Maass form invariants
Level: | \( 31 \) |
Weight: | \( 0 \) |
Character: | 31.1 |
Symmetry: | even |
Fricke sign: | $+1$ |
Spectral parameter: | \(1.75464284976951069759948431403 \pm 3 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +0.15913305 \pm 1.4 \cdot 10^{-8} \) | \(a_{3}= -0.34768590 \pm 1.3 \cdot 10^{-8} \) |
\(a_{4}= -0.97467667 \pm 1.4 \cdot 10^{-8} \) | \(a_{5}= +1.76902824 \pm 1.2 \cdot 10^{-8} \) | \(a_{6}= -0.05532832 \pm 1.4 \cdot 10^{-8} \) |
\(a_{7}= +0.71657374 \pm 1.2 \cdot 10^{-8} \) | \(a_{8}= -0.31423631 \pm 1.4 \cdot 10^{-8} \) | \(a_{9}= -0.87911452 \pm 1.2 \cdot 10^{-8} \) |
\(a_{10}= +0.28151085 \pm 1.2 \cdot 10^{-8} \) | \(a_{11}= +1.27166694 \pm 1.2 \cdot 10^{-8} \) | \(a_{12}= +0.33888133 \pm 1.3 \cdot 10^{-8} \) |
\(a_{13}= -0.55465629 \pm 1.0 \cdot 10^{-8} \) | \(a_{14}= +0.11403056 \pm 1.7 \cdot 10^{-8} \) | \(a_{15}= -0.61506617 \pm 1.3 \cdot 10^{-8} \) |
\(a_{16}= +0.92467129 \pm 1.5 \cdot 10^{-8} \) | \(a_{17}= -1.31842654 \pm 1.1 \cdot 10^{-8} \) | \(a_{18}= -0.13989617 \pm 1.1 \cdot 10^{-8} \) |
\(a_{19}= +0.30625787 \pm 1.1 \cdot 10^{-8} \) | \(a_{20}= -1.72423056 \pm 1.2 \cdot 10^{-8} \) | \(a_{21}= -0.24914258 \pm 1.2 \cdot 10^{-8} \) |
\(a_{22}= +0.20236423 \pm 1.5 \cdot 10^{-8} \) | \(a_{23}= +0.03520067 \pm 1.0 \cdot 10^{-8} \) | \(a_{24}= +0.10925553 \pm 1.5 \cdot 10^{-8} \) |
\(a_{25}= +2.12946090 \pm 1.3 \cdot 10^{-8} \) | \(a_{26}= -0.08826415 \pm 1.1 \cdot 10^{-8} \) | \(a_{27}= +0.65334162 \pm 1.3 \cdot 10^{-8} \) |
\(a_{28}= -0.69842771 \pm 1.8 \cdot 10^{-8} \) | \(a_{29}= -0.42156472 \pm 1.2 \cdot 10^{-8} \) | \(a_{30}= -0.09787735 \pm 1.3 \cdot 10^{-8} \) |
\(a_{31}= -0.17960530 \pm 1.0 \cdot 10^{-8} \) | \(a_{32}= +0.46138207 \pm 1.4 \cdot 10^{-8} \) | \(a_{33}= -0.44214066 \pm 1.4 \cdot 10^{-8} \) |
\(a_{34}= -0.20980523 \pm 1.2 \cdot 10^{-8} \) | \(a_{35}= +1.26763918 \pm 1.3 \cdot 10^{-8} \) | \(a_{36}= +0.85685241 \pm 1.1 \cdot 10^{-8} \) |
\(a_{37}= +0.24319054 \pm 1.2 \cdot 10^{-8} \) | \(a_{38}= +0.04873575 \pm 1.4 \cdot 10^{-8} \) | \(a_{39}= +0.19284617 \pm 1.2 \cdot 10^{-8} \) |
\(a_{40}= -0.55589291 \pm 1.1 \cdot 10^{-8} \) | \(a_{41}= +0.72180000 \pm 1 \cdot 10^{-8} \) | \(a_{42}= -0.03964682 \pm 1.6 \cdot 10^{-8} \) |
\(a_{43}= -0.14271416 \pm 1.2 \cdot 10^{-8} \) | \(a_{44}= -1.23946411 \pm 1.5 \cdot 10^{-8} \) | \(a_{45}= -1.55517840 \pm 1.3 \cdot 10^{-8} \) |
\(a_{46}= +0.00560159 \pm 1.2 \cdot 10^{-8} \) | \(a_{47}= -0.89737877 \pm 1.1 \cdot 10^{-8} \) | \(a_{48}= -0.32149517 \pm 1.3 \cdot 10^{-8} \) |
\(a_{49}= -0.48652208 \pm 1.1 \cdot 10^{-8} \) | \(a_{50}= +0.33886760 \pm 1.2 \cdot 10^{-8} \) | \(a_{51}= +0.45839831 \pm 1.1 \cdot 10^{-8} \) |
\(a_{52}= +0.54061055 \pm 1.1 \cdot 10^{-8} \) | \(a_{53}= -1.48016361 \pm 1.2 \cdot 10^{-8} \) | \(a_{54}= +0.10396824 \pm 1.4 \cdot 10^{-8} \) |
\(a_{55}= +2.24961473 \pm 1.3 \cdot 10^{-8} \) | \(a_{56}= -0.22517349 \pm 1.8 \cdot 10^{-8} \) | \(a_{57}= -0.10648154 \pm 1.0 \cdot 10^{-8} \) |
\(a_{58}= -0.06708488 \pm 1.4 \cdot 10^{-8} \) | \(a_{59}= +1.12464637 \pm 1.0 \cdot 10^{-8} \) | \(a_{60}= +0.59949065 \pm 1.2 \cdot 10^{-8} \) |
\(a_{61}= -0.45892033 \pm 1.1 \cdot 10^{-8} \) | \(a_{62}= -0.02858114 \pm 2.5 \cdot 10^{-8} \) | \(a_{63}= -0.62995038 \pm 1 \cdot 10^{-8} \) |
\(a_{64}= -0.85125016 \pm 1.5 \cdot 10^{-8} \) | \(a_{65}= -0.98120264 \pm 1 \cdot 10^{-8} \) | \(a_{66}= -0.07035919 \pm 1.6 \cdot 10^{-8} \) |
\(a_{67}= +0.60385692 \pm 1.1 \cdot 10^{-8} \) | \(a_{68}= +1.28503959 \pm 1.3 \cdot 10^{-8} \) | \(a_{69}= -0.01223878 \pm 1.2 \cdot 10^{-8} \) |
\(a_{70}= +0.20172328 \pm 1.4 \cdot 10^{-8} \) | \(a_{71}= +0.68300295 \pm 1.1 \cdot 10^{-8} \) | \(a_{72}= +0.27624971 \pm 1.2 \cdot 10^{-8} \) |
\(a_{73}= +0.43727653 \pm 1.0 \cdot 10^{-8} \) | \(a_{74}= +0.03869965 \pm 1.3 \cdot 10^{-8} \) | \(a_{75}= -0.74038352 \pm 1.3 \cdot 10^{-8} \) |
\(a_{76}= -0.29850240 \pm 1.3 \cdot 10^{-8} \) | \(a_{77}= +0.91124314 \pm 1.2 \cdot 10^{-8} \) | \(a_{78}= +0.03068820 \pm 1.2 \cdot 10^{-8} \) |
\(a_{79}= -0.04260624 \pm 1.0 \cdot 10^{-8} \) | \(a_{80}= +1.63576962 \pm 1.2 \cdot 10^{-8} \) | \(a_{81}= +0.65195685 \pm 1.2 \cdot 10^{-8} \) |
\(a_{82}= +0.11486223 \pm 1.2 \cdot 10^{-8} \) | \(a_{83}= -1.78822887 \pm 1.0 \cdot 10^{-8} \) | \(a_{84}= +0.24283347 \pm 1.7 \cdot 10^{-8} \) |
\(a_{85}= -2.33233377 \pm 1.3 \cdot 10^{-8} \) | \(a_{86}= -0.02271054 \pm 1.7 \cdot 10^{-8} \) | \(a_{87}= +0.14657211 \pm 1.2 \cdot 10^{-8} \) |
\(a_{88}= -0.39960393 \pm 1.4 \cdot 10^{-8} \) | \(a_{89}= -0.25340908 \pm 1.3 \cdot 10^{-8} \) | \(a_{90}= -0.24748028 \pm 1.0 \cdot 10^{-8} \) |
\(a_{91}= -0.39745213 \pm 1 \cdot 10^{-8} \) | \(a_{92}= -0.03430927 \pm 1.2 \cdot 10^{-8} \) | \(a_{93}= +0.06244623 \pm 2.3 \cdot 10^{-8} \) |
\(a_{94}= -0.14280262 \pm 1.2 \cdot 10^{-8} \) | \(a_{95}= +0.54177882 \pm 1 \cdot 10^{-8} \) | \(a_{96}= -0.16041604 \pm 1.2 \cdot 10^{-8} \) |
\(a_{97}= +0.56644601 \pm 1.1 \cdot 10^{-8} \) | \(a_{98}= -0.07742174 \pm 1.4 \cdot 10^{-8} \) | \(a_{99}= -1.11794087 \pm 1.3 \cdot 10^{-8} \) |
\(a_{100}= -2.07553586 \pm 1.5 \cdot 10^{-8} \) | \(a_{101}= +1.41770359 \pm 1.3 \cdot 10^{-8} \) | \(a_{102}= +0.07294632 \pm 1.1 \cdot 10^{-8} \) |
\(a_{103}= +1.10779427 \pm 1.1 \cdot 10^{-8} \) | \(a_{104}= +0.17429315 \pm 1.2 \cdot 10^{-8} \) | \(a_{105}= -0.44074027 \pm 1.4 \cdot 10^{-8} \) |
\(a_{106}= -0.23554294 \pm 1.3 \cdot 10^{-8} \) | \(a_{107}= +0.66167885 \pm 1.2 \cdot 10^{-8} \) | \(a_{108}= -0.63679683 \pm 1.3 \cdot 10^{-8} \) |
\(a_{109}= +1.24846502 \pm 1.1 \cdot 10^{-8} \) | \(a_{110}= +0.35798804 \pm 1.1 \cdot 10^{-8} \) | \(a_{111}= -0.08455392 \pm 1.4 \cdot 10^{-8} \) |
\(a_{112}= +0.66259517 \pm 1.8 \cdot 10^{-8} \) | \(a_{113}= -1.65330703 \pm 1.2 \cdot 10^{-8} \) | \(a_{114}= -0.01694473 \pm 1.3 \cdot 10^{-8} \) |
\(a_{115}= +0.06227098 \pm 1.1 \cdot 10^{-8} \) | \(a_{116}= +0.41088930 \pm 1.3 \cdot 10^{-8} \) | \(a_{117}= +0.48760640 \pm 1.4 \cdot 10^{-8} \) |
\(a_{118}= +0.17896840 \pm 1.1 \cdot 10^{-8} \) | \(a_{119}= -0.94474984 \pm 1.1 \cdot 10^{-8} \) | \(a_{120}= +0.19327613 \pm 1.4 \cdot 10^{-8} \) |
\(a_{121}= +0.61713681 \pm 1.1 \cdot 10^{-8} \) | \(a_{122}= -0.07302939 \pm 1.2 \cdot 10^{-8} \) | \(a_{123}= -0.25095968 \pm 1 \cdot 10^{-8} \) |
\(a_{124}= +0.17505710 \pm 2.5 \cdot 10^{-8} \) | \(a_{125}= +1.99804822 \pm 1.2 \cdot 10^{-8} \) | \(a_{126}= -0.10024592 \pm 1 \cdot 10^{-8} \) |
\(a_{127}= +0.33191517 \pm 1.1 \cdot 10^{-8} \) | \(a_{128}= -0.59684410 \pm 1.5 \cdot 10^{-8} \) | \(a_{129}= +0.04961970 \pm 1.2 \cdot 10^{-8} \) |
\(a_{130}= -0.15614177 \pm 1.0 \cdot 10^{-8} \) | \(a_{131}= -1.12321716 \pm 1.2 \cdot 10^{-8} \) | \(a_{132}= +0.43094419 \pm 1.6 \cdot 10^{-8} \) |
\(a_{133}= +0.21945635 \pm 1.2 \cdot 10^{-8} \) | \(a_{134}= +0.09609359 \pm 1.4 \cdot 10^{-8} \) | \(a_{135}= +1.15577977 \pm 1.1 \cdot 10^{-8} \) |
\(a_{136}= +0.41429750 \pm 1.2 \cdot 10^{-8} \) | \(a_{137}= -0.23363737 \pm 1.1 \cdot 10^{-8} \) | \(a_{138}= -0.00194759 \pm 1.4 \cdot 10^{-8} \) |
\(a_{139}= +0.67337378 \pm 1.3 \cdot 10^{-8} \) | \(a_{140}= -1.23553834 \pm 1.5 \cdot 10^{-8} \) | \(a_{141}= +0.31200594 \pm 1.1 \cdot 10^{-8} \) |
\(a_{142}= +0.10868834 \pm 1.4 \cdot 10^{-8} \) | \(a_{143}= -0.70533807 \pm 1.0 \cdot 10^{-8} \) | \(a_{144}= -0.81289196 \pm 1.0 \cdot 10^{-8} \) |
\(a_{145}= -0.74575989 \pm 1.0 \cdot 10^{-8} \) | \(a_{146}= +0.06958515 \pm 1.1 \cdot 10^{-8} \) | \(a_{147}= +0.16915686 \pm 1.2 \cdot 10^{-8} \) |
\(a_{148}= -0.23703214 \pm 1.3 \cdot 10^{-8} \) | \(a_{149}= -0.38134404 \pm 1.2 \cdot 10^{-8} \) | \(a_{150}= -0.11781949 \pm 1.3 \cdot 10^{-8} \) |
\(a_{151}= -0.04568853 \pm 1.0 \cdot 10^{-8} \) | \(a_{152}= -0.09623734 \pm 1.0 \cdot 10^{-8} \) | \(a_{153}= +1.15904791 \pm 1.1 \cdot 10^{-8} \) |
\(a_{154}= +0.14500890 \pm 1.8 \cdot 10^{-8} \) | \(a_{155}= -0.31772685 \pm 2.3 \cdot 10^{-8} \) | \(a_{156}= -0.18796266 \pm 1.1 \cdot 10^{-8} \) |
\(a_{157}= -1.31309614 \pm 1.1 \cdot 10^{-8} \) | \(a_{158}= -0.00678006 \pm 1.2 \cdot 10^{-8} \) | \(a_{159}= +0.51463201 \pm 1.3 \cdot 10^{-8} \) |
\(a_{160}= +0.81619791 \pm 1 \cdot 10^{-8} \) | \(a_{161}= +0.02522387 \pm 1.2 \cdot 10^{-8} \) | \(a_{162}= +0.10374788 \pm 1.3 \cdot 10^{-8} \) |
\(a_{163}= -0.30820887 \pm 1.2 \cdot 10^{-8} \) | \(a_{164}= -0.70352162 \pm 1.2 \cdot 10^{-8} \) | \(a_{165}= -0.78215932 \pm 1.3 \cdot 10^{-8} \) |
\(a_{166}= -0.28456631 \pm 1 \cdot 10^{-8} \) | \(a_{167}= -1.67933108 \pm 1.3 \cdot 10^{-8} \) | \(a_{168}= +0.07828965 \pm 1.8 \cdot 10^{-8} \) |
\(a_{169}= -0.69235640 \pm 1.0 \cdot 10^{-8} \) | \(a_{170}= -0.37115138 \pm 1.1 \cdot 10^{-8} \) | \(a_{171}= -0.26923574 \pm 1 \cdot 10^{-8} \) |
\(a_{172}= +0.13910016 \pm 1.4 \cdot 10^{-8} \) | \(a_{173}= +0.37792427 \pm 1.0 \cdot 10^{-8} \) | \(a_{174}= +0.02332447 \pm 1.4 \cdot 10^{-8} \) |
\(a_{175}= +1.52591576 \pm 1.2 \cdot 10^{-8} \) | \(a_{176}= +1.17587392 \pm 1.2 \cdot 10^{-8} \) | \(a_{177}= -0.39102368 \pm 1 \cdot 10^{-8} \) |
\(a_{178}= -0.04032576 \pm 1.7 \cdot 10^{-8} \) | \(a_{179}= +1.35488425 \pm 1.3 \cdot 10^{-8} \) | \(a_{180}= +1.51579611 \pm 1.1 \cdot 10^{-8} \) |
\(a_{181}= +0.16435473 \pm 1.1 \cdot 10^{-8} \) | \(a_{182}= -0.06324777 \pm 1.1 \cdot 10^{-8} \) | \(a_{183}= +0.15956013 \pm 1.3 \cdot 10^{-8} \) |
\(a_{184}= -0.01106133 \pm 1.2 \cdot 10^{-8} \) | \(a_{185}= +0.43021093 \pm 1.0 \cdot 10^{-8} \) | \(a_{186}= +0.00993726 \pm 3.8 \cdot 10^{-8} \) |
\(a_{187}= -1.67659945 \pm 1.1 \cdot 10^{-8} \) | \(a_{188}= +0.87465415 \pm 1.2 \cdot 10^{-8} \) | \(a_{189}= +0.46816745 \pm 1.1 \cdot 10^{-8} \) |
\(a_{190}= +0.08621491 \pm 1.1 \cdot 10^{-8} \) | \(a_{191}= -0.75376755 \pm 1.2 \cdot 10^{-8} \) | \(a_{192}= +0.29596768 \pm 1.4 \cdot 10^{-8} \) |
\(a_{193}= +1.79220277 \pm 1.4 \cdot 10^{-8} \) | \(a_{194}= +0.09014028 \pm 1.4 \cdot 10^{-8} \) | \(a_{195}= +0.34115032 \pm 1.0 \cdot 10^{-8} \) |
\(a_{196}= +0.47420172 \pm 1.6 \cdot 10^{-8} \) | \(a_{197}= -1.64762262 \pm 1.1 \cdot 10^{-8} \) | \(a_{198}= -0.17790134 \pm 1.1 \cdot 10^{-8} \) |
\(a_{199}= -0.43682872 \pm 1.3 \cdot 10^{-8} \) | \(a_{200}= -0.66915394 \pm 1.3 \cdot 10^{-8} \) | \(a_{201}= -0.20995254 \pm 1 \cdot 10^{-8} \) |
\(a_{202}= +0.22560349 \pm 1.7 \cdot 10^{-8} \) | \(a_{203}= -0.30208221 \pm 1.2 \cdot 10^{-8} \) | \(a_{204}= -0.44679014 \pm 1.1 \cdot 10^{-8} \) |
\(a_{205}= +1.27688458 \pm 1.0 \cdot 10^{-8} \) | \(a_{206}= +0.17628668 \pm 1.3 \cdot 10^{-8} \) | \(a_{207}= -0.03094542 \pm 1 \cdot 10^{-8} \) |
\(a_{208}= -0.51287475 \pm 1.2 \cdot 10^{-8} \) | \(a_{209}= +0.38945801 \pm 1 \cdot 10^{-8} \) | \(a_{210}= -0.07013634 \pm 1.6 \cdot 10^{-8} \) |
\(a_{211}= -0.49132989 \pm 1.0 \cdot 10^{-8} \) | \(a_{212}= +1.44268094 \pm 1.5 \cdot 10^{-8} \) | \(a_{213}= -0.23747049 \pm 1.3 \cdot 10^{-8} \) |
\(a_{214}= +0.10529497 \pm 1.1 \cdot 10^{-8} \) | \(a_{215}= -0.25246538 \pm 1.0 \cdot 10^{-8} \) | \(a_{216}= -0.20530366 \pm 1.5 \cdot 10^{-8} \) |
\(a_{217}= -0.12870044 \pm 2.3 \cdot 10^{-8} \) | \(a_{218}= +0.19867204 \pm 1.4 \cdot 10^{-8} \) | \(a_{219}= -0.15203488 \pm 1.0 \cdot 10^{-8} \) |
\(a_{220}= -2.19264700 \pm 1.2 \cdot 10^{-8} \) | \(a_{221}= +0.73127358 \pm 1 \cdot 10^{-8} \) | \(a_{222}= -0.01345532 \pm 1.3 \cdot 10^{-8} \) |
\(a_{223}= +1.55880177 \pm 1.3 \cdot 10^{-8} \) | \(a_{224}= +0.33061428 \pm 1.7 \cdot 10^{-8} \) | \(a_{225}= -1.87203999 \pm 1.3 \cdot 10^{-8} \) |
\(a_{226}= -0.26309578 \pm 1.4 \cdot 10^{-8} \) | \(a_{227}= +0.01500010 \pm 1.3 \cdot 10^{-8} \) | \(a_{228}= +0.10378508 \pm 1.1 \cdot 10^{-8} \) |
\(a_{229}= +1.70279217 \pm 1.3 \cdot 10^{-8} \) | \(a_{230}= +0.00990937 \pm 1.2 \cdot 10^{-8} \) | \(a_{231}= -0.31682639 \pm 1.3 \cdot 10^{-8} \) |
\(a_{232}= +0.13247094 \pm 1.1 \cdot 10^{-8} \) | \(a_{233}= -0.86041996 \pm 1.3 \cdot 10^{-8} \) | \(a_{234}= +0.07759429 \pm 1.1 \cdot 10^{-8} \) |
\(a_{235}= -1.58748838 \pm 1.1 \cdot 10^{-8} \) | \(a_{236}= -1.09616659 \pm 1.2 \cdot 10^{-8} \) | \(a_{237}= +0.01481359 \pm 1.1 \cdot 10^{-8} \) |
\(a_{238}= -0.15034092 \pm 1.4 \cdot 10^{-8} \) | \(a_{239}= +0.11987319 \pm 1 \cdot 10^{-8} \) | \(a_{240}= -0.56873403 \pm 1.2 \cdot 10^{-8} \) |
\(a_{241}= -0.44284148 \pm 1.3 \cdot 10^{-8} \) | \(a_{242}= +0.09820686 \pm 1.7 \cdot 10^{-8} \) | \(a_{243}= -0.88001782 \pm 1 \cdot 10^{-8} \) |
\(a_{244}= +0.44729894 \pm 1 \cdot 10^{-8} \) | \(a_{245}= -0.86067129 \pm 1.1 \cdot 10^{-8} \) | \(a_{246}= -0.03993598 \pm 1.1 \cdot 10^{-8} \) |
\(a_{247}= -0.16986786 \pm 1 \cdot 10^{-8} \) | \(a_{248}= +0.05643851 \pm 2.4 \cdot 10^{-8} \) | \(a_{249}= +0.62174196 \pm 1 \cdot 10^{-8} \) |
\(a_{250}= +0.31795550 \pm 1.1 \cdot 10^{-8} \) | \(a_{251}= +0.96024287 \pm 1.4 \cdot 10^{-8} \) | \(a_{252}= +0.61399794 \pm 1 \cdot 10^{-8} \) |
\(a_{253}= +0.04476353 \pm 1.1 \cdot 10^{-8} \) | \(a_{254}= +0.05281867 \pm 1.3 \cdot 10^{-8} \) | \(a_{255}= +0.81091956 \pm 1.2 \cdot 10^{-8} \) |
\(a_{256}= +0.75627254 \pm 1.6 \cdot 10^{-8} \) | \(a_{257}= +0.60897566 \pm 1.2 \cdot 10^{-8} \) | \(a_{258}= +0.00789613 \pm 1.6 \cdot 10^{-8} \) |
\(a_{259}= +0.17426395 \pm 1 \cdot 10^{-8} \) | \(a_{260}= +0.95635533 \pm 1.0 \cdot 10^{-8} \) | \(a_{261}= +0.37060366 \pm 1.1 \cdot 10^{-8} \) |
\(a_{262}= -0.17874097 \pm 1.3 \cdot 10^{-8} \) | \(a_{263}= +0.27571101 \pm 1.1 \cdot 10^{-8} \) | \(a_{264}= +0.13893665 \pm 1.7 \cdot 10^{-8} \) |
\(a_{265}= -2.61845121 \pm 1.5 \cdot 10^{-8} \) | \(a_{266}= +0.03492276 \pm 1.6 \cdot 10^{-8} \) | \(a_{267}= +0.08810676 \pm 1.3 \cdot 10^{-8} \) |
\(a_{268}= -0.58856525 \pm 1.4 \cdot 10^{-8} \) | \(a_{269}= +0.62377924 \pm 1.3 \cdot 10^{-8} \) | \(a_{270}= +0.18392276 \pm 1.1 \cdot 10^{-8} \) |
\(a_{271}= +1.26535359 \pm 1.2 \cdot 10^{-8} \) | \(a_{272}= -1.21911117 \pm 1.3 \cdot 10^{-8} \) | \(a_{273}= +0.13818850 \pm 1 \cdot 10^{-8} \) |
\(a_{274}= -0.03717943 \pm 1.4 \cdot 10^{-8} \) | \(a_{275}= +2.70796503 \pm 1.5 \cdot 10^{-8} \) | \(a_{276}= +0.01192885 \pm 1.4 \cdot 10^{-8} \) |
\(a_{277}= -1.89398219 \pm 1.1 \cdot 10^{-8} \) | \(a_{278}= +0.10715602 \pm 1.8 \cdot 10^{-8} \) | \(a_{279}= +0.15789363 \pm 2.3 \cdot 10^{-8} \) |
\(a_{280}= -0.39833826 \pm 1.5 \cdot 10^{-8} \) | \(a_{281}= +0.03899387 \pm 1.1 \cdot 10^{-8} \) | \(a_{282}= +0.04965046 \pm 1.2 \cdot 10^{-8} \) |
\(a_{283}= +0.21391768 \pm 1.3 \cdot 10^{-8} \) | \(a_{284}= -0.66570704 \pm 1.2 \cdot 10^{-8} \) | \(a_{285}= -0.18836886 \pm 1.0 \cdot 10^{-8} \) |
\(a_{286}= -0.11224260 \pm 1.0 \cdot 10^{-8} \) | \(a_{287}= +0.51722292 \pm 1.0 \cdot 10^{-8} \) | \(a_{288}= -0.40560768 \pm 1.1 \cdot 10^{-8} \) |
\(a_{289}= +0.73824854 \pm 1 \cdot 10^{-8} \) | \(a_{290}= -0.11867504 \pm 1.0 \cdot 10^{-8} \) | \(a_{291}= -0.19694529 \pm 1.1 \cdot 10^{-8} \) |
\(a_{292}= -0.42620323 \pm 1.1 \cdot 10^{-8} \) | \(a_{293}= +0.20911833 \pm 1.4 \cdot 10^{-8} \) | \(a_{294}= +0.02691845 \pm 1.5 \cdot 10^{-8} \) |
\(a_{295}= +1.98953119 \pm 1.1 \cdot 10^{-8} \) | \(a_{296}= -0.07641930 \pm 1.2 \cdot 10^{-8} \) | \(a_{297}= +0.83083294 \pm 1.3 \cdot 10^{-8} \) |
\(a_{298}= -0.06068444 \pm 1.5 \cdot 10^{-8} \) | \(a_{299}= -0.01952427 \pm 1 \cdot 10^{-8} \) | \(a_{300}= +0.72163455 \pm 1.2 \cdot 10^{-8} \) |
\(a_{301}= -0.10226522 \pm 1.3 \cdot 10^{-8} \) | \(a_{302}= -0.00727055 \pm 1.3 \cdot 10^{-8} \) | \(a_{303}= -0.49291554 \pm 1.2 \cdot 10^{-8} \) |
\(a_{304}= +0.28318786 \pm 1.4 \cdot 10^{-8} \) | \(a_{305}= -0.81184302 \pm 1.0 \cdot 10^{-8} \) | \(a_{306}= +0.18444282 \pm 1 \cdot 10^{-8} \) |
\(a_{307}= -0.77952106 \pm 1 \cdot 10^{-8} \) | \(a_{308}= -0.88816743 \pm 2.0 \cdot 10^{-8} \) | \(a_{309}= -0.38516444 \pm 1.0 \cdot 10^{-8} \) |
\(a_{310}= -0.05056084 \pm 3.7 \cdot 10^{-8} \) | \(a_{311}= +1.33586127 \pm 1.2 \cdot 10^{-8} \) | \(a_{312}= -0.06059927 \pm 1.4 \cdot 10^{-8} \) |
\(a_{313}= +1.26364040 \pm 1.2 \cdot 10^{-8} \) | \(a_{314}= -0.20895699 \pm 1.0 \cdot 10^{-8} \) | \(a_{315}= -1.11440000 \pm 1.1 \cdot 10^{-8} \) |
\(a_{316}= +0.04152731 \pm 1.1 \cdot 10^{-8} \) | \(a_{317}= -0.34305146 \pm 1.1 \cdot 10^{-8} \) | \(a_{318}= +0.08189496 \pm 1.5 \cdot 10^{-8} \) |
\(a_{319}= -0.53608991 \pm 1.2 \cdot 10^{-8} \) | \(a_{320}= -1.50588556 \pm 1.1 \cdot 10^{-8} \) | \(a_{321}= -0.23005641 \pm 1.4 \cdot 10^{-8} \) |
\(a_{322}= +0.00401395 \pm 1.6 \cdot 10^{-8} \) | \(a_{323}= -0.40377851 \pm 1 \cdot 10^{-8} \) | \(a_{324}= -0.63544713 \pm 1.2 \cdot 10^{-8} \) |
\(a_{325}= -1.18111889 \pm 1 \cdot 10^{-8} \) | \(a_{326}= -0.04904622 \pm 1.2 \cdot 10^{-8} \) | \(a_{327}= -0.43407368 \pm 1.2 \cdot 10^{-8} \) |
\(a_{328}= -0.22681577 \pm 1.2 \cdot 10^{-8} \) | \(a_{329}= -0.64303806 \pm 1.1 \cdot 10^{-8} \) | \(a_{330}= -0.12446739 \pm 1.4 \cdot 10^{-8} \) |
\(a_{331}= -0.64176676 \pm 1.1 \cdot 10^{-8} \) | \(a_{332}= +1.74294497 \pm 1.0 \cdot 10^{-8} \) | \(a_{333}= -0.21379233 \pm 1.6 \cdot 10^{-8} \) |
\(a_{334}= -0.26723707 \pm 1.2 \cdot 10^{-8} \) | \(a_{335}= +1.06823994 \pm 1 \cdot 10^{-8} \) | \(a_{336}= -0.23037499 \pm 1.5 \cdot 10^{-8} \) |
\(a_{337}= -0.92450432 \pm 1.5 \cdot 10^{-8} \) | \(a_{338}= -0.11017678 \pm 1.2 \cdot 10^{-8} \) | \(a_{339}= +0.57483154 \pm 1.1 \cdot 10^{-8} \) |
\(a_{340}= +2.27327132 \pm 1.4 \cdot 10^{-8} \) | \(a_{341}= -0.22839813 \pm 2.3 \cdot 10^{-8} \) | \(a_{342}= -0.04284430 \pm 1 \cdot 10^{-8} \) |
\(a_{343}= -1.06520268 \pm 1.0 \cdot 10^{-8} \) | \(a_{344}= +0.04484597 \pm 1.3 \cdot 10^{-8} \) | \(a_{345}= -0.02165074 \pm 1.4 \cdot 10^{-8} \) |
\(a_{346}= +0.06014024 \pm 1.0 \cdot 10^{-8} \) | \(a_{347}= +0.96458247 \pm 1.0 \cdot 10^{-8} \) | \(a_{348}= -0.14286041 \pm 1.3 \cdot 10^{-8} \) |
\(a_{349}= -0.28715228 \pm 1 \cdot 10^{-8} \) | \(a_{350}= +0.24282362 \pm 1.4 \cdot 10^{-8} \) | \(a_{351}= -0.36238004 \pm 1.4 \cdot 10^{-8} \) |
\(a_{352}= +0.58672433 \pm 1 \cdot 10^{-8} \) | \(a_{353}= +0.78593000 \pm 1.2 \cdot 10^{-8} \) | \(a_{354}= -0.06222479 \pm 1.1 \cdot 10^{-8} \) |
\(a_{355}= +1.20825150 \pm 1.1 \cdot 10^{-8} \) | \(a_{356}= +0.24699192 \pm 1.8 \cdot 10^{-8} \) | \(a_{357}= +0.32847619 \pm 1.0 \cdot 10^{-8} \) |
\(a_{358}= +0.21560686 \pm 1.5 \cdot 10^{-8} \) | \(a_{359}= -1.04766578 \pm 1.1 \cdot 10^{-8} \) | \(a_{360}= +0.48869353 \pm 1.1 \cdot 10^{-8} \) |
\(a_{361}= -0.90620612 \pm 1.1 \cdot 10^{-8} \) | \(a_{362}= +0.02615427 \pm 1.2 \cdot 10^{-8} \) | \(a_{363}= -0.21456977 \pm 1.2 \cdot 10^{-8} \) |
\(a_{364}= +0.38738732 \pm 1.2 \cdot 10^{-8} \) | \(a_{365}= +0.77355452 \pm 1.0 \cdot 10^{-8} \) | \(a_{366}= +0.02539129 \pm 1.3 \cdot 10^{-8} \) |
\(a_{367}= +0.56045044 \pm 1.0 \cdot 10^{-8} \) | \(a_{368}= +0.03254905 \pm 1.1 \cdot 10^{-8} \) | \(a_{369}= -0.63454486 \pm 1 \cdot 10^{-8} \) |
\(a_{370}= +0.06846077 \pm 1.1 \cdot 10^{-8} \) | \(a_{371}= -1.06064637 \pm 1.3 \cdot 10^{-8} \) | \(a_{372}= -0.06086488 \pm 3.8 \cdot 10^{-8} \) |
\(a_{373}= +0.09859971 \pm 1.0 \cdot 10^{-8} \) | \(a_{374}= -0.26680238 \pm 1.1 \cdot 10^{-8} \) | \(a_{375}= -0.69469319 \pm 1.3 \cdot 10^{-8} \) |
\(a_{376}= +0.28198900 \pm 1.1 \cdot 10^{-8} \) | \(a_{377}= +0.23382352 \pm 1 \cdot 10^{-8} \) | \(a_{378}= +0.07450091 \pm 1.6 \cdot 10^{-8} \) |
\(a_{379}= +0.22007107 \pm 1.0 \cdot 10^{-8} \) | \(a_{380}= -0.52805918 \pm 1.0 \cdot 10^{-8} \) | \(a_{381}= -0.11540222 \pm 1 \cdot 10^{-8} \) |
\(a_{382}= -0.11994933 \pm 1.5 \cdot 10^{-8} \) | \(a_{383}= -0.82511758 \pm 1.0 \cdot 10^{-8} \) | \(a_{384}= +0.20751428 \pm 1.4 \cdot 10^{-8} \) |
\(a_{385}= +1.61201484 \pm 1.2 \cdot 10^{-8} \) | \(a_{386}= +0.28519869 \pm 1.5 \cdot 10^{-8} \) | \(a_{387}= +0.12546209 \pm 1 \cdot 10^{-8} \) |
\(a_{388}= -0.55210171 \pm 1.3 \cdot 10^{-8} \) | \(a_{389}= +1.01120939 \pm 1.3 \cdot 10^{-8} \) | \(a_{390}= +0.05428829 \pm 1.0 \cdot 10^{-8} \) |
\(a_{391}= -0.04640949 \pm 1 \cdot 10^{-8} \) | \(a_{392}= +0.15288290 \pm 1.7 \cdot 10^{-8} \) | \(a_{393}= +0.39052677 \pm 1.2 \cdot 10^{-8} \) |
\(a_{394}= -0.26219121 \pm 1.2 \cdot 10^{-8} \) | \(a_{395}= -0.07537165 \pm 1 \cdot 10^{-8} \) | \(a_{396}= +1.08963089 \pm 1.1 \cdot 10^{-8} \) |
\(a_{397}= +0.76304120 \pm 1.2 \cdot 10^{-8} \) | \(a_{398}= -0.06951389 \pm 1.7 \cdot 10^{-8} \) | \(a_{399}= -0.07630188 \pm 1.0 \cdot 10^{-8} \) |
\(a_{400}= +1.96905136 \pm 1.5 \cdot 10^{-8} \) | \(a_{401}= +0.70609517 \pm 1.3 \cdot 10^{-8} \) | \(a_{402}= -0.03341039 \pm 1.1 \cdot 10^{-8} \) |
\(a_{403}= +0.09961921 \pm 2.0 \cdot 10^{-8} \) | \(a_{404}= -1.38180262 \pm 1.8 \cdot 10^{-8} \) | \(a_{405}= +1.15333008 \pm 1.0 \cdot 10^{-8} \) |
\(a_{406}= -0.04807126 \pm 1.6 \cdot 10^{-8} \) | \(a_{407}= +0.30925737 \pm 1.1 \cdot 10^{-8} \) | \(a_{408}= -0.14404540 \pm 1.2 \cdot 10^{-8} \) |
\(a_{409}= -0.76247948 \pm 1.2 \cdot 10^{-8} \) | \(a_{410}= +0.20319453 \pm 1.1 \cdot 10^{-8} \) | \(a_{411}= +0.08123242 \pm 1.2 \cdot 10^{-8} \) |
\(a_{412}= -1.07974123 \pm 1.2 \cdot 10^{-8} \) | \(a_{413}= +0.80589206 \pm 1 \cdot 10^{-8} \) | \(a_{414}= -0.00492444 \pm 1 \cdot 10^{-8} \) |
\(a_{415}= -3.16342737 \pm 1.4 \cdot 10^{-8} \) | \(a_{416}= -0.25590847 \pm 1.3 \cdot 10^{-8} \) | \(a_{417}= -0.23412257 \pm 1.5 \cdot 10^{-8} \) |
\(a_{418}= +0.06197564 \pm 1.0 \cdot 10^{-8} \) | \(a_{419}= -1.47536078 \pm 1.4 \cdot 10^{-8} \) | \(a_{420}= +0.42957926 \pm 1.5 \cdot 10^{-8} \) |
\(a_{421}= -1.23720458 \pm 1.2 \cdot 10^{-8} \) | \(a_{422}= -0.07818682 \pm 1.2 \cdot 10^{-8} \) | \(a_{423}= +0.78889870 \pm 1.0 \cdot 10^{-8} \) |
\(a_{424}= +0.46512116 \pm 1.3 \cdot 10^{-8} \) | \(a_{425}= -2.80753776 \pm 1.4 \cdot 10^{-8} \) | \(a_{426}= -0.03778940 \pm 1.3 \cdot 10^{-8} \) |
\(a_{427}= -0.32885026 \pm 1.1 \cdot 10^{-8} \) | \(a_{428}= -0.64492294 \pm 1 \cdot 10^{-8} \) | \(a_{429}= +0.24523610 \pm 1.2 \cdot 10^{-8} \) |
\(a_{430}= -0.04017559 \pm 1.2 \cdot 10^{-8} \) | \(a_{431}= -0.90708955 \pm 1.1 \cdot 10^{-8} \) | \(a_{432}= +0.60412624 \pm 1.5 \cdot 10^{-8} \) |
\(a_{433}= +1.19860526 \pm 1.1 \cdot 10^{-8} \) | \(a_{434}= -0.02048049 \pm 3.7 \cdot 10^{-8} \) | \(a_{435}= +0.25929020 \pm 1.2 \cdot 10^{-8} \) |
\(a_{436}= -1.21684973 \pm 1.4 \cdot 10^{-8} \) | \(a_{437}= +0.01078048 \pm 1 \cdot 10^{-8} \) | \(a_{438}= -0.02419377 \pm 1.1 \cdot 10^{-8} \) |
\(a_{439}= +1.91552169 \pm 1.2 \cdot 10^{-8} \) | \(a_{440}= -0.70691064 \pm 1.1 \cdot 10^{-8} \) | \(a_{441}= +0.42770862 \pm 1 \cdot 10^{-8} \) |
\(a_{442}= +0.11636979 \pm 1.0 \cdot 10^{-8} \) | \(a_{443}= -0.12830908 \pm 1.1 \cdot 10^{-8} \) | \(a_{444}= +0.08241273 \pm 1.1 \cdot 10^{-8} \) |
\(a_{445}= -0.44828782 \pm 1.0 \cdot 10^{-8} \) | \(a_{446}= +0.24805687 \pm 1.6 \cdot 10^{-8} \) | \(a_{447}= +0.13258795 \pm 1.2 \cdot 10^{-8} \) |
\(a_{448}= -0.60998351 \pm 1.8 \cdot 10^{-8} \) | \(a_{449}= +0.44546555 \pm 1.2 \cdot 10^{-8} \) | \(a_{450}= -0.29790343 \pm 1.0 \cdot 10^{-8} \) |
\(a_{451}= +0.91788920 \pm 1 \cdot 10^{-8} \) | \(a_{452}= +1.61143980 \pm 1.2 \cdot 10^{-8} \) | \(a_{453}= +0.01588526 \pm 1.0 \cdot 10^{-8} \) |
\(a_{454}= +0.00238701 \pm 1.5 \cdot 10^{-8} \) | \(a_{455}= -0.70310405 \pm 1 \cdot 10^{-8} \) | \(a_{456}= +0.03346037 \pm 1.0 \cdot 10^{-8} \) |
\(a_{457}= -0.81423072 \pm 1.2 \cdot 10^{-8} \) | \(a_{458}= +0.27097050 \pm 1.6 \cdot 10^{-8} \) | \(a_{459}= -0.86138293 \pm 1.1 \cdot 10^{-8} \) |
\(a_{460}= -0.06069407 \pm 1.1 \cdot 10^{-8} \) | \(a_{461}= -1.15652448 \pm 1.3 \cdot 10^{-8} \) | \(a_{462}= -0.05041755 \pm 2.0 \cdot 10^{-8} \) |
\(a_{463}= +1.43283748 \pm 1.2 \cdot 10^{-8} \) | \(a_{464}= -0.38980879 \pm 1.1 \cdot 10^{-8} \) | \(a_{465}= +0.11046915 \pm 3.6 \cdot 10^{-8} \) |
\(a_{466}= -0.13692125 \pm 1.3 \cdot 10^{-8} \) | \(a_{467}= +1.18133149 \pm 1.2 \cdot 10^{-8} \) | \(a_{468}= -0.47525858 \pm 1.0 \cdot 10^{-8} \) |
\(a_{469}= +0.43270801 \pm 1.0 \cdot 10^{-8} \) | \(a_{470}= -0.25262186 \pm 1.0 \cdot 10^{-8} \) | \(a_{471}= +0.45654501 \pm 1.1 \cdot 10^{-8} \) |
\(a_{472}= -0.35340473 \pm 1.2 \cdot 10^{-8} \) | \(a_{473}= -0.18148488 \pm 1.1 \cdot 10^{-8} \) | \(a_{474}= +0.00235733 \pm 1.1 \cdot 10^{-8} \) |
\(a_{475}= +0.65216416 \pm 1 \cdot 10^{-8} \) | \(a_{476}= +0.92082563 \pm 1.6 \cdot 10^{-8} \) | \(a_{477}= +1.30123331 \pm 1.2 \cdot 10^{-8} \) |
\(a_{478}= +0.01907579 \pm 1.1 \cdot 10^{-8} \) | \(a_{479}= -1.01396227 \pm 1.0 \cdot 10^{-8} \) | \(a_{480}= -0.28378050 \pm 1 \cdot 10^{-8} \) |
\(a_{481}= -0.13488716 \pm 1.2 \cdot 10^{-8} \) | \(a_{482}= -0.07047071 \pm 1.5 \cdot 10^{-8} \) | \(a_{483}= -0.00876999 \pm 1.3 \cdot 10^{-8} \) |
\(a_{484}= -0.60150886 \pm 1.8 \cdot 10^{-8} \) | \(a_{485}= +1.00205898 \pm 1.1 \cdot 10^{-8} \) | \(a_{486}= -0.14003992 \pm 1.0 \cdot 10^{-8} \) |
\(a_{487}= +1.48017417 \pm 1.2 \cdot 10^{-8} \) | \(a_{488}= +0.14420943 \pm 1.0 \cdot 10^{-8} \) | \(a_{489}= +0.10715988 \pm 1.5 \cdot 10^{-8} \) |
\(a_{490}= -0.13696124 \pm 1.3 \cdot 10^{-8} \) | \(a_{491}= +0.49533229 \pm 1 \cdot 10^{-8} \) | \(a_{492}= +0.24460455 \pm 1.0 \cdot 10^{-8} \) |
\(a_{493}= +0.55580211 \pm 1.1 \cdot 10^{-8} \) | \(a_{494}= -0.02703159 \pm 1.1 \cdot 10^{-8} \) | \(a_{495}= -1.97766896 \pm 1.4 \cdot 10^{-8} \) |
\(a_{496}= -0.16607587 \pm 2.5 \cdot 10^{-8} \) | \(a_{497}= +0.48942198 \pm 1.1 \cdot 10^{-8} \) | \(a_{498}= +0.09893969 \pm 1 \cdot 10^{-8} \) |
\(a_{499}= +0.00073254 \pm 1.3 \cdot 10^{-8} \) | \(a_{500}= -1.94745099 \pm 1.2 \cdot 10^{-8} \) | \(a_{501}= +0.58387974 \pm 1.4 \cdot 10^{-8} \) |
\(a_{502}= +0.15280637 \pm 1.7 \cdot 10^{-8} \) | \(a_{503}= -0.64967859 \pm 1 \cdot 10^{-8} \) | \(a_{504}= +0.19795328 \pm 1.0 \cdot 10^{-8} \) |
\(a_{505}= +2.50795768 \pm 1.3 \cdot 10^{-8} \) | \(a_{506}= +0.00712336 \pm 1.6 \cdot 10^{-8} \) | \(a_{507}= +0.24072256 \pm 1.1 \cdot 10^{-8} \) |
\(a_{508}= -0.32350997 \pm 1.2 \cdot 10^{-8} \) | \(a_{509}= -1.07900074 \pm 1.1 \cdot 10^{-8} \) | \(a_{510}= +0.12904410 \pm 1.1 \cdot 10^{-8} \) |
\(a_{511}= +0.31334088 \pm 1 \cdot 10^{-8} \) | \(a_{512}= +0.71719206 \pm 1.6 \cdot 10^{-8} \) | \(a_{513}= +0.20009101 \pm 1.0 \cdot 10^{-8} \) |
\(a_{514}= +0.09690815 \pm 1.4 \cdot 10^{-8} \) | \(a_{515}= +1.95971934 \pm 1.2 \cdot 10^{-8} \) | \(a_{516}= -0.04836317 \pm 1.3 \cdot 10^{-8} \) |
\(a_{517}= -1.14116691 \pm 1 \cdot 10^{-8} \) | \(a_{518}= +0.02773115 \pm 1.2 \cdot 10^{-8} \) | \(a_{519}= -0.13139894 \pm 1.2 \cdot 10^{-8} \) |
\(a_{520}= +0.30832950 \pm 1.0 \cdot 10^{-8} \) | \(a_{521}= -0.66191269 \pm 1.0 \cdot 10^{-8} \) | \(a_{522}= +0.05897529 \pm 1.1 \cdot 10^{-8} \) |
\(a_{523}= -1.07607920 \pm 1.2 \cdot 10^{-8} \) | \(a_{524}= +1.09477356 \pm 1.3 \cdot 10^{-8} \) | \(a_{525}= -0.53053939 \pm 1.3 \cdot 10^{-8} \) |
\(a_{526}= +0.04387473 \pm 1.5 \cdot 10^{-8} \) | \(a_{527}= +0.23679640 \pm 2.2 \cdot 10^{-8} \) | \(a_{528}= -0.40883478 \pm 1.3 \cdot 10^{-8} \) |
\(a_{529}= -0.99876091 \pm 1.0 \cdot 10^{-8} \) | \(a_{530}= -0.41668212 \pm 1.2 \cdot 10^{-8} \) | \(a_{531}= -0.98869295 \pm 1 \cdot 10^{-8} \) |
\(a_{532}= -0.21389898 \pm 1.4 \cdot 10^{-8} \) | \(a_{533}= -0.40035091 \pm 1 \cdot 10^{-8} \) | \(a_{534}= +0.01402070 \pm 1.7 \cdot 10^{-8} \) |
\(a_{535}= +1.17052857 \pm 1.1 \cdot 10^{-8} \) | \(a_{536}= -0.18975377 \pm 1.4 \cdot 10^{-8} \) | \(a_{537}= -0.47107415 \pm 1.2 \cdot 10^{-8} \) |
\(a_{538}= +0.09926389 \pm 1.5 \cdot 10^{-8} \) | \(a_{539}= -0.61869404 \pm 1.1 \cdot 10^{-8} \) | \(a_{540}= -1.12651158 \pm 1.1 \cdot 10^{-8} \) |
\(a_{541}= +1.22927111 \pm 1.1 \cdot 10^{-8} \) | \(a_{542}= +0.20135957 \pm 1.3 \cdot 10^{-8} \) | \(a_{543}= -0.05714382 \pm 1.3 \cdot 10^{-8} \) |
\(a_{544}= -0.60829837 \pm 1.2 \cdot 10^{-8} \) | \(a_{545}= +2.20856987 \pm 1.3 \cdot 10^{-8} \) | \(a_{546}= +0.02199036 \pm 1.1 \cdot 10^{-8} \) |
\(a_{547}= -0.94679072 \pm 1.1 \cdot 10^{-8} \) | \(a_{548}= +0.22772089 \pm 1.3 \cdot 10^{-8} \) | \(a_{549}= +0.40344352 \pm 1.2 \cdot 10^{-8} \) |
\(a_{550}= +0.43092672 \pm 1.4 \cdot 10^{-8} \) | \(a_{551}= -0.12910751 \pm 1.1 \cdot 10^{-8} \) | \(a_{552}= +0.00384587 \pm 1.4 \cdot 10^{-8} \) |
\(a_{553}= -0.03053052 \pm 1.0 \cdot 10^{-8} \) | \(a_{554}= -0.30139516 \pm 1.1 \cdot 10^{-8} \) | \(a_{555}= -0.14957827 \pm 1.3 \cdot 10^{-8} \) |
\(a_{556}= -0.65632172 \pm 1.9 \cdot 10^{-8} \) | \(a_{557}= -1.34285184 \pm 1.4 \cdot 10^{-8} \) | \(a_{558}= +0.02512609 \pm 3.7 \cdot 10^{-8} \) |
\(a_{559}= +0.07915731 \pm 1 \cdot 10^{-8} \) | \(a_{560}= +1.17214956 \pm 1.3 \cdot 10^{-8} \) | \(a_{561}= +0.58292998 \pm 1.1 \cdot 10^{-8} \) |
\(a_{562}= +0.00620521 \pm 1.5 \cdot 10^{-8} \) | \(a_{563}= -1.33114434 \pm 1.1 \cdot 10^{-8} \) | \(a_{564}= -0.30410491 \pm 1.1 \cdot 10^{-8} \) |
\(a_{565}= -2.92474682 \pm 1.4 \cdot 10^{-8} \) | \(a_{566}= +0.03404137 \pm 1.5 \cdot 10^{-8} \) | \(a_{567}= +0.46717516 \pm 1.1 \cdot 10^{-8} \) |
\(a_{568}= -0.21462433 \pm 1.1 \cdot 10^{-8} \) | \(a_{569}= +0.82976781 \pm 1.1 \cdot 10^{-8} \) | \(a_{570}= -0.02997571 \pm 1.1 \cdot 10^{-8} \) |
\(a_{571}= +0.02892253 \pm 1.2 \cdot 10^{-8} \) | \(a_{572}= +0.68747657 \pm 1.0 \cdot 10^{-8} \) | \(a_{573}= +0.26207435 \pm 1.3 \cdot 10^{-8} \) |
\(a_{574}= +0.08230726 \pm 1.4 \cdot 10^{-8} \) | \(a_{575}= +0.07495845 \pm 1.0 \cdot 10^{-8} \) | \(a_{576}= +0.74834637 \pm 1.4 \cdot 10^{-8} \) |
\(a_{577}= -0.15538469 \pm 1.1 \cdot 10^{-8} \) | \(a_{578}= +0.11747974 \pm 1 \cdot 10^{-8} \) | \(a_{579}= -0.62312363 \pm 1.2 \cdot 10^{-8} \) |
\(a_{580}= +0.72687477 \pm 1 \cdot 10^{-8} \) | \(a_{581}= -1.28139785 \pm 1 \cdot 10^{-8} \) | \(a_{582}= -0.03134050 \pm 1.4 \cdot 10^{-8} \) |
\(a_{583}= -1.88227513 \pm 1.4 \cdot 10^{-8} \) | \(a_{584}= -0.13740816 \pm 1.1 \cdot 10^{-8} \) | \(a_{585}= +0.86258949 \pm 1.1 \cdot 10^{-8} \) |
\(a_{586}= +0.03327764 \pm 1.6 \cdot 10^{-8} \) | \(a_{587}= -0.89908128 \pm 1.2 \cdot 10^{-8} \) | \(a_{588}= -0.16487325 \pm 1.6 \cdot 10^{-8} \) |
\(a_{589}= -0.05500554 \pm 2.2 \cdot 10^{-8} \) | \(a_{590}= +0.31660016 \pm 1.1 \cdot 10^{-8} \) | \(a_{591}= +0.57285515 \pm 1.0 \cdot 10^{-8} \) |
\(a_{592}= +0.22487131 \pm 1.2 \cdot 10^{-8} \) | \(a_{593}= +1.53358357 \pm 1.4 \cdot 10^{-8} \) | \(a_{594}= +0.13221298 \pm 1.3 \cdot 10^{-8} \) |
\(a_{595}= -1.67128913 \pm 1.3 \cdot 10^{-8} \) | \(a_{596}= +0.37168714 \pm 1.5 \cdot 10^{-8} \) | \(a_{597}= +0.15187919 \pm 1.4 \cdot 10^{-8} \) |
\(a_{598}= -0.00310696 \pm 1 \cdot 10^{-8} \) | \(a_{599}= +1.70259280 \pm 1.3 \cdot 10^{-8} \) | \(a_{600}= +0.23265539 \pm 1.4 \cdot 10^{-8} \) |
\(a_{601}= +0.72652014 \pm 1.2 \cdot 10^{-8} \) | \(a_{602}= -0.01627378 \pm 1.8 \cdot 10^{-8} \) | \(a_{603}= -0.53085938 \pm 1 \cdot 10^{-8} \) |
\(a_{604}= +0.04453154 \pm 1.3 \cdot 10^{-8} \) | \(a_{605}= +1.09173245 \pm 1 \cdot 10^{-8} \) | \(a_{606}= -0.07843915 \pm 1.5 \cdot 10^{-8} \) |
\(a_{607}= +0.66926582 \pm 1.1 \cdot 10^{-8} \) | \(a_{608}= +0.14130189 \pm 1.5 \cdot 10^{-8} \) | \(a_{609}= +0.10502972 \pm 1.2 \cdot 10^{-8} \) |
\(a_{610}= -0.12919105 \pm 1.0 \cdot 10^{-8} \) | \(a_{611}= +0.49773678 \pm 1 \cdot 10^{-8} \) | \(a_{612}= -1.12969696 \pm 1.0 \cdot 10^{-8} \) |
\(a_{613}= -0.90929706 \pm 1.2 \cdot 10^{-8} \) | \(a_{614}= -0.12404756 \pm 1.3 \cdot 10^{-8} \) | \(a_{615}= -0.44395476 \pm 1 \cdot 10^{-8} \) |
\(a_{616}= -0.28634568 \pm 1.9 \cdot 10^{-8} \) | \(a_{617}= +0.18602130 \pm 1.0 \cdot 10^{-8} \) | \(a_{618}= -0.06129239 \pm 1.2 \cdot 10^{-8} \) |
\(a_{619}= +1.25755010 \pm 1.4 \cdot 10^{-8} \) | \(a_{620}= +0.30968095 \pm 3.7 \cdot 10^{-8} \) | \(a_{621}= +0.02299806 \pm 1 \cdot 10^{-8} \) |
\(a_{622}= +0.21257967 \pm 1.2 \cdot 10^{-8} \) | \(a_{623}= -0.18158629 \pm 1.4 \cdot 10^{-8} \) | \(a_{624}= +0.17831932 \pm 1.1 \cdot 10^{-8} \) |
\(a_{625}= +1.40514282 \pm 1.1 \cdot 10^{-8} \) | \(a_{626}= +0.20108695 \pm 1.4 \cdot 10^{-8} \) | \(a_{627}= -0.13540906 \pm 1.0 \cdot 10^{-8} \) |
\(a_{628}= +1.27984418 \pm 1.1 \cdot 10^{-8} \) | \(a_{629}= -0.32062886 \pm 1.2 \cdot 10^{-8} \) | \(a_{630}= -0.17733787 \pm 1 \cdot 10^{-8} \) |
\(a_{631}= +0.89094036 \pm 1.3 \cdot 10^{-8} \) | \(a_{632}= +0.01338843 \pm 1.1 \cdot 10^{-8} \) | \(a_{633}= +0.17082848 \pm 1.1 \cdot 10^{-8} \) |
\(a_{634}= -0.05459082 \pm 1.2 \cdot 10^{-8} \) | \(a_{635}= +0.58716730 \pm 1 \cdot 10^{-8} \) | \(a_{636}= -0.50159982 \pm 1.5 \cdot 10^{-8} \) |
\(a_{637}= +0.26985253 \pm 1 \cdot 10^{-8} \) | \(a_{638}= -0.08530962 \pm 1.5 \cdot 10^{-8} \) | \(a_{639}= -0.60043781 \pm 1.5 \cdot 10^{-8} \) |
\(a_{640}= -1.05583407 \pm 1.0 \cdot 10^{-8} \) | \(a_{641}= -0.90764392 \pm 1.1 \cdot 10^{-8} \) | \(a_{642}= -0.03660958 \pm 1.3 \cdot 10^{-8} \) |
\(a_{643}= +0.39837649 \pm 1.1 \cdot 10^{-8} \) | \(a_{644}= -0.02458512 \pm 1.6 \cdot 10^{-8} \) | \(a_{645}= +0.08777865 \pm 1.1 \cdot 10^{-8} \) |
\(a_{646}= -0.06425450 \pm 1.1 \cdot 10^{-8} \) | \(a_{647}= -0.09598927 \pm 1.3 \cdot 10^{-8} \) | \(a_{648}= -0.20486852 \pm 1.2 \cdot 10^{-8} \) |
\(a_{649}= +1.43017561 \pm 1.0 \cdot 10^{-8} \) | \(a_{650}= -0.18795505 \pm 1 \cdot 10^{-8} \) | \(a_{651}= +0.04474733 \pm 3.6 \cdot 10^{-8} \) |
\(a_{652}= +0.30040400 \pm 1.2 \cdot 10^{-8} \) | \(a_{653}= -0.70719646 \pm 1.1 \cdot 10^{-8} \) | \(a_{654}= -0.06907547 \pm 1.5 \cdot 10^{-8} \) |
\(a_{655}= -1.98700286 \pm 1.4 \cdot 10^{-8} \) | \(a_{656}= +0.66742774 \pm 1.3 \cdot 10^{-8} \) | \(a_{657}= -0.38441614 \pm 1 \cdot 10^{-8} \) |
\(a_{658}= -0.10232860 \pm 1.5 \cdot 10^{-8} \) | \(a_{659}= -1.09286218 \pm 1.1 \cdot 10^{-8} \) | \(a_{660}= +0.76235244 \pm 1.1 \cdot 10^{-8} \) |
\(a_{661}= +0.20336872 \pm 1.0 \cdot 10^{-8} \) | \(a_{662}= -0.10212630 \pm 1.3 \cdot 10^{-8} \) | \(a_{663}= -0.25425351 \pm 1.1 \cdot 10^{-8} \) |
\(a_{664}= +0.56192645 \pm 1 \cdot 10^{-8} \) | \(a_{665}= +0.38822448 \pm 1.0 \cdot 10^{-8} \) | \(a_{666}= -0.03402142 \pm 1.4 \cdot 10^{-8} \) |
\(a_{667}= -0.01483936 \pm 1.0 \cdot 10^{-8} \) | \(a_{668}= +1.63680483 \pm 1.3 \cdot 10^{-8} \) | \(a_{669}= -0.54197339 \pm 1.3 \cdot 10^{-8} \) |
\(a_{670}= +0.16999228 \pm 1 \cdot 10^{-8} \) | \(a_{671}= -0.58359381 \pm 1.1 \cdot 10^{-8} \) | \(a_{672}= -0.11494992 \pm 1.3 \cdot 10^{-8} \) |
\(a_{673}= -1.50668267 \pm 1.1 \cdot 10^{-8} \) | \(a_{674}= -0.14711919 \pm 1.8 \cdot 10^{-8} \) | \(a_{675}= +1.39126543 \pm 1.1 \cdot 10^{-8} \) |
\(a_{676}= +0.67482363 \pm 1.1 \cdot 10^{-8} \) | \(a_{677}= -1.55107735 \pm 1.4 \cdot 10^{-8} \) | \(a_{678}= +0.09147469 \pm 1.4 \cdot 10^{-8} \) |
\(a_{679}= +0.40590034 \pm 1.1 \cdot 10^{-8} \) | \(a_{680}= +0.73290397 \pm 1.1 \cdot 10^{-8} \) | \(a_{681}= -0.00521532 \pm 1.6 \cdot 10^{-8} \) |
\(a_{682}= -0.03634569 \pm 3.7 \cdot 10^{-8} \) | \(a_{683}= -0.02395799 \pm 1.3 \cdot 10^{-8} \) | \(a_{684}= +0.26241780 \pm 1.0 \cdot 10^{-8} \) |
\(a_{685}= -0.41331110 \pm 1.0 \cdot 10^{-8} \) | \(a_{686}= -0.16950895 \pm 1.3 \cdot 10^{-8} \) | \(a_{687}= -0.59203682 \pm 1.3 \cdot 10^{-8} \) |
\(a_{688}= -0.13196369 \pm 1.7 \cdot 10^{-8} \) | \(a_{689}= +0.82098206 \pm 1 \cdot 10^{-8} \) | \(a_{690}= -0.00344535 \pm 1.5 \cdot 10^{-8} \) |
\(a_{691}= -1.01136026 \pm 1.2 \cdot 10^{-8} \) | \(a_{692}= -0.36835397 \pm 1.0 \cdot 10^{-8} \) | \(a_{693}= -0.80108707 \pm 1 \cdot 10^{-8} \) |
\(a_{694}= +0.15349695 \pm 1.0 \cdot 10^{-8} \) | \(a_{695}= +1.19121723 \pm 1.2 \cdot 10^{-8} \) | \(a_{696}= -0.04605828 \pm 1.2 \cdot 10^{-8} \) |
\(a_{697}= -0.95164027 \pm 1.0 \cdot 10^{-8} \) | \(a_{698}= -0.04569542 \pm 1.0 \cdot 10^{-8} \) | \(a_{699}= +0.29915589 \pm 1.5 \cdot 10^{-8} \) |
\(a_{700}= -1.48727450 \pm 1.7 \cdot 10^{-8} \) | \(a_{701}= -0.63911520 \pm 1.2 \cdot 10^{-8} \) | \(a_{702}= -0.05766664 \pm 1.2 \cdot 10^{-8} \) |
\(a_{703}= +0.07447902 \pm 1.1 \cdot 10^{-8} \) | \(a_{704}= -1.08250669 \pm 1.1 \cdot 10^{-8} \) | \(a_{705}= +0.55194732 \pm 1.2 \cdot 10^{-8} \) |
\(a_{706}= +0.12506743 \pm 1.5 \cdot 10^{-8} \) | \(a_{707}= +1.01588916 \pm 1.4 \cdot 10^{-8} \) | \(a_{708}= +0.38112166 \pm 1.2 \cdot 10^{-8} \) |
\(a_{709}= -1.36664021 \pm 1.4 \cdot 10^{-8} \) | \(a_{710}= +0.19227274 \pm 1.1 \cdot 10^{-8} \) | \(a_{711}= +0.03745577 \pm 1.1 \cdot 10^{-8} \) |
\(a_{712}= +0.07963034 \pm 1.8 \cdot 10^{-8} \) | \(a_{713}= -0.00632223 \pm 2.0 \cdot 10^{-8} \) | \(a_{714}= +0.05227142 \pm 1.3 \cdot 10^{-8} \) |
\(a_{715}= -1.24776297 \pm 1 \cdot 10^{-8} \) | \(a_{716}= -1.32057408 \pm 1.7 \cdot 10^{-8} \) | \(a_{717}= -0.04167822 \pm 1 \cdot 10^{-8} \) |
\(a_{718}= -0.16671825 \pm 1.4 \cdot 10^{-8} \) | \(a_{719}= +0.90689020 \pm 1.2 \cdot 10^{-8} \) | \(a_{720}= -1.43802882 \pm 1.1 \cdot 10^{-8} \) |
\(a_{721}= +0.79381628 \pm 1.1 \cdot 10^{-8} \) | \(a_{722}= -0.14420734 \pm 1.3 \cdot 10^{-8} \) | \(a_{723}= +0.15396974 \pm 1.5 \cdot 10^{-8} \) |
\(a_{724}= -0.16019272 \pm 1.1 \cdot 10^{-8} \) | \(a_{725}= -0.89770558 \pm 1.2 \cdot 10^{-8} \) | \(a_{726}= -0.03414514 \pm 1.7 \cdot 10^{-8} \) |
\(a_{727}= +1.12129728 \pm 1.2 \cdot 10^{-8} \) | \(a_{728}= +0.12489389 \pm 1.3 \cdot 10^{-8} \) | \(a_{729}= -0.34598706 \pm 1.0 \cdot 10^{-8} \) |
\(a_{730}= +0.12309809 \pm 1.1 \cdot 10^{-8} \) | \(a_{731}= +0.18815814 \pm 1.0 \cdot 10^{-8} \) | \(a_{732}= -0.15551953 \pm 1 \cdot 10^{-8} \) |
\(a_{733}= +1.54687307 \pm 1.1 \cdot 10^{-8} \) | \(a_{734}= +0.08918619 \pm 1.2 \cdot 10^{-8} \) | \(a_{735}= +0.29924327 \pm 1.1 \cdot 10^{-8} \) |
\(a_{736}= +0.01624096 \pm 1 \cdot 10^{-8} \) | \(a_{737}= +0.76790488 \pm 1 \cdot 10^{-8} \) | \(a_{738}= -0.10097706 \pm 1 \cdot 10^{-8} \) |
\(a_{739}= +1.09376524 \pm 1.1 \cdot 10^{-8} \) | \(a_{740}= -0.41931655 \pm 1.0 \cdot 10^{-8} \) | \(a_{741}= +0.05906066 \pm 1 \cdot 10^{-8} \) |
\(a_{742}= -0.16878389 \pm 1.7 \cdot 10^{-8} \) | \(a_{743}= +1.39224355 \pm 1.2 \cdot 10^{-8} \) | \(a_{744}= -0.01962287 \pm 3.8 \cdot 10^{-8} \) |
\(a_{745}= -0.67460838 \pm 1.1 \cdot 10^{-8} \) | \(a_{746}= +0.01569047 \pm 1.1 \cdot 10^{-8} \) | \(a_{747}= +1.57205796 \pm 1 \cdot 10^{-8} \) |
\(a_{748}= +1.63414237 \pm 1.1 \cdot 10^{-8} \) | \(a_{749}= +0.47414169 \pm 1.1 \cdot 10^{-8} \) | \(a_{750}= -0.11054864 \pm 1.2 \cdot 10^{-8} \) |
\(a_{751}= +1.42939642 \pm 1.5 \cdot 10^{-8} \) | \(a_{752}= -0.82978038 \pm 1.3 \cdot 10^{-8} \) | \(a_{753}= -0.33386291 \pm 1.4 \cdot 10^{-8} \) |
\(a_{754}= +0.03720905 \pm 1.0 \cdot 10^{-8} \) | \(a_{755}= -0.08082429 \pm 1 \cdot 10^{-8} \) | \(a_{756}= -0.45631189 \pm 1.7 \cdot 10^{-8} \) |
\(a_{757}= -1.53111038 \pm 1.2 \cdot 10^{-8} \) | \(a_{758}= +0.03502058 \pm 1.3 \cdot 10^{-8} \) | \(a_{759}= -0.01556365 \pm 1.3 \cdot 10^{-8} \) |
\(a_{760}= -0.17024658 \pm 1 \cdot 10^{-8} \) | \(a_{761}= -0.67237067 \pm 1.0 \cdot 10^{-8} \) | \(a_{762}= -0.01836431 \pm 1.1 \cdot 10^{-8} \) |
\(a_{763}= +0.89461725 \pm 1.2 \cdot 10^{-8} \) | \(a_{764}= +0.73467965 \pm 1.4 \cdot 10^{-8} \) | \(a_{765}= +2.05038848 \pm 1.3 \cdot 10^{-8} \) |
\(a_{766}= -0.13130347 \pm 1.4 \cdot 10^{-8} \) | \(a_{767}= -0.62379219 \pm 1 \cdot 10^{-8} \) | \(a_{768}= -0.26294530 \pm 1.6 \cdot 10^{-8} \) |
\(a_{769}= -0.51132140 \pm 1.1 \cdot 10^{-8} \) | \(a_{770}= +0.25652483 \pm 1.2 \cdot 10^{-8} \) | \(a_{771}= -0.21173225 \pm 1.4 \cdot 10^{-8} \) |
\(a_{772}= -1.74681823 \pm 1.4 \cdot 10^{-8} \) | \(a_{773}= +1.14726561 \pm 1.2 \cdot 10^{-8} \) | \(a_{774}= +0.01996516 \pm 1 \cdot 10^{-8} \) |
\(a_{775}= -0.38246247 \pm 2.4 \cdot 10^{-8} \) | \(a_{776}= -0.17799791 \pm 1.3 \cdot 10^{-8} \) | \(a_{777}= -0.06058912 \pm 1.0 \cdot 10^{-8} \) |
\(a_{778}= +0.16091683 \pm 1.7 \cdot 10^{-8} \) | \(a_{779}= +0.22105693 \pm 1 \cdot 10^{-8} \) | \(a_{780}= -0.33251126 \pm 1 \cdot 10^{-8} \) |
\(a_{781}= +0.86855227 \pm 1.1 \cdot 10^{-8} \) | \(a_{782}= -0.00738528 \pm 1.1 \cdot 10^{-8} \) | \(a_{783}= -0.27542577 \pm 1.0 \cdot 10^{-8} \) |
\(a_{784}= -0.44987300 \pm 1.5 \cdot 10^{-8} \) | \(a_{785}= -2.32290415 \pm 1.2 \cdot 10^{-8} \) | \(a_{786}= +0.06214571 \pm 1.3 \cdot 10^{-8} \) |
\(a_{787}= -0.78875219 \pm 1.2 \cdot 10^{-8} \) | \(a_{788}= +1.60589933 \pm 1.5 \cdot 10^{-8} \) | \(a_{789}= -0.09586083 \pm 1.2 \cdot 10^{-8} \) |
\(a_{790}= -0.01199412 \pm 1.0 \cdot 10^{-8} \) | \(a_{791}= -1.18471640 \pm 1.3 \cdot 10^{-8} \) | \(a_{792}= +0.35129762 \pm 1.1 \cdot 10^{-8} \) |
\(a_{793}= +0.25454305 \pm 1.0 \cdot 10^{-8} \) | \(a_{794}= +0.12142507 \pm 1.6 \cdot 10^{-8} \) | \(a_{795}= +0.91039856 \pm 1.5 \cdot 10^{-8} \) |
\(a_{796}= +0.42576677 \pm 1.4 \cdot 10^{-8} \) | \(a_{797}= +0.23083558 \pm 1.0 \cdot 10^{-8} \) | \(a_{798}= -0.01214215 \pm 1.4 \cdot 10^{-8} \) |
\(a_{799}= +1.18312798 \pm 1.1 \cdot 10^{-8} \) | \(a_{800}= +0.98249508 \pm 1.3 \cdot 10^{-8} \) | \(a_{801}= +0.22277560 \pm 1.1 \cdot 10^{-8} \) |
\(a_{802}= +0.11236308 \pm 1.7 \cdot 10^{-8} \) | \(a_{803}= +0.55607010 \pm 1.1 \cdot 10^{-8} \) | \(a_{804}= +0.20463584 \pm 1.1 \cdot 10^{-8} \) |
\(a_{805}= +0.04462175 \pm 1.3 \cdot 10^{-8} \) | \(a_{806}= +0.01585271 \pm 3.5 \cdot 10^{-8} \) | \(a_{807}= -0.21687925 \pm 1.4 \cdot 10^{-8} \) |
\(a_{808}= -0.44549395 \pm 1.5 \cdot 10^{-8} \) | \(a_{809}= +0.31991798 \pm 1.0 \cdot 10^{-8} \) | \(a_{810}= +0.18353293 \pm 1.0 \cdot 10^{-8} \) |
\(a_{811}= +0.87878588 \pm 1.2 \cdot 10^{-8} \) | \(a_{812}= +0.29443248 \pm 1.5 \cdot 10^{-8} \) | \(a_{813}= -0.43994560 \pm 1.2 \cdot 10^{-8} \) |
\(a_{814}= +0.04921307 \pm 1.1 \cdot 10^{-8} \) | \(a_{815}= -0.54523020 \pm 1.1 \cdot 10^{-8} \) | \(a_{816}= +0.42386776 \pm 1.1 \cdot 10^{-8} \) |
\(a_{817}= -0.04370734 \pm 1.5 \cdot 10^{-8} \) | \(a_{818}= -0.12133568 \pm 1.4 \cdot 10^{-8} \) | \(a_{819}= +0.34940594 \pm 1 \cdot 10^{-8} \) |
\(a_{820}= -1.24454961 \pm 1.1 \cdot 10^{-8} \) | \(a_{821}= -0.62928005 \pm 1.1 \cdot 10^{-8} \) | \(a_{822}= +0.01292676 \pm 1.3 \cdot 10^{-8} \) |
\(a_{823}= -0.05413486 \pm 1.2 \cdot 10^{-8} \) | \(a_{824}= -0.34810919 \pm 1.2 \cdot 10^{-8} \) | \(a_{825}= -0.94152125 \pm 1.5 \cdot 10^{-8} \) |
\(a_{826}= +0.12824406 \pm 1.1 \cdot 10^{-8} \) | \(a_{827}= -0.64014852 \pm 1.1 \cdot 10^{-8} \) | \(a_{828}= +0.03016178 \pm 1 \cdot 10^{-8} \) |
\(a_{829}= +1.43080805 \pm 1.3 \cdot 10^{-8} \) | \(a_{830}= -0.50340583 \pm 1 \cdot 10^{-8} \) | \(a_{831}= +0.65851090 \pm 1 \cdot 10^{-8} \) |
\(a_{832}= +0.47215126 \pm 1.3 \cdot 10^{-8} \) | \(a_{833}= +0.64144362 \pm 1.0 \cdot 10^{-8} \) | \(a_{834}= -0.03725664 \pm 1.8 \cdot 10^{-8} \) |
\(a_{835}= -2.97078410 \pm 1.4 \cdot 10^{-8} \) | \(a_{836}= -0.37959564 \pm 1.0 \cdot 10^{-8} \) | \(a_{837}= -0.11734362 \pm 2.3 \cdot 10^{-8} \) |
\(a_{838}= -0.23477866 \pm 1.8 \cdot 10^{-8} \) | \(a_{839}= -0.97810246 \pm 1.1 \cdot 10^{-8} \) | \(a_{840}= +0.13849660 \pm 1.7 \cdot 10^{-8} \) |
\(a_{841}= -0.82228319 \pm 1.1 \cdot 10^{-8} \) | \(a_{842}= -0.19688013 \pm 1.5 \cdot 10^{-8} \) | \(a_{843}= -0.01355762 \pm 1.3 \cdot 10^{-8} \) |
\(a_{844}= +0.47888779 \pm 1.3 \cdot 10^{-8} \) | \(a_{845}= -1.22479801 \pm 1.0 \cdot 10^{-8} \) | \(a_{846}= +0.12553985 \pm 1 \cdot 10^{-8} \) |
\(a_{847}= +0.44222404 \pm 1.4 \cdot 10^{-8} \) | \(a_{848}= -1.36866479 \pm 1.2 \cdot 10^{-8} \) | \(a_{849}= -0.07437616 \pm 1.7 \cdot 10^{-8} \) |
\(a_{850}= -0.44677204 \pm 1.0 \cdot 10^{-8} \) | \(a_{851}= +0.00856047 \pm 1 \cdot 10^{-8} \) | \(a_{852}= +0.23145695 \pm 1.1 \cdot 10^{-8} \) |
\(a_{853}= +1.60256221 \pm 1.5 \cdot 10^{-8} \) | \(a_{854}= -0.05233094 \pm 1.1 \cdot 10^{-8} \) | \(a_{855}= -0.47628563 \pm 1 \cdot 10^{-8} \) |
\(a_{856}= -0.20792352 \pm 1.1 \cdot 10^{-8} \) | \(a_{857}= -1.75862689 \pm 1.2 \cdot 10^{-8} \) | \(a_{858}= +0.03902517 \pm 1.1 \cdot 10^{-8} \) |
\(a_{859}= +0.41574920 \pm 1.1 \cdot 10^{-8} \) | \(a_{860}= +0.24607212 \pm 1 \cdot 10^{-8} \) | \(a_{861}= -0.17983112 \pm 1 \cdot 10^{-8} \) |
\(a_{862}= -0.14434792 \pm 1.5 \cdot 10^{-8} \) | \(a_{863}= -1.07521721 \pm 1.0 \cdot 10^{-8} \) | \(a_{864}= +0.30144011 \pm 1.5 \cdot 10^{-8} \) |
\(a_{865}= +0.66855870 \pm 1 \cdot 10^{-8} \) | \(a_{866}= +0.19073771 \pm 1.1 \cdot 10^{-8} \) | \(a_{867}= -0.25667861 \pm 1 \cdot 10^{-8} \) |
\(a_{868}= +0.12544132 \pm 3.8 \cdot 10^{-8} \) | \(a_{869}= -0.05418095 \pm 1.0 \cdot 10^{-8} \) | \(a_{870}= +0.04126164 \pm 1.1 \cdot 10^{-8} \) |
\(a_{871}= -0.33493304 \pm 1 \cdot 10^{-8} \) | \(a_{872}= -0.39231304 \pm 1.4 \cdot 10^{-8} \) | \(a_{873}= -0.49797091 \pm 1 \cdot 10^{-8} \) |
\(a_{874}= +0.00171553 \pm 1.0 \cdot 10^{-8} \) | \(a_{875}= +1.43174888 \pm 1.1 \cdot 10^{-8} \) | \(a_{876}= +0.14818485 \pm 1.0 \cdot 10^{-8} \) |
\(a_{877}= +1.14692729 \pm 1.4 \cdot 10^{-8} \) | \(a_{878}= +0.30482280 \pm 1.4 \cdot 10^{-8} \) | \(a_{879}= -0.07270749 \pm 1.6 \cdot 10^{-8} \) |
\(a_{880}= +2.08015416 \pm 1.2 \cdot 10^{-8} \) | \(a_{881}= -1.04067445 \pm 1 \cdot 10^{-8} \) | \(a_{882}= +0.06806258 \pm 1 \cdot 10^{-8} \) |
\(a_{883}= +0.18025672 \pm 1.0 \cdot 10^{-8} \) | \(a_{884}= -0.71275530 \pm 1.1 \cdot 10^{-8} \) | \(a_{885}= -0.69173194 \pm 1.0 \cdot 10^{-8} \) |
\(a_{886}= -0.02041821 \pm 1.4 \cdot 10^{-8} \) | \(a_{887}= -0.01660096 \pm 1.3 \cdot 10^{-8} \) | \(a_{888}= +0.02656991 \pm 1.6 \cdot 10^{-8} \) |
\(a_{889}= +0.23784169 \pm 1.1 \cdot 10^{-8} \) | \(a_{890}= -0.07133741 \pm 1.4 \cdot 10^{-8} \) | \(a_{891}= +0.82907197 \pm 1.3 \cdot 10^{-8} \) |
\(a_{892}= -1.51932773 \pm 1.6 \cdot 10^{-8} \) | \(a_{893}= -0.27482931 \pm 1.1 \cdot 10^{-8} \) | \(a_{894}= +0.02109912 \pm 1.5 \cdot 10^{-8} \) |
\(a_{895}= +2.39682850 \pm 1.3 \cdot 10^{-8} \) | \(a_{896}= -0.42768281 \pm 1.9 \cdot 10^{-8} \) | \(a_{897}= +0.00678831 \pm 1 \cdot 10^{-8} \) |
\(a_{898}= +0.07088829 \pm 1.5 \cdot 10^{-8} \) | \(a_{899}= +0.07571526 \pm 2.2 \cdot 10^{-8} \) | \(a_{900}= +1.82463371 \pm 1.1 \cdot 10^{-8} \) |
\(a_{901}= +1.95148698 \pm 1.2 \cdot 10^{-8} \) | \(a_{902}= +0.14606650 \pm 1.0 \cdot 10^{-8} \) | \(a_{903}= +0.03555618 \pm 1.2 \cdot 10^{-8} \) |
\(a_{904}= +0.51952911 \pm 1 \cdot 10^{-8} \) | \(a_{905}= +0.29074816 \pm 1.0 \cdot 10^{-8} \) | \(a_{906}= +0.00252787 \pm 1.2 \cdot 10^{-8} \) |
\(a_{907}= +0.60327411 \pm 1.1 \cdot 10^{-8} \) | \(a_{908}= -0.01462024 \pm 1.1 \cdot 10^{-8} \) | \(a_{909}= -1.24632380 \pm 1.2 \cdot 10^{-8} \) |
\(a_{910}= -0.11188709 \pm 1 \cdot 10^{-8} \) | \(a_{911}= +1.97885032 \pm 1.6 \cdot 10^{-8} \) | \(a_{912}= -0.09846043 \pm 1.3 \cdot 10^{-8} \) |
\(a_{913}= -2.27403155 \pm 1.1 \cdot 10^{-8} \) | \(a_{914}= -0.12957102 \pm 1.4 \cdot 10^{-8} \) | \(a_{915}= +0.28226637 \pm 1.2 \cdot 10^{-8} \) |
\(a_{916}= -1.65967181 \pm 1.7 \cdot 10^{-8} \) | \(a_{917}= -0.80486792 \pm 1.4 \cdot 10^{-8} \) | \(a_{918}= -0.13707449 \pm 1.1 \cdot 10^{-8} \) |
\(a_{919}= -0.05333688 \pm 1.1 \cdot 10^{-8} \) | \(a_{920}= -0.01956780 \pm 1.2 \cdot 10^{-8} \) | \(a_{921}= +0.27102848 \pm 1.0 \cdot 10^{-8} \) |
\(a_{922}= -0.18404126 \pm 1.7 \cdot 10^{-8} \) | \(a_{923}= -0.37883188 \pm 1.0 \cdot 10^{-8} \) | \(a_{924}= +0.30880329 \pm 2.1 \cdot 10^{-8} \) |
\(a_{925}= +0.51786474 \pm 1.1 \cdot 10^{-8} \) | \(a_{926}= +0.22801179 \pm 1.2 \cdot 10^{-8} \) | \(a_{927}= -0.97387802 \pm 1 \cdot 10^{-8} \) |
\(a_{928}= -0.19450240 \pm 1.2 \cdot 10^{-8} \) | \(a_{929}= +0.14211941 \pm 1.1 \cdot 10^{-8} \) | \(a_{930}= +0.01757929 \pm 5.1 \cdot 10^{-8} \) |
\(a_{931}= -0.14900122 \pm 1 \cdot 10^{-8} \) | \(a_{932}= +0.83863127 \pm 1.2 \cdot 10^{-8} \) | \(a_{933}= -0.46446012 \pm 1.6 \cdot 10^{-8} \) |
\(a_{934}= +0.18798888 \pm 1.5 \cdot 10^{-8} \) | \(a_{935}= -2.96595176 \pm 1.4 \cdot 10^{-8} \) | \(a_{936}= -0.15322364 \pm 1.5 \cdot 10^{-8} \) |
\(a_{937}= +1.06148050 \pm 1.0 \cdot 10^{-8} \) | \(a_{938}= +0.06885814 \pm 1.5 \cdot 10^{-8} \) | \(a_{939}= -0.43934995 \pm 1.2 \cdot 10^{-8} \) |
\(a_{940}= +1.54728789 \pm 1.2 \cdot 10^{-8} \) | \(a_{941}= +0.84804455 \pm 1.2 \cdot 10^{-8} \) | \(a_{942}= +0.07265140 \pm 1.1 \cdot 10^{-8} \) |
\(a_{943}= +0.02540784 \pm 1 \cdot 10^{-8} \) | \(a_{944}= +1.03992821 \pm 1.4 \cdot 10^{-8} \) | \(a_{945}= +0.82820143 \pm 1.0 \cdot 10^{-8} \) |
\(a_{946}= -0.02888024 \pm 1.5 \cdot 10^{-8} \) | \(a_{947}= -1.11260032 \pm 1.1 \cdot 10^{-8} \) | \(a_{948}= -0.01443846 \pm 1 \cdot 10^{-8} \) |
\(a_{949}= -0.24253818 \pm 1 \cdot 10^{-8} \) | \(a_{950}= +0.10378087 \pm 1.0 \cdot 10^{-8} \) | \(a_{951}= +0.11927416 \pm 1.1 \cdot 10^{-8} \) |
\(a_{952}= +0.29687471 \pm 1.6 \cdot 10^{-8} \) | \(a_{953}= +0.08594696 \pm 1 \cdot 10^{-8} \) | \(a_{954}= +0.20706922 \pm 1 \cdot 10^{-8} \) |
\(a_{955}= -1.33343608 \pm 1.0 \cdot 10^{-8} \) | \(a_{956}= -0.11683760 \pm 1.1 \cdot 10^{-8} \) | \(a_{957}= +0.18639090 \pm 1.4 \cdot 10^{-8} \) |
\(a_{958}= -0.16135490 \pm 1.1 \cdot 10^{-8} \) | \(a_{959}= -0.16741840 \pm 1.0 \cdot 10^{-8} \) | \(a_{960}= +0.52357517 \pm 1.3 \cdot 10^{-8} \) |
\(a_{961}= +0.03225806 \pm 1.7 \cdot 10^{-6} \) | \(a_{962}= -0.02146500 \pm 1.1 \cdot 10^{-8} \) | \(a_{963}= -0.58169148 \pm 1.4 \cdot 10^{-8} \) |
\(a_{964}= +0.43162726 \pm 1.3 \cdot 10^{-8} \) | \(a_{965}= +3.17045730 \pm 1.5 \cdot 10^{-8} \) | \(a_{966}= -0.00139559 \pm 1.7 \cdot 10^{-8} \) |
\(a_{967}= -0.34183706 \pm 1.3 \cdot 10^{-8} \) | \(a_{968}= -0.19392680 \pm 1.6 \cdot 10^{-8} \) | \(a_{969}= +0.14038809 \pm 1 \cdot 10^{-8} \) |
\(a_{970}= +0.15946070 \pm 1.4 \cdot 10^{-8} \) | \(a_{971}= +0.66311517 \pm 1.3 \cdot 10^{-8} \) | \(a_{972}= +0.85773284 \pm 1.0 \cdot 10^{-8} \) |
\(a_{973}= +0.48252197 \pm 1.5 \cdot 10^{-8} \) | \(a_{974}= +0.23554462 \pm 1.4 \cdot 10^{-8} \) | \(a_{975}= +0.41065838 \pm 1 \cdot 10^{-8} \) |
\(a_{976}= -0.42435045 \pm 1.0 \cdot 10^{-8} \) | \(a_{977}= +1.59028655 \pm 1.2 \cdot 10^{-8} \) | \(a_{978}= +0.01705268 \pm 1.4 \cdot 10^{-8} \) |
\(a_{979}= -0.32225195 \pm 1.3 \cdot 10^{-8} \) | \(a_{980}= +0.83887623 \pm 1.4 \cdot 10^{-8} \) | \(a_{981}= -1.09754372 \pm 1.0 \cdot 10^{-8} \) |
\(a_{982}= +0.07882374 \pm 1.3 \cdot 10^{-8} \) | \(a_{983}= +0.71983793 \pm 1.0 \cdot 10^{-8} \) | \(a_{984}= +0.07886064 \pm 1.1 \cdot 10^{-8} \) |
\(a_{985}= -2.91469093 \pm 1.4 \cdot 10^{-8} \) | \(a_{986}= +0.08844648 \pm 1.2 \cdot 10^{-8} \) | \(a_{987}= +0.22357526 \pm 1.1 \cdot 10^{-8} \) |
\(a_{988}= +0.16556624 \pm 1.0 \cdot 10^{-8} \) | \(a_{989}= -0.00502363 \pm 1 \cdot 10^{-8} \) | \(a_{990}= -0.31471249 \pm 1.2 \cdot 10^{-8} \) |
\(a_{991}= -0.99392838 \pm 1.4 \cdot 10^{-8} \) | \(a_{992}= -0.08286667 \pm 2.5 \cdot 10^{-8} \) | \(a_{993}= +0.22313325 \pm 1.3 \cdot 10^{-8} \) |
\(a_{994}= +0.07788321 \pm 1.5 \cdot 10^{-8} \) | \(a_{995}= -0.77276234 \pm 1.2 \cdot 10^{-8} \) | \(a_{996}= -0.60599739 \pm 1 \cdot 10^{-8} \) |
\(a_{997}= -0.17969217 \pm 1.2 \cdot 10^{-8} \) | \(a_{998}= +0.00011657 \pm 1.6 \cdot 10^{-8} \) | \(a_{999}= +0.15888650 \pm 1.5 \cdot 10^{-8} \) |
\(a_{1000}= -0.62785931 \pm 1 \cdot 10^{-8} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000