Maass form invariants
Level: | \( 31 \) |
Weight: | \( 0 \) |
Character: | 31.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(2.74383051117742682961922288538 \pm 2 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -1.93805790 \pm 3.7 \cdot 10^{-6} \) | \(a_{3}= -1.46985244 \pm 3.3 \cdot 10^{-6} \) |
\(a_{4}= +2.75606841 \pm 4.1 \cdot 10^{-6} \) | \(a_{5}= -0.87556323 \pm 3.1 \cdot 10^{-6} \) | \(a_{6}= +2.84865913 \pm 4.2 \cdot 10^{-6} \) |
\(a_{7}= -0.34607547 \pm 3.0 \cdot 10^{-6} \) | \(a_{8}= -3.40336225 \pm 4.2 \cdot 10^{-6} \) | \(a_{9}= +1.16046621 \pm 3.1 \cdot 10^{-6} \) |
\(a_{10}= +1.69689223 \pm 3.8 \cdot 10^{-6} \) | \(a_{11}= -0.06758227 \pm 3.0 \cdot 10^{-6} \) | \(a_{12}= -4.05101389 \pm 4.9 \cdot 10^{-6} \) |
\(a_{13}= +0.57586461 \pm 3.1 \cdot 10^{-6} \) | \(a_{14}= +0.67071431 \pm 3.1 \cdot 10^{-6} \) | \(a_{15}= +1.28694875 \pm 3.2 \cdot 10^{-6} \) |
\(a_{16}= +3.83984467 \pm 3.7 \cdot 10^{-6} \) | \(a_{17}= -0.96448744 \pm 2.9 \cdot 10^{-6} \) | \(a_{18}= -2.24905069 \pm 4.1 \cdot 10^{-6} \) |
\(a_{19}= +0.32995325 \pm 3.2 \cdot 10^{-6} \) | \(a_{20}= -2.41311215 \pm 3.9 \cdot 10^{-6} \) | \(a_{21}= +0.50867988 \pm 3.3 \cdot 10^{-6} \) |
\(a_{22}= +0.13097835 \pm 3.3 \cdot 10^{-6} \) | \(a_{23}= +0.80531790 \pm 2.9 \cdot 10^{-6} \) | \(a_{24}= +5.00244031 \pm 5.1 \cdot 10^{-6} \) |
\(a_{25}= -0.23338903 \pm 2.9 \cdot 10^{-6} \) | \(a_{26}= -1.11605896 \pm 3.2 \cdot 10^{-6} \) | \(a_{27}= -0.23586165 \pm 2.8 \cdot 10^{-6} \) |
\(a_{28}= -0.95380768 \pm 3.2 \cdot 10^{-6} \) | \(a_{29}= -0.21904025 \pm 2.9 \cdot 10^{-6} \) | \(a_{30}= -2.49418119 \pm 4.3 \cdot 10^{-6} \) |
\(a_{31}= +0.17960530 \pm 1.0 \cdot 10^{-8} \) | \(a_{32}= -4.03847903 \pm 4.0 \cdot 10^{-6} \) | \(a_{33}= +0.09933596 \pm 3.2 \cdot 10^{-6} \) |
\(a_{34}= +1.86923249 \pm 3.9 \cdot 10^{-6} \) | \(a_{35}= +0.30301096 \pm 2.8 \cdot 10^{-6} \) | \(a_{36}= +3.19832425 \pm 4.4 \cdot 10^{-6} \) |
\(a_{37}= -0.69258205 \pm 2.8 \cdot 10^{-6} \) | \(a_{38}= -0.63946850 \pm 3.8 \cdot 10^{-6} \) | \(a_{39}= -0.84643601 \pm 3.1 \cdot 10^{-6} \) |
\(a_{40}= +2.97985884 \pm 4.0 \cdot 10^{-6} \) | \(a_{41}= +1.82896747 \pm 2.7 \cdot 10^{-6} \) | \(a_{42}= -0.98585106 \pm 3.8 \cdot 10^{-6} \) |
\(a_{43}= +0.83349597 \pm 2.6 \cdot 10^{-6} \) | \(a_{44}= -0.18626136 \pm 3.2 \cdot 10^{-6} \) | \(a_{45}= -1.01606154 \pm 3.1 \cdot 10^{-6} \) |
\(a_{46}= -1.56075271 \pm 2.8 \cdot 10^{-6} \) | \(a_{47}= +1.80188824 \pm 2.7 \cdot 10^{-6} \) | \(a_{48}= -5.64400507 \pm 4.7 \cdot 10^{-6} \) |
\(a_{49}= -0.88023177 \pm 2.9 \cdot 10^{-6} \) | \(a_{50}= +0.45232146 \pm 3.7 \cdot 10^{-6} \) | \(a_{51}= +1.41765421 \pm 3.3 \cdot 10^{-6} \) |
\(a_{52}= +1.58712227 \pm 3.2 \cdot 10^{-6} \) | \(a_{53}= -0.71860022 \pm 2.9 \cdot 10^{-6} \) | \(a_{54}= +0.45711352 \pm 3.6 \cdot 10^{-6} \) |
\(a_{55}= +0.05917255 \pm 3.3 \cdot 10^{-6} \) | \(a_{56}= +1.17782020 \pm 3.1 \cdot 10^{-6} \) | \(a_{57}= -0.48498259 \pm 3.1 \cdot 10^{-6} \) |
\(a_{58}= +0.42451268 \pm 3.3 \cdot 10^{-6} \) | \(a_{59}= +0.11840461 \pm 3.3 \cdot 10^{-6} \) | \(a_{60}= +3.54691880 \pm 4.8 \cdot 10^{-6} \) |
\(a_{61}= -1.50362642 \pm 3.0 \cdot 10^{-6} \) | \(a_{62}= -0.34808547 \pm 3.7 \cdot 10^{-6} \) | \(a_{63}= -0.40160889 \pm 3.5 \cdot 10^{-6} \) |
\(a_{64}= +3.98696151 \pm 4.0 \cdot 10^{-6} \) | \(a_{65}= -0.50420588 \pm 3.1 \cdot 10^{-6} \) | \(a_{66}= -0.19251885 \pm 3.3 \cdot 10^{-6} \) |
\(a_{67}= -0.07771498 \pm 2.5 \cdot 10^{-6} \) | \(a_{68}= -2.65819335 \pm 4.8 \cdot 10^{-6} \) | \(a_{69}= -1.18369848 \pm 3.3 \cdot 10^{-6} \) |
\(a_{70}= -0.58725278 \pm 3.2 \cdot 10^{-6} \) | \(a_{71}= -0.20792070 \pm 2.4 \cdot 10^{-6} \) | \(a_{72}= -3.94948688 \pm 4.1 \cdot 10^{-6} \) |
\(a_{73}= +0.89026980 \pm 2.7 \cdot 10^{-6} \) | \(a_{74}= +1.34226410 \pm 3.4 \cdot 10^{-6} \) | \(a_{75}= +0.34304744 \pm 3.0 \cdot 10^{-6} \) |
\(a_{76}= +0.90937372 \pm 3.7 \cdot 10^{-6} \) | \(a_{77}= +0.02338857 \pm 2.7 \cdot 10^{-6} \) | \(a_{78}= +1.64044199 \pm 3.1 \cdot 10^{-6} \) |
\(a_{79}= +1.62155319 \pm 3.2 \cdot 10^{-6} \) | \(a_{80}= -3.36202679 \pm 3.4 \cdot 10^{-6} \) | \(a_{81}= -0.81378439 \pm 3.2 \cdot 10^{-6} \) |
\(a_{82}= -3.54464484 \pm 3.7 \cdot 10^{-6} \) | \(a_{83}= -0.49646684 \pm 2.5 \cdot 10^{-6} \) | \(a_{84}= +1.40195655 \pm 4.0 \cdot 10^{-6} \) |
\(a_{85}= +0.84446973 \pm 2.6 \cdot 10^{-6} \) | \(a_{86}= -1.61536345 \pm 3.1 \cdot 10^{-6} \) | \(a_{87}= +0.32195684 \pm 3.4 \cdot 10^{-6} \) |
\(a_{88}= +0.23000694 \pm 3.1 \cdot 10^{-6} \) | \(a_{89}= +1.17577013 \pm 2.6 \cdot 10^{-6} \) | \(a_{90}= +1.96918609 \pm 4.0 \cdot 10^{-6} \) |
\(a_{91}= -0.19929262 \pm 3.4 \cdot 10^{-6} \) | \(a_{92}= +2.21951121 \pm 3.1 \cdot 10^{-6} \) | \(a_{93}= -0.26399329 \pm 3.3 \cdot 10^{-6} \) |
\(a_{94}= -3.49216372 \pm 3.6 \cdot 10^{-6} \) | \(a_{95}= -0.28889493 \pm 3.4 \cdot 10^{-6} \) | \(a_{96}= +5.93596827 \pm 5.1 \cdot 10^{-6} \) |
\(a_{97}= +1.52051921 \pm 3.0 \cdot 10^{-6} \) | \(a_{98}= +1.70594012 \pm 3.0 \cdot 10^{-6} \) | \(a_{99}= -0.07842694 \pm 2.8 \cdot 10^{-6} \) |
\(a_{100}= -0.64323614 \pm 3.6 \cdot 10^{-6} \) | \(a_{101}= +0.18185880 \pm 3.2 \cdot 10^{-6} \) | \(a_{102}= -2.74749594 \pm 4.7 \cdot 10^{-6} \) |
\(a_{103}= +0.07072557 \pm 2.7 \cdot 10^{-6} \) | \(a_{104}= -1.95987588 \pm 3.5 \cdot 10^{-6} \) | \(a_{105}= -0.44538140 \pm 2.9 \cdot 10^{-6} \) |
\(a_{106}= +1.39268882 \pm 3.4 \cdot 10^{-6} \) | \(a_{107}= +0.32899337 \pm 2.7 \cdot 10^{-6} \) | \(a_{108}= -0.65005083 \pm 3.7 \cdot 10^{-6} \) |
\(a_{109}= -0.16198634 \pm 3.0 \cdot 10^{-6} \) | \(a_{110}= -0.11467983 \pm 3.1 \cdot 10^{-6} \) | \(a_{111}= +1.01799341 \pm 2.9 \cdot 10^{-6} \) |
\(a_{112}= -1.32887606 \pm 2.5 \cdot 10^{-6} \) | \(a_{113}= +0.83755454 \pm 2.7 \cdot 10^{-6} \) | \(a_{114}= +0.93992433 \pm 3.5 \cdot 10^{-6} \) |
\(a_{115}= -0.70510674 \pm 2.7 \cdot 10^{-6} \) | \(a_{116}= -0.60368990 \pm 3.6 \cdot 10^{-6} \) | \(a_{117}= +0.66827142 \pm 3.2 \cdot 10^{-6} \) |
\(a_{118}= -0.22947500 \pm 4.3 \cdot 10^{-6} \) | \(a_{119}= +0.33378545 \pm 2.3 \cdot 10^{-6} \) | \(a_{120}= -4.37995279 \pm 4.8 \cdot 10^{-6} \) |
\(a_{121}= -0.99543264 \pm 3.2 \cdot 10^{-6} \) | \(a_{122}= +2.91411506 \pm 4.2 \cdot 10^{-6} \) | \(a_{123}= -2.68831230 \pm 3.4 \cdot 10^{-6} \) |
\(a_{124}= +0.49500450 \pm 4.1 \cdot 10^{-6} \) | \(a_{125}= +1.07991008 \pm 3.2 \cdot 10^{-6} \) | \(a_{126}= +0.77834129 \pm 4.4 \cdot 10^{-6} \) |
\(a_{127}= +0.16361890 \pm 3.0 \cdot 10^{-6} \) | \(a_{128}= -3.68848320 \pm 3.7 \cdot 10^{-6} \) | \(a_{129}= -1.22511610 \pm 2.5 \cdot 10^{-6} \) |
\(a_{130}= +0.97718019 \pm 3.2 \cdot 10^{-6} \) | \(a_{131}= -1.45939172 \pm 3.2 \cdot 10^{-6} \) | \(a_{132}= +0.27377671 \pm 3.4 \cdot 10^{-6} \) |
\(a_{133}= -0.11418873 \pm 2.9 \cdot 10^{-6} \) | \(a_{134}= +0.15061614 \pm 2.8 \cdot 10^{-6} \) | \(a_{135}= +0.20651178 \pm 2.7 \cdot 10^{-6} \) |
\(a_{136}= +3.28250013 \pm 5.0 \cdot 10^{-6} \) | \(a_{137}= +1.10947010 \pm 3.0 \cdot 10^{-6} \) | \(a_{138}= +2.29407618 \pm 2.8 \cdot 10^{-6} \) |
\(a_{139}= +1.11724385 \pm 2.3 \cdot 10^{-6} \) | \(a_{140}= +0.83511893 \pm 2.9 \cdot 10^{-6} \) | \(a_{141}= -2.64850983 \pm 3.4 \cdot 10^{-6} \) |
\(a_{142}= +0.40296236 \pm 2.6 \cdot 10^{-6} \) | \(a_{143}= -0.03891824 \pm 3.1 \cdot 10^{-6} \) | \(a_{144}= +4.45600997 \pm 3.9 \cdot 10^{-6} \) |
\(a_{145}= +0.19178359 \pm 2.7 \cdot 10^{-6} \) | \(a_{146}= -1.72539442 \pm 3.4 \cdot 10^{-6} \) | \(a_{147}= +1.29381081 \pm 3.0 \cdot 10^{-6} \) |
\(a_{148}= -1.90880350 \pm 3.8 \cdot 10^{-6} \) | \(a_{149}= -0.96958399 \pm 2.6 \cdot 10^{-6} \) | \(a_{150}= -0.66484580 \pm 3.9 \cdot 10^{-6} \) |
\(a_{151}= +0.03517292 \pm 2.9 \cdot 10^{-6} \) | \(a_{152}= -1.12295042 \pm 3.4 \cdot 10^{-6} \) | \(a_{153}= -1.11925508 \pm 2.8 \cdot 10^{-6} \) |
\(a_{154}= -0.04532839 \pm 2.9 \cdot 10^{-6} \) | \(a_{155}= -0.15725580 \pm 3.1 \cdot 10^{-6} \) | \(a_{156}= -2.33283554 \pm 3.4 \cdot 10^{-6} \) |
\(a_{157}= -0.83621594 \pm 2.6 \cdot 10^{-6} \) | \(a_{158}= -3.14266397 \pm 3.9 \cdot 10^{-6} \) | \(a_{159}= +1.05623628 \pm 2.9 \cdot 10^{-6} \) |
\(a_{160}= +3.53594374 \pm 3.7 \cdot 10^{-6} \) | \(a_{161}= -0.27870077 \pm 2.6 \cdot 10^{-6} \) | \(a_{162}= +1.57716126 \pm 4.3 \cdot 10^{-6} \) |
\(a_{163}= -0.23927560 \pm 3.0 \cdot 10^{-6} \) | \(a_{164}= +5.04075946 \pm 4.4 \cdot 10^{-6} \) | \(a_{165}= -0.08697492 \pm 3.0 \cdot 10^{-6} \) |
\(a_{166}= +0.96218148 \pm 3.4 \cdot 10^{-6} \) | \(a_{167}= -0.18619330 \pm 3.1 \cdot 10^{-6} \) | \(a_{168}= -1.73122191 \pm 3.4 \cdot 10^{-6} \) |
\(a_{169}= -0.66837995 \pm 2.9 \cdot 10^{-6} \) | \(a_{170}= -1.63663123 \pm 3.5 \cdot 10^{-6} \) | \(a_{171}= +0.38289959 \pm 2.9 \cdot 10^{-6} \) |
\(a_{172}= +2.29717192 \pm 3.0 \cdot 10^{-6} \) | \(a_{173}= -0.61716191 \pm 3.2 \cdot 10^{-6} \) | \(a_{174}= -0.62397100 \pm 4.1 \cdot 10^{-6} \) |
\(a_{175}= +0.08077022 \pm 2.7 \cdot 10^{-6} \) | \(a_{176}= -0.25950541 \pm 2.0 \cdot 10^{-6} \) | \(a_{177}= -0.17403731 \pm 3.4 \cdot 10^{-6} \) |
\(a_{178}= -2.27871059 \pm 3.0 \cdot 10^{-6} \) | \(a_{179}= +1.25333189 \pm 3.3 \cdot 10^{-6} \) | \(a_{180}= -2.80033511 \pm 4.2 \cdot 10^{-6} \) |
\(a_{181}= +1.83594265 \pm 2.7 \cdot 10^{-6} \) | \(a_{182}= +0.38624063 \pm 3.0 \cdot 10^{-6} \) | \(a_{183}= +2.21010897 \pm 3.1 \cdot 10^{-6} \) |
\(a_{184}= -2.74078852 \pm 3.7 \cdot 10^{-6} \) | \(a_{185}= +0.60639937 \pm 2.6 \cdot 10^{-6} \) | \(a_{186}= +0.51163428 \pm 7.1 \cdot 10^{-6} \) |
\(a_{187}= +0.06518225 \pm 2.2 \cdot 10^{-6} \) | \(a_{188}= +4.96612724 \pm 4.3 \cdot 10^{-6} \) | \(a_{189}= +0.08162593 \pm 3.3 \cdot 10^{-6} \) |
\(a_{190}= +0.55989510 \pm 4.2 \cdot 10^{-6} \) | \(a_{191}= +0.44590629 \pm 3.0 \cdot 10^{-6} \) | \(a_{192}= -5.86024511 \pm 4.9 \cdot 10^{-6} \) |
\(a_{193}= -0.73602611 \pm 2.9 \cdot 10^{-6} \) | \(a_{194}= -2.94685426 \pm 3.8 \cdot 10^{-6} \) | \(a_{195}= +0.74110824 \pm 2.6 \cdot 10^{-6} \) |
\(a_{196}= -2.42597896 \pm 3.6 \cdot 10^{-6} \) | \(a_{197}= +0.79275253 \pm 2.3 \cdot 10^{-6} \) | \(a_{198}= +0.15199595 \pm 3.1 \cdot 10^{-6} \) |
\(a_{199}= -0.40060066 \pm 2.7 \cdot 10^{-6} \) | \(a_{200}= +0.79430742 \pm 3.1 \cdot 10^{-6} \) | \(a_{201}= +0.11422956 \pm 2.7 \cdot 10^{-6} \) |
\(a_{202}= -0.35245289 \pm 3.8 \cdot 10^{-6} \) | \(a_{203}= +0.07580446 \pm 2.9 \cdot 10^{-6} \) | \(a_{204}= +3.90715199 \pm 5.7 \cdot 10^{-6} \) |
\(a_{205}= -1.60137666 \pm 2.7 \cdot 10^{-6} \) | \(a_{206}= -0.13707024 \pm 3.2 \cdot 10^{-6} \) | \(a_{207}= +0.93454420 \pm 2.6 \cdot 10^{-6} \) |
\(a_{208}= +2.21123066 \pm 3.1 \cdot 10^{-6} \) | \(a_{209}= -0.02229899 \pm 3.5 \cdot 10^{-6} \) | \(a_{210}= +0.86317494 \pm 3.9 \cdot 10^{-6} \) |
\(a_{211}= +0.18707648 \pm 3.0 \cdot 10^{-6} \) | \(a_{212}= -1.98051135 \pm 3.6 \cdot 10^{-6} \) | \(a_{213}= +0.30561275 \pm 2.9 \cdot 10^{-6} \) |
\(a_{214}= -0.63760820 \pm 3.0 \cdot 10^{-6} \) | \(a_{215}= -0.72977843 \pm 2.8 \cdot 10^{-6} \) | \(a_{216}= +0.80272262 \pm 3.2 \cdot 10^{-6} \) |
\(a_{217}= -0.06215699 \pm 3.0 \cdot 10^{-6} \) | \(a_{218}= +0.31393891 \pm 3.8 \cdot 10^{-6} \) | \(a_{219}= -1.30856524 \pm 2.7 \cdot 10^{-6} \) |
\(a_{220}= +0.16308359 \pm 2.7 \cdot 10^{-6} \) | \(a_{221}= -0.55541418 \pm 2.8 \cdot 10^{-6} \) | \(a_{222}= -1.97293017 \pm 3.6 \cdot 10^{-6} \) |
\(a_{223}= +0.82797119 \pm 3.4 \cdot 10^{-6} \) | \(a_{224}= +1.39761855 \pm 3.1 \cdot 10^{-6} \) | \(a_{225}= -0.27084009 \pm 2.7 \cdot 10^{-6} \) |
\(a_{226}= -1.62322918 \pm 3.4 \cdot 10^{-6} \) | \(a_{227}= +0.20662368 \pm 2.9 \cdot 10^{-6} \) | \(a_{228}= -1.33664518 \pm 3.8 \cdot 10^{-6} \) |
\(a_{229}= +1.19874504 \pm 3.1 \cdot 10^{-6} \) | \(a_{230}= +1.36653768 \pm 2.9 \cdot 10^{-6} \) | \(a_{231}= -0.03437774 \pm 3.3 \cdot 10^{-6} \) |
\(a_{232}= +0.74547331 \pm 3.4 \cdot 10^{-6} \) | \(a_{233}= -0.13300850 \pm 2.3 \cdot 10^{-6} \) | \(a_{234}= -1.29514871 \pm 3.4 \cdot 10^{-6} \) |
\(a_{235}= -1.57766708 \pm 2.9 \cdot 10^{-6} \) | \(a_{236}= +0.32633122 \pm 4.8 \cdot 10^{-6} \) | \(a_{237}= -2.38344393 \pm 3.4 \cdot 10^{-6} \) |
\(a_{238}= -0.64689552 \pm 2.2 \cdot 10^{-6} \) | \(a_{239}= +0.63368905 \pm 3.1 \cdot 10^{-6} \) | \(a_{240}= +4.94168330 \pm 4.2 \cdot 10^{-6} \) |
\(a_{241}= -0.17290620 \pm 2.4 \cdot 10^{-6} \) | \(a_{242}= +1.92920608 \pm 3.5 \cdot 10^{-6} \) | \(a_{243}= +1.43200462 \pm 3.4 \cdot 10^{-6} \) |
\(a_{244}= -4.14409729 \pm 4.9 \cdot 10^{-6} \) | \(a_{245}= +0.77069857 \pm 2.7 \cdot 10^{-6} \) | \(a_{246}= +5.21010489 \pm 5.0 \cdot 10^{-6} \) |
\(a_{247}= +0.19000840 \pm 3.2 \cdot 10^{-6} \) | \(a_{248}= -0.61126190 \pm 4.2 \cdot 10^{-6} \) | \(a_{249}= +0.72973299 \pm 2.8 \cdot 10^{-6} \) |
\(a_{250}= -2.09292826 \pm 4.2 \cdot 10^{-6} \) | \(a_{251}= -0.35853029 \pm 2.8 \cdot 10^{-6} \) | \(a_{252}= -1.10686158 \pm 4.5 \cdot 10^{-6} \) |
\(a_{253}= -0.05442521 \pm 2.7 \cdot 10^{-6} \) | \(a_{254}= -0.31710290 \pm 3.7 \cdot 10^{-6} \) | \(a_{255}= -1.24124590 \pm 3.1 \cdot 10^{-6} \) |
\(a_{256}= +3.16153248 \pm 3.6 \cdot 10^{-6} \) | \(a_{257}= +1.36766489 \pm 3.0 \cdot 10^{-6} \) | \(a_{258}= +2.37434592 \pm 3.3 \cdot 10^{-6} \) |
\(a_{259}= +0.23968566 \pm 2.8 \cdot 10^{-6} \) | \(a_{260}= -1.38962590 \pm 2.9 \cdot 10^{-6} \) | \(a_{261}= -0.25418880 \pm 2.9 \cdot 10^{-6} \) |
\(a_{262}= +2.82838565 \pm 3.7 \cdot 10^{-6} \) | \(a_{263}= -0.15972049 \pm 3.2 \cdot 10^{-6} \) | \(a_{264}= -0.33807626 \pm 3.1 \cdot 10^{-6} \) |
\(a_{265}= +0.62917993 \pm 2.6 \cdot 10^{-6} \) | \(a_{266}= +0.22130436 \pm 3.3 \cdot 10^{-6} \) | \(a_{267}= -1.72820860 \pm 2.6 \cdot 10^{-6} \) |
\(a_{268}= -0.21418781 \pm 2.8 \cdot 10^{-6} \) | \(a_{269}= +0.44095594 \pm 2.7 \cdot 10^{-6} \) | \(a_{270}= -0.40023179 \pm 3.3 \cdot 10^{-6} \) |
\(a_{271}= -1.04920679 \pm 3.5 \cdot 10^{-6} \) | \(a_{272}= -3.70348194 \pm 4.6 \cdot 10^{-6} \) | \(a_{273}= +0.29293074 \pm 3.2 \cdot 10^{-6} \) |
\(a_{274}= -2.15021729 \pm 3.7 \cdot 10^{-6} \) | \(a_{275}= +0.01577296 \pm 3.4 \cdot 10^{-6} \) | \(a_{276}= -3.26235398 \pm 3.4 \cdot 10^{-6} \) |
\(a_{277}= +0.28778276 \pm 2.9 \cdot 10^{-6} \) | \(a_{278}= -2.16528326 \pm 2.9 \cdot 10^{-6} \) | \(a_{279}= +0.20842588 \pm 3.2 \cdot 10^{-6} \) |
\(a_{280}= -1.03125606 \pm 2.9 \cdot 10^{-6} \) | \(a_{281}= -0.83670438 \pm 3.0 \cdot 10^{-6} \) | \(a_{282}= +5.13296538 \pm 4.7 \cdot 10^{-6} \) |
\(a_{283}= +0.23397808 \pm 2.9 \cdot 10^{-6} \) | \(a_{284}= -0.57304368 \pm 2.5 \cdot 10^{-6} \) | \(a_{285}= +0.42463292 \pm 3.3 \cdot 10^{-6} \) |
\(a_{286}= +0.07542580 \pm 3.3 \cdot 10^{-6} \) | \(a_{287}= -0.63296078 \pm 2.5 \cdot 10^{-6} \) | \(a_{288}= -4.68651844 \pm 4.3 \cdot 10^{-6} \) |
\(a_{289}= -0.06976399 \pm 3.1 \cdot 10^{-6} \) | \(a_{290}= -0.37168769 \pm 3.5 \cdot 10^{-6} \) | \(a_{291}= -2.23493887 \pm 3.5 \cdot 10^{-6} \) |
\(a_{292}= +2.45364447 \pm 3.4 \cdot 10^{-6} \) | \(a_{293}= -0.96584278 \pm 2.6 \cdot 10^{-6} \) | \(a_{294}= -2.50748026 \pm 3.4 \cdot 10^{-6} \) |
\(a_{295}= -0.10367073 \pm 2.8 \cdot 10^{-6} \) | \(a_{296}= +2.35710759 \pm 3.9 \cdot 10^{-6} \) | \(a_{297}= +0.01594007 \pm 2.4 \cdot 10^{-6} \) |
\(a_{298}= +1.87910992 \pm 3.3 \cdot 10^{-6} \) | \(a_{299}= +0.46375408 \pm 3.0 \cdot 10^{-6} \) | \(a_{300}= +0.94546221 \pm 3.8 \cdot 10^{-6} \) |
\(a_{301}= -0.28845251 \pm 2.6 \cdot 10^{-6} \) | \(a_{302}= -0.06816716 \pm 3.2 \cdot 10^{-6} \) | \(a_{303}= -0.26730560 \pm 3.8 \cdot 10^{-6} \) |
\(a_{304}= +1.26696921 \pm 2.4 \cdot 10^{-6} \) | \(a_{305}= +1.31652001 \pm 2.8 \cdot 10^{-6} \) | \(a_{306}= +2.16918114 \pm 3.4 \cdot 10^{-6} \) |
\(a_{307}= +1.11250313 \pm 3.2 \cdot 10^{-6} \) | \(a_{308}= +0.06446049 \pm 3.0 \cdot 10^{-6} \) | \(a_{309}= -0.10395615 \pm 3.1 \cdot 10^{-6} \) |
\(a_{310}= +0.30477084 \pm 6.8 \cdot 10^{-6} \) | \(a_{311}= +0.88821360 \pm 2.4 \cdot 10^{-6} \) | \(a_{312}= +2.88072835 \pm 3.6 \cdot 10^{-6} \) |
\(a_{313}= +1.79013781 \pm 3.0 \cdot 10^{-6} \) | \(a_{314}= +1.62063490 \pm 3.2 \cdot 10^{-6} \) | \(a_{315}= +0.35163398 \pm 3.0 \cdot 10^{-6} \) |
\(a_{316}= +4.46911153 \pm 4.6 \cdot 10^{-6} \) | \(a_{317}= -0.07278743 \pm 2.9 \cdot 10^{-6} \) | \(a_{318}= -2.04704707 \pm 3.8 \cdot 10^{-6} \) |
\(a_{319}= +0.01480324 \pm 3.0 \cdot 10^{-6} \) | \(a_{320}= -3.49083689 \pm 3.9 \cdot 10^{-6} \) | \(a_{321}= -0.48357171 \pm 2.6 \cdot 10^{-6} \) |
\(a_{322}= +0.54013823 \pm 2.3 \cdot 10^{-6} \) | \(a_{323}= -0.31823576 \pm 2.5 \cdot 10^{-6} \) | \(a_{324}= -2.24284545 \pm 4.5 \cdot 10^{-6} \) |
\(a_{325}= -0.13440048 \pm 2.6 \cdot 10^{-6} \) | \(a_{326}= +0.46372997 \pm 3.6 \cdot 10^{-6} \) | \(a_{327}= +0.23809602 \pm 2.7 \cdot 10^{-6} \) |
\(a_{328}= -6.22463883 \pm 5.0 \cdot 10^{-6} \) | \(a_{329}= -0.62358933 \pm 2.2 \cdot 10^{-6} \) | \(a_{330}= +0.16856242 \pm 3.0 \cdot 10^{-6} \) |
\(a_{331}= +0.04653164 \pm 2.7 \cdot 10^{-6} \) | \(a_{332}= -1.36829657 \pm 3.9 \cdot 10^{-6} \) | \(a_{333}= -0.80371806 \pm 2.7 \cdot 10^{-6} \) |
\(a_{334}= +0.36085339 \pm 3.5 \cdot 10^{-6} \) | \(a_{335}= +0.06804438 \pm 2.6 \cdot 10^{-6} \) | \(a_{336}= +1.95325173 \pm 2.9 \cdot 10^{-6} \) |
\(a_{337}= +0.66003232 \pm 3.1 \cdot 10^{-6} \) | \(a_{338}= +1.29535904 \pm 3.0 \cdot 10^{-6} \) | \(a_{339}= -1.23108158 \pm 2.8 \cdot 10^{-6} \) |
\(a_{340}= +2.32741635 \pm 4.1 \cdot 10^{-6} \) | \(a_{341}= -0.01213813 \pm 3.0 \cdot 10^{-6} \) | \(a_{342}= -0.74208158 \pm 3.8 \cdot 10^{-6} \) |
\(a_{343}= +0.65070210 \pm 2.9 \cdot 10^{-6} \) | \(a_{344}= -2.83668873 \pm 3.1 \cdot 10^{-6} \) | \(a_{345}= +1.03640286 \pm 2.8 \cdot 10^{-6} \) |
\(a_{346}= +1.19609550 \pm 4.3 \cdot 10^{-6} \) | \(a_{347}= -1.54797447 \pm 3.1 \cdot 10^{-6} \) | \(a_{348}= +0.88733508 \pm 4.5 \cdot 10^{-6} \) |
\(a_{349}= +0.98524814 \pm 3.2 \cdot 10^{-6} \) | \(a_{350}= -0.15653736 \pm 3.3 \cdot 10^{-6} \) | \(a_{351}= -0.13582438 \pm 2.5 \cdot 10^{-6} \) |
\(a_{352}= +0.27292957 \pm 2.9 \cdot 10^{-6} \) | \(a_{353}= -0.77928706 \pm 3.5 \cdot 10^{-6} \) | \(a_{354}= +0.33729438 \pm 4.4 \cdot 10^{-6} \) |
\(a_{355}= +0.18204772 \pm 2.1 \cdot 10^{-6} \) | \(a_{356}= +3.24050292 \pm 3.2 \cdot 10^{-6} \) | \(a_{357}= -0.49061535 \pm 2.3 \cdot 10^{-6} \) |
\(a_{358}= -2.42902976 \pm 3.9 \cdot 10^{-6} \) | \(a_{359}= +1.50399480 \pm 2.9 \cdot 10^{-6} \) | \(a_{360}= +3.45802548 \pm 4.0 \cdot 10^{-6} \) |
\(a_{361}= -0.89113085 \pm 3.1 \cdot 10^{-6} \) | \(a_{362}= -3.55816316 \pm 3.1 \cdot 10^{-6} \) | \(a_{363}= +1.46313909 \pm 3.0 \cdot 10^{-6} \) |
\(a_{364}= -0.54926409 \pm 3.1 \cdot 10^{-6} \) | \(a_{365}= -0.77948750 \pm 3.2 \cdot 10^{-6} \) | \(a_{366}= -4.28331915 \pm 4.6 \cdot 10^{-6} \) |
\(a_{367}= +0.82196154 \pm 3.4 \cdot 10^{-6} \) | \(a_{368}= +3.09229562 \pm 3.2 \cdot 10^{-6} \) | \(a_{369}= +2.12245494 \pm 3.2 \cdot 10^{-6} \) |
\(a_{370}= -1.17523709 \pm 3.1 \cdot 10^{-6} \) | \(a_{371}= +0.24868991 \pm 2.9 \cdot 10^{-6} \) | \(a_{372}= -0.72758357 \pm 7.5 \cdot 10^{-6} \) |
\(a_{373}= -1.24749612 \pm 2.7 \cdot 10^{-6} \) | \(a_{374}= -0.12632697 \pm 2.8 \cdot 10^{-6} \) | \(a_{375}= -1.58730848 \pm 3.6 \cdot 10^{-6} \) |
\(a_{376}= -6.13247839 \pm 5.0 \cdot 10^{-6} \) | \(a_{377}= -0.12613753 \pm 2.8 \cdot 10^{-6} \) | \(a_{378}= -0.15819578 \pm 4.3 \cdot 10^{-6} \) |
\(a_{379}= -0.88879200 \pm 3.0 \cdot 10^{-6} \) | \(a_{380}= -0.79621419 \pm 3.9 \cdot 10^{-6} \) | \(a_{381}= -0.24049564 \pm 3.2 \cdot 10^{-6} \) |
\(a_{382}= -0.86419220 \pm 4.1 \cdot 10^{-6} \) | \(a_{383}= +1.40290746 \pm 2.9 \cdot 10^{-6} \) | \(a_{384}= +5.42152604 \pm 4.7 \cdot 10^{-6} \) |
\(a_{385}= -0.02047817 \pm 2.5 \cdot 10^{-6} \) | \(a_{386}= +1.42646121 \pm 3.0 \cdot 10^{-6} \) | \(a_{387}= +0.96724391 \pm 2.8 \cdot 10^{-6} \) |
\(a_{388}= +4.19065496 \pm 4.2 \cdot 10^{-6} \) | \(a_{389}= -1.39005435 \pm 2.6 \cdot 10^{-6} \) | \(a_{390}= -1.43631068 \pm 2.5 \cdot 10^{-6} \) |
\(a_{391}= -0.77671899 \pm 2.4 \cdot 10^{-6} \) | \(a_{392}= +2.99574756 \pm 3.8 \cdot 10^{-6} \) | \(a_{393}= +2.14509049 \pm 3.2 \cdot 10^{-6} \) |
\(a_{394}= -1.53640030 \pm 2.8 \cdot 10^{-6} \) | \(a_{395}= -1.41977235 \pm 2.9 \cdot 10^{-6} \) | \(a_{396}= -0.21615001 \pm 3.1 \cdot 10^{-6} \) |
\(a_{397}= +0.95771374 \pm 3.0 \cdot 10^{-6} \) | \(a_{398}= +0.77638727 \pm 3.2 \cdot 10^{-6} \) | \(a_{399}= +0.16784058 \pm 2.9 \cdot 10^{-6} \) |
\(a_{400}= -0.89617763 \pm 2.2 \cdot 10^{-6} \) | \(a_{401}= +0.30107011 \pm 3.0 \cdot 10^{-6} \) | \(a_{402}= -0.22138350 \pm 3.4 \cdot 10^{-6} \) |
\(a_{403}= +0.10342834 \pm 3.2 \cdot 10^{-6} \) | \(a_{404}= +0.50121530 \pm 4.2 \cdot 10^{-6} \) | \(a_{405}= +0.71251969 \pm 3.0 \cdot 10^{-6} \) |
\(a_{406}= -0.14691343 \pm 2.9 \cdot 10^{-6} \) | \(a_{407}= +0.04680627 \pm 2.7 \cdot 10^{-6} \) | \(a_{408}= -4.82479083 \pm 6.0 \cdot 10^{-6} \) |
\(a_{409}= +0.11812761 \pm 2.5 \cdot 10^{-6} \) | \(a_{410}= +3.10356068 \pm 3.6 \cdot 10^{-6} \) | \(a_{411}= -1.63075734 \pm 3.4 \cdot 10^{-6} \) |
\(a_{412}= +0.19492450 \pm 3.3 \cdot 10^{-6} \) | \(a_{413}= -0.04097693 \pm 3.1 \cdot 10^{-6} \) | \(a_{414}= -1.81120077 \pm 2.7 \cdot 10^{-6} \) |
\(a_{415}= +0.43468811 \pm 2.6 \cdot 10^{-6} \) | \(a_{416}= -2.32561716 \pm 3.4 \cdot 10^{-6} \) | \(a_{417}= -1.64218360 \pm 2.8 \cdot 10^{-6} \) |
\(a_{418}= +0.04321673 \pm 4.0 \cdot 10^{-6} \) | \(a_{419}= -1.48094381 \pm 2.8 \cdot 10^{-6} \) | \(a_{420}= -1.22750161 \pm 4.0 \cdot 10^{-6} \) |
\(a_{421}= +1.77522830 \pm 3.5 \cdot 10^{-6} \) | \(a_{422}= -0.36256505 \pm 2.9 \cdot 10^{-6} \) | \(a_{423}= +2.09103040 \pm 3.0 \cdot 10^{-6} \) |
\(a_{424}= +2.44565685 \pm 3.3 \cdot 10^{-6} \) | \(a_{425}= +0.22510079 \pm 1.9 \cdot 10^{-6} \) | \(a_{426}= -0.59229521 \pm 3.1 \cdot 10^{-6} \) |
\(a_{427}= +0.52036823 \pm 2.3 \cdot 10^{-6} \) | \(a_{428}= +0.90672823 \pm 3.0 \cdot 10^{-6} \) | \(a_{429}= +0.05720407 \pm 3.2 \cdot 10^{-6} \) |
\(a_{430}= +1.41435284 \pm 3.2 \cdot 10^{-6} \) | \(a_{431}= -1.22081888 \pm 2.9 \cdot 10^{-6} \) | \(a_{432}= -0.90567208 \pm 2.8 \cdot 10^{-6} \) |
\(a_{433}= -1.48183999 \pm 3.4 \cdot 10^{-6} \) | \(a_{434}= +0.12046385 \pm 6.8 \cdot 10^{-6} \) | \(a_{435}= -0.28189357 \pm 3.3 \cdot 10^{-6} \) |
\(a_{436}= -0.44644545 \pm 3.9 \cdot 10^{-6} \) | \(a_{437}= +0.26571725 \pm 3.1 \cdot 10^{-6} \) | \(a_{438}= +2.53607520 \pm 3.8 \cdot 10^{-6} \) |
\(a_{439}= +1.32160704 \pm 3.1 \cdot 10^{-6} \) | \(a_{440}= -0.20138562 \pm 3.5 \cdot 10^{-6} \) | \(a_{441}= -1.02147922 \pm 3.3 \cdot 10^{-6} \) |
\(a_{442}= +1.07642484 \pm 2.8 \cdot 10^{-6} \) | \(a_{443}= -1.56064436 \pm 2.9 \cdot 10^{-6} \) | \(a_{444}= +2.80565949 \pm 4.1 \cdot 10^{-6} \) |
\(a_{445}= -1.02946109 \pm 2.8 \cdot 10^{-6} \) | \(a_{446}= -1.60465610 \pm 3.6 \cdot 10^{-6} \) | \(a_{447}= +1.42514540 \pm 2.7 \cdot 10^{-6} \) |
\(a_{448}= -1.37978959 \pm 3.0 \cdot 10^{-6} \) | \(a_{449}= +0.75540675 \pm 2.6 \cdot 10^{-6} \) | \(a_{450}= +0.52490377 \pm 3.4 \cdot 10^{-6} \) |
\(a_{451}= -0.12360577 \pm 2.5 \cdot 10^{-6} \) | \(a_{452}= +2.30835760 \pm 3.5 \cdot 10^{-6} \) | \(a_{453}= -0.05169901 \pm 2.9 \cdot 10^{-6} \) |
\(a_{454}= -0.40044865 \pm 3.7 \cdot 10^{-6} \) | \(a_{455}= +0.17449329 \pm 2.8 \cdot 10^{-6} \) | \(a_{456}= +1.65057142 \pm 3.8 \cdot 10^{-6} \) |
\(a_{457}= -0.15049255 \pm 3.3 \cdot 10^{-6} \) | \(a_{458}= -2.32323729 \pm 4.1 \cdot 10^{-6} \) | \(a_{459}= +0.22748559 \pm 2.5 \cdot 10^{-6} \) |
\(a_{460}= -1.94332240 \pm 3.0 \cdot 10^{-6} \) | \(a_{461}= +0.59276252 \pm 2.7 \cdot 10^{-6} \) | \(a_{462}= +0.06662605 \pm 3.1 \cdot 10^{-6} \) |
\(a_{463}= -0.85915944 \pm 3.1 \cdot 10^{-6} \) | \(a_{464}= -0.84108052 \pm 2.5 \cdot 10^{-6} \) | \(a_{465}= +0.23114282 \pm 6.5 \cdot 10^{-6} \) |
\(a_{466}= +0.25777817 \pm 3.4 \cdot 10^{-6} \) | \(a_{467}= -0.03036661 \pm 2.8 \cdot 10^{-6} \) | \(a_{468}= +1.84180175 \pm 3.4 \cdot 10^{-6} \) |
\(a_{469}= +0.02689525 \pm 2.5 \cdot 10^{-6} \) | \(a_{470}= +3.05761014 \pm 3.6 \cdot 10^{-6} \) | \(a_{471}= +1.22911404 \pm 3.2 \cdot 10^{-6} \) |
\(a_{472}= -0.40297379 \pm 4.7 \cdot 10^{-6} \) | \(a_{473}= -0.05632955 \pm 2.7 \cdot 10^{-6} \) | \(a_{474}= +4.61925232 \pm 4.4 \cdot 10^{-6} \) |
\(a_{475}= -0.07700747 \pm 3.4 \cdot 10^{-6} \) | \(a_{476}= +0.91993553 \pm 2.2 \cdot 10^{-6} \) | \(a_{477}= -0.83391127 \pm 3.2 \cdot 10^{-6} \) |
\(a_{478}= -1.22812607 \pm 3.4 \cdot 10^{-6} \) | \(a_{479}= +0.55062355 \pm 2.9 \cdot 10^{-6} \) | \(a_{480}= -5.19731554 \pm 4.5 \cdot 10^{-6} \) |
\(a_{481}= -0.39883349 \pm 2.7 \cdot 10^{-6} \) | \(a_{482}= +0.33510223 \pm 2.8 \cdot 10^{-6} \) | \(a_{483}= +0.40964901 \pm 2.9 \cdot 10^{-6} \) |
\(a_{484}= -2.74348044 \pm 3.6 \cdot 10^{-6} \) | \(a_{485}= -1.33131071 \pm 2.6 \cdot 10^{-6} \) | \(a_{486}= -2.77530786 \pm 4.2 \cdot 10^{-6} \) |
\(a_{487}= +0.75254761 \pm 3.2 \cdot 10^{-6} \) | \(a_{488}= +5.11738540 \pm 5.3 \cdot 10^{-6} \) | \(a_{489}= +0.35169983 \pm 3.3 \cdot 10^{-6} \) |
\(a_{490}= -1.49365844 \pm 3.2 \cdot 10^{-6} \) | \(a_{491}= -0.95967944 \pm 2.6 \cdot 10^{-6} \) | \(a_{492}= -7.40917261 \pm 6.4 \cdot 10^{-6} \) |
\(a_{493}= +0.21126157 \pm 2.8 \cdot 10^{-6} \) | \(a_{494}= -0.36824728 \pm 3.5 \cdot 10^{-6} \) | \(a_{495}= +0.06866774 \pm 2.6 \cdot 10^{-6} \) |
\(a_{496}= +0.68965646 \pm 3.8 \cdot 10^{-6} \) | \(a_{497}= +0.07195626 \pm 2.8 \cdot 10^{-6} \) | \(a_{498}= -1.41426479 \pm 3.8 \cdot 10^{-6} \) |
\(a_{499}= +0.77549093 \pm 3.1 \cdot 10^{-6} \) | \(a_{500}= +2.97630607 \pm 4.5 \cdot 10^{-6} \) | \(a_{501}= +0.27367667 \pm 3.0 \cdot 10^{-6} \) |
\(a_{502}= +0.69485246 \pm 3.4 \cdot 10^{-6} \) | \(a_{503}= -0.64370847 \pm 3.7 \cdot 10^{-6} \) | \(a_{504}= +1.36682054 \pm 3.7 \cdot 10^{-6} \) |
\(a_{505}= -0.15922888 \pm 3.6 \cdot 10^{-6} \) | \(a_{506}= +0.10547921 \pm 1.9 \cdot 10^{-6} \) | \(a_{507}= +0.98241990 \pm 2.7 \cdot 10^{-6} \) |
\(a_{508}= +0.45094488 \pm 3.5 \cdot 10^{-6} \) | \(a_{509}= +1.40247479 \pm 3.0 \cdot 10^{-6} \) | \(a_{510}= +2.40560642 \pm 4.2 \cdot 10^{-6} \) |
\(a_{511}= -0.30810054 \pm 2.7 \cdot 10^{-6} \) | \(a_{512}= -2.43874979 \pm 3.3 \cdot 10^{-6} \) | \(a_{513}= -0.07782332 \pm 2.5 \cdot 10^{-6} \) |
\(a_{514}= -2.65061373 \pm 3.7 \cdot 10^{-6} \) | \(a_{515}= -0.06192471 \pm 2.9 \cdot 10^{-6} \) | \(a_{516}= -3.37650377 \pm 3.7 \cdot 10^{-6} \) |
\(a_{517}= -0.12177569 \pm 2.4 \cdot 10^{-6} \) | \(a_{518}= -0.46452469 \pm 3.0 \cdot 10^{-6} \) | \(a_{519}= +0.90713693 \pm 3.6 \cdot 10^{-6} \) |
\(a_{520}= +1.71599525 \pm 3.7 \cdot 10^{-6} \) | \(a_{521}= +0.49281958 \pm 3.0 \cdot 10^{-6} \) | \(a_{522}= +0.49263262 \pm 3.5 \cdot 10^{-6} \) |
\(a_{523}= +0.57794775 \pm 2.7 \cdot 10^{-6} \) | \(a_{524}= -4.02218342 \pm 4.1 \cdot 10^{-6} \) | \(a_{525}= -0.11872031 \pm 3.0 \cdot 10^{-6} \) |
\(a_{526}= +0.30954756 \pm 3.6 \cdot 10^{-6} \) | \(a_{527}= -0.17322706 \pm 2.9 \cdot 10^{-6} \) | \(a_{528}= +0.38143467 \pm 2.1 \cdot 10^{-6} \) |
\(a_{529}= -0.35146309 \pm 3.1 \cdot 10^{-6} \) | \(a_{530}= -1.21938712 \pm 3.5 \cdot 10^{-6} \) | \(a_{531}= +0.13740455 \pm 3.1 \cdot 10^{-6} \) |
\(a_{532}= -0.31471194 \pm 3.3 \cdot 10^{-6} \) | \(a_{533}= +1.05323764 \pm 2.7 \cdot 10^{-6} \) | \(a_{534}= +3.34936833 \pm 3.5 \cdot 10^{-6} \) |
\(a_{535}= -0.28805450 \pm 2.9 \cdot 10^{-6} \) | \(a_{536}= +0.26449224 \pm 2.6 \cdot 10^{-6} \) | \(a_{537}= -1.84221293 \pm 3.8 \cdot 10^{-6} \) |
\(a_{538}= -0.85459814 \pm 3.4 \cdot 10^{-6} \) | \(a_{539}= +0.05948806 \pm 2.5 \cdot 10^{-6} \) | \(a_{540}= +0.56916060 \pm 3.5 \cdot 10^{-6} \) |
\(a_{541}= +1.59413522 \pm 3.1 \cdot 10^{-6} \) | \(a_{542}= +2.03342350 \pm 3.5 \cdot 10^{-6} \) | \(a_{543}= -2.69856480 \pm 3.3 \cdot 10^{-6} \) |
\(a_{544}= +3.89506228 \pm 4.1 \cdot 10^{-6} \) | \(a_{545}= +0.14182929 \pm 3.0 \cdot 10^{-6} \) | \(a_{546}= -0.56771674 \pm 3.0 \cdot 10^{-6} \) |
\(a_{547}= -0.14063218 \pm 2.9 \cdot 10^{-6} \) | \(a_{548}= +3.05777549 \pm 4.0 \cdot 10^{-6} \) | \(a_{549}= -1.74490765 \pm 2.6 \cdot 10^{-6} \) |
\(a_{550}= -0.03056891 \pm 3.8 \cdot 10^{-6} \) | \(a_{551}= -0.07227304 \pm 3.0 \cdot 10^{-6} \) | \(a_{552}= +4.02855471 \pm 4.2 \cdot 10^{-6} \) |
\(a_{553}= -0.56117979 \pm 3.5 \cdot 10^{-6} \) | \(a_{554}= -0.55773965 \pm 3.0 \cdot 10^{-6} \) | \(a_{555}= -0.89131760 \pm 2.5 \cdot 10^{-6} \) |
\(a_{556}= +3.07920047 \pm 3.2 \cdot 10^{-6} \) | \(a_{557}= -0.55756152 \pm 2.6 \cdot 10^{-6} \) | \(a_{558}= -0.40394143 \pm 6.9 \cdot 10^{-6} \) |
\(a_{559}= +0.47998084 \pm 3.3 \cdot 10^{-6} \) | \(a_{560}= +1.16351502 \pm 2.2 \cdot 10^{-6} \) | \(a_{561}= -0.09580829 \pm 2.7 \cdot 10^{-6} \) |
\(a_{562}= +1.62158153 \pm 3.3 \cdot 10^{-6} \) | \(a_{563}= -1.70675326 \pm 2.8 \cdot 10^{-6} \) | \(a_{564}= -7.29947426 \pm 5.9 \cdot 10^{-6} \) |
\(a_{565}= -0.73333195 \pm 2.7 \cdot 10^{-6} \) | \(a_{566}= -0.45346306 \pm 3.9 \cdot 10^{-6} \) | \(a_{567}= +0.28163082 \pm 3.3 \cdot 10^{-6} \) |
\(a_{568}= +0.70762947 \pm 2.3 \cdot 10^{-6} \) | \(a_{569}= +0.22052528 \pm 2.7 \cdot 10^{-6} \) | \(a_{570}= -0.82296318 \pm 4.2 \cdot 10^{-6} \) |
\(a_{571}= -1.00822370 \pm 3.0 \cdot 10^{-6} \) | \(a_{572}= -0.10726132 \pm 3.0 \cdot 10^{-6} \) | \(a_{573}= -0.65541645 \pm 3.2 \cdot 10^{-6} \) |
\(a_{574}= +1.22671465 \pm 3.1 \cdot 10^{-6} \) | \(a_{575}= -0.18795236 \pm 2.4 \cdot 10^{-6} \) | \(a_{576}= +4.62673409 \pm 4.3 \cdot 10^{-6} \) |
\(a_{577}= -0.48512204 \pm 2.8 \cdot 10^{-6} \) | \(a_{578}= +0.13520665 \pm 4.7 \cdot 10^{-6} \) | \(a_{579}= +1.08184977 \pm 2.6 \cdot 10^{-6} \) |
\(a_{580}= +0.52856868 \pm 3.7 \cdot 10^{-6} \) | \(a_{581}= +0.17181500 \pm 2.4 \cdot 10^{-6} \) | \(a_{582}= +4.33144093 \pm 4.7 \cdot 10^{-6} \) |
\(a_{583}= +0.04856463 \pm 2.1 \cdot 10^{-6} \) | \(a_{584}= -3.02991063 \pm 3.7 \cdot 10^{-6} \) | \(a_{585}= -0.58511388 \pm 3.0 \cdot 10^{-6} \) |
\(a_{586}= +1.87185922 \pm 2.9 \cdot 10^{-6} \) | \(a_{587}= +0.01672438 \pm 2.9 \cdot 10^{-6} \) | \(a_{588}= +3.56583111 \pm 4.4 \cdot 10^{-6} \) |
\(a_{589}= +0.05926135 \pm 3.2 \cdot 10^{-6} \) | \(a_{590}= +0.20091987 \pm 3.6 \cdot 10^{-6} \) | \(a_{591}= -1.16522925 \pm 2.7 \cdot 10^{-6} \) |
\(a_{592}= -2.65940748 \pm 3.5 \cdot 10^{-6} \) | \(a_{593}= -1.77210014 \pm 3.3 \cdot 10^{-6} \) | \(a_{594}= -0.03089277 \pm 2.7 \cdot 10^{-6} \) |
\(a_{595}= -0.29225026 \pm 2.1 \cdot 10^{-6} \) | \(a_{596}= -2.67223982 \pm 3.5 \cdot 10^{-6} \) | \(a_{597}= +0.58882386 \pm 3.1 \cdot 10^{-6} \) |
\(a_{598}= -0.89878225 \pm 2.8 \cdot 10^{-6} \) | \(a_{599}= +1.83507829 \pm 3.3 \cdot 10^{-6} \) | \(a_{600}= -1.16751471 \pm 2.9 \cdot 10^{-6} \) |
\(a_{601}= +1.47020668 \pm 3.3 \cdot 10^{-6} \) | \(a_{602}= +0.55903767 \pm 2.8 \cdot 10^{-6} \) | \(a_{603}= -0.09018561 \pm 2.4 \cdot 10^{-6} \) |
\(a_{604}= +0.09693898 \pm 2.9 \cdot 10^{-6} \) | \(a_{605}= +0.87156421 \pm 3.6 \cdot 10^{-6} \) | \(a_{606}= +0.51805374 \pm 4.2 \cdot 10^{-6} \) |
\(a_{607}= -0.16194790 \pm 2.9 \cdot 10^{-6} \) | \(a_{608}= -1.33250927 \pm 3.2 \cdot 10^{-6} \) | \(a_{609}= -0.11142137 \pm 3.3 \cdot 10^{-6} \) |
\(a_{610}= -2.55149199 \pm 3.8 \cdot 10^{-6} \) | \(a_{611}= +1.03764367 \pm 2.3 \cdot 10^{-6} \) | \(a_{612}= -3.08474356 \pm 3.5 \cdot 10^{-6} \) |
\(a_{613}= -0.61606024 \pm 3.2 \cdot 10^{-6} \) | \(a_{614}= -2.15609547 \pm 4.5 \cdot 10^{-6} \) | \(a_{615}= +2.35378740 \pm 3.1 \cdot 10^{-6} \) |
\(a_{616}= -0.07959976 \pm 2.4 \cdot 10^{-6} \) | \(a_{617}= +1.66067722 \pm 3.0 \cdot 10^{-6} \) | \(a_{618}= +0.20147303 \pm 3.7 \cdot 10^{-6} \) |
\(a_{619}= +1.70389001 \pm 3.0 \cdot 10^{-6} \) | \(a_{620}= -0.43340774 \pm 7.2 \cdot 10^{-6} \) | \(a_{621}= -0.18994360 \pm 1.9 \cdot 10^{-6} \) |
\(a_{622}= -1.72140939 \pm 2.5 \cdot 10^{-6} \) | \(a_{623}= -0.40690521 \pm 2.5 \cdot 10^{-6} \) | \(a_{624}= -3.25018279 \pm 3.1 \cdot 10^{-6} \) |
\(a_{625}= -0.71214053 \pm 2.8 \cdot 10^{-6} \) | \(a_{626}= -3.46939071 \pm 4.0 \cdot 10^{-6} \) | \(a_{627}= +0.03277622 \pm 3.4 \cdot 10^{-6} \) |
\(a_{628}= -2.30466833 \pm 3.5 \cdot 10^{-6} \) | \(a_{629}= +0.66798668 \pm 2.7 \cdot 10^{-6} \) | \(a_{630}= -0.68148701 \pm 4.2 \cdot 10^{-6} \) |
\(a_{631}= +1.26860189 \pm 3.2 \cdot 10^{-6} \) | \(a_{632}= -5.51873292 \pm 4.9 \cdot 10^{-6} \) | \(a_{633}= -0.27497482 \pm 2.3 \cdot 10^{-6} \) |
\(a_{634}= +0.14106626 \pm 3.5 \cdot 10^{-6} \) | \(a_{635}= -0.14325869 \pm 3.1 \cdot 10^{-6} \) | \(a_{636}= +2.91105945 \pm 4.4 \cdot 10^{-6} \) |
\(a_{637}= -0.50689432 \pm 2.9 \cdot 10^{-6} \) | \(a_{638}= -0.02868953 \pm 3.4 \cdot 10^{-6} \) | \(a_{639}= -0.24128495 \pm 3.1 \cdot 10^{-6} \) |
\(a_{640}= +3.22950026 \pm 3.6 \cdot 10^{-6} \) | \(a_{641}= +1.65710562 \pm 3.4 \cdot 10^{-6} \) | \(a_{642}= +0.93718997 \pm 2.5 \cdot 10^{-6} \) |
\(a_{643}= -0.37834232 \pm 3.0 \cdot 10^{-6} \) | \(a_{644}= -0.76811840 \pm 2.6 \cdot 10^{-6} \) | \(a_{645}= +1.07266660 \pm 2.3 \cdot 10^{-6} \) |
\(a_{646}= +0.61675933 \pm 3.1 \cdot 10^{-6} \) | \(a_{647}= -0.03762233 \pm 3.4 \cdot 10^{-6} \) | \(a_{648}= +2.76960307 \pm 4.4 \cdot 10^{-6} \) |
\(a_{649}= -0.00800205 \pm 3.0 \cdot 10^{-6} \) | \(a_{650}= +0.26047592 \pm 3.0 \cdot 10^{-6} \) | \(a_{651}= +0.09136160 \pm 6.4 \cdot 10^{-6} \) |
\(a_{652}= -0.65945993 \pm 3.8 \cdot 10^{-6} \) | \(a_{653}= +1.02044228 \pm 3.0 \cdot 10^{-6} \) | \(a_{654}= -0.46144388 \pm 3.7 \cdot 10^{-6} \) |
\(a_{655}= +1.27778973 \pm 3.3 \cdot 10^{-6} \) | \(a_{656}= +7.02295098 \pm 5.1 \cdot 10^{-6} \) | \(a_{657}= +1.03312802 \pm 2.7 \cdot 10^{-6} \) |
\(a_{658}= +1.20855222 \pm 2.7 \cdot 10^{-6} \) | \(a_{659}= +0.65398126 \pm 3.2 \cdot 10^{-6} \) | \(a_{660}= -0.23970882 \pm 3.0 \cdot 10^{-6} \) |
\(a_{661}= -1.18530599 \pm 3.2 \cdot 10^{-6} \) | \(a_{662}= -0.09018101 \pm 3.0 \cdot 10^{-6} \) | \(a_{663}= +0.81637689 \pm 2.9 \cdot 10^{-6} \) |
\(a_{664}= +1.68965649 \pm 3.9 \cdot 10^{-6} \) | \(a_{665}= +0.09997945 \pm 2.9 \cdot 10^{-6} \) | \(a_{666}= +1.55765213 \pm 3.4 \cdot 10^{-6} \) |
\(a_{667}= -0.17639703 \pm 2.8 \cdot 10^{-6} \) | \(a_{668}= -0.51316146 \pm 3.7 \cdot 10^{-6} \) | \(a_{669}= -1.21699548 \pm 3.9 \cdot 10^{-6} \) |
\(a_{670}= -0.13187395 \pm 3.0 \cdot 10^{-6} \) | \(a_{671}= +0.10161848 \pm 2.7 \cdot 10^{-6} \) | \(a_{672}= -2.05429304 \pm 3.2 \cdot 10^{-6} \) |
\(a_{673}= -1.30200753 \pm 2.6 \cdot 10^{-6} \) | \(a_{674}= -1.27918084 \pm 3.8 \cdot 10^{-6} \) | \(a_{675}= +0.05504752 \pm 2.5 \cdot 10^{-6} \) |
\(a_{676}= -1.84210086 \pm 3.3 \cdot 10^{-6} \) | \(a_{677}= -0.09585449 \pm 2.8 \cdot 10^{-6} \) | \(a_{678}= +2.38590738 \pm 3.8 \cdot 10^{-6} \) |
\(a_{679}= -0.52621441 \pm 2.8 \cdot 10^{-6} \) | \(a_{680}= -2.87403641 \pm 4.4 \cdot 10^{-6} \) | \(a_{681}= -0.30370632 \pm 3.0 \cdot 10^{-6} \) |
\(a_{682}= +0.02352441 \pm 6.8 \cdot 10^{-6} \) | \(a_{683}= +0.72546365 \pm 2.8 \cdot 10^{-6} \) | \(a_{684}= +1.05529747 \pm 3.9 \cdot 10^{-6} \) |
\(a_{685}= -0.97141122 \pm 2.7 \cdot 10^{-6} \) | \(a_{686}= -1.26109834 \pm 2.8 \cdot 10^{-6} \) | \(a_{687}= -1.76197833 \pm 3.4 \cdot 10^{-6} \) |
\(a_{688}= +3.20049507 \pm 3.1 \cdot 10^{-6} \) | \(a_{689}= -0.41381643 \pm 3.0 \cdot 10^{-6} \) | \(a_{690}= -2.00860875 \pm 2.4 \cdot 10^{-6} \) |
\(a_{691}= +0.11548029 \pm 2.9 \cdot 10^{-6} \) | \(a_{692}= -1.70094043 \pm 4.9 \cdot 10^{-6} \) | \(a_{693}= +0.02714164 \pm 2.8 \cdot 10^{-6} \) |
\(a_{694}= +3.00006414 \pm 3.9 \cdot 10^{-6} \) | \(a_{695}= -0.97821763 \pm 2.1 \cdot 10^{-6} \) | \(a_{696}= -1.09573576 \pm 4.0 \cdot 10^{-6} \) |
\(a_{697}= -1.76401614 \pm 2.4 \cdot 10^{-6} \) | \(a_{698}= -1.90946795 \pm 3.4 \cdot 10^{-6} \) | \(a_{699}= +0.19550287 \pm 2.8 \cdot 10^{-6} \) |
\(a_{700}= +0.22260825 \pm 3.2 \cdot 10^{-6} \) | \(a_{701}= +1.62861455 \pm 3.2 \cdot 10^{-6} \) | \(a_{702}= +0.26323550 \pm 2.8 \cdot 10^{-6} \) |
\(a_{703}= -0.22851969 \pm 2.9 \cdot 10^{-6} \) | \(a_{704}= -0.26944790 \pm 3.4 \cdot 10^{-6} \) | \(a_{705}= +2.31893781 \pm 3.4 \cdot 10^{-6} \) |
\(a_{706}= +1.51030344 \pm 4.3 \cdot 10^{-6} \) | \(a_{707}= -0.06293687 \pm 2.8 \cdot 10^{-6} \) | \(a_{708}= -0.47965874 \pm 5.1 \cdot 10^{-6} \) |
\(a_{709}= -0.75231776 \pm 2.5 \cdot 10^{-6} \) | \(a_{710}= -0.35281902 \pm 2.0 \cdot 10^{-6} \) | \(a_{711}= +1.88175768 \pm 3.5 \cdot 10^{-6} \) |
\(a_{712}= -4.00157168 \pm 3.9 \cdot 10^{-6} \) | \(a_{713}= +0.14463936 \pm 2.9 \cdot 10^{-6} \) | \(a_{714}= +0.95084096 \pm 2.6 \cdot 10^{-6} \) |
\(a_{715}= +0.03407538 \pm 3.4 \cdot 10^{-6} \) | \(a_{716}= +3.45426841 \pm 4.6 \cdot 10^{-6} \) | \(a_{717}= -0.93142940 \pm 3.4 \cdot 10^{-6} \) |
\(a_{718}= -2.91482899 \pm 3.6 \cdot 10^{-6} \) | \(a_{719}= +1.17827855 \pm 2.5 \cdot 10^{-6} \) | \(a_{720}= -3.90151848 \pm 3.6 \cdot 10^{-6} \) |
\(a_{721}= -0.02447638 \pm 2.8 \cdot 10^{-6} \) | \(a_{722}= +1.72706319 \pm 4.0 \cdot 10^{-6} \) | \(a_{723}= +0.25414660 \pm 2.6 \cdot 10^{-6} \) |
\(a_{724}= +5.05998355 \pm 4.0 \cdot 10^{-6} \) | \(a_{725}= +0.05112159 \pm 2.7 \cdot 10^{-6} \) | \(a_{726}= -2.83564827 \pm 3.9 \cdot 10^{-6} \) |
\(a_{727}= -0.24534890 \pm 2.2 \cdot 10^{-6} \) | \(a_{728}= +0.67826498 \pm 3.1 \cdot 10^{-6} \) | \(a_{729}= -1.29105110 \pm 2.9 \cdot 10^{-6} \) |
\(a_{730}= +1.51069191 \pm 4.0 \cdot 10^{-6} \) | \(a_{731}= -0.80389640 \pm 2.2 \cdot 10^{-6} \) | \(a_{732}= +6.09121152 \pm 5.8 \cdot 10^{-6} \) |
\(a_{733}= +0.06038903 \pm 3.4 \cdot 10^{-6} \) | \(a_{734}= -1.59300906 \pm 4.1 \cdot 10^{-6} \) | \(a_{735}= -1.13281317 \pm 2.5 \cdot 10^{-6} \) |
\(a_{736}= -3.25225943 \pm 3.8 \cdot 10^{-6} \) | \(a_{737}= +0.00525215 \pm 2.9 \cdot 10^{-6} \) | \(a_{738}= -4.11344056 \pm 4.8 \cdot 10^{-6} \) |
\(a_{739}= +1.03579270 \pm 3.0 \cdot 10^{-6} \) | \(a_{740}= +1.67127815 \pm 3.3 \cdot 10^{-6} \) | \(a_{741}= -0.27928431 \pm 2.9 \cdot 10^{-6} \) |
\(a_{742}= -0.48197545 \pm 3.3 \cdot 10^{-6} \) | \(a_{743}= -1.41593048 \pm 3.1 \cdot 10^{-6} \) | \(a_{744}= +0.89846480 \pm 7.6 \cdot 10^{-6} \) |
\(a_{745}= +0.84893209 \pm 2.9 \cdot 10^{-6} \) | \(a_{746}= +2.41771970 \pm 3.4 \cdot 10^{-6} \) | \(a_{747}= -0.57613299 \pm 2.9 \cdot 10^{-6} \) |
\(a_{748}= +0.17964674 \pm 2.9 \cdot 10^{-6} \) | \(a_{749}= -0.11385654 \pm 2.3 \cdot 10^{-6} \) | \(a_{750}= +3.07629572 \pm 5.1 \cdot 10^{-6} \) |
\(a_{751}= -1.71443075 \pm 2.7 \cdot 10^{-6} \) | \(a_{752}= +6.91897093 \pm 5.1 \cdot 10^{-6} \) | \(a_{753}= +0.52698663 \pm 3.3 \cdot 10^{-6} \) |
\(a_{754}= +0.24446183 \pm 2.7 \cdot 10^{-6} \) | \(a_{755}= -0.03079612 \pm 3.2 \cdot 10^{-6} \) | \(a_{756}= +0.22496665 \pm 4.2 \cdot 10^{-6} \) |
\(a_{757}= +0.36388026 \pm 3.0 \cdot 10^{-6} \) | \(a_{758}= +1.72253035 \pm 2.8 \cdot 10^{-6} \) | \(a_{759}= +0.07999703 \pm 3.3 \cdot 10^{-6} \) |
\(a_{760}= +0.98321410 \pm 3.4 \cdot 10^{-6} \) | \(a_{761}= -1.73747706 \pm 3.5 \cdot 10^{-6} \) | \(a_{762}= +0.46609447 \pm 3.9 \cdot 10^{-6} \) |
\(a_{763}= +0.05605950 \pm 3.4 \cdot 10^{-6} \) | \(a_{764}= +1.22894823 \pm 4.5 \cdot 10^{-6} \) | \(a_{765}= +0.97997859 \pm 2.5 \cdot 10^{-6} \) |
\(a_{766}= -2.71891587 \pm 3.3 \cdot 10^{-6} \) | \(a_{767}= +0.06818503 \pm 3.1 \cdot 10^{-6} \) | \(a_{768}= -4.64698624 \pm 4.7 \cdot 10^{-6} \) |
\(a_{769}= -0.77031680 \pm 2.6 \cdot 10^{-6} \) | \(a_{770}= +0.03968788 \pm 2.6 \cdot 10^{-6} \) | \(a_{771}= -2.01026557 \pm 3.4 \cdot 10^{-6} \) |
\(a_{772}= -2.02853830 \pm 3.0 \cdot 10^{-6} \) | \(a_{773}= -0.07887718 \pm 2.5 \cdot 10^{-6} \) | \(a_{774}= -1.87457470 \pm 3.6 \cdot 10^{-6} \) |
\(a_{775}= -0.04191791 \pm 2.9 \cdot 10^{-6} \) | \(a_{776}= -5.17487767 \pm 4.6 \cdot 10^{-6} \) | \(a_{777}= -0.35230255 \pm 2.6 \cdot 10^{-6} \) |
\(a_{778}= +2.69400581 \pm 2.9 \cdot 10^{-6} \) | \(a_{779}= +0.60347375 \pm 2.9 \cdot 10^{-6} \) | \(a_{780}= +2.04254502 \pm 2.8 \cdot 10^{-6} \) |
\(a_{781}= +0.01405175 \pm 2.6 \cdot 10^{-6} \) | \(a_{782}= +1.50532637 \pm 2.3 \cdot 10^{-6} \) | \(a_{783}= +0.05166319 \pm 2.4 \cdot 10^{-6} \) |
\(a_{784}= -3.37995325 \pm 3.5 \cdot 10^{-6} \) | \(a_{785}= +0.73215993 \pm 2.4 \cdot 10^{-6} \) | \(a_{786}= -4.15730956 \pm 4.3 \cdot 10^{-6} \) |
\(a_{787}= +0.70990575 \pm 3.1 \cdot 10^{-6} \) | \(a_{788}= +2.18488021 \pm 2.9 \cdot 10^{-6} \) | \(a_{789}= +0.23476556 \pm 3.3 \cdot 10^{-6} \) |
\(a_{790}= +2.75160101 \pm 3.3 \cdot 10^{-6} \) | \(a_{791}= -0.28985708 \pm 2.3 \cdot 10^{-6} \) | \(a_{792}= +0.26691528 \pm 2.5 \cdot 10^{-6} \) |
\(a_{793}= -0.86588525 \pm 2.9 \cdot 10^{-6} \) | \(a_{794}= -1.85610467 \pm 3.7 \cdot 10^{-6} \) | \(a_{795}= -0.92480165 \pm 2.6 \cdot 10^{-6} \) |
\(a_{796}= -1.10408282 \pm 3.5 \cdot 10^{-6} \) | \(a_{797}= +0.68915778 \pm 3.1 \cdot 10^{-6} \) | \(a_{798}= -0.32528476 \pm 3.3 \cdot 10^{-6} \) |
\(a_{799}= -1.73789856 \pm 2.5 \cdot 10^{-6} \) | \(a_{800}= +0.94253671 \pm 2.9 \cdot 10^{-6} \) | \(a_{801}= +1.36444150 \pm 2.5 \cdot 10^{-6} \) |
\(a_{802}= -0.58349131 \pm 3.1 \cdot 10^{-6} \) | \(a_{803}= -0.06016645 \pm 2.4 \cdot 10^{-6} \) | \(a_{804}= +0.31482448 \pm 3.4 \cdot 10^{-6} \) |
\(a_{805}= +0.24402015 \pm 2.1 \cdot 10^{-6} \) | \(a_{806}= -0.20045011 \pm 6.9 \cdot 10^{-6} \) | \(a_{807}= -0.64814017 \pm 2.6 \cdot 10^{-6} \) |
\(a_{808}= -0.61893138 \pm 4.2 \cdot 10^{-6} \) | \(a_{809}= -1.02860746 \pm 3.1 \cdot 10^{-6} \) | \(a_{810}= -1.38090441 \pm 4.2 \cdot 10^{-6} \) |
\(a_{811}= +0.63290554 \pm 3.3 \cdot 10^{-6} \) | \(a_{812}= +0.20892227 \pm 3.1 \cdot 10^{-6} \) | \(a_{813}= +1.54217916 \pm 4.1 \cdot 10^{-6} \) |
\(a_{814}= -0.09071325 \pm 3.2 \cdot 10^{-6} \) | \(a_{815}= +0.20950092 \pm 2.8 \cdot 10^{-6} \) | \(a_{816}= +5.44357197 \pm 5.7 \cdot 10^{-6} \) |
\(a_{817}= +0.27501470 \pm 2.2 \cdot 10^{-6} \) | \(a_{818}= -0.22893816 \pm 3.0 \cdot 10^{-6} \) | \(a_{819}= -0.23127235 \pm 3.5 \cdot 10^{-6} \) |
\(a_{820}= -4.41350363 \pm 4.1 \cdot 10^{-6} \) | \(a_{821}= -0.37665533 \pm 3.3 \cdot 10^{-6} \) | \(a_{822}= +3.16050213 \pm 4.2 \cdot 10^{-6} \) |
\(a_{823}= -0.56661317 \pm 2.8 \cdot 10^{-6} \) | \(a_{824}= -0.24070472 \pm 3.3 \cdot 10^{-6} \) | \(a_{825}= -0.02318392 \pm 3.1 \cdot 10^{-6} \) |
\(a_{826}= +0.07941567 \pm 3.4 \cdot 10^{-6} \) | \(a_{827}= -1.62994302 \pm 3.1 \cdot 10^{-6} \) | \(a_{828}= +2.57566775 \pm 3.2 \cdot 10^{-6} \) |
\(a_{829}= +0.75023391 \pm 3.2 \cdot 10^{-6} \) | \(a_{830}= -0.84245072 \pm 3.8 \cdot 10^{-6} \) | \(a_{831}= -0.42299819 \pm 2.8 \cdot 10^{-6} \) |
\(a_{832}= +2.29595004 \pm 3.3 \cdot 10^{-6} \) | \(a_{833}= +0.84897248 \pm 2.7 \cdot 10^{-6} \) | \(a_{834}= +3.18264689 \pm 3.7 \cdot 10^{-6} \) |
\(a_{835}= +0.16302400 \pm 2.9 \cdot 10^{-6} \) | \(a_{836}= -0.06145754 \pm 3.8 \cdot 10^{-6} \) | \(a_{837}= -0.04236200 \pm 2.8 \cdot 10^{-6} \) |
\(a_{838}= +2.87015485 \pm 3.6 \cdot 10^{-6} \) | \(a_{839}= -0.97383839 \pm 2.6 \cdot 10^{-6} \) | \(a_{840}= +1.51579424 \pm 3.5 \cdot 10^{-6} \) |
\(a_{841}= -0.95202137 \pm 2.1 \cdot 10^{-6} \) | \(a_{842}= -3.44049522 \pm 4.2 \cdot 10^{-6} \) | \(a_{843}= +1.22983198 \pm 2.9 \cdot 10^{-6} \) |
\(a_{844}= +0.51559558 \pm 2.9 \cdot 10^{-6} \) | \(a_{845}= +0.58520891 \pm 3.1 \cdot 10^{-6} \) | \(a_{846}= -4.05253799 \pm 4.3 \cdot 10^{-6} \) |
\(a_{847}= +0.34449482 \pm 3.0 \cdot 10^{-6} \) | \(a_{848}= -2.75931321 \pm 2.7 \cdot 10^{-6} \) | \(a_{849}= -0.34391325 \pm 2.9 \cdot 10^{-6} \) |
\(a_{850}= -0.43625836 \pm 2.4 \cdot 10^{-6} \) | \(a_{851}= -0.55774872 \pm 2.8 \cdot 10^{-6} \) | \(a_{852}= +0.84228965 \pm 2.9 \cdot 10^{-6} \) |
\(a_{853}= +1.74688074 \pm 2.9 \cdot 10^{-6} \) | \(a_{854}= -1.00850375 \pm 2.3 \cdot 10^{-6} \) | \(a_{855}= -0.33525280 \pm 3.1 \cdot 10^{-6} \) |
\(a_{856}= -1.11968361 \pm 3.0 \cdot 10^{-6} \) | \(a_{857}= -0.60236871 \pm 2.7 \cdot 10^{-6} \) | \(a_{858}= -0.11086479 \pm 3.3 \cdot 10^{-6} \) |
\(a_{859}= +1.67216407 \pm 3.0 \cdot 10^{-6} \) | \(a_{860}= -2.01131927 \pm 2.8 \cdot 10^{-6} \) | \(a_{861}= +0.93035896 \pm 3.2 \cdot 10^{-6} \) |
\(a_{862}= +2.36601767 \pm 3.5 \cdot 10^{-6} \) | \(a_{863}= -0.62757716 \pm 3.0 \cdot 10^{-6} \) | \(a_{864}= +0.95252231 \pm 2.9 \cdot 10^{-6} \) |
\(a_{865}= +0.54036427 \pm 3.9 \cdot 10^{-6} \) | \(a_{866}= +2.87189170 \pm 3.9 \cdot 10^{-6} \) | \(a_{867}= +0.10254277 \pm 3.6 \cdot 10^{-6} \) |
\(a_{868}= -0.17130892 \pm 7.1 \cdot 10^{-6} \) | \(a_{869}= -0.10958824 \pm 3.2 \cdot 10^{-6} \) | \(a_{870}= +0.54632606 \pm 4.3 \cdot 10^{-6} \) |
\(a_{871}= -0.04475331 \pm 2.5 \cdot 10^{-6} \) | \(a_{872}= +0.55129821 \pm 3.8 \cdot 10^{-6} \) | \(a_{873}= +1.76451116 \pm 3.3 \cdot 10^{-6} \) |
\(a_{874}= -0.51497542 \pm 3.0 \cdot 10^{-6} \) | \(a_{875}= -0.37373039 \pm 3.2 \cdot 10^{-6} \) | \(a_{876}= -3.60649533 \pm 4.2 \cdot 10^{-6} \) |
\(a_{877}= +1.00210848 \pm 3.2 \cdot 10^{-6} \) | \(a_{878}= -2.56135096 \pm 3.7 \cdot 10^{-6} \) | \(a_{879}= +1.41964637 \pm 2.7 \cdot 10^{-6} \) |
\(a_{880}= +0.22721340 \pm 2.1 \cdot 10^{-6} \) | \(a_{881}= +1.49657801 \pm 3.0 \cdot 10^{-6} \) | \(a_{882}= +1.97968586 \pm 3.5 \cdot 10^{-6} \) |
\(a_{883}= +1.71349218 \pm 3.1 \cdot 10^{-6} \) | \(a_{884}= -1.53075948 \pm 3.2 \cdot 10^{-6} \) | \(a_{885}= +0.15238067 \pm 3.2 \cdot 10^{-6} \) |
\(a_{886}= +3.02461913 \pm 4.1 \cdot 10^{-6} \) | \(a_{887}= -0.11569829 \pm 2.7 \cdot 10^{-6} \) | \(a_{888}= -3.46460035 \pm 4.1 \cdot 10^{-6} \) |
\(a_{889}= -0.05662449 \pm 2.8 \cdot 10^{-6} \) | \(a_{890}= +1.99515520 \pm 3.0 \cdot 10^{-6} \) | \(a_{891}= +0.05499740 \pm 2.4 \cdot 10^{-6} \) |
\(a_{892}= +2.28194524 \pm 4.1 \cdot 10^{-6} \) | \(a_{893}= +0.59453887 \pm 2.0 \cdot 10^{-6} \) | \(a_{894}= -2.76201430 \pm 3.6 \cdot 10^{-6} \) |
\(a_{895}= -1.09737131 \pm 3.4 \cdot 10^{-6} \) | \(a_{896}= +1.27649357 \pm 2.9 \cdot 10^{-6} \) | \(a_{897}= -0.68165006 \pm 3.3 \cdot 10^{-6} \) |
\(a_{898}= -1.46402202 \pm 3.6 \cdot 10^{-6} \) | \(a_{899}= -0.03934079 \pm 2.9 \cdot 10^{-6} \) | \(a_{900}= -0.74645380 \pm 3.4 \cdot 10^{-6} \) |
\(a_{901}= +0.69308088 \pm 2.3 \cdot 10^{-6} \) | \(a_{902}= +0.23955514 \pm 2.5 \cdot 10^{-6} \) | \(a_{903}= +0.42398263 \pm 2.7 \cdot 10^{-6} \) |
\(a_{904}= -2.85050149 \pm 3.7 \cdot 10^{-6} \) | \(a_{905}= -1.60748388 \pm 2.4 \cdot 10^{-6} \) | \(a_{906}= +0.10019567 \pm 3.4 \cdot 10^{-6} \) |
\(a_{907}= +0.25142409 \pm 2.5 \cdot 10^{-6} \) | \(a_{908}= +0.56946899 \pm 4.1 \cdot 10^{-6} \) | \(a_{909}= +0.21104099 \pm 3.0 \cdot 10^{-6} \) |
\(a_{910}= -0.33817810 \pm 2.7 \cdot 10^{-6} \) | \(a_{911}= +0.49779575 \pm 2.9 \cdot 10^{-6} \) | \(a_{912}= -1.86225780 \pm 2.4 \cdot 10^{-6} \) |
\(a_{913}= +0.03355236 \pm 2.1 \cdot 10^{-6} \) | \(a_{914}= +0.29166328 \pm 3.6 \cdot 10^{-6} \) | \(a_{915}= -1.93509015 \pm 2.7 \cdot 10^{-6} \) |
\(a_{916}= +3.30382333 \pm 4.7 \cdot 10^{-6} \) | \(a_{917}= +0.50505968 \pm 3.6 \cdot 10^{-6} \) | \(a_{918}= -0.44088025 \pm 3.4 \cdot 10^{-6} \) |
\(a_{919}= -0.06992482 \pm 3.1 \cdot 10^{-6} \) | \(a_{920}= +2.39973365 \pm 3.1 \cdot 10^{-6} \) | \(a_{921}= -1.63521544 \pm 3.4 \cdot 10^{-6} \) |
\(a_{922}= -1.14880809 \pm 2.8 \cdot 10^{-6} \) | \(a_{923}= -0.11973417 \pm 2.9 \cdot 10^{-6} \) | \(a_{924}= -0.09474740 \pm 3.5 \cdot 10^{-6} \) |
\(a_{925}= +0.16164105 \pm 2.3 \cdot 10^{-6} \) | \(a_{926}= +1.66510073 \pm 4.0 \cdot 10^{-6} \) | \(a_{927}= +0.08207463 \pm 3.2 \cdot 10^{-6} \) |
\(a_{928}= +0.88458944 \pm 3.1 \cdot 10^{-6} \) | \(a_{929}= +1.48667395 \pm 2.9 \cdot 10^{-6} \) | \(a_{930}= -0.44796817 \pm 1.0 \cdot 10^{-5} \) |
\(a_{931}= -0.29043533 \pm 2.3 \cdot 10^{-6} \) | \(a_{932}= -0.36658053 \pm 4.3 \cdot 10^{-6} \) | \(a_{933}= -1.30554294 \pm 2.2 \cdot 10^{-6} \) |
\(a_{934}= +0.05885224 \pm 3.7 \cdot 10^{-6} \) | \(a_{935}= -0.05707118 \pm 2.0 \cdot 10^{-6} \) | \(a_{936}= -2.27436973 \pm 3.3 \cdot 10^{-6} \) |
\(a_{937}= -1.41286325 \pm 3.0 \cdot 10^{-6} \) | \(a_{938}= -0.05212455 \pm 2.7 \cdot 10^{-6} \) | \(a_{939}= -2.63123843 \pm 3.5 \cdot 10^{-6} \) |
\(a_{940}= -4.34815840 \pm 4.0 \cdot 10^{-6} \) | \(a_{941}= -0.38790715 \pm 2.9 \cdot 10^{-6} \) | \(a_{942}= -2.38209417 \pm 3.8 \cdot 10^{-6} \) |
\(a_{943}= +1.47290023 \pm 2.6 \cdot 10^{-6} \) | \(a_{944}= +0.45465533 \pm 3.6 \cdot 10^{-6} \) | \(a_{945}= -0.07146866 \pm 2.9 \cdot 10^{-6} \) |
\(a_{946}= +0.10916993 \pm 2.9 \cdot 10^{-6} \) | \(a_{947}= +0.43828115 \pm 3.1 \cdot 10^{-6} \) | \(a_{948}= -6.56893451 \pm 5.6 \cdot 10^{-6} \) |
\(a_{949}= +0.51267487 \pm 3.1 \cdot 10^{-6} \) | \(a_{950}= +0.14924493 \pm 4.7 \cdot 10^{-6} \) | \(a_{951}= +0.10698678 \pm 3.0 \cdot 10^{-6} \) |
\(a_{952}= -1.13599279 \pm 2.2 \cdot 10^{-6} \) | \(a_{953}= +0.28624967 \pm 3.5 \cdot 10^{-6} \) | \(a_{954}= +1.61616832 \pm 4.6 \cdot 10^{-6} \) |
\(a_{955}= -0.39041915 \pm 3.4 \cdot 10^{-6} \) | \(a_{956}= +1.74649038 \pm 3.8 \cdot 10^{-6} \) | \(a_{957}= -0.02175857 \pm 3.8 \cdot 10^{-6} \) |
\(a_{958}= -1.06714032 \pm 4.2 \cdot 10^{-6} \) | \(a_{959}= -0.38396039 \pm 3.1 \cdot 10^{-6} \) | \(a_{960}= +5.13101513 \pm 4.7 \cdot 10^{-6} \) |
\(a_{961}= +0.03225806 \pm 1.7 \cdot 10^{-6} \) | \(a_{962}= +0.77296240 \pm 3.1 \cdot 10^{-6} \) | \(a_{963}= +0.38178569 \pm 2.5 \cdot 10^{-6} \) |
\(a_{964}= -0.47654132 \pm 2.4 \cdot 10^{-6} \) | \(a_{965}= +0.64443740 \pm 2.6 \cdot 10^{-6} \) | \(a_{966}= -0.79392350 \pm 2.1 \cdot 10^{-6} \) |
\(a_{967}= +0.81534030 \pm 2.8 \cdot 10^{-6} \) | \(a_{968}= +3.38781786 \pm 4.1 \cdot 10^{-6} \) | \(a_{969}= +0.46775961 \pm 2.4 \cdot 10^{-6} \) |
\(a_{970}= +2.58015723 \pm 3.3 \cdot 10^{-6} \) | \(a_{971}= -1.68849984 \pm 3.1 \cdot 10^{-6} \) | \(a_{972}= +3.94670270 \pm 4.4 \cdot 10^{-6} \) |
\(a_{973}= -0.38665069 \pm 2.4 \cdot 10^{-6} \) | \(a_{974}= -1.45848083 \pm 4.3 \cdot 10^{-6} \) | \(a_{975}= +0.19754888 \pm 2.1 \cdot 10^{-6} \) |
\(a_{976}= -5.77369190 \pm 5.0 \cdot 10^{-6} \) | \(a_{977}= -1.22890192 \pm 3.5 \cdot 10^{-6} \) | \(a_{978}= -0.68161464 \pm 3.9 \cdot 10^{-6} \) |
\(a_{979}= -0.07946121 \pm 2.8 \cdot 10^{-6} \) | \(a_{980}= +2.12409797 \pm 3.3 \cdot 10^{-6} \) | \(a_{981}= -0.18797968 \pm 3.2 \cdot 10^{-6} \) |
\(a_{982}= +1.85991432 \pm 2.9 \cdot 10^{-6} \) | \(a_{983}= +0.56629368 \pm 2.3 \cdot 10^{-6} \) | \(a_{984}= +9.14930060 \pm 7.2 \cdot 10^{-6} \) |
\(a_{985}= -0.69410497 \pm 2.3 \cdot 10^{-6} \) | \(a_{986}= -0.40943715 \pm 3.8 \cdot 10^{-6} \) | \(a_{987}= +0.91658429 \pm 2.8 \cdot 10^{-6} \) |
\(a_{988}= +0.52367614 \pm 3.1 \cdot 10^{-6} \) | \(a_{989}= +0.67122922 \pm 2.3 \cdot 10^{-6} \) | \(a_{990}= -0.13308206 \pm 2.5 \cdot 10^{-6} \) |
\(a_{991}= +1.24474882 \pm 2.9 \cdot 10^{-6} \) | \(a_{992}= -0.72533225 \pm 4.0 \cdot 10^{-6} \) | \(a_{993}= -0.06839464 \pm 3.4 \cdot 10^{-6} \) |
\(a_{994}= -0.13945539 \pm 2.8 \cdot 10^{-6} \) | \(a_{995}= +0.35075121 \pm 2.7 \cdot 10^{-6} \) | \(a_{996}= +2.01119405 \pm 4.5 \cdot 10^{-6} \) |
\(a_{997}= -0.08548668 \pm 3.1 \cdot 10^{-6} \) | \(a_{998}= -1.50294631 \pm 3.8 \cdot 10^{-6} \) | \(a_{999}= +0.16335354 \pm 2.1 \cdot 10^{-6} \) |
\(a_{1000}= -3.67532521 \pm 4.6 \cdot 10^{-6} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000