Maass form invariants
Level: | \( 31 \) |
Weight: | \( 0 \) |
Character: | 31.1 |
Symmetry: | odd |
Fricke sign: | $+1$ |
Spectral parameter: | \(3.37146672686425279748201767124 \pm 3 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -1.54411217 \pm 1.0 \cdot 10^{-5} \) | \(a_{3}= +1.49181982 \pm 9.6 \cdot 10^{-6} \) |
\(a_{4}= +1.38428238 \pm 1.1 \cdot 10^{-5} \) | \(a_{5}= -0.37697919 \pm 8.9 \cdot 10^{-6} \) | \(a_{6}= -2.30353713 \pm 1.2 \cdot 10^{-5} \) |
\(a_{7}= -1.15719140 \pm 8.7 \cdot 10^{-6} \) | \(a_{8}= -0.59337510 \pm 1.2 \cdot 10^{-5} \) | \(a_{9}= +1.22552637 \pm 9.1 \cdot 10^{-6} \) |
\(a_{10}= +0.58209815 \pm 1.0 \cdot 10^{-5} \) | \(a_{11}= -1.57115854 \pm 8.7 \cdot 10^{-6} \) | \(a_{12}= +2.06509989 \pm 1.4 \cdot 10^{-5} \) |
\(a_{13}= -1.19388368 \pm 9.1 \cdot 10^{-6} \) | \(a_{14}= +1.78683333 \pm 9.0 \cdot 10^{-6} \) | \(a_{15}= -0.56238502 \pm 9.2 \cdot 10^{-6} \) |
\(a_{16}= -0.46804467 \pm 1.0 \cdot 10^{-5} \) | \(a_{17}= +0.72683435 \pm 8.3 \cdot 10^{-6} \) | \(a_{18}= -1.89235017 \pm 1.1 \cdot 10^{-5} \) |
\(a_{19}= -0.13826954 \pm 9.2 \cdot 10^{-6} \) | \(a_{20}= -0.52184565 \pm 1.1 \cdot 10^{-5} \) | \(a_{21}= -1.72632107 \pm 9.4 \cdot 10^{-6} \) |
\(a_{22}= +2.42604501 \pm 9.5 \cdot 10^{-6} \) | \(a_{23}= -0.29497333 \pm 8.4 \cdot 10^{-6} \) | \(a_{24}= -0.88520873 \pm 1.4 \cdot 10^{-5} \) |
\(a_{25}= -0.85788669 \pm 8.5 \cdot 10^{-6} \) | \(a_{26}= +1.84349032 \pm 9.3 \cdot 10^{-6} \) | \(a_{27}= +0.33644470 \pm 8.0 \cdot 10^{-6} \) |
\(a_{28}= -1.60187967 \pm 9.4 \cdot 10^{-6} \) | \(a_{29}= +1.67909844 \pm 8.3 \cdot 10^{-6} \) | \(a_{30}= +0.86838556 \pm 1.2 \cdot 10^{-5} \) |
\(a_{31}= -0.17960530 \pm 1.0 \cdot 10^{-8} \) | \(a_{32}= +1.31608857 \pm 1.1 \cdot 10^{-5} \) | \(a_{33}= -2.34388544 \pm 9.3 \cdot 10^{-6} \) |
\(a_{34}= -1.12231377 \pm 1.1 \cdot 10^{-5} \) | \(a_{35}= +0.43623708 \pm 8.1 \cdot 10^{-6} \) | \(a_{36}= +1.69647456 \pm 1.2 \cdot 10^{-5} \) |
\(a_{37}= -1.52144422 \pm 8.0 \cdot 10^{-6} \) | \(a_{38}= +0.21350368 \pm 1.1 \cdot 10^{-5} \) | \(a_{39}= -1.78105934 \pm 8.9 \cdot 10^{-6} \) |
\(a_{40}= +0.22369006 \pm 1.1 \cdot 10^{-5} \) | \(a_{41}= +1.02807692 \pm 7.9 \cdot 10^{-6} \) | \(a_{42}= +2.66563336 \pm 1.0 \cdot 10^{-5} \) |
\(a_{43}= +1.18304991 \pm 7.6 \cdot 10^{-6} \) | \(a_{44}= -2.17492708 \pm 9.3 \cdot 10^{-6} \) | \(a_{45}= -0.46199793 \pm 8.8 \cdot 10^{-6} \) |
\(a_{46}= +0.45547191 \pm 8.0 \cdot 10^{-6} \) | \(a_{47}= -0.32180536 \pm 7.8 \cdot 10^{-6} \) | \(a_{48}= -0.69823832 \pm 1.3 \cdot 10^{-5} \) |
\(a_{49}= +0.33909195 \pm 8.3 \cdot 10^{-6} \) | \(a_{50}= +1.32467328 \pm 1.0 \cdot 10^{-5} \) | \(a_{51}= +1.08430589 \pm 9.5 \cdot 10^{-6} \) |
\(a_{52}= -1.65267215 \pm 9.4 \cdot 10^{-6} \) | \(a_{53}= +0.05937141 \pm 8.3 \cdot 10^{-6} \) | \(a_{54}= -0.51950836 \pm 1.0 \cdot 10^{-5} \) |
\(a_{55}= +0.59229407 \pm 9.4 \cdot 10^{-6} \) | \(a_{56}= +0.68664856 \pm 9.0 \cdot 10^{-6} \) | \(a_{57}= -0.20627324 \pm 9.0 \cdot 10^{-6} \) |
\(a_{58}= -2.59271632 \pm 9.7 \cdot 10^{-6} \) | \(a_{59}= -0.49552876 \pm 9.4 \cdot 10^{-6} \) | \(a_{60}= -0.77849968 \pm 1.3 \cdot 10^{-5} \) |
\(a_{61}= -0.28492200 \pm 8.5 \cdot 10^{-6} \) | \(a_{62}= +0.27733073 \pm 1.0 \cdot 10^{-5} \) | \(a_{63}= -1.41816858 \pm 1.0 \cdot 10^{-5} \) |
\(a_{64}= -1.56414370 \pm 1.1 \cdot 10^{-5} \) | \(a_{65}= +0.45006930 \pm 8.9 \cdot 10^{-6} \) | \(a_{66}= +3.61922202 \pm 9.5 \cdot 10^{-6} \) |
\(a_{67}= +1.69755125 \pm 7.2 \cdot 10^{-6} \) | \(a_{68}= +1.00614399 \pm 1.3 \cdot 10^{-5} \) | \(a_{69}= -0.44004706 \pm 9.6 \cdot 10^{-6} \) |
\(a_{70}= -0.67359898 \pm 9.2 \cdot 10^{-6} \) | \(a_{71}= -1.33816445 \pm 7.0 \cdot 10^{-6} \) | \(a_{72}= -0.72719683 \pm 1.1 \cdot 10^{-5} \) |
\(a_{73}= +0.40786866 \pm 7.9 \cdot 10^{-6} \) | \(a_{74}= +2.34928054 \pm 9.9 \cdot 10^{-6} \) | \(a_{75}= -1.27981237 \pm 8.5 \cdot 10^{-6} \) |
\(a_{76}= -0.19140409 \pm 1.0 \cdot 10^{-5} \) | \(a_{77}= +1.81813115 \pm 7.7 \cdot 10^{-6} \) | \(a_{78}= +2.75015539 \pm 9.0 \cdot 10^{-6} \) |
\(a_{79}= -0.30758918 \pm 9.1 \cdot 10^{-6} \) | \(a_{80}= +0.17644310 \pm 9.9 \cdot 10^{-6} \) | \(a_{81}= -0.72361149 \pm 9.2 \cdot 10^{-6} \) |
\(a_{82}= -1.58746609 \pm 1.0 \cdot 10^{-5} \) | \(a_{83}= -0.15291863 \pm 7.4 \cdot 10^{-6} \) | \(a_{84}= -2.38971584 \pm 1.1 \cdot 10^{-5} \) |
\(a_{85}= -0.27400142 \pm 7.5 \cdot 10^{-6} \) | \(a_{86}= -1.82676176 \pm 8.8 \cdot 10^{-6} \) | \(a_{87}= +2.50491232 \pm 9.8 \cdot 10^{-6} \) |
\(a_{88}= +0.93228635 \pm 9.0 \cdot 10^{-6} \) | \(a_{89}= +0.02827244 \pm 7.6 \cdot 10^{-6} \) | \(a_{90}= +0.71337663 \pm 1.1 \cdot 10^{-5} \) |
\(a_{91}= +1.38155194 \pm 9.7 \cdot 10^{-6} \) | \(a_{92}= -0.40832638 \pm 9.1 \cdot 10^{-6} \) | \(a_{93}= -0.26793875 \pm 9.6 \cdot 10^{-6} \) |
\(a_{94}= +0.49690357 \pm 1.0 \cdot 10^{-5} \) | \(a_{95}= +0.05212474 \pm 9.7 \cdot 10^{-6} \) | \(a_{96}= +1.96336701 \pm 1.4 \cdot 10^{-5} \) |
\(a_{97}= -1.03004424 \pm 8.6 \cdot 10^{-6} \) | \(a_{98}= -0.52359600 \pm 8.7 \cdot 10^{-6} \) | \(a_{99}= -1.92549621 \pm 8.1 \cdot 10^{-6} \) |
\(a_{100}= -1.18755743 \pm 1.0 \cdot 10^{-5} \) | \(a_{101}= -1.06389193 \pm 9.4 \cdot 10^{-6} \) | \(a_{102}= -1.67428992 \pm 1.3 \cdot 10^{-5} \) |
\(a_{103}= -0.62194313 \pm 7.7 \cdot 10^{-6} \) | \(a_{104}= +0.70842085 \pm 1.0 \cdot 10^{-5} \) | \(a_{105}= +0.65078712 \pm 8.3 \cdot 10^{-6} \) |
\(a_{106}= -0.09167611 \pm 9.8 \cdot 10^{-6} \) | \(a_{107}= -0.34233126 \pm 7.8 \cdot 10^{-6} \) | \(a_{108}= +0.46573447 \pm 1.0 \cdot 10^{-5} \) |
\(a_{109}= -0.47168001 \pm 8.6 \cdot 10^{-6} \) | \(a_{110}= -0.91456848 \pm 8.9 \cdot 10^{-6} \) | \(a_{111}= -2.26972064 \pm 8.4 \cdot 10^{-6} \) |
\(a_{112}= +0.54161727 \pm 7.3 \cdot 10^{-6} \) | \(a_{113}= +1.62289547 \pm 8.0 \cdot 10^{-6} \) | \(a_{114}= +0.31850903 \pm 1.0 \cdot 10^{-5} \) |
\(a_{115}= +0.11119881 \pm 7.8 \cdot 10^{-6} \) | \(a_{116}= +2.32434638 \pm 1.0 \cdot 10^{-5} \) | \(a_{117}= -1.46313593 \pm 9.1 \cdot 10^{-6} \) |
\(a_{118}= +0.76515199 \pm 1.2 \cdot 10^{-5} \) | \(a_{119}= -0.84108647 \pm 6.7 \cdot 10^{-6} \) | \(a_{120}= +0.33370527 \pm 1.3 \cdot 10^{-5} \) |
\(a_{121}= +1.46853914 \pm 9.2 \cdot 10^{-6} \) | \(a_{122}= +0.43995152 \pm 1.2 \cdot 10^{-5} \) | \(a_{123}= +1.53370553 \pm 9.9 \cdot 10^{-6} \) |
\(a_{124}= -0.24862445 \pm 1.1 \cdot 10^{-5} \) | \(a_{125}= +0.70038462 \pm 9.2 \cdot 10^{-6} \) | \(a_{126}= +2.18981135 \pm 1.2 \cdot 10^{-5} \) |
\(a_{127}= +0.83023392 \pm 8.7 \cdot 10^{-6} \) | \(a_{128}= +1.09912475 \pm 1.0 \cdot 10^{-5} \) | \(a_{129}= +1.76489730 \pm 7.2 \cdot 10^{-6} \) |
\(a_{130}= -0.69495748 \pm 9.4 \cdot 10^{-6} \) | \(a_{131}= -0.30528907 \pm 9.1 \cdot 10^{-6} \) | \(a_{132}= -3.24459931 \pm 9.8 \cdot 10^{-6} \) |
\(a_{133}= +0.16000433 \pm 8.5 \cdot 10^{-6} \) | \(a_{134}= -2.62120953 \pm 8.0 \cdot 10^{-6} \) | \(a_{135}= -0.12683265 \pm 7.8 \cdot 10^{-6} \) |
\(a_{136}= -0.43128541 \pm 1.4 \cdot 10^{-5} \) | \(a_{137}= -1.03104452 \pm 8.6 \cdot 10^{-6} \) | \(a_{138}= +0.67948202 \pm 8.1 \cdot 10^{-6} \) |
\(a_{139}= -1.49987627 \pm 6.6 \cdot 10^{-6} \) | \(a_{140}= +0.60387530 \pm 8.5 \cdot 10^{-6} \) | \(a_{141}= -0.48007561 \pm 9.7 \cdot 10^{-6} \) |
\(a_{142}= +2.06627601 \pm 7.6 \cdot 10^{-6} \) | \(a_{143}= +1.87578054 \pm 9.0 \cdot 10^{-6} \) | \(a_{144}= -0.57360109 \pm 1.1 \cdot 10^{-5} \) |
\(a_{145}= -0.63298517 \pm 7.9 \cdot 10^{-6} \) | \(a_{146}= -0.62979495 \pm 9.7 \cdot 10^{-6} \) | \(a_{147}= +0.50586409 \pm 8.8 \cdot 10^{-6} \) |
\(a_{148}= -2.10610843 \pm 1.1 \cdot 10^{-5} \) | \(a_{149}= -0.09978252 \pm 7.6 \cdot 10^{-6} \) | \(a_{150}= +1.97617385 \pm 1.1 \cdot 10^{-5} \) |
\(a_{151}= -1.49844646 \pm 8.4 \cdot 10^{-6} \) | \(a_{152}= +0.08204570 \pm 9.9 \cdot 10^{-6} \) | \(a_{153}= +0.89075466 \pm 8.0 \cdot 10^{-6} \) |
\(a_{154}= -2.80739843 \pm 8.4 \cdot 10^{-6} \) | \(a_{155}= +0.06770746 \pm 8.9 \cdot 10^{-6} \) | \(a_{156}= -2.46548906 \pm 9.9 \cdot 10^{-6} \) |
\(a_{157}= +1.17288925 \pm 7.5 \cdot 10^{-6} \) | \(a_{158}= +0.47495220 \pm 1.1 \cdot 10^{-5} \) | \(a_{159}= +0.08857144 \pm 8.4 \cdot 10^{-6} \) |
\(a_{160}= -0.49613800 \pm 1.0 \cdot 10^{-5} \) | \(a_{161}= +0.34134060 \pm 7.5 \cdot 10^{-6} \) | \(a_{162}= +1.11733731 \pm 1.2 \cdot 10^{-5} \) |
\(a_{163}= -0.51915256 \pm 8.8 \cdot 10^{-6} \) | \(a_{164}= +1.42314877 \pm 1.2 \cdot 10^{-5} \) | \(a_{165}= +0.88359603 \pm 8.6 \cdot 10^{-6} \) |
\(a_{166}= +0.23612351 \pm 9.9 \cdot 10^{-6} \) | \(a_{167}= +1.06822431 \pm 8.8 \cdot 10^{-6} \) | \(a_{168}= +1.02435593 \pm 9.8 \cdot 10^{-6} \) |
\(a_{169}= +0.42535825 \pm 8.5 \cdot 10^{-6} \) | \(a_{170}= +0.42308893 \pm 1.0 \cdot 10^{-5} \) | \(a_{171}= -0.16945297 \pm 8.4 \cdot 10^{-6} \) |
\(a_{172}= +1.63767515 \pm 8.7 \cdot 10^{-6} \) | \(a_{173}= -0.43334825 \pm 9.3 \cdot 10^{-6} \) | \(a_{174}= -3.86786559 \pm 1.1 \cdot 10^{-5} \) |
\(a_{175}= +0.99273911 \pm 7.9 \cdot 10^{-6} \) | \(a_{176}= +0.73537238 \pm 5.7 \cdot 10^{-6} \) | \(a_{177}= -0.73923963 \pm 9.7 \cdot 10^{-6} \) |
\(a_{178}= -0.04365582 \pm 8.6 \cdot 10^{-6} \) | \(a_{179}= +0.40389358 \pm 9.6 \cdot 10^{-6} \) | \(a_{180}= -0.63953560 \pm 1.2 \cdot 10^{-5} \) |
\(a_{181}= -0.47820275 \pm 7.9 \cdot 10^{-6} \) | \(a_{182}= -2.13327115 \pm 8.8 \cdot 10^{-6} \) | \(a_{183}= -0.42505228 \pm 8.8 \cdot 10^{-6} \) |
\(a_{184}= +0.17502983 \pm 1.0 \cdot 10^{-5} \) | \(a_{185}= +0.57355281 \pm 7.6 \cdot 10^{-6} \) | \(a_{186}= +0.41372748 \pm 2.0 \cdot 10^{-5} \) |
\(a_{187}= -1.14197200 \pm 6.5 \cdot 10^{-6} \) | \(a_{188}= -0.44546949 \pm 1.2 \cdot 10^{-5} \) | \(a_{189}= -0.38933092 \pm 9.5 \cdot 10^{-6} \) |
\(a_{190}= -0.08048645 \pm 1.2 \cdot 10^{-5} \) | \(a_{191}= -1.05538696 \pm 8.8 \cdot 10^{-6} \) | \(a_{192}= -2.33342057 \pm 1.4 \cdot 10^{-5} \) |
\(a_{193}= +1.01075523 \pm 8.3 \cdot 10^{-6} \) | \(a_{194}= +1.59050385 \pm 1.0 \cdot 10^{-5} \) | \(a_{195}= +0.67142230 \pm 7.6 \cdot 10^{-6} \) |
\(a_{196}= +0.46939901 \pm 1.0 \cdot 10^{-5} \) | \(a_{197}= -0.84834376 \pm 6.5 \cdot 10^{-6} \) | \(a_{198}= +2.97318212 \pm 9.0 \cdot 10^{-6} \) |
\(a_{199}= -0.51996948 \pm 7.9 \cdot 10^{-6} \) | \(a_{200}= +0.50904860 \pm 9.0 \cdot 10^{-6} \) | \(a_{201}= +2.53244059 \pm 7.9 \cdot 10^{-6} \) |
\(a_{202}= +1.64276848 \pm 1.0 \cdot 10^{-5} \) | \(a_{203}= -1.94303828 \pm 8.3 \cdot 10^{-6} \) | \(a_{204}= +1.50098554 \pm 1.6 \cdot 10^{-5} \) |
\(a_{205}= -0.38756360 \pm 7.7 \cdot 10^{-6} \) | \(a_{206}= +0.96034995 \pm 9.2 \cdot 10^{-6} \) | \(a_{207}= -0.36149759 \pm 7.6 \cdot 10^{-6} \) |
\(a_{208}= +0.55879090 \pm 9.0 \cdot 10^{-6} \) | \(a_{209}= +0.21724337 \pm 1.0 \cdot 10^{-5} \) | \(a_{210}= -1.00488830 \pm 1.1 \cdot 10^{-5} \) |
\(a_{211}= -0.64046741 \pm 8.6 \cdot 10^{-6} \) | \(a_{212}= +0.08218679 \pm 1.0 \cdot 10^{-5} \) | \(a_{213}= -1.99630025 \pm 8.4 \cdot 10^{-6} \) |
\(a_{214}= +0.52859786 \pm 8.6 \cdot 10^{-6} \) | \(a_{215}= -0.44598520 \pm 8.2 \cdot 10^{-6} \) | \(a_{216}= -0.19963791 \pm 9.3 \cdot 10^{-6} \) |
\(a_{217}= +0.20783771 \pm 8.7 \cdot 10^{-6} \) | \(a_{218}= +0.72832684 \pm 1.0 \cdot 10^{-5} \) | \(a_{219}= +0.60846654 \pm 7.9 \cdot 10^{-6} \) |
\(a_{220}= +0.81990224 \pm 7.9 \cdot 10^{-6} \) | \(a_{221}= -0.86775567 \pm 8.1 \cdot 10^{-6} \) | \(a_{222}= +3.50470326 \pm 1.0 \cdot 10^{-5} \) |
\(a_{223}= -0.06069693 \pm 9.8 \cdot 10^{-6} \) | \(a_{224}= -1.52296638 \pm 8.9 \cdot 10^{-6} \) | \(a_{225}= -1.05136276 \pm 7.7 \cdot 10^{-6} \) |
\(a_{226}= -2.50593263 \pm 9.8 \cdot 10^{-6} \) | \(a_{227}= -0.60544111 \pm 8.3 \cdot 10^{-6} \) | \(a_{228}= -0.28554042 \pm 1.0 \cdot 10^{-5} \) |
\(a_{229}= -0.39437972 \pm 8.9 \cdot 10^{-6} \) | \(a_{230}= -0.17170343 \pm 8.3 \cdot 10^{-6} \) | \(a_{231}= +2.71232408 \pm 9.4 \cdot 10^{-6} \) |
\(a_{232}= -0.99633520 \pm 9.9 \cdot 10^{-6} \) | \(a_{233}= -0.80349823 \pm 6.8 \cdot 10^{-6} \) | \(a_{234}= +2.25924600 \pm 9.8 \cdot 10^{-6} \) |
\(a_{235}= +0.12131392 \pm 8.3 \cdot 10^{-6} \) | \(a_{236}= -0.68595174 \pm 1.3 \cdot 10^{-5} \) | \(a_{237}= -0.45886764 \pm 1.0 \cdot 10^{-5} \) |
\(a_{238}= +1.29873184 \pm 6.4 \cdot 10^{-6} \) | \(a_{239}= -0.43612703 \pm 8.9 \cdot 10^{-6} \) | \(a_{240}= +0.26322131 \pm 1.2 \cdot 10^{-5} \) |
\(a_{241}= +1.54096536 \pm 6.9 \cdot 10^{-6} \) | \(a_{242}= -2.26758916 \pm 1.0 \cdot 10^{-5} \) | \(a_{243}= -1.41594267 \pm 9.9 \cdot 10^{-6} \) |
\(a_{244}= -0.39441250 \pm 1.4 \cdot 10^{-5} \) | \(a_{245}= -0.12783061 \pm 7.9 \cdot 10^{-6} \) | \(a_{246}= -2.36821337 \pm 1.4 \cdot 10^{-5} \) |
\(a_{247}= +0.16507775 \pm 9.2 \cdot 10^{-6} \) | \(a_{248}= +0.10657331 \pm 1.2 \cdot 10^{-5} \) | \(a_{249}= -0.22812704 \pm 8.0 \cdot 10^{-6} \) |
\(a_{250}= -1.08147241 \pm 1.2 \cdot 10^{-5} \) | \(a_{251}= +0.74352599 \pm 8.2 \cdot 10^{-6} \) | \(a_{252}= -1.96314577 \pm 1.3 \cdot 10^{-5} \) |
\(a_{253}= +0.46344986 \pm 7.7 \cdot 10^{-6} \) | \(a_{254}= -1.28197430 \pm 1.0 \cdot 10^{-5} \) | \(a_{255}= -0.40876075 \pm 8.9 \cdot 10^{-6} \) |
\(a_{256}= -0.13302819 \pm 1.0 \cdot 10^{-5} \) | \(a_{257}= +1.69648899 \pm 8.7 \cdot 10^{-6} \) | \(a_{258}= -2.72519940 \pm 9.5 \cdot 10^{-6} \) |
\(a_{259}= +1.76060218 \pm 8.2 \cdot 10^{-6} \) | \(a_{260}= +0.62302300 \pm 8.5 \cdot 10^{-6} \) | \(a_{261}= +2.05777941 \pm 8.4 \cdot 10^{-6} \) |
\(a_{262}= +0.47140057 \pm 1.0 \cdot 10^{-5} \) | \(a_{263}= -1.37346231 \pm 9.3 \cdot 10^{-6} \) | \(a_{264}= +1.39080325 \pm 8.9 \cdot 10^{-6} \) |
\(a_{265}= -0.02238179 \pm 7.5 \cdot 10^{-6} \) | \(a_{266}= -0.24706463 \pm 9.6 \cdot 10^{-6} \) | \(a_{267}= +0.04217739 \pm 7.4 \cdot 10^{-6} \) |
\(a_{268}= +2.34989028 \pm 8.1 \cdot 10^{-6} \) | \(a_{269}= -0.11637337 \pm 7.9 \cdot 10^{-6} \) | \(a_{270}= +0.19584384 \pm 9.6 \cdot 10^{-6} \) |
\(a_{271}= -1.50972980 \pm 1.0 \cdot 10^{-5} \) | \(a_{272}= -0.34019095 \pm 1.3 \cdot 10^{-5} \) | \(a_{273}= +2.06102656 \pm 9.2 \cdot 10^{-6} \) |
\(a_{274}= +1.59204838 \pm 1.0 \cdot 10^{-5} \) | \(a_{275}= +1.34787600 \pm 1.0 \cdot 10^{-5} \) | \(a_{276}= -0.60914939 \pm 9.9 \cdot 10^{-6} \) |
\(a_{277}= +0.19158151 \pm 8.4 \cdot 10^{-6} \) | \(a_{278}= +2.31597719 \pm 8.3 \cdot 10^{-6} \) | \(a_{279}= -0.22011103 \pm 9.1 \cdot 10^{-6} \) |
\(a_{280}= -0.25885222 \pm 8.5 \cdot 10^{-6} \) | \(a_{281}= +0.30322388 \pm 8.7 \cdot 10^{-6} \) | \(a_{282}= +0.74129059 \pm 1.3 \cdot 10^{-5} \) |
\(a_{283}= +0.91484868 \pm 8.4 \cdot 10^{-6} \) | \(a_{284}= -1.85239747 \pm 7.2 \cdot 10^{-6} \) | \(a_{285}= +0.07776072 \pm 9.6 \cdot 10^{-6} \) |
\(a_{286}= -2.89641555 \pm 9.5 \cdot 10^{-6} \) | \(a_{287}= -1.18968178 \pm 7.3 \cdot 10^{-6} \) | \(a_{288}= +1.61290124 \pm 1.2 \cdot 10^{-5} \) |
\(a_{289}= -0.47171182 \pm 8.9 \cdot 10^{-6} \) | \(a_{290}= +0.97740009 \pm 1.0 \cdot 10^{-5} \) | \(a_{291}= -1.53664042 \pm 1.0 \cdot 10^{-5} \) |
\(a_{292}= +0.56460539 \pm 9.8 \cdot 10^{-6} \) | \(a_{293}= +1.34314437 \pm 7.5 \cdot 10^{-6} \) | \(a_{294}= -0.78111089 \pm 9.9 \cdot 10^{-6} \) |
\(a_{295}= +0.18680403 \pm 8.1 \cdot 10^{-6} \) | \(a_{296}= +0.90278711 \pm 1.1 \cdot 10^{-5} \) | \(a_{297}= -0.52860797 \pm 6.9 \cdot 10^{-6} \) |
\(a_{298}= +0.15407540 \pm 9.6 \cdot 10^{-6} \) | \(a_{299}= +0.35216385 \pm 8.6 \cdot 10^{-6} \) | \(a_{300}= -1.77162171 \pm 1.1 \cdot 10^{-5} \) |
\(a_{301}= -1.36901519 \pm 7.4 \cdot 10^{-6} \) | \(a_{302}= +2.31376940 \pm 9.1 \cdot 10^{-6} \) | \(a_{303}= -1.58713507 \pm 1.0 \cdot 10^{-5} \) |
\(a_{304}= +0.06471632 \pm 7.0 \cdot 10^{-6} \) | \(a_{305}= +0.10740966 \pm 8.2 \cdot 10^{-6} \) | \(a_{306}= -1.37542511 \pm 9.9 \cdot 10^{-6} \) |
\(a_{307}= +0.87812940 \pm 9.1 \cdot 10^{-6} \) | \(a_{308}= +2.51680692 \pm 8.7 \cdot 10^{-6} \) | \(a_{309}= -0.92782708 \pm 8.9 \cdot 10^{-6} \) |
\(a_{310}= -0.10454791 \pm 1.9 \cdot 10^{-5} \) | \(a_{311}= +0.42392100 \pm 7.0 \cdot 10^{-6} \) | \(a_{312}= +1.05683626 \pm 1.0 \cdot 10^{-5} \) |
\(a_{313}= -0.31084906 \pm 8.7 \cdot 10^{-6} \) | \(a_{314}= -1.81107257 \pm 9.1 \cdot 10^{-6} \) | \(a_{315}= +0.53462004 \pm 8.8 \cdot 10^{-6} \) |
\(a_{316}= -0.42579029 \pm 1.3 \cdot 10^{-5} \) | \(a_{317}= +1.39964017 \pm 8.4 \cdot 10^{-6} \) | \(a_{318}= -0.13676424 \pm 1.0 \cdot 10^{-5} \) |
\(a_{319}= -2.63812984 \pm 8.6 \cdot 10^{-6} \) | \(a_{320}= +0.58964962 \pm 1.1 \cdot 10^{-5} \) | \(a_{321}= -0.51069656 \pm 7.4 \cdot 10^{-6} \) |
\(a_{322}= -0.52706818 \pm 6.7 \cdot 10^{-6} \) | \(a_{323}= -0.10049905 \pm 7.1 \cdot 10^{-6} \) | \(a_{324}= -1.00168264 \pm 1.3 \cdot 10^{-5} \) |
\(a_{325}= +1.02421692 \pm 7.6 \cdot 10^{-6} \) | \(a_{326}= +0.80162979 \pm 1.0 \cdot 10^{-5} \) | \(a_{327}= -0.70366158 \pm 7.8 \cdot 10^{-6} \) |
\(a_{328}= -0.61003525 \pm 1.4 \cdot 10^{-5} \) | \(a_{329}= +0.37239040 \pm 6.4 \cdot 10^{-6} \) | \(a_{330}= -1.36437138 \pm 8.8 \cdot 10^{-6} \) |
\(a_{331}= +1.13270421 \pm 7.9 \cdot 10^{-6} \) | \(a_{332}= -0.21168256 \pm 1.1 \cdot 10^{-5} \) | \(a_{333}= -1.86457001 \pm 7.9 \cdot 10^{-6} \) |
\(a_{334}= -1.64945815 \pm 1.0 \cdot 10^{-5} \) | \(a_{335}= -0.63994149 \pm 7.4 \cdot 10^{-6} \) | \(a_{336}= +0.80799538 \pm 8.5 \cdot 10^{-6} \) |
\(a_{337}= +0.29193890 \pm 9.0 \cdot 10^{-6} \) | \(a_{338}= -0.65680085 \pm 8.8 \cdot 10^{-6} \) | \(a_{339}= +2.42106762 \pm 8.2 \cdot 10^{-6} \) |
\(a_{340}= -0.37929534 \pm 1.1 \cdot 10^{-5} \) | \(a_{341}= +0.28218840 \pm 8.7 \cdot 10^{-6} \) | \(a_{342}= +0.26165439 \pm 1.0 \cdot 10^{-5} \) |
\(a_{343}= +0.76479712 \pm 8.4 \cdot 10^{-6} \) | \(a_{344}= -0.70199236 \pm 9.0 \cdot 10^{-6} \) | \(a_{345}= +0.16588858 \pm 8.0 \cdot 10^{-6} \) |
\(a_{346}= +0.66913830 \pm 1.2 \cdot 10^{-5} \) | \(a_{347}= -0.52195170 \pm 9.1 \cdot 10^{-6} \) | \(a_{348}= +3.46750599 \pm 1.2 \cdot 10^{-5} \) |
\(a_{349}= -0.20389339 \pm 9.1 \cdot 10^{-6} \) | \(a_{350}= -1.53290053 \pm 9.4 \cdot 10^{-6} \) | \(a_{351}= -0.40167584 \pm 7.3 \cdot 10^{-6} \) |
\(a_{352}= -2.06778379 \pm 8.3 \cdot 10^{-6} \) | \(a_{353}= -0.35924796 \pm 1.0 \cdot 10^{-5} \) | \(a_{354}= +1.14146891 \pm 1.2 \cdot 10^{-5} \) |
\(a_{355}= +0.50446015 \pm 6.0 \cdot 10^{-6} \) | \(a_{356}= +0.03913704 \pm 9.3 \cdot 10^{-6} \) | \(a_{357}= -1.25474946 \pm 6.7 \cdot 10^{-6} \) |
\(a_{358}= -0.62365700 \pm 1.1 \cdot 10^{-5} \) | \(a_{359}= -0.09861414 \pm 8.5 \cdot 10^{-6} \) | \(a_{360}= +0.27413807 \pm 1.1 \cdot 10^{-5} \) |
\(a_{361}= -0.98088153 \pm 9.0 \cdot 10^{-6} \) | \(a_{362}= +0.73839869 \pm 9.1 \cdot 10^{-6} \) | \(a_{363}= +2.19079579 \pm 8.8 \cdot 10^{-6} \) |
\(a_{364}= +1.91245800 \pm 9.0 \cdot 10^{-6} \) | \(a_{365}= -0.15375799 \pm 9.1 \cdot 10^{-6} \) | \(a_{366}= +0.65632840 \pm 1.3 \cdot 10^{-5} \) |
\(a_{367}= -0.69073071 \pm 9.8 \cdot 10^{-6} \) | \(a_{368}= +0.13806070 \pm 9.3 \cdot 10^{-6} \) | \(a_{369}= +1.25993538 \pm 9.1 \cdot 10^{-6} \) |
\(a_{370}= -0.88562987 \pm 9.0 \cdot 10^{-6} \) | \(a_{371}= -0.06870408 \pm 8.4 \cdot 10^{-6} \) | \(a_{372}= -0.37090289 \pm 2.1 \cdot 10^{-5} \) |
\(a_{373}= -0.90876405 \pm 7.8 \cdot 10^{-6} \) | \(a_{374}= +1.76333285 \pm 8.0 \cdot 10^{-6} \) | \(a_{375}= +1.04484765 \pm 1.0 \cdot 10^{-5} \) |
\(a_{376}= +0.19095129 \pm 1.4 \cdot 10^{-5} \) | \(a_{377}= -2.00464823 \pm 8.1 \cdot 10^{-6} \) | \(a_{378}= +0.60117061 \pm 1.2 \cdot 10^{-5} \) |
\(a_{379}= -0.14334304 \pm 8.5 \cdot 10^{-6} \) | \(a_{380}= +0.07215536 \pm 1.1 \cdot 10^{-5} \) | \(a_{381}= +1.23855942 \pm 9.1 \cdot 10^{-6} \) |
\(a_{382}= +1.62963585 \pm 1.1 \cdot 10^{-5} \) | \(a_{383}= -0.04415024 \pm 8.3 \cdot 10^{-6} \) | \(a_{384}= +1.63969608 \pm 1.3 \cdot 10^{-5} \) |
\(a_{385}= -0.68539761 \pm 7.1 \cdot 10^{-6} \) | \(a_{386}= -1.56071945 \pm 8.8 \cdot 10^{-6} \) | \(a_{387}= +1.44985886 \pm 8.0 \cdot 10^{-6} \) |
\(a_{388}= -1.42587210 \pm 1.2 \cdot 10^{-5} \) | \(a_{389}= +0.57255042 \pm 7.4 \cdot 10^{-6} \) | \(a_{390}= -1.03675135 \pm 7.3 \cdot 10^{-6} \) |
\(a_{391}= -0.21439675 \pm 6.9 \cdot 10^{-6} \) | \(a_{392}= -0.20120872 \pm 1.0 \cdot 10^{-5} \) | \(a_{393}= -0.45543629 \pm 9.4 \cdot 10^{-6} \) |
\(a_{394}= +1.30993793 \pm 8.0 \cdot 10^{-6} \) | \(a_{395}= +0.11595472 \pm 8.4 \cdot 10^{-6} \) | \(a_{396}= -2.66543048 \pm 9.1 \cdot 10^{-6} \) |
\(a_{397}= -1.54235283 \pm 8.7 \cdot 10^{-6} \) | \(a_{398}= +0.80289120 \pm 9.2 \cdot 10^{-6} \) | \(a_{399}= +0.23869763 \pm 8.4 \cdot 10^{-6} \) |
\(a_{400}= +0.40152930 \pm 6.3 \cdot 10^{-6} \) | \(a_{401}= -0.32921500 \pm 8.8 \cdot 10^{-6} \) | \(a_{402}= -3.91037232 \pm 9.8 \cdot 10^{-6} \) |
\(a_{403}= +0.21442784 \pm 9.1 \cdot 10^{-6} \) | \(a_{404}= -1.47272686 \pm 1.2 \cdot 10^{-5} \) | \(a_{405}= +0.27278647 \pm 8.7 \cdot 10^{-6} \) |
\(a_{406}= +3.00026904 \pm 8.5 \cdot 10^{-6} \) | \(a_{407}= +2.39043008 \pm 7.8 \cdot 10^{-6} \) | \(a_{408}= -0.64340011 \pm 1.7 \cdot 10^{-5} \) |
\(a_{409}= +0.96241437 \pm 7.2 \cdot 10^{-6} \) | \(a_{410}= +0.59844168 \pm 1.0 \cdot 10^{-5} \) | \(a_{411}= -1.53813264 \pm 9.8 \cdot 10^{-6} \) |
\(a_{412}= -0.86094491 \pm 9.6 \cdot 10^{-6} \) | \(a_{413}= +0.57342163 \pm 9.0 \cdot 10^{-6} \) | \(a_{414}= +0.55819283 \pm 7.8 \cdot 10^{-6} \) |
\(a_{415}= +0.05764714 \pm 7.7 \cdot 10^{-6} \) | \(a_{416}= -1.57125667 \pm 9.7 \cdot 10^{-6} \) | \(a_{417}= -2.23754514 \pm 8.0 \cdot 10^{-6} \) |
\(a_{418}= -0.33544813 \pm 1.1 \cdot 10^{-5} \) | \(a_{419}= -0.44065927 \pm 8.2 \cdot 10^{-6} \) | \(a_{420}= +0.90087314 \pm 1.1 \cdot 10^{-5} \) |
\(a_{421}= -0.81020926 \pm 1.0 \cdot 10^{-5} \) | \(a_{422}= +0.98895353 \pm 8.4 \cdot 10^{-6} \) | \(a_{423}= -0.39438095 \pm 8.7 \cdot 10^{-6} \) |
\(a_{424}= -0.03522952 \pm 9.4 \cdot 10^{-6} \) | \(a_{425}= -0.62354152 \pm 5.5 \cdot 10^{-6} \) | \(a_{426}= +3.08251150 \pm 9.1 \cdot 10^{-6} \) |
\(a_{427}= +0.32970929 \pm 6.6 \cdot 10^{-6} \) | \(a_{428}= -0.47388313 \pm 8.6 \cdot 10^{-6} \) | \(a_{429}= +2.79832658 \pm 9.4 \cdot 10^{-6} \) |
\(a_{430}= +0.68865117 \pm 9.4 \cdot 10^{-6} \) | \(a_{431}= +1.24278337 \pm 8.4 \cdot 10^{-6} \) | \(a_{432}= -0.15747115 \pm 8.0 \cdot 10^{-6} \) |
\(a_{433}= +1.90230587 \pm 9.9 \cdot 10^{-6} \) | \(a_{434}= -0.32092474 \pm 1.9 \cdot 10^{-5} \) | \(a_{435}= -0.94429981 \pm 9.5 \cdot 10^{-6} \) |
\(a_{436}= -0.65293832 \pm 1.1 \cdot 10^{-5} \) | \(a_{437}= +0.04078583 \pm 8.9 \cdot 10^{-6} \) | \(a_{438}= -0.93954059 \pm 1.1 \cdot 10^{-5} \) |
\(a_{439}= -0.63661078 \pm 8.9 \cdot 10^{-6} \) | \(a_{440}= -0.35145255 \pm 1.0 \cdot 10^{-5} \) | \(a_{441}= +0.41556612 \pm 9.5 \cdot 10^{-6} \) |
\(a_{442}= +1.33991209 \pm 8.0 \cdot 10^{-6} \) | \(a_{443}= +0.51866694 \pm 8.5 \cdot 10^{-6} \) | \(a_{444}= -3.14193429 \pm 1.1 \cdot 10^{-5} \) |
\(a_{445}= -0.01065812 \pm 8.1 \cdot 10^{-6} \) | \(a_{446}= +0.09372287 \pm 1.0 \cdot 10^{-5} \) | \(a_{447}= -0.14885754 \pm 7.9 \cdot 10^{-6} \) |
\(a_{448}= +1.81001365 \pm 8.7 \cdot 10^{-6} \) | \(a_{449}= -0.95325903 \pm 7.5 \cdot 10^{-6} \) | \(a_{450}= +1.62342203 \pm 9.8 \cdot 10^{-6} \) |
\(a_{451}= -1.61527183 \pm 7.3 \cdot 10^{-6} \) | \(a_{452}= +2.24654560 \pm 1.0 \cdot 10^{-5} \) | \(a_{453}= -2.23541212 \pm 8.4 \cdot 10^{-6} \) |
\(a_{454}= +0.93486898 \pm 1.0 \cdot 10^{-5} \) | \(a_{455}= -0.52081633 \pm 8.0 \cdot 10^{-6} \) | \(a_{456}= +0.12239741 \pm 1.0 \cdot 10^{-5} \) |
\(a_{457}= -1.19993869 \pm 9.4 \cdot 10^{-6} \) | \(a_{458}= +0.60896653 \pm 1.1 \cdot 10^{-5} \) | \(a_{459}= +0.24453957 \pm 7.2 \cdot 10^{-6} \) |
\(a_{460}= +0.15393055 \pm 8.8 \cdot 10^{-6} \) | \(a_{461}= -0.12378634 \pm 7.7 \cdot 10^{-6} \) | \(a_{462}= -4.18813261 \pm 9.1 \cdot 10^{-6} \) |
\(a_{463}= -1.69117023 \pm 8.9 \cdot 10^{-6} \) | \(a_{464}= -0.78589308 \pm 7.4 \cdot 10^{-6} \) | \(a_{465}= +0.10100733 \pm 1.8 \cdot 10^{-5} \) |
\(a_{466}= +1.24069139 \pm 9.9 \cdot 10^{-6} \) | \(a_{467}= +0.15644055 \pm 8.2 \cdot 10^{-6} \) | \(a_{468}= -2.02539329 \pm 9.9 \cdot 10^{-6} \) |
\(a_{469}= -1.96439171 \pm 7.3 \cdot 10^{-6} \) | \(a_{470}= -0.18732230 \pm 1.0 \cdot 10^{-5} \) | \(a_{471}= +1.74973943 \pm 9.1 \cdot 10^{-6} \) |
\(a_{472}= +0.29403443 \pm 1.3 \cdot 10^{-5} \) | \(a_{473}= -1.85875897 \pm 7.7 \cdot 10^{-6} \) | \(a_{474}= +0.70854310 \pm 1.2 \cdot 10^{-5} \) |
\(a_{475}= +0.11861960 \pm 9.8 \cdot 10^{-6} \) | \(a_{476}= -1.16430117 \pm 6.5 \cdot 10^{-6} \) | \(a_{477}= +0.07276123 \pm 9.2 \cdot 10^{-6} \) |
\(a_{478}= +0.67342905 \pm 9.7 \cdot 10^{-6} \) | \(a_{479}= -0.60725179 \pm 8.5 \cdot 10^{-6} \) | \(a_{480}= -0.74014850 \pm 1.2 \cdot 10^{-5} \) |
\(a_{481}= +1.81642743 \pm 7.8 \cdot 10^{-6} \) | \(a_{482}= -2.37942336 \pm 8.0 \cdot 10^{-6} \) | \(a_{483}= +0.50921867 \pm 8.3 \cdot 10^{-6} \) |
\(a_{484}= +2.03287286 \pm 1.0 \cdot 10^{-5} \) | \(a_{485}= +0.38830524 \pm 7.5 \cdot 10^{-6} \) | \(a_{486}= +2.18637430 \pm 1.2 \cdot 10^{-5} \) |
\(a_{487}= +1.29951706 \pm 9.2 \cdot 10^{-6} \) | \(a_{488}= +0.16906562 \pm 1.5 \cdot 10^{-5} \) | \(a_{489}= -0.77448208 \pm 9.4 \cdot 10^{-6} \) |
\(a_{490}= +0.19738479 \pm 9.2 \cdot 10^{-6} \) | \(a_{491}= -0.56162074 \pm 7.5 \cdot 10^{-6} \) | \(a_{492}= +2.12308154 \pm 1.8 \cdot 10^{-5} \) |
\(a_{493}= +1.22042642 \pm 8.1 \cdot 10^{-6} \) | \(a_{494}= -0.25489856 \pm 1.0 \cdot 10^{-5} \) | \(a_{495}= +0.72587200 \pm 7.4 \cdot 10^{-6} \) |
\(a_{496}= +0.08406330 \pm 1.0 \cdot 10^{-5} \) | \(a_{497}= +1.54851240 \pm 8.1 \cdot 10^{-6} \) | \(a_{498}= +0.35225373 \pm 1.0 \cdot 10^{-5} \) |
\(a_{499}= -0.10889125 \pm 8.9 \cdot 10^{-6} \) | \(a_{500}= +0.96953008 \pm 1.3 \cdot 10^{-5} \) | \(a_{501}= +1.59359820 \pm 8.7 \cdot 10^{-6} \) |
\(a_{502}= -1.14808753 \pm 1.0 \cdot 10^{-5} \) | \(a_{503}= -0.36621890 \pm 1.0 \cdot 10^{-5} \) | \(a_{504}= +0.84150592 \pm 1.0 \cdot 10^{-5} \) |
\(a_{505}= +0.40106512 \pm 1.0 \cdot 10^{-5} \) | \(a_{506}= -0.71561857 \pm 5.6 \cdot 10^{-6} \) | \(a_{507}= +0.63455787 \pm 7.8 \cdot 10^{-6} \) |
\(a_{508}= +1.14927819 \pm 1.0 \cdot 10^{-5} \) | \(a_{509}= +1.81720386 \pm 8.6 \cdot 10^{-6} \) | \(a_{510}= +0.63117245 \pm 1.2 \cdot 10^{-5} \) |
\(a_{511}= -0.47198210 \pm 7.9 \cdot 10^{-6} \) | \(a_{512}= -0.89371430 \pm 9.5 \cdot 10^{-6} \) | \(a_{513}= -0.04652006 \pm 7.1 \cdot 10^{-6} \) |
\(a_{514}= -2.61956928 \pm 1.0 \cdot 10^{-5} \) | \(a_{515}= +0.23445962 \pm 8.4 \cdot 10^{-6} \) | \(a_{516}= +2.44311624 \pm 1.0 \cdot 10^{-5} \) |
\(a_{517}= +0.50560724 \pm 7.1 \cdot 10^{-6} \) | \(a_{518}= -2.71856724 \pm 8.6 \cdot 10^{-6} \) | \(a_{519}= -0.64647751 \pm 1.0 \cdot 10^{-5} \) |
\(a_{520}= -0.26705992 \pm 1.0 \cdot 10^{-5} \) | \(a_{521}= +1.92602757 \pm 8.8 \cdot 10^{-6} \) | \(a_{522}= -3.17744221 \pm 1.0 \cdot 10^{-5} \) |
\(a_{523}= -1.70197103 \pm 7.8 \cdot 10^{-6} \) | \(a_{524}= -0.42260628 \pm 1.1 \cdot 10^{-5} \) | \(a_{525}= +1.48098787 \pm 8.7 \cdot 10^{-6} \) |
\(a_{526}= +2.12077986 \pm 1.0 \cdot 10^{-5} \) | \(a_{527}= -0.13054330 \pm 8.3 \cdot 10^{-6} \) | \(a_{528}= +1.09704309 \pm 6.1 \cdot 10^{-6} \) |
\(a_{529}= -0.91299073 \pm 8.9 \cdot 10^{-6} \) | \(a_{530}= +0.03455999 \pm 1.0 \cdot 10^{-5} \) | \(a_{531}= -0.60728357 \pm 9.0 \cdot 10^{-6} \) |
\(a_{532}= +0.22149117 \pm 9.4 \cdot 10^{-6} \) | \(a_{533}= -1.22740427 \pm 8.0 \cdot 10^{-6} \) | \(a_{534}= -0.06512662 \pm 1.0 \cdot 10^{-5} \) |
\(a_{535}= +0.12905176 \pm 8.4 \cdot 10^{-6} \) | \(a_{536}= -1.00728464 \pm 7.7 \cdot 10^{-6} \) | \(a_{537}= +0.60253645 \pm 1.0 \cdot 10^{-5} \) |
\(a_{538}= +0.17969353 \pm 9.9 \cdot 10^{-6} \) | \(a_{539}= -0.53276721 \pm 7.3 \cdot 10^{-6} \) | \(a_{540}= -0.17557220 \pm 1.0 \cdot 10^{-5} \) |
\(a_{541}= +0.90926726 \pm 8.9 \cdot 10^{-6} \) | \(a_{542}= +2.33119215 \pm 1.0 \cdot 10^{-5} \) | \(a_{543}= -0.71339234 \pm 9.5 \cdot 10^{-6} \) |
\(a_{544}= +0.95657838 \pm 1.1 \cdot 10^{-5} \) | \(a_{545}= +0.17781355 \pm 8.6 \cdot 10^{-6} \) | \(a_{546}= -3.18245618 \pm 8.7 \cdot 10^{-6} \) |
\(a_{547}= -0.02821366 \pm 8.5 \cdot 10^{-6} \) | \(a_{548}= -1.42725676 \pm 1.1 \cdot 10^{-5} \) | \(a_{549}= -0.34917942 \pm 7.4 \cdot 10^{-6} \) |
\(a_{550}= -2.08127173 \pm 1.0 \cdot 10^{-5} \) | \(a_{551}= -0.23216817 \pm 8.6 \cdot 10^{-6} \) | \(a_{552}= +0.26111297 \pm 1.2 \cdot 10^{-5} \) |
\(a_{553}= +0.35593956 \pm 1.0 \cdot 10^{-5} \) | \(a_{554}= -0.29582334 \pm 8.8 \cdot 10^{-6} \) | \(a_{555}= +0.85563745 \pm 7.2 \cdot 10^{-6} \) |
\(a_{556}= -2.07625229 \pm 9.4 \cdot 10^{-6} \) | \(a_{557}= +1.72949851 \pm 7.5 \cdot 10^{-6} \) | \(a_{558}= +0.33987612 \pm 1.9 \cdot 10^{-5} \) |
\(a_{559}= -1.41242399 \pm 9.5 \cdot 10^{-6} \) | \(a_{560}= -0.20417844 \pm 6.3 \cdot 10^{-6} \) | \(a_{561}= -1.70361646 \pm 7.9 \cdot 10^{-6} \) |
\(a_{562}= -0.46821168 \pm 9.5 \cdot 10^{-6} \) | \(a_{563}= -0.18302168 \pm 8.1 \cdot 10^{-6} \) | \(a_{564}= -0.66456021 \pm 1.6 \cdot 10^{-5} \) |
\(a_{565}= -0.61179781 \pm 7.9 \cdot 10^{-6} \) | \(a_{566}= -1.41262897 \pm 1.1 \cdot 10^{-5} \) | \(a_{567}= +0.83735700 \pm 9.7 \cdot 10^{-6} \) |
\(a_{568}= +0.79403346 \pm 6.6 \cdot 10^{-6} \) | \(a_{569}= +0.59899438 \pm 7.9 \cdot 10^{-6} \) | \(a_{570}= -0.12007127 \pm 1.2 \cdot 10^{-5} \) |
\(a_{571}= -0.15021598 \pm 8.7 \cdot 10^{-6} \) | \(a_{572}= +2.59660995 \pm 8.6 \cdot 10^{-6} \) | \(a_{573}= -1.57444718 \pm 9.4 \cdot 10^{-6} \) |
\(a_{574}= +1.83700211 \pm 8.8 \cdot 10^{-6} \) | \(a_{575}= +0.25305369 \pm 6.8 \cdot 10^{-6} \) | \(a_{576}= -1.91689935 \pm 1.2 \cdot 10^{-5} \) |
\(a_{577}= +0.09786709 \pm 8.0 \cdot 10^{-6} \) | \(a_{578}= +0.72837597 \pm 1.3 \cdot 10^{-5} \) | \(a_{579}= +1.50786469 \pm 7.6 \cdot 10^{-6} \) |
\(a_{580}= -0.87623021 \pm 1.0 \cdot 10^{-5} \) | \(a_{581}= +0.17695612 \pm 7.0 \cdot 10^{-6} \) | \(a_{582}= +2.37274516 \pm 1.3 \cdot 10^{-5} \) |
\(a_{583}= -0.09328190 \pm 6.2 \cdot 10^{-6} \) | \(a_{584}= -0.24201910 \pm 1.0 \cdot 10^{-5} \) | \(a_{585}= +0.55157180 \pm 8.7 \cdot 10^{-6} \) |
\(a_{586}= -2.07396556 \pm 8.4 \cdot 10^{-6} \) | \(a_{587}= -1.94238228 \pm 8.5 \cdot 10^{-6} \) | \(a_{588}= +0.70025874 \pm 1.2 \cdot 10^{-5} \) |
\(a_{589}= +0.02483394 \pm 9.3 \cdot 10^{-6} \) | \(a_{590}= -0.28844638 \pm 1.0 \cdot 10^{-5} \) | \(a_{591}= -1.26557604 \pm 7.7 \cdot 10^{-6} \) |
\(a_{592}= +0.71210386 \pm 1.0 \cdot 10^{-5} \) | \(a_{593}= +1.52666964 \pm 9.7 \cdot 10^{-6} \) | \(a_{594}= +0.81622999 \pm 7.8 \cdot 10^{-6} \) |
\(a_{595}= +0.31707209 \pm 6.0 \cdot 10^{-6} \) | \(a_{596}= -0.13812718 \pm 1.0 \cdot 10^{-5} \) | \(a_{597}= -0.77570078 \pm 8.9 \cdot 10^{-6} \) |
\(a_{598}= -0.54378048 \pm 8.1 \cdot 10^{-6} \) | \(a_{599}= +0.10934746 \pm 9.6 \cdot 10^{-6} \) | \(a_{600}= +0.75940879 \pm 8.3 \cdot 10^{-6} \) |
\(a_{601}= +1.35779519 \pm 9.5 \cdot 10^{-6} \) | \(a_{602}= +2.11391301 \pm 8.1 \cdot 10^{-6} \) | \(a_{603}= +2.08039381 \pm 7.0 \cdot 10^{-6} \) |
\(a_{604}= -2.07427303 \pm 8.5 \cdot 10^{-6} \) | \(a_{605}= -0.55360869 \pm 1.0 \cdot 10^{-5} \) | \(a_{606}= +2.45071457 \pm 1.2 \cdot 10^{-5} \) |
\(a_{607}= +0.04819963 \pm 8.4 \cdot 10^{-6} \) | \(a_{608}= -0.18197497 \pm 9.2 \cdot 10^{-6} \) | \(a_{609}= -2.89866301 \pm 9.6 \cdot 10^{-6} \) |
\(a_{610}= -0.16585257 \pm 1.1 \cdot 10^{-5} \) | \(a_{611}= +0.38419817 \pm 6.7 \cdot 10^{-6} \) | \(a_{612}= +1.23305599 \pm 1.0 \cdot 10^{-5} \) |
\(a_{613}= +1.78212216 \pm 9.3 \cdot 10^{-6} \) | \(a_{614}= -1.35593029 \pm 1.2 \cdot 10^{-5} \) | \(a_{615}= -0.57817507 \pm 9.0 \cdot 10^{-6} \) |
\(a_{616}= -1.07883375 \pm 6.9 \cdot 10^{-6} \) | \(a_{617}= -0.06121808 \pm 8.8 \cdot 10^{-6} \) | \(a_{618}= +1.43266909 \pm 1.0 \cdot 10^{-5} \) |
\(a_{619}= +0.27595371 \pm 8.7 \cdot 10^{-6} \) | \(a_{620}= +0.09372625 \pm 2.0 \cdot 10^{-5} \) | \(a_{621}= -0.09924221 \pm 5.6 \cdot 10^{-6} \) |
\(a_{622}= -0.65458157 \pm 7.3 \cdot 10^{-6} \) | \(a_{623}= -0.03271663 \pm 7.1 \cdot 10^{-6} \) | \(a_{624}= +0.83361534 \pm 8.8 \cdot 10^{-6} \) |
\(a_{625}= +0.59385627 \pm 8.2 \cdot 10^{-6} \) | \(a_{626}= +0.47998581 \pm 1.1 \cdot 10^{-5} \) | \(a_{627}= +0.32408797 \pm 1.0 \cdot 10^{-5} \) |
\(a_{628}= +1.62360993 \pm 1.0 \cdot 10^{-5} \) | \(a_{629}= -1.10583793 \pm 7.8 \cdot 10^{-6} \) | \(a_{630}= -0.82551331 \pm 1.2 \cdot 10^{-5} \) |
\(a_{631}= -1.08973578 \pm 9.1 \cdot 10^{-6} \) | \(a_{632}= +0.18251576 \pm 1.4 \cdot 10^{-5} \) | \(a_{633}= -0.95546198 \pm 6.8 \cdot 10^{-6} \) |
\(a_{634}= -2.16120141 \pm 1.0 \cdot 10^{-5} \) | \(a_{635}= -0.31298091 \pm 9.1 \cdot 10^{-6} \) | \(a_{636}= +0.12260789 \pm 1.2 \cdot 10^{-5} \) |
\(a_{637}= -0.40483634 \pm 8.3 \cdot 10^{-6} \) | \(a_{638}= +4.07356838 \pm 9.8 \cdot 10^{-6} \) | \(a_{639}= -1.63995582 \pm 9.0 \cdot 10^{-6} \) |
\(a_{640}= -0.41434715 \pm 1.0 \cdot 10^{-5} \) | \(a_{641}= +0.42918161 \pm 9.7 \cdot 10^{-6} \) | \(a_{642}= +0.78857277 \pm 7.1 \cdot 10^{-6} \) |
\(a_{643}= +0.41002834 \pm 8.6 \cdot 10^{-6} \) | \(a_{644}= +0.47251178 \pm 7.6 \cdot 10^{-6} \) | \(a_{645}= -0.66532955 \pm 6.7 \cdot 10^{-6} \) |
\(a_{646}= +0.15518181 \pm 8.8 \cdot 10^{-6} \) | \(a_{647}= -0.39267235 \pm 9.9 \cdot 10^{-6} \) | \(a_{648}= +0.42937304 \pm 1.2 \cdot 10^{-5} \) |
\(a_{649}= +0.77855425 \pm 8.5 \cdot 10^{-6} \) | \(a_{650}= -1.58150581 \pm 8.6 \cdot 10^{-6} \) | \(a_{651}= +0.31005642 \pm 1.8 \cdot 10^{-5} \) |
\(a_{652}= -0.71865375 \pm 1.0 \cdot 10^{-5} \) | \(a_{653}= -0.10110996 \pm 8.7 \cdot 10^{-6} \) | \(a_{654}= +1.08653241 \pm 1.0 \cdot 10^{-5} \) |
\(a_{655}= +0.11508763 \pm 9.4 \cdot 10^{-6} \) | \(a_{656}= -0.48118593 \pm 1.4 \cdot 10^{-5} \) | \(a_{657}= +0.49985379 \pm 7.9 \cdot 10^{-6} \) |
\(a_{658}= -0.57501254 \pm 7.9 \cdot 10^{-6} \) | \(a_{659}= +1.80255246 \pm 9.3 \cdot 10^{-6} \) | \(a_{660}= +1.22314641 \pm 8.7 \cdot 10^{-6} \) |
\(a_{661}= -1.44792455 \pm 9.3 \cdot 10^{-6} \) | \(a_{662}= -1.74902235 \pm 8.8 \cdot 10^{-6} \) | \(a_{663}= -1.29453511 \pm 8.4 \cdot 10^{-6} \) |
\(a_{664}= +0.09073810 \pm 1.1 \cdot 10^{-5} \) | \(a_{665}= -0.06031830 \pm 8.3 \cdot 10^{-6} \) | \(a_{666}= +2.87910524 \pm 9.8 \cdot 10^{-6} \) |
\(a_{667}= -0.49528926 \pm 8.2 \cdot 10^{-6} \) | \(a_{668}= +1.47872409 \pm 1.0 \cdot 10^{-5} \) | \(a_{669}= -0.09054888 \pm 1.1 \cdot 10^{-5} \) |
\(a_{670}= +0.98814144 \pm 8.5 \cdot 10^{-6} \) | \(a_{671}= +0.44765763 \pm 7.7 \cdot 10^{-6} \) | \(a_{672}= -2.27199143 \pm 9.4 \cdot 10^{-6} \) |
\(a_{673}= -0.71378764 \pm 7.5 \cdot 10^{-6} \) | \(a_{674}= -0.45078641 \pm 1.0 \cdot 10^{-5} \) | \(a_{675}= -0.28863143 \pm 7.2 \cdot 10^{-6} \) |
\(a_{676}= +0.58881593 \pm 9.4 \cdot 10^{-6} \) | \(a_{677}= +1.10383938 \pm 8.1 \cdot 10^{-6} \) | \(a_{678}= -3.73839996 \pm 1.0 \cdot 10^{-5} \) |
\(a_{679}= +1.19195834 \pm 8.2 \cdot 10^{-6} \) | \(a_{680}= +0.16258562 \pm 1.2 \cdot 10^{-5} \) | \(a_{681}= -0.90320904 \pm 8.7 \cdot 10^{-6} \) |
\(a_{682}= -0.43573055 \pm 1.9 \cdot 10^{-5} \) | \(a_{683}= -1.80792026 \pm 8.2 \cdot 10^{-6} \) | \(a_{684}= -0.23457076 \pm 1.1 \cdot 10^{-5} \) |
\(a_{685}= +0.38868232 \pm 7.7 \cdot 10^{-6} \) | \(a_{686}= -1.18093254 \pm 8.0 \cdot 10^{-6} \) | \(a_{687}= -0.58834349 \pm 9.8 \cdot 10^{-6} \) |
\(a_{688}= -0.55372021 \pm 9.0 \cdot 10^{-6} \) | \(a_{689}= -0.07088256 \pm 8.8 \cdot 10^{-6} \) | \(a_{690}= -0.25615058 \pm 6.9 \cdot 10^{-6} \) |
\(a_{691}= -0.72867699 \pm 8.4 \cdot 10^{-6} \) | \(a_{692}= -0.59987635 \pm 1.4 \cdot 10^{-5} \) | \(a_{693}= +2.22816766 \pm 8.1 \cdot 10^{-6} \) |
\(a_{694}= +0.80595197 \pm 1.1 \cdot 10^{-5} \) | \(a_{695}= +0.56542214 \pm 6.0 \cdot 10^{-6} \) | \(a_{696}= -1.48635259 \pm 1.1 \cdot 10^{-5} \) |
\(a_{697}= +0.74724163 \pm 7.0 \cdot 10^{-6} \) | \(a_{698}= +0.31483427 \pm 9.7 \cdot 10^{-6} \) | \(a_{699}= -1.19867458 \pm 8.2 \cdot 10^{-6} \) |
\(a_{700}= +1.37423125 \pm 9.2 \cdot 10^{-6} \) | \(a_{701}= +0.07789587 \pm 9.4 \cdot 10^{-6} \) | \(a_{702}= +0.62023255 \pm 8.0 \cdot 10^{-6} \) |
\(a_{703}= +0.21036940 \pm 8.3 \cdot 10^{-6} \) | \(a_{704}= +2.45751773 \pm 9.9 \cdot 10^{-6} \) | \(a_{705}= +0.18097851 \pm 9.8 \cdot 10^{-6} \) |
\(a_{706}= +0.55471914 \pm 1.2 \cdot 10^{-5} \) | \(a_{707}= +1.23112660 \pm 8.1 \cdot 10^{-6} \) | \(a_{708}= -1.02331639 \pm 1.4 \cdot 10^{-5} \) |
\(a_{709}= -1.00783579 \pm 7.2 \cdot 10^{-6} \) | \(a_{710}= -0.77894305 \pm 5.8 \cdot 10^{-6} \) | \(a_{711}= -0.37695865 \pm 1.0 \cdot 10^{-5} \) |
\(a_{712}= -0.01677616 \pm 1.1 \cdot 10^{-5} \) | \(a_{713}= +0.05297877 \pm 8.4 \cdot 10^{-6} \) | \(a_{714}= +1.93747390 \pm 7.6 \cdot 10^{-6} \) |
\(a_{715}= -0.70713022 \pm 9.8 \cdot 10^{-6} \) | \(a_{716}= +0.55910277 \pm 1.3 \cdot 10^{-5} \) | \(a_{717}= -0.65062294 \pm 9.9 \cdot 10^{-6} \) |
\(a_{718}= +0.15227130 \pm 1.0 \cdot 10^{-5} \) | \(a_{719}= -1.02502442 \pm 7.3 \cdot 10^{-6} \) | \(a_{720}= +0.21623567 \pm 1.0 \cdot 10^{-5} \) |
\(a_{721}= +0.71970724 \pm 8.0 \cdot 10^{-6} \) | \(a_{722}= +1.51459111 \pm 1.1 \cdot 10^{-5} \) | \(a_{723}= +2.29884266 \pm 7.4 \cdot 10^{-6} \) |
\(a_{724}= -0.66196764 \pm 1.1 \cdot 10^{-5} \) | \(a_{725}= -1.44047620 \pm 7.9 \cdot 10^{-6} \) | \(a_{726}= -3.38283444 \pm 1.1 \cdot 10^{-5} \) |
\(a_{727}= +1.23406867 \pm 6.4 \cdot 10^{-6} \) | \(a_{728}= -0.81977852 \pm 9.1 \cdot 10^{-6} \) | \(a_{729}= -1.38871984 \pm 8.3 \cdot 10^{-6} \) |
\(a_{730}= +0.23741959 \pm 1.1 \cdot 10^{-5} \) | \(a_{731}= +0.85988132 \pm 6.5 \cdot 10^{-6} \) | \(a_{732}= -0.58839239 \pm 1.6 \cdot 10^{-5} \) |
\(a_{733}= +1.78047439 \pm 9.7 \cdot 10^{-6} \) | \(a_{734}= +1.06656569 \pm 1.1 \cdot 10^{-5} \) | \(a_{735}= -0.19070023 \pm 7.2 \cdot 10^{-6} \) |
\(a_{736}= -0.38821103 \pm 1.1 \cdot 10^{-5} \) | \(a_{737}= -2.66712213 \pm 8.4 \cdot 10^{-6} \) | \(a_{738}= -1.94548154 \pm 1.3 \cdot 10^{-5} \) |
\(a_{739}= +0.79054159 \pm 8.6 \cdot 10^{-6} \) | \(a_{740}= +0.79395905 \pm 9.7 \cdot 10^{-6} \) | \(a_{741}= +0.24626626 \pm 8.3 \cdot 10^{-6} \) |
\(a_{742}= +0.10608681 \pm 9.4 \cdot 10^{-6} \) | \(a_{743}= -1.31057986 \pm 8.8 \cdot 10^{-6} \) | \(a_{744}= +0.15898818 \pm 2.1 \cdot 10^{-5} \) |
\(a_{745}= +0.03761593 \pm 8.4 \cdot 10^{-6} \) | \(a_{746}= +1.40323362 \pm 9.8 \cdot 10^{-6} \) | \(a_{747}= -0.18740581 \pm 8.4 \cdot 10^{-6} \) |
\(a_{748}= -1.58081171 \pm 8.5 \cdot 10^{-6} \) | \(a_{749}= +0.39614279 \pm 6.6 \cdot 10^{-6} \) | \(a_{750}= -1.61336197 \pm 1.4 \cdot 10^{-5} \) |
\(a_{751}= -0.02186410 \pm 7.9 \cdot 10^{-6} \) | \(a_{752}= +0.15061928 \pm 1.4 \cdot 10^{-5} \) | \(a_{753}= +1.10920681 \pm 9.5 \cdot 10^{-6} \) |
\(a_{754}= +3.09540171 \pm 7.9 \cdot 10^{-6} \) | \(a_{755}= +0.56488313 \pm 9.2 \cdot 10^{-6} \) | \(a_{756}= -0.53894393 \pm 1.2 \cdot 10^{-5} \) |
\(a_{757}= -0.29973974 \pm 8.6 \cdot 10^{-6} \) | \(a_{758}= +0.22133773 \pm 8.2 \cdot 10^{-6} \) | \(a_{759}= +0.69138369 \pm 9.6 \cdot 10^{-6} \) |
\(a_{760}= -0.03092952 \pm 9.9 \cdot 10^{-6} \) | \(a_{761}= -1.56755140 \pm 1.0 \cdot 10^{-5} \) | \(a_{762}= -1.91247466 \pm 1.1 \cdot 10^{-5} \) |
\(a_{763}= +0.54582405 \pm 9.7 \cdot 10^{-6} \) | \(a_{764}= -1.46095358 \pm 1.2 \cdot 10^{-5} \) | \(a_{765}= -0.33579597 \pm 7.2 \cdot 10^{-6} \) |
\(a_{766}= +0.06817293 \pm 9.7 \cdot 10^{-6} \) | \(a_{767}= +0.59160371 \pm 9.1 \cdot 10^{-6} \) | \(a_{768}= -0.19845409 \pm 1.3 \cdot 10^{-5} \) |
\(a_{769}= -1.09066942 \pm 7.6 \cdot 10^{-6} \) | \(a_{770}= +1.05833078 \pm 7.6 \cdot 10^{-6} \) | \(a_{771}= +2.53085589 \pm 9.9 \cdot 10^{-6} \) |
\(a_{772}= +1.39917066 \pm 8.6 \cdot 10^{-6} \) | \(a_{773}= +1.29665522 \pm 7.2 \cdot 10^{-6} \) | \(a_{774}= -2.23874471 \pm 1.0 \cdot 10^{-5} \) |
\(a_{775}= +0.15408100 \pm 8.5 \cdot 10^{-6} \) | \(a_{776}= +0.61120260 \pm 1.3 \cdot 10^{-5} \) | \(a_{777}= +2.62650122 \pm 7.5 \cdot 10^{-6} \) |
\(a_{778}= -0.88408206 \pm 8.3 \cdot 10^{-6} \) | \(a_{779}= -0.14215173 \pm 8.2 \cdot 10^{-6} \) | \(a_{780}= +0.92943806 \pm 8.1 \cdot 10^{-6} \) |
\(a_{781}= +2.10246850 \pm 7.5 \cdot 10^{-6} \) | \(a_{782}= +0.33105263 \pm 6.6 \cdot 10^{-6} \) | \(a_{783}= +0.56492378 \pm 7.0 \cdot 10^{-6} \) |
\(a_{784}= -0.15871018 \pm 1.0 \cdot 10^{-5} \) | \(a_{785}= -0.44215484 \pm 7.1 \cdot 10^{-6} \) | \(a_{786}= +0.70324471 \pm 1.2 \cdot 10^{-5} \) |
\(a_{787}= +0.25185052 \pm 8.8 \cdot 10^{-6} \) | \(a_{788}= -1.17434733 \pm 8.3 \cdot 10^{-6} \) | \(a_{789}= -2.04895829 \pm 9.5 \cdot 10^{-6} \) |
\(a_{790}= -0.17904709 \pm 9.6 \cdot 10^{-6} \) | \(a_{791}= -1.87800068 \pm 6.7 \cdot 10^{-6} \) | \(a_{792}= +1.14254150 \pm 7.1 \cdot 10^{-6} \) |
\(a_{793}= +0.34016372 \pm 8.3 \cdot 10^{-6} \) | \(a_{794}= +2.38156576 \pm 1.0 \cdot 10^{-5} \) | \(a_{795}= -0.03338959 \pm 7.6 \cdot 10^{-6} \) |
\(a_{796}= -0.71978459 \pm 1.0 \cdot 10^{-5} \) | \(a_{797}= -0.26790514 \pm 9.1 \cdot 10^{-6} \) | \(a_{798}= -0.36857591 \pm 9.7 \cdot 10^{-6} \) |
\(a_{799}= -0.23389919 \pm 7.4 \cdot 10^{-6} \) | \(a_{800}= -1.12905487 \pm 8.5 \cdot 10^{-6} \) | \(a_{801}= +0.03464862 \pm 7.3 \cdot 10^{-6} \) |
\(a_{802}= +0.50834489 \pm 8.8 \cdot 10^{-6} \) | \(a_{803}= -0.64082632 \pm 6.8 \cdot 10^{-6} \) | \(a_{804}= +3.50561289 \pm 9.8 \cdot 10^{-6} \) |
\(a_{805}= -0.12867830 \pm 6.2 \cdot 10^{-6} \) | \(a_{806}= -0.33110064 \pm 1.9 \cdot 10^{-5} \) | \(a_{807}= -0.17360809 \pm 7.5 \cdot 10^{-6} \) |
\(a_{808}= +0.63128698 \pm 1.2 \cdot 10^{-5} \) | \(a_{809}= -1.02244517 \pm 8.9 \cdot 10^{-6} \) | \(a_{810}= -0.42121291 \pm 1.2 \cdot 10^{-5} \) |
\(a_{811}= -0.58958129 \pm 9.6 \cdot 10^{-6} \) | \(a_{812}= -2.68971365 \pm 9.0 \cdot 10^{-6} \) | \(a_{813}= -2.25224483 \pm 1.1 \cdot 10^{-5} \) |
\(a_{814}= -3.69109216 \pm 9.2 \cdot 10^{-6} \) | \(a_{815}= +0.19570971 \pm 8.2 \cdot 10^{-6} \) | \(a_{816}= -0.50750360 \pm 1.6 \cdot 10^{-5} \) |
\(a_{817}= -0.16357977 \pm 6.5 \cdot 10^{-6} \) | \(a_{818}= -1.48607574 \pm 8.8 \cdot 10^{-6} \) | \(a_{819}= +1.69312833 \pm 1.0 \cdot 10^{-5} \) |
\(a_{820}= -0.53649747 \pm 1.1 \cdot 10^{-5} \) | \(a_{821}= +1.14990653 \pm 9.7 \cdot 10^{-6} \) | \(a_{822}= +2.37504932 \pm 1.2 \cdot 10^{-5} \) |
\(a_{823}= +1.40728927 \pm 8.1 \cdot 10^{-6} \) | \(a_{824}= +0.36904556 \pm 9.7 \cdot 10^{-6} \) | \(a_{825}= +2.01078812 \pm 9.0 \cdot 10^{-6} \) |
\(a_{826}= -0.88542731 \pm 9.9 \cdot 10^{-6} \) | \(a_{827}= +1.14434266 \pm 9.0 \cdot 10^{-6} \) | \(a_{828}= -0.50041475 \pm 9.2 \cdot 10^{-6} \) |
\(a_{829}= -0.93701223 \pm 9.2 \cdot 10^{-6} \) | \(a_{830}= -0.08901365 \pm 1.1 \cdot 10^{-5} \) | \(a_{831}= +0.28580509 \pm 8.1 \cdot 10^{-6} \) |
\(a_{832}= +1.86740564 \pm 9.5 \cdot 10^{-6} \) | \(a_{833}= +0.24646368 \pm 7.8 \cdot 10^{-6} \) | \(a_{834}= +3.45502067 \pm 1.0 \cdot 10^{-5} \) |
\(a_{835}= -0.40269833 \pm 8.4 \cdot 10^{-6} \) | \(a_{836}= +0.30072617 \pm 1.1 \cdot 10^{-5} \) | \(a_{837}= -0.06042725 \pm 8.1 \cdot 10^{-6} \) |
\(a_{838}= +0.68042735 \pm 1.0 \cdot 10^{-5} \) | \(a_{839}= +0.87349640 \pm 7.6 \cdot 10^{-6} \) | \(a_{840}= -0.38616087 \pm 1.0 \cdot 10^{-5} \) |
\(a_{841}= +1.81937156 \pm 6.0 \cdot 10^{-6} \) | \(a_{842}= +1.25105397 \pm 1.2 \cdot 10^{-5} \) | \(a_{843}= +0.45235539 \pm 8.4 \cdot 10^{-6} \) |
\(a_{844}= -0.88658776 \pm 8.3 \cdot 10^{-6} \) | \(a_{845}= -0.16035121 \pm 8.9 \cdot 10^{-6} \) | \(a_{846}= +0.60896843 \pm 1.2 \cdot 10^{-5} \) |
\(a_{847}= -1.69938087 \pm 8.6 \cdot 10^{-6} \) | \(a_{848}= -0.02778847 \pm 7.8 \cdot 10^{-6} \) | \(a_{849}= +1.36478939 \pm 8.4 \cdot 10^{-6} \) |
\(a_{850}= +0.96281804 \pm 6.9 \cdot 10^{-6} \) | \(a_{851}= +0.44878547 \pm 8.2 \cdot 10^{-6} \) | \(a_{852}= -2.76344326 \pm 8.4 \cdot 10^{-6} \) |
\(a_{853}= -0.50939963 \pm 8.3 \cdot 10^{-6} \) | \(a_{854}= -0.50910812 \pm 6.8 \cdot 10^{-6} \) | \(a_{855}= +0.06388024 \pm 9.1 \cdot 10^{-6} \) |
\(a_{856}= +0.20313084 \pm 8.8 \cdot 10^{-6} \) | \(a_{857}= +0.31974415 \pm 7.9 \cdot 10^{-6} \) | \(a_{858}= -4.32093012 \pm 9.4 \cdot 10^{-6} \) |
\(a_{859}= -1.26521743 \pm 8.7 \cdot 10^{-6} \) | \(a_{860}= -0.61736945 \pm 8.0 \cdot 10^{-6} \) | \(a_{861}= -1.77479085 \pm 9.1 \cdot 10^{-6} \) |
\(a_{862}= -1.91899691 \pm 1.0 \cdot 10^{-5} \) | \(a_{863}= -1.61597778 \pm 8.7 \cdot 10^{-6} \) | \(a_{864}= +0.44279103 \pm 8.3 \cdot 10^{-6} \) |
\(a_{865}= +0.16336327 \pm 1.1 \cdot 10^{-5} \) | \(a_{866}= -2.93737364 \pm 1.1 \cdot 10^{-5} \) | \(a_{867}= -0.70370905 \pm 1.0 \cdot 10^{-5} \) |
\(a_{868}= +0.28770608 \pm 2.0 \cdot 10^{-5} \) | \(a_{869}= +0.48327137 \pm 9.3 \cdot 10^{-6} \) | \(a_{870}= +1.45810483 \pm 1.2 \cdot 10^{-5} \) |
\(a_{871}= -2.02667874 \pm 7.1 \cdot 10^{-6} \) | \(a_{872}= +0.27988317 \pm 1.0 \cdot 10^{-5} \) | \(a_{873}= -1.26234638 \pm 9.5 \cdot 10^{-6} \) |
\(a_{874}= -0.06297789 \pm 8.6 \cdot 10^{-6} \) | \(a_{875}= -0.81047906 \pm 9.2 \cdot 10^{-6} \) | \(a_{876}= +0.84228951 \pm 1.2 \cdot 10^{-5} \) |
\(a_{877}= -0.51987791 \pm 9.3 \cdot 10^{-6} \) | \(a_{878}= +0.98299845 \pm 1.0 \cdot 10^{-5} \) | \(a_{879}= +2.00372939 \pm 7.8 \cdot 10^{-6} \) |
\(a_{880}= -0.27722008 \pm 6.2 \cdot 10^{-6} \) | \(a_{881}= +1.17181460 \pm 8.8 \cdot 10^{-6} \) | \(a_{882}= -0.64168070 \pm 1.0 \cdot 10^{-5} \) |
\(a_{883}= -0.28418974 \pm 8.9 \cdot 10^{-6} \) | \(a_{884}= -1.20121889 \pm 9.4 \cdot 10^{-6} \) | \(a_{885}= +0.27867796 \pm 9.2 \cdot 10^{-6} \) |
\(a_{886}= -0.80087994 \pm 1.1 \cdot 10^{-5} \) | \(a_{887}= +0.66849671 \pm 7.9 \cdot 10^{-6} \) | \(a_{888}= +1.34679571 \pm 1.1 \cdot 10^{-5} \) |
\(a_{889}= -0.96073956 \pm 8.2 \cdot 10^{-6} \) | \(a_{890}= +0.01645734 \pm 8.6 \cdot 10^{-6} \) | \(a_{891}= +1.13690837 \pm 7.1 \cdot 10^{-6} \) |
\(a_{892}= -0.08402169 \pm 1.1 \cdot 10^{-5} \) | \(a_{893}= +0.04449588 \pm 5.9 \cdot 10^{-6} \) | \(a_{894}= +0.22985273 \pm 1.0 \cdot 10^{-5} \) |
\(a_{895}= -0.15225948 \pm 9.9 \cdot 10^{-6} \) | \(a_{896}= -1.27189771 \pm 8.4 \cdot 10^{-6} \) | \(a_{897}= +0.52536500 \pm 9.6 \cdot 10^{-6} \) |
\(a_{898}= +1.47193886 \pm 1.0 \cdot 10^{-5} \) | \(a_{899}= -0.30157498 \pm 8.3 \cdot 10^{-6} \) | \(a_{900}= -1.45538294 \pm 9.8 \cdot 10^{-6} \) |
\(a_{901}= +0.04315318 \pm 6.6 \cdot 10^{-6} \) | \(a_{902}= +2.49416089 \pm 7.2 \cdot 10^{-6} \) | \(a_{903}= -2.04232399 \pm 7.8 \cdot 10^{-6} \) |
\(a_{904}= -0.96298576 \pm 1.0 \cdot 10^{-5} \) | \(a_{905}= +0.18027249 \pm 7.0 \cdot 10^{-6} \) | \(a_{906}= +3.45172705 \pm 9.9 \cdot 10^{-6} \) |
\(a_{907}= -1.28881540 \pm 7.3 \cdot 10^{-6} \) | \(a_{908}= -0.83810146 \pm 1.1 \cdot 10^{-5} \) | \(a_{909}= -1.30382762 \pm 8.8 \cdot 10^{-6} \) |
\(a_{910}= +0.80419883 \pm 7.9 \cdot 10^{-6} \) | \(a_{911}= -1.01391722 \pm 8.5 \cdot 10^{-6} \) | \(a_{912}= +0.09654509 \pm 7.1 \cdot 10^{-6} \) |
\(a_{913}= +0.24025940 \pm 6.1 \cdot 10^{-6} \) | \(a_{914}= +1.85283992 \pm 1.0 \cdot 10^{-5} \) | \(a_{915}= +0.16023586 \pm 7.9 \cdot 10^{-6} \) |
\(a_{916}= -0.54593290 \pm 1.3 \cdot 10^{-5} \) | \(a_{917}= +0.35327789 \pm 1.0 \cdot 10^{-5} \) | \(a_{918}= -0.37759652 \pm 9.9 \cdot 10^{-6} \) |
\(a_{919}= -1.49671371 \pm 9.0 \cdot 10^{-6} \) | \(a_{920}= -0.06598260 \pm 9.1 \cdot 10^{-6} \) | \(a_{921}= +1.31001084 \pm 9.7 \cdot 10^{-6} \) |
\(a_{922}= +0.19113999 \pm 8.1 \cdot 10^{-6} \) | \(a_{923}= +1.59761271 \pm 8.4 \cdot 10^{-6} \) | \(a_{924}= +3.75462244 \pm 1.0 \cdot 10^{-5} \) |
\(a_{925}= +1.30522675 \pm 6.8 \cdot 10^{-6} \) | \(a_{926}= +2.61135652 \pm 1.1 \cdot 10^{-5} \) | \(a_{927}= -0.76220770 \pm 9.1 \cdot 10^{-6} \) |
\(a_{928}= +2.20984226 \pm 8.9 \cdot 10^{-6} \) | \(a_{929}= +0.97271313 \pm 8.4 \cdot 10^{-6} \) | \(a_{930}= -0.15596665 \pm 2.9 \cdot 10^{-5} \) |
\(a_{931}= -0.04688609 \pm 6.6 \cdot 10^{-6} \) | \(a_{932}= -1.11226844 \pm 1.2 \cdot 10^{-5} \) | \(a_{933}= +0.63241374 \pm 6.4 \cdot 10^{-6} \) |
\(a_{934}= -0.24156176 \pm 1.0 \cdot 10^{-5} \) | \(a_{935}= +0.43049968 \pm 5.9 \cdot 10^{-6} \) | \(a_{936}= +0.86818843 \pm 9.6 \cdot 10^{-6} \) |
\(a_{937}= -0.50213024 \pm 8.7 \cdot 10^{-6} \) | \(a_{938}= +3.03324114 \pm 7.9 \cdot 10^{-6} \) | \(a_{939}= -0.46373078 \pm 1.0 \cdot 10^{-5} \) |
\(a_{940}= +0.16793273 \pm 1.1 \cdot 10^{-5} \) | \(a_{941}= -1.31649808 \pm 8.4 \cdot 10^{-6} \) | \(a_{942}= -2.70179394 \pm 1.1 \cdot 10^{-5} \) |
\(a_{943}= -0.30325527 \pm 7.7 \cdot 10^{-6} \) | \(a_{944}= +0.23192960 \pm 1.0 \cdot 10^{-5} \) | \(a_{945}= +0.14676965 \pm 8.4 \cdot 10^{-6} \) |
\(a_{946}= +2.87013234 \pm 8.3 \cdot 10^{-6} \) | \(a_{947}= -0.37685760 \pm 9.1 \cdot 10^{-6} \) | \(a_{948}= -0.63520239 \pm 1.6 \cdot 10^{-5} \) |
\(a_{949}= -0.48694773 \pm 8.9 \cdot 10^{-6} \) | \(a_{950}= -0.18316197 \pm 1.3 \cdot 10^{-5} \) | \(a_{951}= +2.08801094 \pm 8.6 \cdot 10^{-6} \) |
\(a_{952}= +0.49907976 \pm 6.5 \cdot 10^{-6} \) | \(a_{953}= -1.92307533 \pm 1.0 \cdot 10^{-5} \) | \(a_{954}= -0.11235150 \pm 1.3 \cdot 10^{-5} \) |
\(a_{955}= +0.39785892 \pm 1.0 \cdot 10^{-5} \) | \(a_{956}= -0.60372296 \pm 1.1 \cdot 10^{-5} \) | \(a_{957}= -3.93561437 \pm 1.0 \cdot 10^{-5} \) |
\(a_{958}= +0.93766487 \pm 1.2 \cdot 10^{-5} \) | \(a_{959}= +1.19311585 \pm 9.0 \cdot 10^{-6} \) | \(a_{960}= +0.87965099 \pm 1.3 \cdot 10^{-5} \) |
\(a_{961}= +0.03225806 \pm 1.7 \cdot 10^{-6} \) | \(a_{962}= -2.80476770 \pm 9.1 \cdot 10^{-6} \) | \(a_{963}= -0.41953599 \pm 7.3 \cdot 10^{-6} \) |
\(a_{964}= +2.13313120 \pm 7.0 \cdot 10^{-6} \) | \(a_{965}= -0.38103369 \pm 7.6 \cdot 10^{-6} \) | \(a_{966}= -0.78629075 \pm 6.2 \cdot 10^{-6} \) |
\(a_{967}= +1.15550866 \pm 8.1 \cdot 10^{-6} \) | \(a_{968}= -0.87139456 \pm 1.1 \cdot 10^{-5} \) | \(a_{969}= -0.14992648 \pm 7.0 \cdot 10^{-6} \) |
\(a_{970}= -0.59958685 \pm 9.6 \cdot 10^{-6} \) | \(a_{971}= +1.05158079 \pm 8.9 \cdot 10^{-6} \) | \(a_{972}= -1.96006448 \pm 1.2 \cdot 10^{-5} \) |
\(a_{973}= +1.73564393 \pm 7.0 \cdot 10^{-6} \) | \(a_{974}= -2.00660011 \pm 1.2 \cdot 10^{-5} \) | \(a_{975}= +1.52794710 \pm 6.2 \cdot 10^{-6} \) |
\(a_{976}= +0.13335622 \pm 1.4 \cdot 10^{-5} \) | \(a_{977}= -1.59165846 \pm 1.0 \cdot 10^{-5} \) | \(a_{978}= +1.19588720 \pm 1.1 \cdot 10^{-5} \) |
\(a_{979}= -0.04442049 \pm 8.2 \cdot 10^{-6} \) | \(a_{980}= -0.17695366 \pm 9.6 \cdot 10^{-6} \) | \(a_{981}= -0.57805629 \pm 9.3 \cdot 10^{-6} \) |
\(a_{982}= +0.86720542 \pm 8.5 \cdot 10^{-6} \) | \(a_{983}= +0.51525945 \pm 6.6 \cdot 10^{-6} \) | \(a_{984}= -0.91006267 \pm 2.0 \cdot 10^{-5} \) |
\(a_{985}= +0.31980794 \pm 6.8 \cdot 10^{-6} \) | \(a_{986}= -1.88447529 \pm 1.0 \cdot 10^{-5} \) | \(a_{987}= +0.55553937 \pm 8.0 \cdot 10^{-6} \) |
\(a_{988}= +0.22851422 \pm 8.8 \cdot 10^{-6} \) | \(a_{989}= -0.34896817 \pm 6.7 \cdot 10^{-6} \) | \(a_{990}= -1.12082778 \pm 7.3 \cdot 10^{-6} \) |
\(a_{991}= -0.95635981 \pm 8.4 \cdot 10^{-6} \) | \(a_{992}= -0.23637649 \pm 1.1 \cdot 10^{-5} \) | \(a_{993}= +1.68979058 \pm 9.7 \cdot 10^{-6} \) |
\(a_{994}= -2.39107684 \pm 8.0 \cdot 10^{-6} \) | \(a_{995}= +0.19601767 \pm 7.7 \cdot 10^{-6} \) | \(a_{996}= -0.31579224 \pm 1.3 \cdot 10^{-5} \) |
\(a_{997}= -1.17539734 \pm 9.1 \cdot 10^{-6} \) | \(a_{998}= +0.16814030 \pm 1.0 \cdot 10^{-5} \) | \(a_{999}= -0.51188185 \pm 6.1 \cdot 10^{-6} \) |
\(a_{1000}= -0.41559079 \pm 1.3 \cdot 10^{-5} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000