Maass form invariants
Level: | \( 31 \) |
Weight: | \( 0 \) |
Character: | 31.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(2.80593495032754336303823430133 \pm 4 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -1.15124137 \pm 1.1 \cdot 10^{-6} \) | \(a_{3}= +0.20357970 \pm 9.9 \cdot 10^{-7} \) |
\(a_{4}= +0.32535668 \pm 1.2 \cdot 10^{-6} \) | \(a_{5}= +1.25675200 \pm 9.2 \cdot 10^{-7} \) | \(a_{6}= -0.23436937 \pm 1.2 \cdot 10^{-6} \) |
\(a_{7}= +1.21792630 \pm 9.0 \cdot 10^{-7} \) | \(a_{8}= +0.77667729 \pm 1.2 \cdot 10^{-6} \) | \(a_{9}= -0.95855531 \pm 9.4 \cdot 10^{-7} \) |
\(a_{10}= -1.44682489 \pm 1.1 \cdot 10^{-6} \) | \(a_{11}= -0.28959552 \pm 9.0 \cdot 10^{-7} \) | \(a_{12}= +0.06623601 \pm 1.4 \cdot 10^{-6} \) |
\(a_{13}= +1.74179425 \pm 9.4 \cdot 10^{-7} \) | \(a_{14}= -1.40212714 \pm 9.3 \cdot 10^{-7} \) | \(a_{15}= +0.25584919 \pm 9.5 \cdot 10^{-7} \) |
\(a_{16}= -1.21949971 \pm 1.1 \cdot 10^{-6} \) | \(a_{17}= +0.71098344 \pm 8.5 \cdot 10^{-7} \) | \(a_{18}= +1.10352852 \pm 1.2 \cdot 10^{-6} \) |
\(a_{19}= +1.12761077 \pm 9.5 \cdot 10^{-7} \) | \(a_{20}= +0.40889266 \pm 1.1 \cdot 10^{-6} \) | \(a_{21}= +0.24794506 \pm 9.7 \cdot 10^{-7} \) |
\(a_{22}= +0.33339435 \pm 9.8 \cdot 10^{-7} \) | \(a_{23}= -0.94110053 \pm 8.6 \cdot 10^{-7} \) | \(a_{24}= +0.15811573 \pm 1.5 \cdot 10^{-6} \) |
\(a_{25}= +0.57942558 \pm 8.7 \cdot 10^{-7} \) | \(a_{26}= -2.00522559 \pm 9.5 \cdot 10^{-7} \) | \(a_{27}= -0.39872209 \pm 8.3 \cdot 10^{-7} \) |
\(a_{28}= +0.39626046 \pm 9.7 \cdot 10^{-7} \) | \(a_{29}= +0.04161641 \pm 8.5 \cdot 10^{-7} \) | \(a_{30}= -0.29454417 \pm 1.2 \cdot 10^{-6} \) |
\(a_{31}= +0.17960530 \pm 1.0 \cdot 10^{-8} \) | \(a_{32}= +0.62726122 \pm 1.2 \cdot 10^{-6} \) | \(a_{33}= -0.05895577 \pm 9.6 \cdot 10^{-7} \) |
\(a_{34}= -0.81851355 \pm 1.1 \cdot 10^{-6} \) | \(a_{35}= +1.53063131 \pm 8.3 \cdot 10^{-7} \) | \(a_{36}= -0.31187238 \pm 1.3 \cdot 10^{-6} \) |
\(a_{37}= -0.62061707 \pm 8.3 \cdot 10^{-7} \) | \(a_{38}= -1.29815216 \pm 1.1 \cdot 10^{-6} \) | \(a_{39}= +0.35459394 \pm 9.2 \cdot 10^{-7} \) |
\(a_{40}= +0.97609074 \pm 1.2 \cdot 10^{-6} \) | \(a_{41}= -1.34748366 \pm 8.2 \cdot 10^{-7} \) | \(a_{42}= -0.28544461 \pm 1.1 \cdot 10^{-6} \) |
\(a_{43}= +1.66415848 \pm 7.8 \cdot 10^{-7} \) | \(a_{44}= -0.09422184 \pm 9.6 \cdot 10^{-7} \) | \(a_{45}= -1.20466630 \pm 9.1 \cdot 10^{-7} \) |
\(a_{46}= +1.08343386 \pm 8.3 \cdot 10^{-7} \) | \(a_{47}= +0.34014341 \pm 8.0 \cdot 10^{-7} \) | \(a_{48}= -0.24826538 \pm 1.4 \cdot 10^{-6} \) |
\(a_{49}= +0.48334447 \pm 8.6 \cdot 10^{-7} \) | \(a_{50}= -0.66705870 \pm 1.1 \cdot 10^{-6} \) | \(a_{51}= +0.14474179 \pm 9.8 \cdot 10^{-7} \) |
\(a_{52}= +0.56670440 \pm 9.7 \cdot 10^{-7} \) | \(a_{53}= -0.94488638 \pm 8.6 \cdot 10^{-7} \) | \(a_{54}= +0.45902537 \pm 1.0 \cdot 10^{-6} \) |
\(a_{55}= -0.36394975 \pm 9.7 \cdot 10^{-7} \) | \(a_{56}= +0.94593570 \pm 9.3 \cdot 10^{-7} \) | \(a_{57}= +0.22955866 \pm 9.3 \cdot 10^{-7} \) |
\(a_{58}= -0.04791053 \pm 1.0 \cdot 10^{-6} \) | \(a_{59}= +0.23340959 \pm 9.7 \cdot 10^{-7} \) | \(a_{60}= +0.08324224 \pm 1.4 \cdot 10^{-6} \) |
\(a_{61}= +0.26779123 \pm 8.8 \cdot 10^{-7} \) | \(a_{62}= -0.20676905 \pm 1.1 \cdot 10^{-6} \) | \(a_{63}= -1.16744972 \pm 1.0 \cdot 10^{-6} \) |
\(a_{64}= +0.49737065 \pm 1.1 \cdot 10^{-6} \) | \(a_{65}= +2.18900340 \pm 9.2 \cdot 10^{-7} \) | \(a_{66}= +0.06787232 \pm 9.8 \cdot 10^{-7} \) |
\(a_{67}= +0.50242913 \pm 7.5 \cdot 10^{-7} \) | \(a_{68}= +0.23132321 \pm 1.4 \cdot 10^{-6} \) | \(a_{69}= -0.19158896 \pm 9.9 \cdot 10^{-7} \) |
\(a_{70}= -1.76212608 \pm 9.5 \cdot 10^{-7} \) | \(a_{71}= -1.32901271 \pm 7.2 \cdot 10^{-7} \) | \(a_{72}= -0.74448814 \pm 1.2 \cdot 10^{-6} \) |
\(a_{73}= -1.67952296 \pm 8.1 \cdot 10^{-7} \) | \(a_{74}= +0.71448005 \pm 1.0 \cdot 10^{-6} \) | \(a_{75}= +0.11795928 \pm 8.8 \cdot 10^{-7} \) |
\(a_{76}= +0.36687570 \pm 1.1 \cdot 10^{-6} \) | \(a_{77}= -0.35270600 \pm 8.0 \cdot 10^{-7} \) | \(a_{78}= -0.40822321 \pm 9.3 \cdot 10^{-7} \) |
\(a_{79}= -0.48620296 \pm 9.4 \cdot 10^{-7} \) | \(a_{80}= -1.53260870 \pm 1.0 \cdot 10^{-6} \) | \(a_{81}= +0.87738359 \pm 9.5 \cdot 10^{-7} \) |
\(a_{82}= +1.55127893 \pm 1.1 \cdot 10^{-6} \) | \(a_{83}= +0.36071613 \pm 7.6 \cdot 10^{-7} \) | \(a_{84}= +0.08067058 \pm 1.2 \cdot 10^{-6} \) |
\(a_{85}= +0.89352986 \pm 7.7 \cdot 10^{-7} \) | \(a_{86}= -1.91584808 \pm 9.1 \cdot 10^{-7} \) | \(a_{87}= +0.00847226 \pm 1.0 \cdot 10^{-6} \) |
\(a_{88}= -0.22492227 \pm 9.2 \cdot 10^{-7} \) | \(a_{89}= -0.89705645 \pm 7.8 \cdot 10^{-7} \) | \(a_{90}= +1.38686167 \pm 1.1 \cdot 10^{-6} \) |
\(a_{91}= +2.12137702 \pm 1.0 \cdot 10^{-6} \) | \(a_{92}= -0.30619335 \pm 9.4 \cdot 10^{-7} \) | \(a_{93}= +0.03656399 \pm 1.0 \cdot 10^{-6} \) |
\(a_{94}= -0.39158716 \pm 1.0 \cdot 10^{-6} \) | \(a_{95}= +1.41712709 \pm 1.0 \cdot 10^{-6} \) | \(a_{96}= +0.12769765 \pm 1.5 \cdot 10^{-6} \) |
\(a_{97}= +0.32119153 \pm 8.9 \cdot 10^{-7} \) | \(a_{98}= -0.55644614 \pm 9.0 \cdot 10^{-7} \) | \(a_{99}= +0.27759333 \pm 8.3 \cdot 10^{-7} \) |
\(a_{100}= +0.18851999 \pm 1.0 \cdot 10^{-6} \) | \(a_{101}= -0.47554305 \pm 9.7 \cdot 10^{-7} \) | \(a_{102}= -0.16663274 \pm 1.3 \cdot 10^{-6} \) |
\(a_{103}= -1.25987256 \pm 7.9 \cdot 10^{-7} \) | \(a_{104}= +1.35281204 \pm 1.0 \cdot 10^{-6} \) | \(a_{105}= +0.31160545 \pm 8.6 \cdot 10^{-7} \) |
\(a_{106}= +1.08779229 \pm 1.0 \cdot 10^{-6} \) | \(a_{107}= +0.94736143 \pm 8.0 \cdot 10^{-7} \) | \(a_{108}= -0.12972690 \pm 1.1 \cdot 10^{-6} \) |
\(a_{109}= +1.51406306 \pm 8.9 \cdot 10^{-7} \) | \(a_{110}= +0.41899401 \pm 9.2 \cdot 10^{-7} \) | \(a_{111}= -0.12634503 \pm 8.7 \cdot 10^{-7} \) |
\(a_{112}= -1.48526077 \pm 7.5 \cdot 10^{-7} \) | \(a_{113}= -1.36497654 \pm 8.2 \cdot 10^{-7} \) | \(a_{114}= -0.26427742 \pm 1.0 \cdot 10^{-6} \) |
\(a_{115}= -1.18272997 \pm 8.0 \cdot 10^{-7} \) | \(a_{116}= +0.01354018 \pm 1.0 \cdot 10^{-6} \) | \(a_{117}= -1.66960612 \pm 9.4 \cdot 10^{-7} \) |
\(a_{118}= -0.26871078 \pm 1.2 \cdot 10^{-6} \) | \(a_{119}= +0.86592543 \pm 6.9 \cdot 10^{-7} \) | \(a_{120}= +0.19871226 \pm 1.4 \cdot 10^{-6} \) |
\(a_{121}= -0.91613443 \pm 9.5 \cdot 10^{-7} \) | \(a_{122}= -0.30829235 \pm 1.2 \cdot 10^{-6} \) | \(a_{123}= -0.27432031 \pm 1.0 \cdot 10^{-6} \) |
\(a_{124}= +0.05843579 \pm 1.2 \cdot 10^{-6} \) | \(a_{125}= -0.52855774 \pm 9.5 \cdot 10^{-7} \) | \(a_{126}= +1.34401641 \pm 1.3 \cdot 10^{-6} \) |
\(a_{127}= +0.96273906 \pm 9.0 \cdot 10^{-7} \) | \(a_{128}= -1.19985488 \pm 1.1 \cdot 10^{-6} \) | \(a_{129}= +0.33878888 \pm 7.4 \cdot 10^{-7} \) |
\(a_{130}= -2.52007127 \pm 9.7 \cdot 10^{-7} \) | \(a_{131}= -0.31946122 \pm 9.4 \cdot 10^{-7} \) | \(a_{132}= -0.01918165 \pm 1.0 \cdot 10^{-6} \) |
\(a_{133}= +1.37334681 \pm 8.8 \cdot 10^{-7} \) | \(a_{134}= -0.57841719 \pm 8.3 \cdot 10^{-7} \) | \(a_{135}= -0.50109479 \pm 8.0 \cdot 10^{-7} \) |
\(a_{136}= +0.55220469 \pm 1.4 \cdot 10^{-6} \) | \(a_{137}= -0.37867407 \pm 8.8 \cdot 10^{-7} \) | \(a_{138}= +0.22056514 \pm 8.3 \cdot 10^{-7} \) |
\(a_{139}= +0.95618848 \pm 6.9 \cdot 10^{-7} \) | \(a_{140}= +0.49800113 \pm 8.8 \cdot 10^{-7} \) | \(a_{141}= +0.06924629 \pm 1.0 \cdot 10^{-6} \) |
\(a_{142}= +1.53001441 \pm 7.9 \cdot 10^{-7} \) | \(a_{143}= -0.50441582 \pm 9.2 \cdot 10^{-7} \) | \(a_{144}= +1.16895792 \pm 1.1 \cdot 10^{-6} \) |
\(a_{145}= +0.05230151 \pm 8.2 \cdot 10^{-7} \) | \(a_{146}= +1.93353630 \pm 1.0 \cdot 10^{-6} \) | \(a_{147}= +0.09839912 \pm 9.1 \cdot 10^{-7} \) |
\(a_{148}= -0.20192191 \pm 1.1 \cdot 10^{-6} \) | \(a_{149}= -1.13673865 \pm 7.9 \cdot 10^{-7} \) | \(a_{150}= -0.13579961 \pm 1.1 \cdot 10^{-6} \) |
\(a_{151}= -1.37644542 \pm 8.6 \cdot 10^{-7} \) | \(a_{152}= +0.87578968 \pm 1.0 \cdot 10^{-6} \) | \(a_{153}= -0.68151695 \pm 8.3 \cdot 10^{-7} \) |
\(a_{154}= +0.40604974 \pm 8.6 \cdot 10^{-7} \) | \(a_{155}= +0.22571932 \pm 9.3 \cdot 10^{-7} \) | \(a_{156}= +0.11536951 \pm 1.0 \cdot 10^{-6} \) |
\(a_{157}= -0.31891040 \pm 7.8 \cdot 10^{-7} \) | \(a_{158}= +0.55973696 \pm 1.1 \cdot 10^{-6} \) | \(a_{159}= -0.19235968 \pm 8.6 \cdot 10^{-7} \) |
\(a_{160}= +0.78831179 \pm 1.1 \cdot 10^{-6} \) | \(a_{161}= -1.14619109 \pm 7.7 \cdot 10^{-7} \) | \(a_{162}= -1.01008028 \pm 1.2 \cdot 10^{-6} \) |
\(a_{163}= -0.50156888 \pm 9.1 \cdot 10^{-7} \) | \(a_{164}= -0.43841282 \pm 1.3 \cdot 10^{-6} \) | \(a_{165}= -0.07409278 \pm 8.8 \cdot 10^{-7} \) |
\(a_{166}= -0.41527133 \pm 1.0 \cdot 10^{-6} \) | \(a_{167}= +1.39402860 \pm 9.1 \cdot 10^{-7} \) | \(a_{168}= +0.19257330 \pm 1.0 \cdot 10^{-6} \) |
\(a_{169}= +2.03384721 \pm 8.7 \cdot 10^{-7} \) | \(a_{170}= -1.02866853 \pm 1.0 \cdot 10^{-6} \) | \(a_{171}= -1.08087729 \pm 8.6 \cdot 10^{-7} \) |
\(a_{172}= +0.54144508 \pm 9.0 \cdot 10^{-7} \) | \(a_{173}= +0.51973943 \pm 9.6 \cdot 10^{-7} \) | \(a_{174}= -0.00975361 \pm 1.2 \cdot 10^{-6} \) |
\(a_{175}= +0.70569765 \pm 8.1 \cdot 10^{-7} \) | \(a_{176}= +0.35316166 \pm 5.9 \cdot 10^{-7} \) | \(a_{177}= +0.04751745 \pm 1.0 \cdot 10^{-6} \) |
\(a_{178}= +1.03272849 \pm 8.9 \cdot 10^{-7} \) | \(a_{179}= +1.14093327 \pm 9.9 \cdot 10^{-7} \) | \(a_{180}= -0.39194623 \pm 1.2 \cdot 10^{-6} \) |
\(a_{181}= +0.09733743 \pm 8.1 \cdot 10^{-7} \) | \(a_{182}= -2.44221698 \pm 9.1 \cdot 10^{-7} \) | \(a_{183}= +0.05451686 \pm 9.1 \cdot 10^{-7} \) |
\(a_{184}= -0.73093141 \pm 1.0 \cdot 10^{-6} \) | \(a_{185}= -0.77996175 \pm 7.9 \cdot 10^{-7} \) | \(a_{186}= -0.04209398 \pm 2.1 \cdot 10^{-6} \) |
\(a_{187}= -0.20589762 \pm 6.7 \cdot 10^{-7} \) | \(a_{188}= +0.11066793 \pm 1.2 \cdot 10^{-6} \) | \(a_{189}= -0.48561412 \pm 9.8 \cdot 10^{-7} \) |
\(a_{190}= -1.63145532 \pm 1.2 \cdot 10^{-6} \) | \(a_{191}= +0.72266723 \pm 9.0 \cdot 10^{-7} \) | \(a_{192}= +0.10125456 \pm 1.4 \cdot 10^{-6} \) |
\(a_{193}= +0.42452206 \pm 8.6 \cdot 10^{-7} \) | \(a_{194}= -0.36976897 \pm 1.1 \cdot 10^{-6} \) | \(a_{195}= +0.44563665 \pm 7.9 \cdot 10^{-7} \) |
\(a_{196}= +0.15725935 \pm 1.0 \cdot 10^{-6} \) | \(a_{197}= +0.98841111 \pm 6.7 \cdot 10^{-7} \) | \(a_{198}= -0.31957692 \pm 9.3 \cdot 10^{-7} \) |
\(a_{199}= +0.40880949 \pm 8.2 \cdot 10^{-7} \) | \(a_{200}= +0.45002669 \pm 9.2 \cdot 10^{-7} \) | \(a_{201}= +0.10228437 \pm 8.2 \cdot 10^{-7} \) |
\(a_{202}= +0.54746483 \pm 1.1 \cdot 10^{-6} \) | \(a_{203}= +0.05068572 \pm 8.6 \cdot 10^{-7} \) | \(a_{204}= +0.04709271 \pm 1.6 \cdot 10^{-6} \) |
\(a_{205}= -1.69345278 \pm 8.0 \cdot 10^{-7} \) | \(a_{206}= +1.45041741 \pm 9.5 \cdot 10^{-7} \) | \(a_{207}= +0.90209691 \pm 7.8 \cdot 10^{-7} \) |
\(a_{208}= -2.12411759 \pm 9.3 \cdot 10^{-7} \) | \(a_{209}= -0.32655103 \pm 1.0 \cdot 10^{-6} \) | \(a_{210}= -0.35873309 \pm 1.1 \cdot 10^{-6} \) |
\(a_{211}= -1.33647239 \pm 8.9 \cdot 10^{-7} \) | \(a_{212}= -0.30742510 \pm 1.0 \cdot 10^{-6} \) | \(a_{213}= -0.27056000 \pm 8.7 \cdot 10^{-7} \) |
\(a_{214}= -1.09064167 \pm 8.9 \cdot 10^{-7} \) | \(a_{215}= +2.09143450 \pm 8.5 \cdot 10^{-7} \) | \(a_{216}= -0.30967840 \pm 9.6 \cdot 10^{-7} \) |
\(a_{217}= +0.21874602 \pm 9.1 \cdot 10^{-7} \) | \(a_{218}= -1.74305202 \pm 1.1 \cdot 10^{-6} \) | \(a_{219}= -0.34191677 \pm 8.1 \cdot 10^{-7} \) |
\(a_{220}= -0.11841348 \pm 8.1 \cdot 10^{-7} \) | \(a_{221}= +1.23838687 \pm 8.4 \cdot 10^{-7} \) | \(a_{222}= +0.14545363 \pm 1.0 \cdot 10^{-6} \) |
\(a_{223}= +0.09313093 \pm 1.0 \cdot 10^{-6} \) | \(a_{224}= +0.76395794 \pm 9.2 \cdot 10^{-7} \) | \(a_{225}= -0.55541147 \pm 7.9 \cdot 10^{-7} \) |
\(a_{226}= +1.57141746 \pm 1.0 \cdot 10^{-6} \) | \(a_{227}= -0.82682188 \pm 8.5 \cdot 10^{-7} \) | \(a_{228}= +0.07468844 \pm 1.1 \cdot 10^{-6} \) |
\(a_{229}= -1.08119656 \pm 9.1 \cdot 10^{-7} \) | \(a_{230}= +1.36160767 \pm 8.5 \cdot 10^{-7} \) | \(a_{231}= -0.07180378 \pm 9.7 \cdot 10^{-7} \) |
\(a_{232}= +0.03232252 \pm 1.0 \cdot 10^{-6} \) | \(a_{233}= +0.18086802 \pm 7.0 \cdot 10^{-7} \) | \(a_{234}= +1.92211964 \pm 1.0 \cdot 10^{-6} \) |
\(a_{235}= +0.42747590 \pm 8.5 \cdot 10^{-7} \) | \(a_{236}= +0.07594137 \pm 1.4 \cdot 10^{-6} \) | \(a_{237}= -0.09898105 \pm 1.0 \cdot 10^{-6} \) |
\(a_{238}= -0.99688917 \pm 6.6 \cdot 10^{-7} \) | \(a_{239}= -0.07988272 \pm 9.2 \cdot 10^{-7} \) | \(a_{240}= -0.31200801 \pm 1.2 \cdot 10^{-6} \) |
\(a_{241}= -0.51780869 \pm 7.2 \cdot 10^{-7} \) | \(a_{242}= +1.05469186 \pm 1.0 \cdot 10^{-6} \) | \(a_{243}= +0.57733958 \pm 1.0 \cdot 10^{-6} \) |
\(a_{244}= +0.08712767 \pm 1.4 \cdot 10^{-6} \) | \(a_{245}= +0.60744412 \pm 8.2 \cdot 10^{-7} \) | \(a_{246}= +0.31580889 \pm 1.4 \cdot 10^{-6} \) |
\(a_{247}= +1.96406596 \pm 9.5 \cdot 10^{-7} \) | \(a_{248}= +0.13949536 \pm 1.2 \cdot 10^{-6} \) | \(a_{249}= +0.07343448 \pm 8.2 \cdot 10^{-7} \) |
\(a_{250}= +0.60849753 \pm 1.2 \cdot 10^{-6} \) | \(a_{251}= +0.23850495 \pm 8.5 \cdot 10^{-7} \) | \(a_{252}= -0.37983757 \pm 1.3 \cdot 10^{-6} \) |
\(a_{253}= +0.27253850 \pm 8.0 \cdot 10^{-7} \) | \(a_{254}= -1.10834503 \pm 1.1 \cdot 10^{-6} \) | \(a_{255}= +0.18190454 \pm 9.2 \cdot 10^{-7} \) |
\(a_{256}= +0.88395193 \pm 1.0 \cdot 10^{-6} \) | \(a_{257}= -1.86296587 \pm 8.9 \cdot 10^{-7} \) | \(a_{258}= -0.39002777 \pm 9.8 \cdot 10^{-7} \) |
\(a_{259}= -0.75586586 \pm 8.5 \cdot 10^{-7} \) | \(a_{260}= +0.71220689 \pm 8.7 \cdot 10^{-7} \) | \(a_{261}= -0.03989163 \pm 8.7 \cdot 10^{-7} \) |
\(a_{262}= +0.36777697 \pm 1.0 \cdot 10^{-6} \) | \(a_{263}= -0.16876726 \pm 9.6 \cdot 10^{-7} \) | \(a_{264}= -0.04578961 \pm 9.2 \cdot 10^{-7} \) |
\(a_{265}= -1.18748784 \pm 7.8 \cdot 10^{-7} \) | \(a_{266}= -1.58105366 \pm 9.9 \cdot 10^{-7} \) | \(a_{267}= -0.18262248 \pm 7.7 \cdot 10^{-7} \) |
\(a_{268}= +0.16346867 \pm 8.3 \cdot 10^{-7} \) | \(a_{269}= +0.33908671 \pm 8.2 \cdot 10^{-7} \) | \(a_{270}= +0.57688105 \pm 9.9 \cdot 10^{-7} \) |
\(a_{271}= -0.60811209 \pm 1.0 \cdot 10^{-6} \) | \(a_{272}= -0.86704410 \pm 1.3 \cdot 10^{-6} \) | \(a_{273}= +0.43186929 \pm 9.5 \cdot 10^{-7} \) |
\(a_{274}= +0.43594525 \pm 1.0 \cdot 10^{-6} \) | \(a_{275}= -0.16779905 \pm 1.0 \cdot 10^{-6} \) | \(a_{276}= -0.06233475 \pm 1.0 \cdot 10^{-6} \) |
\(a_{277}= -1.10811404 \pm 8.6 \cdot 10^{-7} \) | \(a_{278}= -1.10080373 \pm 8.6 \cdot 10^{-7} \) | \(a_{279}= -0.17216162 \pm 9.5 \cdot 10^{-7} \) |
\(a_{280}= +1.18880658 \pm 8.7 \cdot 10^{-7} \) | \(a_{281}= +1.09912287 \pm 8.9 \cdot 10^{-7} \) | \(a_{282}= -0.07971919 \pm 1.4 \cdot 10^{-6} \) |
\(a_{283}= -1.33406361 \pm 8.7 \cdot 10^{-7} \) | \(a_{284}= -0.43240317 \pm 7.5 \cdot 10^{-7} \) | \(a_{285}= +0.28849830 \pm 9.9 \cdot 10^{-7} \) |
\(a_{286}= +0.58070435 \pm 9.8 \cdot 10^{-7} \) | \(a_{287}= -1.64113579 \pm 7.6 \cdot 10^{-7} \) | \(a_{288}= -0.60126457 \pm 1.2 \cdot 10^{-6} \) |
\(a_{289}= -0.49450255 \pm 9.2 \cdot 10^{-7} \) | \(a_{290}= -0.06021166 \pm 1.0 \cdot 10^{-6} \) | \(a_{291}= +0.06538807 \pm 1.0 \cdot 10^{-6} \) |
\(a_{292}= -0.54644402 \pm 1.0 \cdot 10^{-6} \) | \(a_{293}= +0.36845133 \pm 7.7 \cdot 10^{-7} \) | \(a_{294}= -0.11328114 \pm 1.0 \cdot 10^{-6} \) |
\(a_{295}= +0.29333797 \pm 8.4 \cdot 10^{-7} \) | \(a_{296}= -0.48201919 \pm 1.1 \cdot 10^{-6} \) | \(a_{297}= +0.11546813 \pm 7.2 \cdot 10^{-7} \) |
\(a_{298}= +1.30866055 \pm 9.9 \cdot 10^{-7} \) | \(a_{299}= -1.63920350 \pm 8.9 \cdot 10^{-7} \) | \(a_{300}= +0.03837884 \pm 1.1 \cdot 10^{-6} \) |
\(a_{301}= +2.02682238 \pm 7.7 \cdot 10^{-7} \) | \(a_{302}= +1.58462091 \pm 9.4 \cdot 10^{-7} \) | \(a_{303}= -0.09681091 \pm 1.1 \cdot 10^{-6} \) |
\(a_{304}= -1.37512101 \pm 7.2 \cdot 10^{-7} \) | \(a_{305}= +0.33654717 \pm 8.4 \cdot 10^{-7} \) | \(a_{306}= +0.78459050 \pm 1.0 \cdot 10^{-6} \) |
\(a_{307}= +1.54162593 \pm 9.4 \cdot 10^{-7} \) | \(a_{308}= -0.11475526 \pm 9.0 \cdot 10^{-7} \) | \(a_{309}= -0.25648447 \pm 9.2 \cdot 10^{-7} \) |
\(a_{310}= -0.25985742 \pm 2.0 \cdot 10^{-6} \) | \(a_{311}= -0.73645288 \pm 7.2 \cdot 10^{-7} \) | \(a_{312}= +0.27540506 \pm 1.0 \cdot 10^{-6} \) |
\(a_{313}= +1.66382383 \pm 9.0 \cdot 10^{-7} \) | \(a_{314}= +0.36714284 \pm 9.4 \cdot 10^{-7} \) | \(a_{315}= -1.46719476 \pm 9.1 \cdot 10^{-7} \) |
\(a_{316}= -0.15818938 \pm 1.3 \cdot 10^{-6} \) | \(a_{317}= -1.59410695 \pm 8.7 \cdot 10^{-7} \) | \(a_{318}= +0.22145242 \pm 1.1 \cdot 10^{-6} \) |
\(a_{319}= -0.01205193 \pm 8.9 \cdot 10^{-7} \) | \(a_{320}= +0.62507155 \pm 1.1 \cdot 10^{-6} \) | \(a_{321}= +0.19286355 \pm 7.7 \cdot 10^{-7} \) |
\(a_{322}= +1.31954259 \pm 6.9 \cdot 10^{-7} \) | \(a_{323}= +0.80171258 \pm 7.4 \cdot 10^{-7} \) | \(a_{324}= +0.28546261 \pm 1.3 \cdot 10^{-6} \) |
\(a_{325}= +1.00924015 \pm 7.9 \cdot 10^{-7} \) | \(a_{326}= +0.57742684 \pm 1.0 \cdot 10^{-6} \) | \(a_{327}= +0.30823250 \pm 8.0 \cdot 10^{-7} \) |
\(a_{328}= -1.04655996 \pm 1.4 \cdot 10^{-6} \) | \(a_{329}= +0.41426960 \pm 6.6 \cdot 10^{-7} \) | \(a_{330}= +0.08529867 \pm 9.0 \cdot 10^{-7} \) |
\(a_{331}= +0.61982557 \pm 8.1 \cdot 10^{-7} \) | \(a_{332}= +0.11736140 \pm 1.1 \cdot 10^{-6} \) | \(a_{333}= +0.59489579 \pm 8.1 \cdot 10^{-7} \) |
\(a_{334}= -1.60486339 \pm 1.0 \cdot 10^{-6} \) | \(a_{335}= +0.63142881 \pm 7.7 \cdot 10^{-7} \) | \(a_{336}= -0.30236893 \pm 8.7 \cdot 10^{-7} \) |
\(a_{337}= +1.45780923 \pm 9.3 \cdot 10^{-7} \) | \(a_{338}= -2.34144905 \pm 9.1 \cdot 10^{-7} \) | \(a_{339}= -0.27788151 \pm 8.5 \cdot 10^{-7} \) |
\(a_{340}= +0.29071591 \pm 1.2 \cdot 10^{-6} \) | \(a_{341}= -0.05201289 \pm 9.1 \cdot 10^{-7} \) | \(a_{342}= +1.24435065 \pm 1.1 \cdot 10^{-6} \) |
\(a_{343}= -0.62924836 \pm 8.6 \cdot 10^{-7} \) | \(a_{344}= +1.29251411 \pm 9.3 \cdot 10^{-7} \) | \(a_{345}= -0.24077981 \pm 8.3 \cdot 10^{-7} \) |
\(a_{346}= -0.59834553 \pm 1.2 \cdot 10^{-6} \) | \(a_{347}= +0.75959249 \pm 9.4 \cdot 10^{-7} \) | \(a_{348}= +0.00275651 \pm 1.3 \cdot 10^{-6} \) |
\(a_{349}= -0.17700541 \pm 9.4 \cdot 10^{-7} \) | \(a_{350}= -0.81242833 \pm 9.7 \cdot 10^{-7} \) | \(a_{351}= -0.69449185 \pm 7.6 \cdot 10^{-7} \) |
\(a_{352}= -0.18165204 \pm 8.6 \cdot 10^{-7} \) | \(a_{353}= -1.03649105 \pm 1.0 \cdot 10^{-6} \) | \(a_{354}= -0.05470406 \pm 1.3 \cdot 10^{-6} \) |
\(a_{355}= -1.67023938 \pm 6.2 \cdot 10^{-7} \) | \(a_{356}= -0.29186331 \pm 9.6 \cdot 10^{-7} \) | \(a_{357}= +0.17628483 \pm 6.9 \cdot 10^{-7} \) |
\(a_{358}= -1.31348957 \pm 1.1 \cdot 10^{-6} \) | \(a_{359}= +0.84321229 \pm 8.8 \cdot 10^{-7} \) | \(a_{360}= -0.93563696 \pm 1.2 \cdot 10^{-6} \) |
\(a_{361}= +0.27150605 \pm 9.3 \cdot 10^{-7} \) | \(a_{362}= -0.11205887 \pm 9.4 \cdot 10^{-7} \) | \(a_{363}= -0.18650637 \pm 9.1 \cdot 10^{-7} \) |
\(a_{364}= +0.69020419 \pm 9.2 \cdot 10^{-7} \) | \(a_{365}= -2.11074383 \pm 9.4 \cdot 10^{-7} \) | \(a_{366}= -0.06276206 \pm 1.3 \cdot 10^{-6} \) |
\(a_{367}= +1.53770634 \pm 1.0 \cdot 10^{-6} \) | \(a_{368}= +1.14767183 \pm 9.6 \cdot 10^{-7} \) | \(a_{369}= +1.29163762 \pm 9.4 \cdot 10^{-7} \) |
\(a_{370}= +0.89792423 \pm 9.3 \cdot 10^{-7} \) | \(a_{371}= -1.15080197 \pm 8.7 \cdot 10^{-7} \) | \(a_{372}= +0.01189634 \pm 2.2 \cdot 10^{-6} \) |
\(a_{373}= -1.02131385 \pm 8.1 \cdot 10^{-7} \) | \(a_{374}= +0.23703786 \pm 8.3 \cdot 10^{-7} \) | \(a_{375}= -0.10760362 \pm 1.0 \cdot 10^{-6} \) |
\(a_{376}= +0.26418166 \pm 1.4 \cdot 10^{-6} \) | \(a_{377}= +0.07248722 \pm 8.3 \cdot 10^{-7} \) | \(a_{378}= +0.55905906 \pm 1.2 \cdot 10^{-6} \) |
\(a_{379}= +1.92405021 \pm 8.8 \cdot 10^{-7} \) | \(a_{380}= +0.46107177 \pm 1.1 \cdot 10^{-6} \) | \(a_{381}= +0.19599412 \pm 9.4 \cdot 10^{-7} \) |
\(a_{382}= -0.83196441 \pm 1.2 \cdot 10^{-6} \) | \(a_{383}= +0.62000326 \pm 8.6 \cdot 10^{-7} \) | \(a_{384}= -0.24426609 \pm 1.3 \cdot 10^{-6} \) |
\(a_{385}= -0.44326397 \pm 7.3 \cdot 10^{-7} \) | \(a_{386}= -0.48872736 \pm 9.0 \cdot 10^{-7} \) | \(a_{387}= -1.59518795 \pm 8.2 \cdot 10^{-7} \) |
\(a_{388}= +0.10450181 \pm 1.2 \cdot 10^{-6} \) | \(a_{389}= -0.43879754 \pm 7.6 \cdot 10^{-7} \) | \(a_{390}= -0.51303534 \pm 7.5 \cdot 10^{-7} \) |
\(a_{391}= -0.66910689 \pm 7.1 \cdot 10^{-7} \) | \(a_{392}= +0.37540267 \pm 1.1 \cdot 10^{-6} \) | \(a_{393}= -0.06503582 \pm 9.7 \cdot 10^{-7} \) |
\(a_{394}= -1.13789975 \pm 8.2 \cdot 10^{-7} \) | \(a_{395}= -0.61103654 \pm 8.7 \cdot 10^{-7} \) | \(a_{396}= +0.09031684 \pm 9.3 \cdot 10^{-7} \) |
\(a_{397}= +0.79711340 \pm 9.0 \cdot 10^{-7} \) | \(a_{398}= -0.47063839 \pm 9.5 \cdot 10^{-7} \) | \(a_{399}= +0.27958552 \pm 8.7 \cdot 10^{-7} \) |
\(a_{400}= -0.70660933 \pm 6.5 \cdot 10^{-7} \) | \(a_{401}= +0.06453507 \pm 9.0 \cdot 10^{-7} \) | \(a_{402}= -0.11775400 \pm 1.0 \cdot 10^{-6} \) |
\(a_{403}= +0.31283548 \pm 9.5 \cdot 10^{-7} \) | \(a_{404}= -0.15472111 \pm 1.2 \cdot 10^{-6} \) | \(a_{405}= +1.10265357 \pm 8.9 \cdot 10^{-7} \) |
\(a_{406}= -0.05835150 \pm 8.8 \cdot 10^{-7} \) | \(a_{407}= +0.17972793 \pm 8.1 \cdot 10^{-7} \) | \(a_{408}= +0.11241766 \pm 1.7 \cdot 10^{-6} \) |
\(a_{409}= +1.10610626 \pm 7.5 \cdot 10^{-7} \) | \(a_{410}= +1.94957290 \pm 1.0 \cdot 10^{-6} \) | \(a_{411}= -0.07709035 \pm 1.0 \cdot 10^{-6} \) |
\(a_{412}= -0.40990796 \pm 9.9 \cdot 10^{-7} \) | \(a_{413}= +0.28427568 \pm 9.3 \cdot 10^{-7} \) | \(a_{414}= -1.03853128 \pm 8.0 \cdot 10^{-7} \) |
\(a_{415}= +0.45333071 \pm 7.9 \cdot 10^{-7} \) | \(a_{416}= +1.09255999 \pm 1.0 \cdot 10^{-6} \) | \(a_{417}= +0.19466056 \pm 8.3 \cdot 10^{-7} \) |
\(a_{418}= +0.37593905 \pm 1.1 \cdot 10^{-6} \) | \(a_{419}= -0.81318758 \pm 8.5 \cdot 10^{-7} \) | \(a_{420}= +0.10138292 \pm 1.1 \cdot 10^{-6} \) |
\(a_{421}= -1.87789858 \pm 1.0 \cdot 10^{-6} \) | \(a_{422}= +1.53860230 \pm 8.6 \cdot 10^{-7} \) | \(a_{423}= -0.32604627 \pm 9.0 \cdot 10^{-7} \) |
\(a_{424}= -0.73387180 \pm 9.7 \cdot 10^{-7} \) | \(a_{425}= +0.41196199 \pm 5.7 \cdot 10^{-7} \) | \(a_{426}= +0.31147987 \pm 9.3 \cdot 10^{-7} \) |
\(a_{427}= +0.32614999 \pm 6.8 \cdot 10^{-7} \) | \(a_{428}= +0.30823037 \pm 8.8 \cdot 10^{-7} \) | \(a_{429}= -0.10268882 \pm 9.7 \cdot 10^{-7} \) |
\(a_{430}= -2.40774591 \pm 9.7 \cdot 10^{-7} \) | \(a_{431}= -0.25824424 \pm 8.7 \cdot 10^{-7} \) | \(a_{432}= +0.48624148 \pm 8.2 \cdot 10^{-7} \) |
\(a_{433}= +1.53936035 \pm 1.0 \cdot 10^{-6} \) | \(a_{434}= -0.25182947 \pm 2.0 \cdot 10^{-6} \) | \(a_{435}= +0.01064752 \pm 9.8 \cdot 10^{-7} \) |
\(a_{436}= +0.49261053 \pm 1.1 \cdot 10^{-6} \) | \(a_{437}= -1.06119509 \pm 9.2 \cdot 10^{-7} \) | \(a_{438}= +0.39362873 \pm 1.1 \cdot 10^{-6} \) |
\(a_{439}= +0.29329549 \pm 9.1 \cdot 10^{-7} \) | \(a_{440}= -0.28267151 \pm 1.0 \cdot 10^{-6} \) | \(a_{441}= -0.46331240 \pm 9.8 \cdot 10^{-7} \) |
\(a_{442}= -1.42568219 \pm 8.3 \cdot 10^{-7} \) | \(a_{443}= +0.46276213 \pm 8.7 \cdot 10^{-7} \) | \(a_{444}= -0.04110720 \pm 1.2 \cdot 10^{-6} \) |
\(a_{445}= -1.12737748 \pm 8.4 \cdot 10^{-7} \) | \(a_{446}= -0.10721618 \pm 1.0 \cdot 10^{-6} \) | \(a_{447}= -0.23141691 \pm 8.1 \cdot 10^{-7} \) |
\(a_{448}= +0.60576079 \pm 9.0 \cdot 10^{-7} \) | \(a_{449}= +1.24138556 \pm 7.8 \cdot 10^{-7} \) | \(a_{450}= +0.63941266 \pm 1.0 \cdot 10^{-6} \) |
\(a_{451}= +0.39022524 \pm 7.6 \cdot 10^{-7} \) | \(a_{452}= -0.44410424 \pm 1.0 \cdot 10^{-6} \) | \(a_{453}= -0.28021634 \pm 8.6 \cdot 10^{-7} \) |
\(a_{454}= +0.95187155 \pm 1.0 \cdot 10^{-6} \) | \(a_{455}= +2.66604481 \pm 8.3 \cdot 10^{-7} \) | \(a_{456}= +0.17829300 \pm 1.1 \cdot 10^{-6} \) |
\(a_{457}= -0.37822041 \pm 9.7 \cdot 10^{-7} \) | \(a_{458}= +1.24471821 \pm 1.2 \cdot 10^{-6} \) | \(a_{459}= -0.28348480 \pm 7.4 \cdot 10^{-7} \) |
\(a_{460}= -0.38480910 \pm 9.1 \cdot 10^{-7} \) | \(a_{461}= +0.62076782 \pm 8.0 \cdot 10^{-7} \) | \(a_{462}= +0.08266348 \pm 9.4 \cdot 10^{-7} \) |
\(a_{463}= -0.03937706 \pm 9.2 \cdot 10^{-7} \) | \(a_{464}= -0.05075120 \pm 7.6 \cdot 10^{-7} \) | \(a_{465}= +0.04595187 \pm 1.9 \cdot 10^{-6} \) |
\(a_{466}= -0.20822274 \pm 1.0 \cdot 10^{-6} \) | \(a_{467}= -1.31797595 \pm 8.5 \cdot 10^{-7} \) | \(a_{468}= -0.54321751 \pm 1.0 \cdot 10^{-6} \) |
\(a_{469}= +0.61192165 \pm 7.5 \cdot 10^{-7} \) | \(a_{470}= -0.49212794 \pm 1.0 \cdot 10^{-6} \) | \(a_{471}= -0.06492368 \pm 9.4 \cdot 10^{-7} \) |
\(a_{472}= +0.18128393 \pm 1.3 \cdot 10^{-6} \) | \(a_{473}= -0.48193285 \pm 8.0 \cdot 10^{-7} \) | \(a_{474}= +0.11395108 \pm 1.3 \cdot 10^{-6} \) |
\(a_{475}= +0.65336653 \pm 1.0 \cdot 10^{-6} \) | \(a_{476}= +0.28173463 \pm 6.7 \cdot 10^{-7} \) | \(a_{477}= +0.90572585 \pm 9.4 \cdot 10^{-7} \) |
\(a_{478}= +0.09196429 \pm 1.0 \cdot 10^{-6} \) | \(a_{479}= +0.92346914 \pm 8.8 \cdot 10^{-7} \) | \(a_{480}= +0.16048427 \pm 1.3 \cdot 10^{-6} \) |
\(a_{481}= -1.08098725 \pm 8.0 \cdot 10^{-7} \) | \(a_{482}= +0.59612278 \pm 8.2 \cdot 10^{-7} \) | \(a_{483}= -0.23334123 \pm 8.5 \cdot 10^{-7} \) |
\(a_{484}= -0.29807046 \pm 1.0 \cdot 10^{-6} \) | \(a_{485}= +0.40365810 \pm 7.7 \cdot 10^{-7} \) | \(a_{486}= -0.66465720 \pm 1.2 \cdot 10^{-6} \) |
\(a_{487}= -1.07937822 \pm 9.5 \cdot 10^{-7} \) | \(a_{488}= +0.20798737 \pm 1.5 \cdot 10^{-6} \) | \(a_{489}= -0.10210924 \pm 9.7 \cdot 10^{-7} \) |
\(a_{490}= -0.69931480 \pm 9.5 \cdot 10^{-7} \) | \(a_{491}= +0.71844309 \pm 7.7 \cdot 10^{-7} \) | \(a_{492}= -0.08925195 \pm 1.8 \cdot 10^{-6} \) |
\(a_{493}= +0.02958858 \pm 8.4 \cdot 10^{-7} \) | \(a_{494}= -2.26111397 \pm 1.0 \cdot 10^{-6} \) | \(a_{495}= +0.34886597 \pm 7.6 \cdot 10^{-7} \) |
\(a_{496}= -0.21902861 \pm 1.1 \cdot 10^{-6} \) | \(a_{497}= -1.61863953 \pm 8.4 \cdot 10^{-7} \) | \(a_{498}= -0.08454081 \pm 1.1 \cdot 10^{-6} \) |
\(a_{499}= -0.99938441 \pm 9.2 \cdot 10^{-7} \) | \(a_{500}= -0.17196979 \pm 1.3 \cdot 10^{-6} \) | \(a_{501}= +0.28379592 \pm 9.0 \cdot 10^{-7} \) |
\(a_{502}= -0.27457676 \pm 1.0 \cdot 10^{-6} \) | \(a_{503}= -0.25534075 \pm 1.1 \cdot 10^{-6} \) | \(a_{504}= -0.90673169 \pm 1.1 \cdot 10^{-6} \) |
\(a_{505}= -0.59763967 \pm 1.0 \cdot 10^{-6} \) | \(a_{506}= -0.31375760 \pm 5.8 \cdot 10^{-7} \) | \(a_{507}= +0.41405000 \pm 8.0 \cdot 10^{-7} \) |
\(a_{508}= +0.31323359 \pm 1.0 \cdot 10^{-6} \) | \(a_{509}= +0.04131754 \pm 8.9 \cdot 10^{-7} \) | \(a_{510}= -0.20941603 \pm 1.2 \cdot 10^{-6} \) |
\(a_{511}= -2.04553518 \pm 8.2 \cdot 10^{-7} \) | \(a_{512}= +0.18221286 \pm 9.8 \cdot 10^{-7} \) | \(a_{513}= -0.44960333 \pm 7.4 \cdot 10^{-7} \) |
\(a_{514}= +2.14472337 \pm 1.1 \cdot 10^{-6} \) | \(a_{515}= -1.58334736 \pm 8.6 \cdot 10^{-7} \) | \(a_{516}= +0.11022723 \pm 1.0 \cdot 10^{-6} \) |
\(a_{517}= -0.09850401 \pm 7.3 \cdot 10^{-7} \) | \(a_{518}= +0.87018404 \pm 8.9 \cdot 10^{-7} \) | \(a_{519}= +0.10580839 \pm 1.0 \cdot 10^{-6} \) |
\(a_{520}= +1.70014924 \pm 1.0 \cdot 10^{-6} \) | \(a_{521}= +0.63557837 \pm 9.1 \cdot 10^{-7} \) | \(a_{522}= +0.04592490 \pm 1.0 \cdot 10^{-6} \) |
\(a_{523}= -0.48059537 \pm 8.0 \cdot 10^{-7} \) | \(a_{524}= -0.10393884 \pm 1.2 \cdot 10^{-6} \) | \(a_{525}= +0.14366571 \pm 9.0 \cdot 10^{-7} \) |
\(a_{526}= +0.19429185 \pm 1.0 \cdot 10^{-6} \) | \(a_{527}= +0.12769640 \pm 8.6 \cdot 10^{-7} \) | \(a_{528}= +0.07189654 \pm 6.3 \cdot 10^{-7} \) |
\(a_{529}= -0.11432979 \pm 9.1 \cdot 10^{-7} \) | \(a_{530}= +1.36708513 \pm 1.0 \cdot 10^{-6} \) | \(a_{531}= -0.22373600 \pm 9.3 \cdot 10^{-7} \) |
\(a_{532}= +0.44682756 \pm 9.7 \cdot 10^{-7} \) | \(a_{533}= -2.34703930 \pm 8.2 \cdot 10^{-7} \) | \(a_{534}= +0.21024255 \pm 1.0 \cdot 10^{-6} \) |
\(a_{535}= +1.19059837 \pm 8.7 \cdot 10^{-7} \) | \(a_{536}= +0.39022529 \pm 7.9 \cdot 10^{-7} \) | \(a_{537}= +0.23227085 \pm 1.1 \cdot 10^{-6} \) |
\(a_{538}= -0.39037065 \pm 1.0 \cdot 10^{-6} \) | \(a_{539}= -0.13997439 \pm 7.5 \cdot 10^{-7} \) | \(a_{540}= -0.16303454 \pm 1.0 \cdot 10^{-6} \) |
\(a_{541}= +0.29591001 \pm 9.2 \cdot 10^{-7} \) | \(a_{542}= +0.70008380 \pm 1.0 \cdot 10^{-6} \) | \(a_{543}= +0.01981592 \pm 9.8 \cdot 10^{-7} \) |
\(a_{544}= +0.44597234 \pm 1.2 \cdot 10^{-6} \) | \(a_{545}= +1.90280177 \pm 8.9 \cdot 10^{-7} \) | \(a_{546}= -0.49718579 \pm 8.9 \cdot 10^{-7} \) |
\(a_{547}= -0.35257405 \pm 8.8 \cdot 10^{-7} \) | \(a_{548}= -0.12320414 \pm 1.1 \cdot 10^{-6} \) | \(a_{549}= -0.25669271 \pm 7.7 \cdot 10^{-7} \) |
\(a_{550}= +0.19317721 \pm 1.1 \cdot 10^{-6} \) | \(a_{551}= +0.04692711 \pm 8.8 \cdot 10^{-7} \) | \(a_{552}= -0.14880279 \pm 1.2 \cdot 10^{-6} \) |
\(a_{553}= -0.59215937 \pm 1.0 \cdot 10^{-6} \) | \(a_{554}= +1.27570672 \pm 9.0 \cdot 10^{-7} \) | \(a_{555}= -0.15878437 \pm 7.4 \cdot 10^{-7} \) |
\(a_{556}= +0.31110231 \pm 9.7 \cdot 10^{-7} \) | \(a_{557}= +0.03073643 \pm 7.7 \cdot 10^{-7} \) | \(a_{558}= +0.19819957 \pm 2.0 \cdot 10^{-6} \) |
\(a_{559}= +2.89862168 \pm 9.8 \cdot 10^{-7} \) | \(a_{560}= -1.86660444 \pm 6.5 \cdot 10^{-7} \) | \(a_{561}= -0.04191657 \pm 8.2 \cdot 10^{-7} \) |
\(a_{562}= -1.26535572 \pm 9.8 \cdot 10^{-7} \) | \(a_{563}= +1.37026828 \pm 8.4 \cdot 10^{-7} \) | \(a_{564}= +0.02252974 \pm 1.7 \cdot 10^{-6} \) |
\(a_{565}= -1.71543700 \pm 8.2 \cdot 10^{-7} \) | \(a_{566}= +1.53582922 \pm 1.1 \cdot 10^{-6} \) | \(a_{567}= +1.06858854 \pm 1.0 \cdot 10^{-6} \) |
\(a_{568}= -1.03221399 \pm 6.9 \cdot 10^{-7} \) | \(a_{569}= +1.08750831 \pm 8.2 \cdot 10^{-7} \) | \(a_{570}= -0.33213118 \pm 1.2 \cdot 10^{-6} \) |
\(a_{571}= +1.32258465 \pm 8.9 \cdot 10^{-7} \) | \(a_{572}= -0.16411506 \pm 8.9 \cdot 10^{-7} \) | \(a_{573}= +0.14712037 \pm 9.7 \cdot 10^{-7} \) |
\(a_{574}= +1.88934341 \pm 9.1 \cdot 10^{-7} \) | \(a_{575}= -0.54529772 \pm 7.1 \cdot 10^{-7} \) | \(a_{576}= -0.47675727 \pm 1.2 \cdot 10^{-6} \) |
\(a_{577}= -1.04136749 \pm 8.3 \cdot 10^{-7} \) | \(a_{578}= +0.56929179 \pm 1.4 \cdot 10^{-6} \) | \(a_{579}= +0.08642407 \pm 7.8 \cdot 10^{-7} \) |
\(a_{580}= +0.01701664 \pm 1.0 \cdot 10^{-6} \) | \(a_{581}= +0.43932566 \pm 7.2 \cdot 10^{-7} \) | \(a_{582}= -0.07527746 \pm 1.3 \cdot 10^{-6} \) |
\(a_{583}= +0.27363486 \pm 6.4 \cdot 10^{-7} \) | \(a_{584}= -1.30444734 \pm 1.1 \cdot 10^{-6} \) | \(a_{585}= -2.09828083 \pm 8.9 \cdot 10^{-7} \) |
\(a_{586}= -0.42417641 \pm 8.7 \cdot 10^{-7} \) | \(a_{587}= -0.64134836 \pm 8.8 \cdot 10^{-7} \) | \(a_{588}= +0.03201481 \pm 1.3 \cdot 10^{-6} \) |
\(a_{589}= +0.20252487 \pm 9.6 \cdot 10^{-7} \) | \(a_{590}= -0.33770280 \pm 1.0 \cdot 10^{-6} \) | \(a_{591}= +0.20122043 \pm 7.9 \cdot 10^{-7} \) |
\(a_{592}= +0.75684234 \pm 1.0 \cdot 10^{-6} \) | \(a_{593}= +0.71279946 \pm 1.0 \cdot 10^{-6} \) | \(a_{594}= -0.13293169 \pm 8.1 \cdot 10^{-7} \) |
\(a_{595}= +1.08825351 \pm 6.2 \cdot 10^{-7} \) | \(a_{596}= -0.36984552 \pm 1.0 \cdot 10^{-6} \) | \(a_{597}= +0.08322531 \pm 9.2 \cdot 10^{-7} \) |
\(a_{598}= +1.88711887 \pm 8.4 \cdot 10^{-7} \) | \(a_{599}= -1.15713699 \pm 1.0 \cdot 10^{-6} \) | \(a_{600}= +0.09161630 \pm 8.5 \cdot 10^{-7} \) |
\(a_{601}= +0.16414384 \pm 9.8 \cdot 10^{-7} \) | \(a_{602}= -2.33336176 \pm 8.3 \cdot 10^{-7} \) | \(a_{603}= -0.48160611 \pm 7.2 \cdot 10^{-7} \) |
\(a_{604}= -0.44783572 \pm 8.8 \cdot 10^{-7} \) | \(a_{605}= -1.15135378 \pm 1.0 \cdot 10^{-6} \) | \(a_{606}= +0.11145272 \pm 1.2 \cdot 10^{-6} \) |
\(a_{607}= +0.18673293 \pm 8.6 \cdot 10^{-7} \) | \(a_{608}= +0.70730651 \pm 9.5 \cdot 10^{-7} \) | \(a_{609}= +0.01031858 \pm 9.9 \cdot 10^{-7} \) |
\(a_{610}= -0.38744702 \pm 1.1 \cdot 10^{-6} \) | \(a_{611}= +0.59245983 \pm 7.0 \cdot 10^{-7} \) | \(a_{612}= -0.22173609 \pm 1.0 \cdot 10^{-6} \) |
\(a_{613}= -0.41612516 \pm 9.6 \cdot 10^{-7} \) | \(a_{614}= -1.77478354 \pm 1.3 \cdot 10^{-6} \) | \(a_{615}= -0.34475260 \pm 9.2 \cdot 10^{-7} \) |
\(a_{616}= -0.27393874 \pm 7.1 \cdot 10^{-7} \) | \(a_{617}= -1.03063364 \pm 9.0 \cdot 10^{-7} \) | \(a_{618}= +0.29527553 \pm 1.1 \cdot 10^{-6} \) |
\(a_{619}= +0.00069998 \pm 9.0 \cdot 10^{-7} \) | \(a_{620}= +0.07343929 \pm 2.1 \cdot 10^{-6} \) | \(a_{621}= +0.37523757 \pm 5.8 \cdot 10^{-7} \) |
\(a_{622}= +0.84783502 \pm 7.6 \cdot 10^{-7} \) | \(a_{623}= -1.09254864 \pm 7.4 \cdot 10^{-7} \) | \(a_{624}= -0.43242721 \pm 9.1 \cdot 10^{-7} \) |
\(a_{625}= -1.24369158 \pm 8.4 \cdot 10^{-7} \) | \(a_{626}= -1.91546282 \pm 1.1 \cdot 10^{-6} \) | \(a_{627}= -0.06647916 \pm 1.0 \cdot 10^{-6} \) |
\(a_{628}= -0.10375963 \pm 1.0 \cdot 10^{-6} \) | \(a_{629}= -0.44124846 \pm 8.0 \cdot 10^{-7} \) | \(a_{630}= +1.68909530 \pm 1.2 \cdot 10^{-6} \) |
\(a_{631}= +1.56986352 \pm 9.4 \cdot 10^{-7} \) | \(a_{632}= -0.37762280 \pm 1.4 \cdot 10^{-6} \) | \(a_{633}= -0.27207864 \pm 7.0 \cdot 10^{-7} \) |
\(a_{634}= +1.83520186 \pm 1.0 \cdot 10^{-6} \) | \(a_{635}= +1.20992423 \pm 9.4 \cdot 10^{-7} \) | \(a_{636}= -0.06258551 \pm 1.3 \cdot 10^{-6} \) |
\(a_{637}= +0.84188661 \pm 8.6 \cdot 10^{-7} \) | \(a_{638}= +0.01387468 \pm 1.0 \cdot 10^{-6} \) | \(a_{639}= +1.27393219 \pm 9.3 \cdot 10^{-7} \) |
\(a_{640}= -1.50792002 \pm 1.0 \cdot 10^{-6} \) | \(a_{641}= -0.18720649 \pm 1.0 \cdot 10^{-6} \) | \(a_{642}= -0.22203250 \pm 7.4 \cdot 10^{-7} \) |
\(a_{643}= -0.52140044 \pm 8.9 \cdot 10^{-7} \) | \(a_{644}= -0.37292093 \pm 7.9 \cdot 10^{-7} \) | \(a_{645}= +0.42577360 \pm 7.0 \cdot 10^{-7} \) |
\(a_{646}= -0.92296469 \pm 9.1 \cdot 10^{-7} \) | \(a_{647}= -1.98127806 \pm 1.0 \cdot 10^{-6} \) | \(a_{648}= +0.68144391 \pm 1.3 \cdot 10^{-6} \) |
\(a_{649}= -0.06759437 \pm 8.8 \cdot 10^{-7} \) | \(a_{650}= -1.16187901 \pm 8.9 \cdot 10^{-7} \) | \(a_{651}= +0.04453225 \pm 1.9 \cdot 10^{-6} \) |
\(a_{652}= -0.16318879 \pm 1.1 \cdot 10^{-6} \) | \(a_{653}= +1.34888369 \pm 8.9 \cdot 10^{-7} \) | \(a_{654}= -0.35485000 \pm 1.1 \cdot 10^{-6} \) |
\(a_{655}= -0.40148352 \pm 9.7 \cdot 10^{-7} \) | \(a_{656}= +1.64325594 \pm 1.5 \cdot 10^{-6} \) | \(a_{657}= +1.60991564 \pm 8.1 \cdot 10^{-7} \) |
\(a_{658}= -0.47692430 \pm 8.1 \cdot 10^{-7} \) | \(a_{659}= +0.93954215 \pm 9.6 \cdot 10^{-7} \) | \(a_{660}= -0.02410658 \pm 9.0 \cdot 10^{-7} \) |
\(a_{661}= +1.58338502 \pm 9.6 \cdot 10^{-7} \) | \(a_{662}= -0.71356884 \pm 9.1 \cdot 10^{-7} \) | \(a_{663}= +0.25211042 \pm 8.6 \cdot 10^{-7} \) |
\(a_{664}= +0.28016003 \pm 1.1 \cdot 10^{-6} \) | \(a_{665}= +1.72595635 \pm 8.6 \cdot 10^{-7} \) | \(a_{666}= -0.68486864 \pm 1.0 \cdot 10^{-6} \) |
\(a_{667}= -0.03916523 \pm 8.4 \cdot 10^{-7} \) | \(a_{668}= +0.45355652 \pm 1.1 \cdot 10^{-6} \) | \(a_{669}= +0.01895957 \pm 1.1 \cdot 10^{-6} \) |
\(a_{670}= -0.72692696 \pm 8.8 \cdot 10^{-7} \) | \(a_{671}= -0.07755114 \pm 7.9 \cdot 10^{-7} \) | \(a_{672}= +0.15552632 \pm 9.7 \cdot 10^{-7} \) |
\(a_{673}= +0.15941689 \pm 7.8 \cdot 10^{-7} \) | \(a_{674}= -1.67829029 \pm 1.1 \cdot 10^{-6} \) | \(a_{675}= -0.23102978 \pm 7.5 \cdot 10^{-7} \) |
\(a_{676}= +0.66172578 \pm 9.7 \cdot 10^{-7} \) | \(a_{677}= +1.72872899 \pm 8.4 \cdot 10^{-7} \) | \(a_{678}= +0.31990869 \pm 1.1 \cdot 10^{-6} \) |
\(a_{679}= +0.39118761 \pm 8.4 \cdot 10^{-7} \) | \(a_{680}= +0.69398435 \pm 1.3 \cdot 10^{-6} \) | \(a_{681}= -0.16832415 \pm 9.0 \cdot 10^{-7} \) |
\(a_{682}= +0.05987939 \pm 2.0 \cdot 10^{-6} \) | \(a_{683}= -1.05554791 \pm 8.5 \cdot 10^{-7} \) | \(a_{684}= -0.35167065 \pm 1.1 \cdot 10^{-6} \) |
\(a_{685}= -0.47589939 \pm 8.0 \cdot 10^{-7} \) | \(a_{686}= +0.72441674 \pm 8.3 \cdot 10^{-7} \) | \(a_{687}= -0.22010967 \pm 1.0 \cdot 10^{-6} \) |
\(a_{688}= -2.02944079 \pm 9.3 \cdot 10^{-7} \) | \(a_{689}= -1.64579766 \pm 9.1 \cdot 10^{-7} \) | \(a_{690}= +0.27719567 \pm 7.1 \cdot 10^{-7} \) |
\(a_{691}= -0.60804701 \pm 8.7 \cdot 10^{-7} \) | \(a_{692}= +0.16910070 \pm 1.4 \cdot 10^{-6} \) | \(a_{693}= +0.33808821 \pm 8.4 \cdot 10^{-7} \) |
\(a_{694}= -0.87447430 \pm 1.1 \cdot 10^{-6} \) | \(a_{695}= +1.20169178 \pm 6.2 \cdot 10^{-7} \) | \(a_{696}= +0.00658021 \pm 1.2 \cdot 10^{-6} \) |
\(a_{697}= -0.95803857 \pm 7.2 \cdot 10^{-7} \) | \(a_{698}= +0.20377594 \pm 1.0 \cdot 10^{-6} \) | \(a_{699}= +0.03682106 \pm 8.5 \cdot 10^{-7} \) |
\(a_{700}= +0.22960345 \pm 9.5 \cdot 10^{-7} \) | \(a_{701}= +0.79608548 \pm 9.7 \cdot 10^{-7} \) | \(a_{702}= +0.79952774 \pm 8.3 \cdot 10^{-7} \) |
\(a_{703}= -0.69981450 \pm 8.5 \cdot 10^{-7} \) | \(a_{704}= -0.14403631 \pm 1.0 \cdot 10^{-6} \) | \(a_{705}= +0.08702541 \pm 1.0 \cdot 10^{-6} \) |
\(a_{706}= +1.19325138 \pm 1.2 \cdot 10^{-6} \) | \(a_{707}= -0.57917638 \pm 8.4 \cdot 10^{-7} \) | \(a_{708}= +0.01546012 \pm 1.5 \cdot 10^{-6} \) |
\(a_{709}= +1.28779407 \pm 7.4 \cdot 10^{-7} \) | \(a_{710}= +1.92284866 \pm 6.0 \cdot 10^{-7} \) | \(a_{711}= +0.46605243 \pm 1.0 \cdot 10^{-6} \) |
\(a_{712}= -0.69672337 \pm 1.1 \cdot 10^{-6} \) | \(a_{713}= -0.16902665 \pm 8.7 \cdot 10^{-7} \) | \(a_{714}= -0.20294639 \pm 7.9 \cdot 10^{-7} \) |
\(a_{715}= -0.63392559 \pm 1.0 \cdot 10^{-6} \) | \(a_{716}= +0.37121026 \pm 1.3 \cdot 10^{-6} \) | \(a_{717}= -0.01626250 \pm 1.0 \cdot 10^{-6} \) |
\(a_{718}= -0.97074087 \pm 1.0 \cdot 10^{-6} \) | \(a_{719}= +0.33822620 \pm 7.6 \cdot 10^{-7} \) | \(a_{720}= +1.46909020 \pm 1.0 \cdot 10^{-6} \) |
\(a_{721}= -1.53443192 \pm 8.2 \cdot 10^{-7} \) | \(a_{722}= -0.31256899 \pm 1.2 \cdot 10^{-6} \) | \(a_{723}= -0.10541534 \pm 7.7 \cdot 10^{-7} \) |
\(a_{724}= +0.03166938 \pm 1.1 \cdot 10^{-6} \) | \(a_{725}= +0.02411361 \pm 8.2 \cdot 10^{-7} \) | \(a_{726}= +0.21471385 \pm 1.1 \cdot 10^{-6} \) |
\(a_{727}= -1.26291720 \pm 6.6 \cdot 10^{-7} \) | \(a_{728}= +1.64762537 \pm 9.3 \cdot 10^{-7} \) | \(a_{729}= -0.75984897 \pm 8.6 \cdot 10^{-7} \) |
\(a_{730}= +2.42997561 \pm 1.1 \cdot 10^{-6} \) | \(a_{731}= +1.18318912 \pm 6.7 \cdot 10^{-7} \) | \(a_{732}= +0.01773742 \pm 1.7 \cdot 10^{-6} \) |
\(a_{733}= -0.01170662 \pm 1.0 \cdot 10^{-6} \) | \(a_{734}= -1.77027115 \pm 1.2 \cdot 10^{-6} \) | \(a_{735}= +0.12366329 \pm 7.4 \cdot 10^{-7} \) |
\(a_{736}= -0.59031587 \pm 1.1 \cdot 10^{-6} \) | \(a_{737}= -0.14550123 \pm 8.7 \cdot 10^{-7} \) | \(a_{738}= -1.48698666 \pm 1.4 \cdot 10^{-6} \) |
\(a_{739}= +0.20183332 \pm 8.8 \cdot 10^{-7} \) | \(a_{740}= -0.25376577 \pm 1.0 \cdot 10^{-6} \) | \(a_{741}= +0.39984395 \pm 8.6 \cdot 10^{-7} \) |
\(a_{742}= +1.32485083 \pm 9.7 \cdot 10^{-7} \) | \(a_{743}= -0.08294577 \pm 9.1 \cdot 10^{-7} \) | \(a_{744}= +0.02839842 \pm 2.2 \cdot 10^{-6} \) |
\(a_{745}= -1.42859857 \pm 8.7 \cdot 10^{-7} \) | \(a_{746}= +1.17577875 \pm 1.0 \cdot 10^{-6} \) | \(a_{747}= -0.34576636 \pm 8.6 \cdot 10^{-7} \) |
\(a_{748}= -0.06699017 \pm 8.8 \cdot 10^{-7} \) | \(a_{749}= +1.15381640 \pm 6.8 \cdot 10^{-7} \) | \(a_{750}= +0.12387774 \pm 1.5 \cdot 10^{-6} \) |
\(a_{751}= -0.62268511 \pm 8.1 \cdot 10^{-7} \) | \(a_{752}= -0.41480479 \pm 1.5 \cdot 10^{-6} \) | \(a_{753}= +0.04855476 \pm 9.8 \cdot 10^{-7} \) |
\(a_{754}= -0.08345029 \pm 8.1 \cdot 10^{-7} \) | \(a_{755}= -1.72985053 \pm 9.5 \cdot 10^{-7} \) | \(a_{756}= -0.15799780 \pm 1.2 \cdot 10^{-6} \) |
\(a_{757}= +0.32546477 \pm 8.8 \cdot 10^{-7} \) | \(a_{758}= -2.21504619 \pm 8.5 \cdot 10^{-7} \) | \(a_{759}= +0.05548330 \pm 9.9 \cdot 10^{-7} \) |
\(a_{760}= +1.10065043 \pm 1.0 \cdot 10^{-6} \) | \(a_{761}= -1.55733962 \pm 1.0 \cdot 10^{-6} \) | \(a_{762}= -0.22563654 \pm 1.1 \cdot 10^{-6} \) |
\(a_{763}= +1.84401721 \pm 1.0 \cdot 10^{-6} \) | \(a_{764}= +0.23512461 \pm 1.3 \cdot 10^{-6} \) | \(a_{765}= -0.85649779 \pm 7.4 \cdot 10^{-7} \) |
\(a_{766}= -0.71377340 \pm 1.0 \cdot 10^{-6} \) | \(a_{767}= +0.40655148 \pm 9.4 \cdot 10^{-7} \) | \(a_{768}= +0.17995466 \pm 1.3 \cdot 10^{-6} \) |
\(a_{769}= -0.50144225 \pm 7.8 \cdot 10^{-7} \) | \(a_{770}= +0.51030382 \pm 7.8 \cdot 10^{-7} \) | \(a_{771}= -0.37926202 \pm 1.0 \cdot 10^{-6} \) |
\(a_{772}= +0.13812109 \pm 8.9 \cdot 10^{-7} \) | \(a_{773}= +0.81963430 \pm 7.5 \cdot 10^{-7} \) | \(a_{774}= +1.83644635 \pm 1.0 \cdot 10^{-6} \) |
\(a_{775}= +0.10406791 \pm 8.8 \cdot 10^{-7} \) | \(a_{776}= +0.24946217 \pm 1.3 \cdot 10^{-6} \) | \(a_{777}= -0.15387894 \pm 7.7 \cdot 10^{-7} \) |
\(a_{778}= +0.50516188 \pm 8.5 \cdot 10^{-7} \) | \(a_{779}= -1.51943709 \pm 8.5 \cdot 10^{-7} \) | \(a_{780}= +0.14499086 \pm 8.4 \cdot 10^{-7} \) |
\(a_{781}= +0.38487613 \pm 7.7 \cdot 10^{-7} \) | \(a_{782}= +0.77030353 \pm 6.8 \cdot 10^{-7} \) | \(a_{783}= -0.01659338 \pm 7.2 \cdot 10^{-7} \) |
\(a_{784}= -0.58943844 \pm 1.0 \cdot 10^{-6} \) | \(a_{785}= -0.40079128 \pm 7.3 \cdot 10^{-7} \) | \(a_{786}= +0.07487192 \pm 1.2 \cdot 10^{-6} \) |
\(a_{787}= -0.29298251 \pm 9.1 \cdot 10^{-7} \) | \(a_{788}= +0.32158616 \pm 8.6 \cdot 10^{-7} \) | \(a_{789}= -0.03435759 \pm 9.8 \cdot 10^{-7} \) |
\(a_{790}= +0.70345054 \pm 9.9 \cdot 10^{-7} \) | \(a_{791}= -1.66244083 \pm 6.9 \cdot 10^{-7} \) | \(a_{792}= +0.21560043 \pm 7.3 \cdot 10^{-7} \) |
\(a_{793}= +0.46643723 \pm 8.6 \cdot 10^{-7} \) | \(a_{794}= -0.91766992 \pm 1.1 \cdot 10^{-6} \) | \(a_{795}= -0.24174841 \pm 7.8 \cdot 10^{-7} \) |
\(a_{796}= +0.13300890 \pm 1.0 \cdot 10^{-6} \) | \(a_{797}= -0.48141404 \pm 9.4 \cdot 10^{-7} \) | \(a_{798}= -0.32187042 \pm 1.0 \cdot 10^{-6} \) |
\(a_{799}= +0.24183633 \pm 7.6 \cdot 10^{-7} \) | \(a_{800}= +0.36345120 \pm 8.7 \cdot 10^{-7} \) | \(a_{801}= +0.85987822 \pm 7.5 \cdot 10^{-7} \) |
\(a_{802}= -0.07429544 \pm 9.1 \cdot 10^{-7} \) | \(a_{803}= +0.48638233 \pm 7.0 \cdot 10^{-7} \) | \(a_{804}= +0.03327890 \pm 1.0 \cdot 10^{-6} \) |
\(a_{805}= -1.44047794 \pm 6.4 \cdot 10^{-7} \) | \(a_{806}= -0.36014915 \pm 2.0 \cdot 10^{-6} \) | \(a_{807}= +0.06903117 \pm 7.8 \cdot 10^{-7} \) |
\(a_{808}= -0.36934349 \pm 1.2 \cdot 10^{-6} \) | \(a_{809}= +0.84301750 \pm 9.2 \cdot 10^{-7} \) | \(a_{810}= -1.26942041 \pm 1.2 \cdot 10^{-6} \) |
\(a_{811}= -1.50831622 \pm 9.9 \cdot 10^{-7} \) | \(a_{812}= +0.01649094 \pm 9.3 \cdot 10^{-7} \) | \(a_{813}= -0.12379927 \pm 1.2 \cdot 10^{-6} \) |
\(a_{814}= -0.20691022 \pm 9.4 \cdot 10^{-7} \) | \(a_{815}= -0.63034769 \pm 8.5 \cdot 10^{-7} \) | \(a_{816}= -0.17651257 \pm 1.6 \cdot 10^{-6} \) |
\(a_{817}= +1.87652303 \pm 6.7 \cdot 10^{-7} \) | \(a_{818}= -1.27339528 \pm 9.1 \cdot 10^{-7} \) | \(a_{819}= -2.03345721 \pm 1.0 \cdot 10^{-6} \) |
\(a_{820}= -0.55097618 \pm 1.2 \cdot 10^{-6} \) | \(a_{821}= +0.20682217 \pm 1.0 \cdot 10^{-6} \) | \(a_{822}= +0.08874960 \pm 1.2 \cdot 10^{-6} \) |
\(a_{823}= +0.58814044 \pm 8.3 \cdot 10^{-7} \) | \(a_{824}= -0.97851441 \pm 1.0 \cdot 10^{-6} \) | \(a_{825}= -0.03416048 \pm 9.3 \cdot 10^{-7} \) |
\(a_{826}= -0.32726992 \pm 1.0 \cdot 10^{-6} \) | \(a_{827}= +1.72966147 \pm 9.3 \cdot 10^{-7} \) | \(a_{828}= +0.29350326 \pm 9.5 \cdot 10^{-7} \) |
\(a_{829}= +0.64181179 \pm 9.5 \cdot 10^{-7} \) | \(a_{830}= -0.52189307 \pm 1.1 \cdot 10^{-6} \) | \(a_{831}= -0.22558952 \pm 8.3 \cdot 10^{-7} \) |
\(a_{832}= +0.86631733 \pm 9.8 \cdot 10^{-7} \) | \(a_{833}= +0.34364991 \pm 8.0 \cdot 10^{-7} \) | \(a_{834}= -0.22410129 \pm 1.0 \cdot 10^{-6} \) |
\(a_{835}= +1.75194823 \pm 8.6 \cdot 10^{-7} \) | \(a_{836}= -0.10624556 \pm 1.1 \cdot 10^{-6} \) | \(a_{837}= -0.07161260 \pm 8.4 \cdot 10^{-7} \) |
\(a_{838}= +0.93617518 \pm 1.0 \cdot 10^{-6} \) | \(a_{839}= +1.08565607 \pm 7.9 \cdot 10^{-7} \) | \(a_{840}= +0.24201688 \pm 1.0 \cdot 10^{-6} \) |
\(a_{841}= -0.99826807 \pm 6.2 \cdot 10^{-7} \) | \(a_{842}= +2.16191452 \pm 1.2 \cdot 10^{-6} \) | \(a_{843}= +0.22375910 \pm 8.7 \cdot 10^{-7} \) |
\(a_{844}= -0.43483022 \pm 8.5 \cdot 10^{-7} \) | \(a_{845}= +2.55604155 \pm 9.1 \cdot 10^{-7} \) | \(a_{846}= +0.37535795 \pm 1.2 \cdot 10^{-6} \) |
\(a_{847}= -1.11578422 \pm 8.9 \cdot 10^{-7} \) | \(a_{848}= +1.15228867 \pm 8.0 \cdot 10^{-7} \) | \(a_{849}= -0.27158826 \pm 8.7 \cdot 10^{-7} \) |
\(a_{850}= -0.47426769 \pm 7.1 \cdot 10^{-7} \) | \(a_{851}= +0.58406306 \pm 8.5 \cdot 10^{-7} \) | \(a_{852}= -0.08802851 \pm 8.7 \cdot 10^{-7} \) |
\(a_{853}= -0.58596012 \pm 8.6 \cdot 10^{-7} \) | \(a_{854}= -0.37547736 \pm 7.0 \cdot 10^{-7} \) | \(a_{855}= -1.35839469 \pm 9.3 \cdot 10^{-7} \) |
\(a_{856}= +0.73579411 \pm 9.1 \cdot 10^{-7} \) | \(a_{857}= +1.23403026 \pm 8.2 \cdot 10^{-7} \) | \(a_{858}= +0.11821962 \pm 9.7 \cdot 10^{-7} \) |
\(a_{859}= -0.60138437 \pm 9.0 \cdot 10^{-7} \) | \(a_{860}= +0.68046219 \pm 8.3 \cdot 10^{-7} \) | \(a_{861}= -0.33410192 \pm 9.4 \cdot 10^{-7} \) |
\(a_{862}= +0.29730145 \pm 1.0 \cdot 10^{-6} \) | \(a_{863}= -0.81189940 \pm 9.0 \cdot 10^{-7} \) | \(a_{864}= -0.25010291 \pm 8.6 \cdot 10^{-7} \) |
\(a_{865}= +0.65318357 \pm 1.1 \cdot 10^{-6} \) | \(a_{866}= -1.77217531 \pm 1.1 \cdot 10^{-6} \) | \(a_{867}= -0.10067068 \pm 1.0 \cdot 10^{-6} \) |
\(a_{868}= +0.07117048 \pm 2.1 \cdot 10^{-6} \) | \(a_{869}= +0.14080220 \pm 9.6 \cdot 10^{-7} \) | \(a_{870}= -0.01225787 \pm 1.2 \cdot 10^{-6} \) |
\(a_{871}= +0.87512817 \pm 7.3 \cdot 10^{-7} \) | \(a_{872}= +1.17593840 \pm 1.1 \cdot 10^{-6} \) | \(a_{873}= -0.30787984 \pm 9.8 \cdot 10^{-7} \) |
\(a_{874}= +1.22169169 \pm 8.9 \cdot 10^{-7} \) | \(a_{875}= -0.64374437 \pm 9.4 \cdot 10^{-7} \) | \(a_{876}= -0.11124491 \pm 1.2 \cdot 10^{-6} \) |
\(a_{877}= -0.25511524 \pm 9.6 \cdot 10^{-7} \) | \(a_{878}= -0.33765390 \pm 1.1 \cdot 10^{-6} \) | \(a_{879}= +0.07500921 \pm 8.0 \cdot 10^{-7} \) |
\(a_{880}= +0.44383662 \pm 6.3 \cdot 10^{-7} \) | \(a_{881}= +0.25184514 \pm 9.0 \cdot 10^{-7} \) | \(a_{882}= +0.53338441 \pm 1.0 \cdot 10^{-6} \) |
\(a_{883}= -0.45974197 \pm 9.2 \cdot 10^{-7} \) | \(a_{884}= +0.40291744 \pm 9.7 \cdot 10^{-7} \) | \(a_{885}= +0.05971765 \pm 9.5 \cdot 10^{-7} \) |
\(a_{886}= -0.53275091 \pm 1.2 \cdot 10^{-6} \) | \(a_{887}= +1.38321250 \pm 8.1 \cdot 10^{-7} \) | \(a_{888}= -0.09812932 \pm 1.2 \cdot 10^{-6} \) |
\(a_{889}= +1.17254522 \pm 8.5 \cdot 10^{-7} \) | \(a_{890}= +1.29788359 \pm 8.9 \cdot 10^{-7} \) | \(a_{891}= -0.25408636 \pm 7.3 \cdot 10^{-7} \) |
\(a_{892}= +0.03030077 \pm 1.2 \cdot 10^{-6} \) | \(a_{893}= +0.38354937 \pm 6.1 \cdot 10^{-7} \) | \(a_{894}= +0.26641672 \pm 1.0 \cdot 10^{-6} \) |
\(a_{895}= +1.43387016 \pm 1.0 \cdot 10^{-6} \) | \(a_{896}= -1.46133482 \pm 8.6 \cdot 10^{-7} \) | \(a_{897}= -0.33370855 \pm 1.0 \cdot 10^{-6} \) |
\(a_{898}= -1.42913441 \pm 1.0 \cdot 10^{-6} \) | \(a_{899}= +0.00747453 \pm 8.6 \cdot 10^{-7} \) | \(a_{900}= -0.18070683 \pm 1.0 \cdot 10^{-6} \) |
\(a_{901}= -0.67179857 \pm 6.8 \cdot 10^{-7} \) | \(a_{902}= -0.44924343 \pm 7.4 \cdot 10^{-7} \) | \(a_{903}= +0.41261988 \pm 8.1 \cdot 10^{-7} \) |
\(a_{904}= -1.06014629 \pm 1.0 \cdot 10^{-6} \) | \(a_{905}= +0.12232901 \pm 7.2 \cdot 10^{-7} \) | \(a_{906}= +0.32259664 \pm 1.0 \cdot 10^{-6} \) |
\(a_{907}= -0.69857993 \pm 7.5 \cdot 10^{-7} \) | \(a_{908}= -0.26901202 \pm 1.2 \cdot 10^{-6} \) | \(a_{909}= +0.45583431 \pm 9.0 \cdot 10^{-7} \) |
\(a_{910}= -3.06926107 \pm 8.1 \cdot 10^{-7} \) | \(a_{911}= -0.23824635 \pm 8.8 \cdot 10^{-7} \) | \(a_{912}= -0.27994672 \pm 7.3 \cdot 10^{-7} \) |
\(a_{913}= -0.10446178 \pm 6.3 \cdot 10^{-7} \) | \(a_{914}= +0.43542298 \pm 1.0 \cdot 10^{-6} \) | \(a_{915}= +0.06851417 \pm 8.2 \cdot 10^{-7} \) |
\(a_{916}= -0.35177453 \pm 1.3 \cdot 10^{-6} \) | \(a_{917}= -0.38908022 \pm 1.0 \cdot 10^{-6} \) | \(a_{918}= +0.32635943 \pm 1.0 \cdot 10^{-6} \) |
\(a_{919}= +0.23273156 \pm 9.3 \cdot 10^{-7} \) | \(a_{920}= -0.91859951 \pm 9.4 \cdot 10^{-7} \) | \(a_{921}= +0.31384374 \pm 1.0 \cdot 10^{-6} \) |
\(a_{922}= -0.71465360 \pm 8.4 \cdot 10^{-7} \) | \(a_{923}= -2.31486670 \pm 8.7 \cdot 10^{-7} \) | \(a_{924}= -0.02336184 \pm 1.0 \cdot 10^{-6} \) |
\(a_{925}= -0.35960141 \pm 7.0 \cdot 10^{-7} \) | \(a_{926}= +0.04533250 \pm 1.1 \cdot 10^{-6} \) | \(a_{927}= +1.20765753 \pm 9.4 \cdot 10^{-7} \) |
\(a_{928}= +0.02610436 \pm 9.2 \cdot 10^{-7} \) | \(a_{929}= -0.35688490 \pm 8.7 \cdot 10^{-7} \) | \(a_{930}= -0.05290169 \pm 3.0 \cdot 10^{-6} \) |
\(a_{931}= +0.54502443 \pm 6.8 \cdot 10^{-7} \) | \(a_{932}= +0.05884662 \pm 1.2 \cdot 10^{-6} \) | \(a_{933}= -0.14992685 \pm 6.6 \cdot 10^{-7} \) |
\(a_{934}= +1.51730844 \pm 1.1 \cdot 10^{-6} \) | \(a_{935}= -0.25876225 \pm 6.1 \cdot 10^{-7} \) | \(a_{936}= -1.29674517 \pm 9.9 \cdot 10^{-7} \) |
\(a_{937}= -0.05223606 \pm 8.9 \cdot 10^{-7} \) | \(a_{938}= -0.70446951 \pm 8.1 \cdot 10^{-7} \) | \(a_{939}= +0.33872075 \pm 1.0 \cdot 10^{-6} \) |
\(a_{940}= +0.13908214 \pm 1.2 \cdot 10^{-6} \) | \(a_{941}= +0.33007604 \pm 8.7 \cdot 10^{-7} \) | \(a_{942}= +0.07474283 \pm 1.1 \cdot 10^{-6} \) |
\(a_{943}= +1.26811759 \pm 7.9 \cdot 10^{-7} \) | \(a_{944}= -0.28464293 \pm 1.0 \cdot 10^{-6} \) | \(a_{945}= -0.61029652 \pm 8.7 \cdot 10^{-7} \) |
\(a_{946}= +0.55482103 \pm 8.6 \cdot 10^{-7} \) | \(a_{947}= -0.70886299 \pm 9.4 \cdot 10^{-7} \) | \(a_{948}= -0.03220415 \pm 1.6 \cdot 10^{-6} \) |
\(a_{949}= -2.92538343 \pm 9.2 \cdot 10^{-7} \) | \(a_{950}= -0.75218257 \pm 1.3 \cdot 10^{-6} \) | \(a_{951}= -0.32452781 \pm 8.8 \cdot 10^{-7} \) |
\(a_{952}= +0.67254462 \pm 6.7 \cdot 10^{-7} \) | \(a_{953}= +1.10447443 \pm 1.0 \cdot 10^{-6} \) | \(a_{954}= -1.04270907 \pm 1.3 \cdot 10^{-6} \) |
\(a_{955}= +0.90821348 \pm 1.0 \cdot 10^{-6} \) | \(a_{956}= -0.02599038 \pm 1.1 \cdot 10^{-6} \) | \(a_{957}= -0.00245353 \pm 1.1 \cdot 10^{-6} \) |
\(a_{958}= -1.06313588 \pm 1.2 \cdot 10^{-6} \) | \(a_{959}= -0.46119711 \pm 9.3 \cdot 10^{-7} \) | \(a_{960}= +0.12725188 \pm 1.3 \cdot 10^{-6} \) |
\(a_{961}= +0.03225806 \pm 1.7 \cdot 10^{-6} \) | \(a_{962}= +1.24447724 \pm 9.4 \cdot 10^{-7} \) | \(a_{963}= -0.90809833 \pm 7.5 \cdot 10^{-7} \) |
\(a_{964}= -0.16847252 \pm 7.3 \cdot 10^{-7} \) | \(a_{965}= +0.53351895 \pm 7.9 \cdot 10^{-7} \) | \(a_{966}= +0.26863208 \pm 6.4 \cdot 10^{-7} \) |
\(a_{967}= +0.37612099 \pm 8.3 \cdot 10^{-7} \) | \(a_{968}= -0.71154081 \pm 1.2 \cdot 10^{-6} \) | \(a_{969}= +0.16321240 \pm 7.2 \cdot 10^{-7} \) |
\(a_{970}= -0.46470790 \pm 9.9 \cdot 10^{-7} \) | \(a_{971}= +1.10915755 \pm 9.2 \cdot 10^{-7} \) | \(a_{972}= +0.18784129 \pm 1.3 \cdot 10^{-6} \) |
\(a_{973}= +1.16456709 \pm 7.2 \cdot 10^{-7} \) | \(a_{974}= +1.24262485 \pm 1.2 \cdot 10^{-6} \) | \(a_{975}= +0.20546080 \pm 6.4 \cdot 10^{-7} \) |
\(a_{976}= -0.32657133 \pm 1.4 \cdot 10^{-6} \) | \(a_{977}= +1.32577782 \pm 1.0 \cdot 10^{-6} \) | \(a_{978}= +0.11755238 \pm 1.1 \cdot 10^{-6} \) |
\(a_{979}= +0.25978353 \pm 8.5 \cdot 10^{-7} \) | \(a_{980}= +0.19763601 \pm 9.9 \cdot 10^{-7} \) | \(a_{981}= -1.45131318 \pm 9.6 \cdot 10^{-7} \) |
\(a_{982}= -0.82710141 \pm 8.8 \cdot 10^{-7} \) | \(a_{983}= -0.26198473 \pm 6.8 \cdot 10^{-7} \) | \(a_{984}= -0.21305836 \pm 2.1 \cdot 10^{-6} \) |
\(a_{985}= +1.24218763 \pm 7.0 \cdot 10^{-7} \) | \(a_{986}= -0.03406360 \pm 1.1 \cdot 10^{-6} \) | \(a_{987}= +0.08433688 \pm 8.3 \cdot 10^{-7} \) |
\(a_{988}= +0.63902199 \pm 9.1 \cdot 10^{-7} \) | \(a_{989}= -1.56614043 \pm 6.9 \cdot 10^{-7} \) | \(a_{990}= -0.40162893 \pm 7.5 \cdot 10^{-7} \) |
\(a_{991}= +0.92562151 \pm 8.7 \cdot 10^{-7} \) | \(a_{992}= +0.11265944 \pm 1.2 \cdot 10^{-6} \) | \(a_{993}= +0.12618390 \pm 1.0 \cdot 10^{-6} \) |
\(a_{994}= +1.86344478 \pm 8.2 \cdot 10^{-7} \) | \(a_{995}= +0.51377214 \pm 7.9 \cdot 10^{-7} \) | \(a_{996}= +0.02389240 \pm 1.3 \cdot 10^{-6} \) |
\(a_{997}= -0.69720468 \pm 9.4 \cdot 10^{-7} \) | \(a_{998}= +1.15053267 \pm 1.1 \cdot 10^{-6} \) | \(a_{999}= +0.24745374 \pm 6.3 \cdot 10^{-7} \) |
\(a_{1000}= -0.41051879 \pm 1.3 \cdot 10^{-6} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000