-7} \) |
\(a_{565}= +0.67259188 \pm 4.9 \cdot 10^{-7} \) | \(a_{566}= +0.17531908 \pm 5.1 \cdot 10^{-7} \) | \(a_{567}= -0.56339588 \pm 3.9 \cdot 10^{-7} \) |
\(a_{568}= +0.09977623 \pm 3.9 \cdot 10^{-7} \) | \(a_{569}= -0.37390431 \pm 3.7 \cdot 10^{-7} \) | \(a_{570}= +0.19811907 \pm 3.9 \cdot 10^{-7} \) |
\(a_{571}= +1.73470124 \pm 4.1 \cdot 10^{-7} \) | \(a_{572}= -1.95385352 \pm 3.4 \cdot 10^{-7} \) | \(a_{573}= -0.65252670 \pm 4.4 \cdot 10^{-7} \) |
\(a_{574}= -0.03086779 \pm 4.8 \cdot 10^{-7} \) | \(a_{575}= -0.24874626 \pm 3.5 \cdot 10^{-7} \) | \(a_{576}= -2.02318021 \pm 4.7 \cdot 10^{-7} \) |
\(a_{577}= +1.68868363 \pm 4.0 \cdot 10^{-7} \) | \(a_{578}= -0.04325698 \pm 3.2 \cdot 10^{-7} \) | \(a_{579}= -0.65483337 \pm 4.1 \cdot 10^{-7} \) |
\(a_{580}= -0.91228902 \pm 3.3 \cdot 10^{-7} \) | \(a_{581}= +0.11707506 \pm 3.3 \cdot 10^{-7} \) | \(a_{582}= -0.17741857 \pm 4.8 \cdot 10^{-7} \) |
\(a_{583}= +0.44637337 \pm 4.9 \cdot 10^{-7} \) | \(a_{584}= -0.29359125 \pm 4.0 \cdot 10^{-7} \) | \(a_{585}= +2.24053142 \pm 3.7 \cdot 10^{-7} \) |
\(a_{586}= -0.16717995 \pm 5.6 \cdot 10^{-7} \) | \(a_{587}= +1.19445677 \pm 4.3 \cdot 10^{-7} \) | \(a_{588}= -1.68940155 \pm 5.5 \cdot 10^{-7} \) |
\(a_{589}= -0.15400328 \pm 4.0 \cdot 10^{-7} \) | \(a_{590}= -0.13605597 \pm 3.7 \cdot 10^{-7} \) | \(a_{591}= +2.92400342 \pm 3.6 \cdot 10^{-7} \) |
\(a_{592}= -0.82143822 \pm 4.2 \cdot 10^{-7} \) | \(a_{593}= +0.93182860 \pm 4.9 \cdot 10^{-7} \) | \(a_{594}= +0.69059577 \pm 4.7 \cdot 10^{-7} \) |
\(a_{595}= -0.15943199 \pm 4.4 \cdot 10^{-7} \) | \(a_{596}= -0.05564062 \pm 5.3 \cdot 10^{-7} \) | \(a_{597}= -2.34203228 \pm 4.7 \cdot 10^{-7} \) |
\(a_{598}= -0.12127167 \pm 2.9 \cdot 10^{-7} \) | \(a_{599}= +0.07876511 \pm 4.4 \cdot 10^{-7} \) | \(a_{600}= -0.23857384 \pm 4.8 \cdot 10^{-7} \) |
\(a_{601}= +0.45484233 \pm 4.1 \cdot 10^{-7} \) | \(a_{602}= -0.00315324 \pm 6.2 \cdot 10^{-7} \) | \(a_{603}= -2.77735075 \pm 3.1 \cdot 10^{-7} \) |
\(a_{604}= +1.09343496 \pm 4.6 \cdot 10^{-7} \) | \(a_{605}= -1.34380956 \pm 3.2 \cdot 10^{-7} \) | \(a_{606}= +0.32886646 \pm 5.3 \cdot 10^{-7} \) |
\(a_{607}= -0.06540624 \pm 3.7 \cdot 10^{-7} \) | \(a_{608}= +0.40326707 \pm 5.3 \cdot 10^{-7} \) | \(a_{609}= -0.53902216 \pm 4.2 \cdot 10^{-7} \) |
\(a_{610}= -0.03573231 \pm 3.5 \cdot 10^{-7} \) | \(a_{611}= +0.31497522 \pm 2.8 \cdot 10^{-7} \) | \(a_{612}= +1.99646302 \pm 3.7 \cdot 10^{-7} \) |
\(a_{613}= -0.23271695 \pm 4.2 \cdot 10^{-7} \) | \(a_{614}= -0.07853068 \pm 4.4 \cdot 10^{-7} \) | \(a_{615}= +1.12107987 \pm 3.2 \cdot 10^{-7} \) |
\(a_{616}= -0.12795355 \pm 6.5 \cdot 10^{-7} \) | \(a_{617}= +1.73134223 \pm 3.7 \cdot 10^{-7} \) | \(a_{618}= -0.15091056 \pm 4.0 \cdot 10^{-7} \) |
\(a_{619}= +1.36117663 \pm 5.0 \cdot 10^{-7} \) | \(a_{620}= -0.13500696 \pm 9.3 \cdot 10^{-7} \) | \(a_{621}= -1.58143715 \pm 3.2 \cdot 10^{-7} \) |
\(a_{622}= -0.04520518 \pm 4.1 \cdot 10^{-7} \) | \(a_{623}= +0.43464570 \pm 4.9 \cdot 10^{-7} \) | \(a_{624}= +2.05801419 \pm 3.9 \cdot 10^{-7} \) |
\(a_{625}= -0.43292519 \pm 3.7 \cdot 10^{-7} \) | \(a_{626}= -0.29904098 \pm 4.8 \cdot 10^{-7} \) | \(a_{627}= +2.61505645 \pm 3.3 \cdot 10^{-7} \) |
\(a_{628}= +1.76516333 \pm 3.7 \cdot 10^{-7} \) | \(a_{629}= +0.76353701 \pm 4.0 \cdot 10^{-7} \) | \(a_{630}= +0.07238278 \pm 3.1 \cdot 10^{-7} \) |
\(a_{631}= -0.71503084 \pm 4.3 \cdot 10^{-7} \) | \(a_{632}= -0.42378367 \pm 3.7 \cdot 10^{-7} \) | \(a_{633}= -3.07716070 \pm 3.8 \cdot 10^{-7} \) |
\(a_{634}= +0.02173645 \pm 4.2 \cdot 10^{-7} \) | \(a_{635}= -0.54434019 \pm 3.2 \cdot 10^{-7} \) | \(a_{636}= -0.48363358 \pm 5.1 \cdot 10^{-7} \) |
\(a_{637}= +1.14178358 \pm 3.0 \cdot 10^{-7} \) | \(a_{638}= +0.32638229 \pm 5.3 \cdot 10^{-7} \) | \(a_{639}= -0.74501463 \pm 5.1 \cdot 10^{-7} \) |
\(a_{640}= +0.46910146 \pm 3.6 \cdot 10^{-7} \) | \(a_{641}= +0.23793503 \pm 3.9 \cdot 10^{-7} \) | \(a_{642}= +0.11122472 \pm 4.4 \cdot 10^{-7} \) |
\(a_{643}= +0.02385476 \pm 3.8 \cdot 10^{-7} \) | \(a_{644}= +0.14454539 \pm 5.6 \cdot 10^{-7} \) | \(a_{645}= +0.11452173 \pm 3.7 \cdot 10^{-7} \) |
\(a_{646}= -0.11931291 \pm 3.9 \cdot 10^{-7} \) | \(a_{647}= -0.47047092 \pm 4.6 \cdot 10^{-7} \) | \(a_{648}= -0.74925200 \pm 4.3 \cdot 10^{-7} \) |
\(a_{649}= -1.79585956 \pm 3.6 \cdot 10^{-7} \) | \(a_{650}= +0.07954220 \pm 3.0 \cdot 10^{-7} \) | \(a_{651}= -0.07976830 \pm 8.8 \cdot 10^{-7} \) |
\(a_{652}= +0.56235481 \pm 4.3 \cdot 10^{-7} \) | \(a_{653}= +1.13175365 \pm 3.8 \cdot 10^{-7} \) | \(a_{654}= -0.20178996 \pm 5.2 \cdot 10^{-7} \) |
\(a_{655}= -0.39055190 \pm 4.9 \cdot 10^{-7} \) | \(a_{656}= +0.72634424 \pm 4.3 \cdot 10^{-7} \) | \(a_{657}= +2.19220325 \pm 3.2 \cdot 10^{-7} \) |
\(a_{658}= +0.01017561 \pm 5.1 \cdot 10^{-7} \) | \(a_{659}= -1.42319924 \pm 3.9 \cdot 10^{-7} \) | \(a_{660}= +2.29248899 \pm 4.0 \cdot 10^{-7} \) |
\(a_{661}= -0.05648655 \pm 3.5 \cdot 10^{-7} \) | \(a_{662}= -0.02559140 \pm 4.4 \cdot 10^{-7} \) | \(a_{663}= -1.91294972 \pm 3.7 \cdot 10^{-7} \) |
\(a_{664}= +0.15569643 \pm 2.9 \cdot 10^{-7} \) | \(a_{665}= +0.15959602 \pm 3.6 \cdot 10^{-7} \) | \(a_{666}= -0.34664895 \pm 4.9 \cdot 10^{-7} \) |
\(a_{667}= -0.74740260 \pm 3.6 \cdot 10^{-7} \) | \(a_{668}= -1.29889269 \pm 4.3 \cdot 10^{-7} \) | \(a_{669}= +2.58845614 \pm 4.7 \cdot 10^{-7} \) |
\(a_{670}= +0.14550673 \pm 3.3 \cdot 10^{-7} \) | \(a_{671}= -0.47164563 \pm 3.7 \cdot 10^{-7} \) | \(a_{672}= +0.20887820 \pm 4.6 \cdot 10^{-7} \) |
\(a_{673}= +0.09650014 \pm 3.8 \cdot 10^{-7} \) | \(a_{674}= -0.10825470 \pm 6.2 \cdot 10^{-7} \) | \(a_{675}= +1.03726610 \pm 3.7 \cdot 10^{-7} \) |
\(a_{676}= -0.45713031 \pm 4.0 \cdot 10^{-7} \) | \(a_{677}= -0.59247147 \pm 4.8 \cdot 10^{-7} \) | \(a_{678}= +0.26071375 \pm 4.7 \cdot 10^{-7} \) |
\(a_{679}= -0.14292061 \pm 4.0 \cdot 10^{-7} \) | \(a_{680}= -0.21202629 \pm 4.0 \cdot 10^{-7} \) | \(a_{681}= -1.03724014 \pm 5.6 \cdot 10^{-7} \) |
\(a_{682}= +0.04830035 \pm 9.3 \cdot 10^{-7} \) | \(a_{683}= -0.47045052 \pm 4.5 \cdot 10^{-7} \) | \(a_{684}= -1.99851707 \pm 3.4 \cdot 10^{-7} \) |
\(a_{685}= +0.75203316 \pm 3.3 \cdot 10^{-7} \) | \(a_{686}= +0.07604920 \pm 4.3 \cdot 10^{-7} \) | \(a_{687}= -2.09668382 \pm 4.5 \cdot 10^{-7} \) |
\(a_{688}= +0.07419828 \pm 5.7 \cdot 10^{-7} \) | \(a_{689}= +0.32686420 \pm 3.0 \cdot 10^{-7} \) | \(a_{690}= +0.14229008 \pm 5.3 \cdot 10^{-7} \) |
\(a_{691}= -0.62337351 \pm 4.1 \cdot 10^{-7} \) | \(a_{692}= +0.11061901 \pm 3.5 \cdot 10^{-7} \) | \(a_{693}= +0.95541059 \pm 3.1 \cdot 10^{-7} \) |
\(a_{694}= +0.05352536 \pm 3.5 \cdot 10^{-7} \) | \(a_{695}= -0.02162785 \pm 4.2 \cdot 10^{-7} \) | \(a_{696}= -0.71683775 \pm 4.3 \cdot 10^{-7} \) |
\(a_{697}= -0.67514599 \pm 3.6 \cdot 10^{-7} \) | \(a_{698}= +0.07770190 \pm 3.6 \cdot 10^{-7} \) | \(a_{699}= -1.45329469 \pm 5.3 \cdot 10^{-7} \) |
\(a_{700}= -0.09480746 \pm 5.8 \cdot 10^{-7} \) | \(a_{701}= +0.40372345 \pm 4.2 \cdot 10^{-7} \) | \(a_{702}= +0.50570005 \pm 4.3 \cdot 10^{-7} \) |
\(a_{703}= -0.76432258 \pm 3.7 \cdot 10^{-7} \) | \(a_{704}= +1.39907724 \pm 4.0 \cdot 10^{-7} \) | \(a_{705}= -0.36956568 \pm 4.1 \cdot 10^{-7} \) |
\(a_{706}= -0.13840782 \pm 5.2 \cdot 10^{-7} \) | \(a_{707}= +0.26492037 \pm 4.7 \cdot 10^{-7} \) | \(a_{708}= +1.94576572 \pm 4.0 \cdot 10^{-7} \) |
\(a_{709}= -0.27654161 \pm 4.7 \cdot 10^{-7} \) | \(a_{710}= +0.03903167 \pm 3.8 \cdot 10^{-7} \) | \(a_{711}= +3.16433117 \pm 3.8 \cdot 10^{-7} \) |
\(a_{712}= +0.57802901 \pm 6.2 \cdot 10^{-7} \) | \(a_{713}= -0.11060590 \pm 3.5 \cdot 10^{-7} \) | \(a_{714}= -0.06179990 \pm 4.6 \cdot 10^{-7} \) |
\(a_{715}= -1.54938077 \pm 3.1 \cdot 10^{-7} \) | \(a_{716}= +1.45982468 \pm 5.8 \cdot 10^{-7} \) | \(a_{717}= -0.80186833 \pm 3.3 \cdot 10^{-7} \) |
\(a_{718}= -0.21749175 \pm 4.8 \cdot 10^{-7} \) | \(a_{719}= -0.04622572 \pm 4.3 \cdot 10^{-7} \) | \(a_{720}= -1.70322585 \pm 3.8 \cdot 10^{-7} \) |
\(a_{721}= -0.12156692 \pm 3.8 \cdot 10^{-7} \) | \(a_{722}= -0.04301160 \pm 4.5 \cdot 10^{-7} \) | \(a_{723}= -1.56671956 \pm 5.1 \cdot 10^{-7} \) |
\(a_{724}= -0.74032909 \pm 3.8 \cdot 10^{-7} \) | \(a_{725}= +0.49022206 \pm 4.0 \cdot 10^{-7} \) | \(a_{726}= -0.52089482 \pm 5.7 \cdot 10^{-7} \) |
\(a_{727}= -0.61622393 \pm 4.0 \cdot 10^{-7} \) | \(a_{728}= -0.09369608 \pm 4.6 \cdot 10^{-7} \) | \(a_{729}= +0.86365034 \pm 3.5 \cdot 10^{-7} \) |
\(a_{730}= -0.11485057 \pm 3.7 \cdot 10^{-7} \) | \(a_{731}= -0.06896822 \pm 3.5 \cdot 10^{-7} \) | \(a_{732}= +0.51101540 \pm 2.9 \cdot 10^{-7} \) |
\(a_{733}= +0.77659720 \pm 4.0 \cdot 10^{-7} \) | \(a_{734}= +0.02128605 \pm 4.1 \cdot 10^{-7} \) | \(a_{735}= -1.33967375 \pm 3.9 \cdot 10^{-7} \) |
\(a_{736}= +0.28962837 \pm 3.1 \cdot 10^{-7} \) | \(a_{737}= +1.92060411 \pm 3.2 \cdot 10^{-7} \) | \(a_{738}= +0.30651906 \pm 2.9 \cdot 10^{-7} \) |
\(a_{739}= -0.77412837 \pm 3.7 \cdot 10^{-7} \) | \(a_{740}= -0.67004331 \pm 3.5 \cdot 10^{-7} \) | \(a_{741}= +1.91491785 \pm 2.7 \cdot 10^{-7} \) |
\(a_{742}= +0.01055970 \pm 5.9 \cdot 10^{-7} \) | \(a_{743}= -0.29295345 \pm 4.2 \cdot 10^{-7} \) | \(a_{744}= -0.10608270 \pm 9.4 \cdot 10^{-7} \) |
\(a_{745}= -0.04412230 \pm 3.7 \cdot 10^{-7} \) | \(a_{746}= +0.09947445 \pm 3.8 \cdot 10^{-7} \) | \(a_{747}= -1.16256261 \pm 3.2 \cdot 10^{-7} \) |
\(a_{748}= -1.38060167 \pm 4.0 \cdot 10^{-7} \) | \(a_{749}= +0.08959775 \pm 3.7 \cdot 10^{-7} \) | \(a_{750}= -0.32438325 \pm 4.1 \cdot 10^{-7} \) |
\(a_{751}= -0.27633153 \pm 5.1 \cdot 10^{-7} \) | \(a_{752}= -0.23944048 \pm 4.4 \cdot 10^{-7} \) | \(a_{753}= -1.69878709 \pm 4.7 \cdot 10^{-7} \) |
\(a_{754}= +0.23899877 \pm 3.4 \cdot 10^{-7} \) | \(a_{755}= +0.86707989 \pm 2.9 \cdot 10^{-7} \) | \(a_{756}= -0.60275090 \pm 5.8 \cdot 10^{-7} \) |
\(a_{757}= -0.22549450 \pm 4.1 \cdot 10^{-7} \) | \(a_{758}= +0.06918273 \pm 4.4 \cdot 10^{-7} \) | \(a_{759}= +1.87814628 \pm 4.6 \cdot 10^{-7} \) |
\(a_{760}= +0.21224444 \pm 2.6 \cdot 10^{-7} \) | \(a_{761}= +0.14428664 \pm 3.4 \cdot 10^{-7} \) | \(a_{762}= -0.21100012 \pm 4.0 \cdot 10^{-7} \) |
\(a_{763}= -0.16255313 \pm 4.3 \cdot 10^{-7} \) | \(a_{764}= -0.34485157 \pm 5.0 \cdot 10^{-7} \) | \(a_{765}= +1.58316956 \pm 4.5 \cdot 10^{-7} \) |
\(a_{766}= -0.08720485 \pm 4.9 \cdot 10^{-7} \) | \(a_{767}= -1.31504753 \pm 3.0 \cdot 10^{-7} \) | \(a_{768}= -1.37511354 \pm 5.4 \cdot 10^{-7} \) |
\(a_{769}= +0.57379046 \pm 3.8 \cdot 10^{-7} \) | \(a_{770}= -0.05005441 \pm 4.1 \cdot 10^{-7} \) | \(a_{771}= +0.14525074 \pm 5.0 \cdot 10^{-7} \) |
\(a_{772}= -0.34607061 \pm 4.8 \cdot 10^{-7} \) | \(a_{773}= +0.05277823 \pm 4.2 \cdot 10^{-7} \) | \(a_{774}= +0.03131186 \pm 2.9 \cdot 10^{-7} \) |
\(a_{775}= +0.07254652 \pm 4.6 \cdot 10^{-7} \) | \(a_{776}= -0.19006804 \pm 4.6 \cdot 10^{-7} \) | \(a_{777}= -0.39589229 \pm 3.5 \cdot 10^{-7} \) |
\(a_{778}= +0.31108893 \pm 5.9 \cdot 10^{-7} \) | \(a_{779}= +0.67584061 \pm 3.1 \cdot 10^{-7} \) | \(a_{780}= +1.67871255 \pm 3.3 \cdot 10^{-7} \) |
\(a_{781}= +0.51519534 \pm 3.8 \cdot 10^{-7} \) | \(a_{782}= -0.08569111 \pm 3.7 \cdot 10^{-7} \) | \(a_{783}= +3.11665136 \pm 3.5 \cdot 10^{-7} \) |
\(a_{784}= -0.86797055 \pm 5.3 \cdot 10^{-7} \) | \(a_{785}= +1.39975187 \pm 4.0 \cdot 10^{-7} \) | \(a_{786}= -0.15138786 \pm 4.5 \cdot 10^{-7} \) |
\(a_{787}= +1.74210223 \pm 4.0 \cdot 10^{-7} \) | \(a_{788}= +1.54529640 \pm 5.2 \cdot 10^{-7} \) | \(a_{789}= +3.03044145 \pm 4.2 \cdot 10^{-7} \) |
\(a_{790}= -0.16578081 \pm 3.4 \cdot 10^{-7} \) | \(a_{791}= +0.21001954 \pm 4.4 \cdot 10^{-7} \) | \(a_{792}= +1.27058668 \pm 4.0 \cdot 10^{-7} \) |
\(a_{793}= -0.34537023 \pm 3.7 \cdot 10^{-7} \) | \(a_{794}= -0.10680966 \pm 5.4 \cdot 10^{-7} \) | \(a_{795}= -0.38351522 \pm 5.2 \cdot 10^{-7} \) |
\(a_{796}= -1.23773250 \pm 4.8 \cdot 10^{-7} \) | \(a_{797}= +0.44759914 \pm 3.4 \cdot 10^{-7} \) | \(a_{798}= +0.06186348 \pm 4.8 \cdot 10^{-7} \) |
\(a_{799}= +0.22256290 \pm 3.9 \cdot 10^{-7} \) | \(a_{800}= -0.18996752 \pm 4.4 \cdot 10^{-7} \) | \(a_{801}= -4.31605874 \pm 3.9 \cdot 10^{-7} \) |
\(a_{802}= -0.03468441 \pm 5.8 \cdot 10^{-7} \) | \(a_{803}= -1.51596069 \pm 3.7 \cdot 10^{-7} \) | \(a_{804}= -2.08092309 \pm 3.8 \cdot 10^{-7} \) |
\(a_{805}= +0.11462264 \pm 4.7 \cdot 10^{-7} \) | \(a_{806}= +0.03536872 \pm 8.5 \cdot 10^{-7} \) | \(a_{807}= +2.83975050 \pm 5.0 \cdot 10^{-7} \) |
\(a_{808}= +0.35231376 \pm 5.2 \cdot 10^{-7} \) | \(a_{809}= -1.40721776 \pm 3.6 \cdot 10^{-7} \) | \(a_{810}= -0.29310145 \pm 3.7 \cdot 10^{-7} \) |
\(a_{811}= +0.63784008 \pm 4.3 \cdot 10^{-7} \) | \(a_{812}= -0.28486595 \pm 5.3 \cdot 10^{-7} \) | \(a_{813}= -2.28018551 \pm 4.2 \cdot 10^{-7} \) |
\(a_{814}= +0.23971599 \pm 3.9 \cdot 10^{-7} \) | \(a_{815}= +0.44594015 \pm 3.8 \cdot 10^{-7} \) | \(a_{816}= +1.45420206 \pm 4.0 \cdot 10^{-7} \) |
\(a_{817}= +0.06903918 \pm 5.1 \cdot 10^{-7} \) | \(a_{818}= +0.25016597 \pm 4.7 \cdot 10^{-7} \) | \(a_{819}= +0.69961502 \pm 2.9 \cdot 10^{-7} \) |
\(a_{820}= +0.59247560 \pm 3.9 \cdot 10^{-7} \) | \(a_{821}= -0.05208391 \pm 3.7 \cdot 10^{-7} \) | \(a_{822}= +0.29150721 \pm 4.7 \cdot 10^{-7} \) |
\(a_{823}= +1.86735289 \pm 4.2 \cdot 10^{-7} \) | \(a_{824}= -0.16167009 \pm 4.0 \cdot 10^{-7} \) | \(a_{825}= -1.23187789 \pm 5.0 \cdot 10^{-7} \) |
\(a_{826}= -0.04248403 \pm 3.7 \cdot 10^{-7} \) | \(a_{827}= -1.24214563 \pm 4.0 \cdot 10^{-7} \) | \(a_{828}= -1.43534470 \pm 3.2 \cdot 10^{-7} \) |
\(a_{829}= -1.17957085 \pm 4.4 \cdot 10^{-7} \) | \(a_{830}= +0.06090721 \pm 2.7 \cdot 10^{-7} \) | \(a_{831}= -0.81422587 \pm 3.0 \cdot 10^{-7} \) |
\(a_{832}= +1.02449719 \pm 4.5 \cdot 10^{-7} \) | \(a_{833}= +0.80678940 \pm 3.5 \cdot 10^{-7} \) | \(a_{834}= -0.00838350 \pm 6.3 \cdot 10^{-7} \) |
\(a_{835}= -1.03000523 \pm 5.0 \cdot 10^{-7} \) | \(a_{836}= +1.38202209 \pm 3.4 \cdot 10^{-7} \) | \(a_{837}= +0.46122404 \pm 4.5 \cdot 10^{-7} \) |
\(a_{838}= +0.18615045 \pm 6.1 \cdot 10^{-7} \) | \(a_{839}= +0.29444169 \pm 3.8 \cdot 10^{-7} \) | \(a_{840}= +0.10993518 \pm 5.9 \cdot 10^{-7} \) |
\(a_{841}= +0.47295978 \pm 3.7 \cdot 10^{-7} \) | \(a_{842}= -0.07362214 \pm 5.0 \cdot 10^{-7} \) | \(a_{843}= -1.08114776 \pm 4.4 \cdot 10^{-7} \) |
\(a_{844}= -1.62623796 \pm 4.6 \cdot 10^{-7} \) | \(a_{845}= -0.36249847 \pm 3.4 \cdot 10^{-7} \) | \(a_{846}= -0.10104447 \pm 3.2 \cdot 10^{-7} \) |
\(a_{847}= -0.41960999 \pm 4.8 \cdot 10^{-7} \) | \(a_{848}= -0.24847835 \pm 4.1 \cdot 10^{-7} \) | \(a_{849}= -1.98823769 \pm 6.0 \cdot 10^{-7} \) |
\(a_{850}= +0.05620488 \pm 3.4 \cdot 10^{-7} \) | \(a_{851}= -0.54894020 \pm 3.0 \cdot 10^{-7} \) | \(a_{852}= -0.55820034 \pm 3.8 \cdot 10^{-7} \) |
\(a_{853}= +1.67972117 \pm 5.1 \cdot 10^{-7} \) | \(a_{854}= -0.01115756 \pm 3.8 \cdot 10^{-7} \) | \(a_{855}= -1.58479839 \pm 2.9 \cdot 10^{-7} \) |
\(a_{856}= +0.11915474 \pm 4.0 \cdot 10^{-7} \) | \(a_{857}= -1.01957093 \pm 4.2 \cdot 10^{-7} \) | \(a_{858}= -0.60057945 \pm 3.8 \cdot 10^{-7} \) |
\(a_{859}= -1.47930280 \pm 3.9 \cdot 10^{-7} \) | \(a_{860}= +0.06052319 \pm 3.1 \cdot 10^{-7} \) | \(a_{861}= +0.35006174 \pm 3.3 \cdot 10^{-7} \) |
\(a_{862}= -0.15018412 \pm 5.1 \cdot 10^{-7} \) | \(a_{863}= +1.43403586 \pm 3.5 \cdot 10^{-7} \) | \(a_{864}= -1.20774355 \pm 5.1 \cdot 10^{-7} \) |
\(a_{865}= +0.08771945 \pm 2.7 \cdot 10^{-7} \) | \(a_{866}= +0.22213851 \pm 3.8 \cdot 10^{-7} \) | \(a_{867}= +0.49056361 \pm 2.8 \cdot 10^{-7} \) |
\(a_{868}= -0.04215647 \pm 9.3 \cdot 10^{-7} \) | \(a_{869}= -2.18821027 \pm 3.5 \cdot 10^{-7} \) | \(a_{870}= -0.28042125 \pm 3.7 \cdot 10^{-7} \) |
\(a_{871}= +1.40639377 \pm 3.0 \cdot 10^{-7} \) | \(a_{872}= -0.21617705 \pm 4.7 \cdot 10^{-7} \) | \(a_{873}= +1.41921047 \pm 2.8 \cdot 10^{-7} \) |
\(a_{874}= +0.08577927 \pm 3.4 \cdot 10^{-7} \) | \(a_{875}= -0.26130890 \pm 3.9 \cdot 10^{-7} \) | \(a_{876}= +1.64250279 \pm 3.5 \cdot 10^{-7} \) |
\(a_{877}= -0.95513785 \pm 4.8 \cdot 10^{-7} \) | \(a_{878}= +0.15748605 \pm 4.9 \cdot 10^{-7} \) | \(a_{879}= +1.89593439 \pm 5.5 \cdot 10^{-7} \) |
\(a_{880}= +1.17782119 \pm 4.2 \cdot 10^{-7} \) | \(a_{881}= +0.91020237 \pm 3.2 \cdot 10^{-7} \) | \(a_{882}= -0.36628571 \pm 2.7 \cdot 10^{-7} \) |
\(a_{883}= +1.14512858 \pm 3.6 \cdot 10^{-7} \) | \(a_{884}= -1.01096815 \pm 3.7 \cdot 10^{-7} \) | \(a_{885}= +1.54296724 \pm 3.4 \cdot 10^{-7} \) |
\(a_{886}= -0.14099247 \pm 4.7 \cdot 10^{-7} \) | \(a_{887}= +1.58013449 \pm 4.5 \cdot 10^{-7} \) | \(a_{888}= -0.52649142 \pm 5.5 \cdot 10^{-7} \) |
\(a_{889}= -0.16997243 \pm 3.8 \cdot 10^{-7} \) | \(a_{890}= +0.22612037 \pm 4.7 \cdot 10^{-7} \) | \(a_{891}= -3.86876851 \pm 4.6 \cdot 10^{-7} \) |
\(a_{892}= +1.36796419 \pm 5.6 \cdot 10^{-7} \) | \(a_{893}= -0.22279188 \pm 3.7 \cdot 10^{-7} \) | \(a_{894}= -0.01710293 \pm 5.3 \cdot 10^{-7} \) |
\(a_{895}= +1.15762224 \pm 4.6 \cdot 10^{-7} \) | \(a_{896}= +0.14647883 \pm 6.6 \cdot 10^{-7} \) | \(a_{897}= +1.37530333 \pm 3.0 \cdot 10^{-7} \) |
\(a_{898}= -0.16659956 \pm 5.1 \cdot 10^{-7} \) | \(a_{899}= +0.21797897 \pm 4.2 \cdot 10^{-7} \) | \(a_{900}= +0.94144392 \pm 4.0 \cdot 10^{-7} \) |
\(a_{901}= +0.23096371 \pm 4.1 \cdot 10^{-7} \) | \(a_{902}= -0.21196522 \pm 3.4 \cdot 10^{-7} \) | \(a_{903}= +0.03575988 \pm 4.0 \cdot 10^{-7} \) |
\(a_{904}= +0.27930195 \pm 3.3 \cdot 10^{-7} \) | \(a_{905}= -0.58707147 \pm 3.4 \cdot 10^{-7} \) | \(a_{906}= +0.33610225 \pm 4.1 \cdot 10^{-7} \) |
\(a_{907}= -1.27219694 \pm 3.9 \cdot 10^{-7} \) | \(a_{908}= -0.54816744 \pm 4.0 \cdot 10^{-7} \) | \(a_{909}= -2.63067572 \pm 4.0 \cdot 10^{-7} \) |
\(a_{910}= -0.03665316 \pm 3.3 \cdot 10^{-7} \) | \(a_{911}= -0.65554518 \pm 5.4 \cdot 10^{-7} \) | \(a_{912}= -1.45569821 \pm 4.3 \cdot 10^{-7} \) |
\(a_{913}= +0.80393970 \pm 3.9 \cdot 10^{-7} \) | \(a_{914}= -0.15074158 \pm 4.9 \cdot 10^{-7} \) | \(a_{915}= +0.40522866 \pm 4.2 \cdot 10^{-7} \) |
\(a_{916}= -1.10806914 \pm 5.9 \cdot 10^{-7} \) | \(a_{917}= -0.12195141 \pm 4.8 \cdot 10^{-7} \) | \(a_{918}= +0.35732992 \pm 3.9 \cdot 10^{-7} \) |
\(a_{919}= +0.41803784 \pm 4.0 \cdot 10^{-7} \) | \(a_{920}= +0.15243499 \pm 4.1 \cdot 10^{-7} \) | \(a_{921}= +0.89059130 \pm 3.5 \cdot 10^{-7} \) |
\(a_{922}= +0.06269219 \pm 5.8 \cdot 10^{-7} \) | \(a_{923}= +0.37726021 \pm 3.3 \cdot 10^{-7} \) | \(a_{924}= +0.71583899 \pm 7.2 \cdot 10^{-7} \) |
\(a_{925}= +0.36005039 \pm 3.7 \cdot 10^{-7} \) | \(a_{926}= +0.09073268 \pm 4.2 \cdot 10^{-7} \) | \(a_{927}= +1.20716707 \pm 3.0 \cdot 10^{-7} \) |
\(a_{928}= -0.57079136 \pm 4.2 \cdot 10^{-7} \) | \(a_{929}= +0.03394925 \pm 3.7 \cdot 10^{-7} \) | \(a_{930}= -0.04149871 \pm 1.3 \cdot 10^{-6} \) |
\(a_{931}= -0.80761946 \pm 2.7 \cdot 10^{-7} \) | \(a_{932}= -0.76804666 \pm 4.1 \cdot 10^{-7} \) | \(a_{933}= +0.51265745 \pm 5.4 \cdot 10^{-7} \) |
\(a_{934}= -0.28426911 \pm 5.2 \cdot 10^{-7} \) | \(a_{935}= -1.09479941 \pm 4.7 \cdot 10^{-7} \) | \(a_{936}= +0.93040787 \pm 5.0 \cdot 10^{-7} \) |
\(a_{937}= -1.22401304 \pm 3.6 \cdot 10^{-7} \) | \(a_{938}= +0.04543507 \pm 5.3 \cdot 10^{-7} \) | \(a_{939}= +3.39132821 \pm 4.0 \cdot 10^{-7} \) |
\(a_{940}= -0.19531048 \pm 4.0 \cdot 10^{-7} \) | \(a_{941}= -1.11995228 \pm 4.3 \cdot 10^{-7} \) | \(a_{942}= +0.54257948 \pm 3.9 \cdot 10^{-7} \) |
\(a_{943}= +0.48539202 \pm 2.6 \cdot 10^{-7} \) | \(a_{944}= +0.99968379 \pm 4.9 \cdot 10^{-7} \) | \(a_{945}= -0.47797373 \pm 3.6 \cdot 10^{-7} \) |
\(a_{946}= -0.02165289 \pm 5.3 \cdot 10^{-7} \) | \(a_{947}= -0.66790347 \pm 4.0 \cdot 10^{-7} \) | \(a_{948}= +2.37086720 \pm 3.2 \cdot 10^{-7} \) |
\(a_{949}= -1.11008701 \pm 2.9 \cdot 10^{-7} \) | \(a_{950}= -0.05626270 \pm 3.5 \cdot 10^{-7} \) | \(a_{951}= -0.24650611 \pm 4.0 \cdot 10^{-7} \) |
\(a_{952}= -0.06620607 \pm 5.5 \cdot 10^{-7} \) | \(a_{953}= +1.76678262 \pm 3.3 \cdot 10^{-7} \) | \(a_{954}= -0.10485848 \pm 3.1 \cdot 10^{-7} \) |
\(a_{955}= -0.27346287 \pm 3.6 \cdot 10^{-7} \) | \(a_{956}= -0.42377661 \pm 3.7 \cdot 10^{-7} \) | \(a_{957}= -3.70139726 \pm 4.7 \cdot 10^{-7} \) |
\(a_{958}= -0.15757666 \pm 3.9 \cdot 10^{-7} \) | \(a_{959}= +0.23482540 \pm 3.7 \cdot 10^{-7} \) | \(a_{960}= -1.20205967 \pm 4.4 \cdot 10^{-7} \) |
\(a_{961}= +0.03225806 \pm 1.7 \cdot 10^{-6} \) | \(a_{962}= +0.17553596 \pm 3.9 \cdot 10^{-7} \) | \(a_{963}= -0.88971117 \pm 5.0 \cdot 10^{-7} \) |
\(a_{964}= -0.82799018 \pm 4.6 \cdot 10^{-7} \) | \(a_{965}= -0.27442955 \pm 5.3 \cdot 10^{-7} \) | \(a_{966}= +0.04443066 \pm 5.8 \cdot 10^{-7} \) |
\(a_{967}= +1.11669536 \pm 4.5 \cdot 10^{-7} \) | \(a_{968}= -0.55803323 \pm 5.6 \cdot 10^{-7} \) | \(a_{969}= +1.35308955 \pm 2.8 \cdot 10^{-7} \) |
\(a_{970}= -0.07435311 \pm 4.8 \cdot 10^{-7} \) | \(a_{971}= +1.51026128 \pm 4.5 \cdot 10^{-7} \) | \(a_{972}= +1.69148715 \pm 3.6 \cdot 10^{-7} \) |
\(a_{973}= -0.00675338 \pm 5.1 \cdot 10^{-7} \) | \(a_{974}= -0.16351503 \pm 4.9 \cdot 10^{-7} \) | \(a_{975}= -0.90206273 \pm 2.8 \cdot 10^{-7} \) |
\(a_{976}= +0.26254642 \pm 3.4 \cdot 10^{-7} \) | \(a_{977}= +0.31470429 \pm 4.3 \cdot 10^{-7} \) | \(a_{978}= +0.17285776 \pm 4.9 \cdot 10^{-7} \) |
\(a_{979}= +2.98465728 \pm 4.4 \cdot 10^{-7} \) | \(a_{980}= -0.70799952 \pm 5.0 \cdot 10^{-7} \) | \(a_{981}= +1.61416266 \pm 3.3 \cdot 10^{-7} \) |
\(a_{982}= +0.08356236 \pm 4.4 \cdot 10^{-7} \) | \(a_{983}= +0.03198866 \pm 3.6 \cdot 10^{-7} \) | \(a_{984}= +0.46554202 \pm 3.8 \cdot 10^{-7} \) |
\(a_{985}= +1.22540022 \pm 4.7 \cdot 10^{-7} \) | \(a_{986}= +0.16887760 \pm 4.3 \cdot 10^{-7} \) | \(a_{987}= -0.11539838 \pm 3.9 \cdot 10^{-7} \) |
\(a_{988}= +1.01200828 \pm 3.4 \cdot 10^{-7} \) | \(a_{989}= +0.04958428 \pm 3.3 \cdot 10^{-7} \) | \(a_{990}= +0.49704344 \pm 4.1 \cdot 10^{-7} \) |
\(a_{991}= +0.93920939 \pm 4.7 \cdot 10^{-7} \) | \(a_{992}= -0.08446973 \pm 5.0 \cdot 10^{-7} \) | \(a_{993}= +0.29022384 \pm 4.5 \cdot 10^{-7} \) |
\(a_{994}= +0.01218780 \pm 5.0 \cdot 10^{-7} \) | \(a_{995}= -0.98150599 \pm 4.3 \cdot 10^{-7} \) | \(a_{996}= -0.87104712 \pm 2.9 \cdot 10^{-7} \) |
\(a_{997}= -1.06142860 \pm 4.0 \cdot 10^{-7} \) | \(a_{998}= -0.19645254 \pm 5.6 \cdot 10^{-7} \) | \(a_{999}= +2.28906778 \pm 5.2 \cdot 10^{-7} \) |
\(a_{1000}= -0.34751092 \pm 3.1 \cdot 10^{-7} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000