Maass form invariants
Level: | \( 31 \) |
Weight: | \( 0 \) |
Character: | 31.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(4.58429981405929734312685170137 \pm 5 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +1.86831855 \pm 7.2 \cdot 10^{-6} \) | \(a_{3}= +0.17991362 \pm 6.5 \cdot 10^{-6} \) |
\(a_{4}= +2.49061419 \pm 7.9 \cdot 10^{-6} \) | \(a_{5}= -0.26190705 \pm 6.0 \cdot 10^{-6} \) | \(a_{6}= +0.33613595 \pm 8.2 \cdot 10^{-6} \) |
\(a_{7}= +1.25324465 \pm 5.9 \cdot 10^{-6} \) | \(a_{8}= +2.78494213 \pm 8.2 \cdot 10^{-6} \) | \(a_{9}= -0.96763109 \pm 6.1 \cdot 10^{-6} \) |
\(a_{10}= -0.48932579 \pm 7.4 \cdot 10^{-6} \) | \(a_{11}= +0.56384229 \pm 5.9 \cdot 10^{-6} \) | \(a_{12}= +0.44809541 \pm 9.5 \cdot 10^{-6} \) |
\(a_{13}= +1.05315657 \pm 6.1 \cdot 10^{-6} \) | \(a_{14}= +2.34146022 \pm 6.1 \cdot 10^{-6} \) | \(a_{15}= -0.04712064 \pm 6.2 \cdot 10^{-6} \) |
\(a_{16}= +2.71254484 \pm 7.3 \cdot 10^{-6} \) | \(a_{17}= -0.83187640 \pm 5.6 \cdot 10^{-6} \) | \(a_{18}= -1.80784311 \pm 7.9 \cdot 10^{-6} \) |
\(a_{19}= -0.79630242 \pm 6.2 \cdot 10^{-6} \) | \(a_{20}= -0.65230940 \pm 7.6 \cdot 10^{-6} \) | \(a_{21}= +0.22547578 \pm 6.3 \cdot 10^{-6} \) |
\(a_{22}= +1.05343701 \pm 6.4 \cdot 10^{-6} \) | \(a_{23}= -1.54408494 \pm 5.6 \cdot 10^{-6} \) | \(a_{24}= +0.50104901 \pm 9.9 \cdot 10^{-6} \) |
\(a_{25}= -0.93140470 \pm 5.7 \cdot 10^{-6} \) | \(a_{26}= +1.96763195 \pm 6.2 \cdot 10^{-6} \) | \(a_{27}= -0.35400363 \pm 5.4 \cdot 10^{-6} \) |
\(a_{28}= +3.12134891 \pm 6.3 \cdot 10^{-6} \) | \(a_{29}= -0.64192804 \pm 5.6 \cdot 10^{-6} \) | \(a_{30}= -0.08803637 \pm 8.3 \cdot 10^{-6} \) |
\(a_{31}= +0.17960530 \pm 1.0 \cdot 10^{-8} \) | \(a_{32}= +2.28295570 \pm 7.8 \cdot 10^{-6} \) | \(a_{33}= +0.10144291 \pm 6.3 \cdot 10^{-6} \) |
\(a_{34}= -1.55421011 \pm 7.7 \cdot 10^{-6} \) | \(a_{35}= -0.32823360 \pm 5.4 \cdot 10^{-6} \) | \(a_{36}= -2.40999572 \pm 8.5 \cdot 10^{-6} \) |
\(a_{37}= +1.80637067 \pm 5.4 \cdot 10^{-6} \) | \(a_{38}= -1.48774658 \pm 7.5 \cdot 10^{-6} \) | \(a_{39}= +0.18947721 \pm 6.0 \cdot 10^{-6} \) |
\(a_{40}= -0.72939596 \pm 7.9 \cdot 10^{-6} \) | \(a_{41}= +0.03430816 \pm 5.3 \cdot 10^{-6} \) | \(a_{42}= +0.42126058 \pm 7.3 \cdot 10^{-6} \) |
\(a_{43}= +0.60428219 \pm 5.1 \cdot 10^{-6} \) | \(a_{44}= +1.40431361 \pm 6.2 \cdot 10^{-6} \) | \(a_{45}= +0.25342940 \pm 5.9 \cdot 10^{-6} \) |
\(a_{46}= -2.88484253 \pm 5.4 \cdot 10^{-6} \) | \(a_{47}= -1.49791960 \pm 5.2 \cdot 10^{-6} \) | \(a_{48}= +0.48802376 \pm 9.2 \cdot 10^{-6} \) |
\(a_{49}= +0.57062216 \pm 5.6 \cdot 10^{-6} \) | \(a_{50}= -1.74016067 \pm 7.2 \cdot 10^{-6} \) | \(a_{51}= -0.14966589 \pm 6.4 \cdot 10^{-6} \) |
\(a_{52}= +2.62300669 \pm 6.3 \cdot 10^{-6} \) | \(a_{53}= +0.27538943 \pm 5.6 \cdot 10^{-6} \) | \(a_{54}= -0.66139154 \pm 7.1 \cdot 10^{-6} \) |
\(a_{55}= -0.14767427 \pm 6.3 \cdot 10^{-6} \) | \(a_{56}= +3.49021383 \pm 6.1 \cdot 10^{-6} \) | \(a_{57}= -0.14326565 \pm 6.1 \cdot 10^{-6} \) |
\(a_{58}= -1.19932605 \pm 6.5 \cdot 10^{-6} \) | \(a_{59}= +1.49654056 \pm 6.3 \cdot 10^{-6} \) | \(a_{60}= -0.11735934 \pm 9.4 \cdot 10^{-6} \) |
\(a_{61}= +0.35427279 \pm 5.8 \cdot 10^{-6} \) | \(a_{62}= +0.33555992 \pm 7.2 \cdot 10^{-6} \) | \(a_{63}= -1.21267849 \pm 6.9 \cdot 10^{-6} \) |
\(a_{64}= +1.55274363 \pm 7.7 \cdot 10^{-6} \) | \(a_{65}= -0.27582912 \pm 6.0 \cdot 10^{-6} \) | \(a_{66}= +0.18952766 \pm 6.4 \cdot 10^{-6} \) |
\(a_{67}= -0.10582915 \pm 4.9 \cdot 10^{-6} \) | \(a_{68}= -2.07188316 \pm 9.2 \cdot 10^{-6} \) | \(a_{69}= -0.27780191 \pm 6.5 \cdot 10^{-6} \) |
\(a_{70}= -0.61324493 \pm 6.2 \cdot 10^{-6} \) | \(a_{71}= -1.04213893 \pm 4.7 \cdot 10^{-6} \) | \(a_{72}= -2.69479659 \pm 8.0 \cdot 10^{-6} \) |
\(a_{73}= +1.04737843 \pm 5.3 \cdot 10^{-6} \) | \(a_{74}= +3.37487582 \pm 6.6 \cdot 10^{-6} \) | \(a_{75}= -0.16757239 \pm 5.8 \cdot 10^{-6} \) |
\(a_{76}= -1.98328211 \pm 7.3 \cdot 10^{-6} \) | \(a_{77}= +0.70663234 \pm 5.2 \cdot 10^{-6} \) | \(a_{78}= +0.35400378 \pm 6.1 \cdot 10^{-6} \) |
\(a_{79}= -1.77462026 \pm 6.2 \cdot 10^{-6} \) | \(a_{80}= -0.71043460 \pm 6.7 \cdot 10^{-6} \) | \(a_{81}= +0.90394102 \pm 6.2 \cdot 10^{-6} \) |
\(a_{82}= +0.06409857 \pm 7.2 \cdot 10^{-6} \) | \(a_{83}= +1.45478244 \pm 5.0 \cdot 10^{-6} \) | \(a_{84}= +0.56157317 \pm 7.8 \cdot 10^{-6} \) |
\(a_{85}= +0.21787429 \pm 5.0 \cdot 10^{-6} \) | \(a_{86}= +1.12899163 \pm 6.0 \cdot 10^{-6} \) | \(a_{87}= -0.11549160 \pm 6.6 \cdot 10^{-6} \) |
\(a_{88}= +1.57026816 \pm 6.0 \cdot 10^{-6} \) | \(a_{89}= +0.38844349 \pm 5.1 \cdot 10^{-6} \) | \(a_{90}= +0.47348685 \pm 7.7 \cdot 10^{-6} \) |
\(a_{91}= +1.31986284 \pm 6.6 \cdot 10^{-6} \) | \(a_{92}= -3.84571986 \pm 6.1 \cdot 10^{-6} \) | \(a_{93}= +0.03231344 \pm 6.5 \cdot 10^{-6} \) |
\(a_{94}= -2.79859097 \pm 6.9 \cdot 10^{-6} \) | \(a_{95}= +0.20855721 \pm 6.5 \cdot 10^{-6} \) | \(a_{96}= +0.41073482 \pm 9.8 \cdot 10^{-6} \) |
\(a_{97}= -0.91378392 \pm 5.8 \cdot 10^{-6} \) | \(a_{98}= +1.06610396 \pm 5.9 \cdot 10^{-6} \) | \(a_{99}= -0.54559133 \pm 5.4 \cdot 10^{-6} \) |
\(a_{100}= -2.31976976 \pm 7.0 \cdot 10^{-6} \) | \(a_{101}= -0.48793174 \pm 6.3 \cdot 10^{-6} \) | \(a_{102}= -0.27962356 \pm 9.1 \cdot 10^{-6} \) |
\(a_{103}= +1.82366310 \pm 5.2 \cdot 10^{-6} \) | \(a_{104}= +2.93298009 \pm 6.8 \cdot 10^{-6} \) | \(a_{105}= -0.05905370 \pm 5.6 \cdot 10^{-6} \) |
\(a_{106}= +0.51451518 \pm 6.6 \cdot 10^{-6} \) | \(a_{107}= -1.59305960 \pm 5.2 \cdot 10^{-6} \) | \(a_{108}= -0.88168646 \pm 7.2 \cdot 10^{-6} \) |
\(a_{109}= +0.57347166 \pm 5.8 \cdot 10^{-6} \) | \(a_{110}= -0.27590258 \pm 6.0 \cdot 10^{-6} \) | \(a_{111}= +0.32499068 \pm 5.7 \cdot 10^{-6} \) |
\(a_{112}= +3.39948231 \pm 4.9 \cdot 10^{-6} \) | \(a_{113}= +0.53603335 \pm 5.4 \cdot 10^{-6} \) | \(a_{114}= -0.26766587 \pm 6.8 \cdot 10^{-6} \) |
\(a_{115}= +0.40440672 \pm 5.3 \cdot 10^{-6} \) | \(a_{116}= -1.59879507 \pm 7.1 \cdot 10^{-6} \) | \(a_{117}= -1.01906704 \pm 6.2 \cdot 10^{-6} \) |
\(a_{118}= +2.79601448 \pm 8.4 \cdot 10^{-6} \) | \(a_{119}= -1.04254465 \pm 4.5 \cdot 10^{-6} \) | \(a_{120}= -0.13122827 \pm 9.3 \cdot 10^{-6} \) |
\(a_{121}= -0.68208187 \pm 6.2 \cdot 10^{-6} \) | \(a_{122}= +0.66189443 \pm 8.1 \cdot 10^{-6} \) | \(a_{123}= +0.00617251 \pm 6.7 \cdot 10^{-6} \) |
\(a_{124}= +0.44732751 \pm 7.9 \cdot 10^{-6} \) | \(a_{125}= +0.50584850 \pm 6.2 \cdot 10^{-6} \) | \(a_{126}= -2.26566971 \pm 8.5 \cdot 10^{-6} \) |
\(a_{127}= +0.75346559 \pm 5.9 \cdot 10^{-6} \) | \(a_{128}= +0.61806402 \pm 7.2 \cdot 10^{-6} \) | \(a_{129}= +0.10871860 \pm 4.8 \cdot 10^{-6} \) |
\(a_{130}= -0.51533667 \pm 6.3 \cdot 10^{-6} \) | \(a_{131}= +0.46333136 \pm 6.1 \cdot 10^{-6} \) | \(a_{132}= +0.25265514 \pm 6.6 \cdot 10^{-6} \) |
\(a_{133}= -0.99796175 \pm 5.7 \cdot 10^{-6} \) | \(a_{134}= -0.19772257 \pm 5.4 \cdot 10^{-6} \) | \(a_{135}= +0.09271604 \pm 5.2 \cdot 10^{-6} \) |
\(a_{136}= -2.31672763 \pm 9.7 \cdot 10^{-6} \) | \(a_{137}= +1.00636925 \pm 5.8 \cdot 10^{-6} \) | \(a_{138}= -0.51902246 \pm 5.4 \cdot 10^{-6} \) |
\(a_{139}= -0.00773404 \pm 4.5 \cdot 10^{-6} \) | \(a_{140}= -0.81750327 \pm 5.7 \cdot 10^{-6} \) | \(a_{141}= -0.26949613 \pm 6.6 \cdot 10^{-6} \) |
\(a_{142}= -1.94704749 \pm 5.1 \cdot 10^{-6} \) | \(a_{143}= +0.59381421 \pm 6.0 \cdot 10^{-6} \) | \(a_{144}= -2.62474272 \pm 7.6 \cdot 10^{-6} \) |
\(a_{145}= +0.16812548 \pm 5.3 \cdot 10^{-6} \) | \(a_{146}= +1.95683654 \pm 6.5 \cdot 10^{-6} \) | \(a_{147}= +0.10266270 \pm 5.9 \cdot 10^{-6} \) |
\(a_{148}= +4.49897242 \pm 7.5 \cdot 10^{-6} \) | \(a_{149}= +0.32044753 \pm 5.1 \cdot 10^{-6} \) | \(a_{150}= -0.31307860 \pm 7.5 \cdot 10^{-6} \) |
\(a_{151}= -0.45897034 \pm 5.6 \cdot 10^{-6} \) | \(a_{152}= -2.21765616 \pm 6.7 \cdot 10^{-6} \) | \(a_{153}= +0.80494947 \pm 5.4 \cdot 10^{-6} \) |
\(a_{154}= +1.32021430 \pm 5.6 \cdot 10^{-6} \) | \(a_{155}= -0.04703989 \pm 6.0 \cdot 10^{-6} \) | \(a_{156}= +0.47191462 \pm 6.7 \cdot 10^{-6} \) |
\(a_{157}= -1.42892193 \pm 5.1 \cdot 10^{-6} \) | \(a_{158}= -3.31555594 \pm 7.6 \cdot 10^{-6} \) | \(a_{159}= +0.04954631 \pm 5.6 \cdot 10^{-6} \) |
\(a_{160}= -0.59792218 \pm 7.2 \cdot 10^{-6} \) | \(a_{161}= -1.93511619 \pm 5.0 \cdot 10^{-6} \) | \(a_{162}= +1.68884977 \pm 8.4 \cdot 10^{-6} \) |
\(a_{163}= +0.97810584 \pm 5.9 \cdot 10^{-6} \) | \(a_{164}= +0.08544839 \pm 8.6 \cdot 10^{-6} \) | \(a_{165}= -0.02656861 \pm 5.8 \cdot 10^{-6} \) |
\(a_{166}= +2.71799701 \pm 6.7 \cdot 10^{-6} \) | \(a_{167}= +0.58810017 \pm 6.0 \cdot 10^{-6} \) | \(a_{168}= +0.62793700 \pm 6.6 \cdot 10^{-6} \) |
\(a_{169}= +0.10913876 \pm 5.7 \cdot 10^{-6} \) | \(a_{170}= +0.40705858 \pm 6.7 \cdot 10^{-6} \) | \(a_{171}= +0.77052698 \pm 5.6 \cdot 10^{-6} \) |
\(a_{172}= +1.50503380 \pm 5.9 \cdot 10^{-6} \) | \(a_{173}= +0.77403240 \pm 6.2 \cdot 10^{-6} \) | \(a_{174}= -0.21577509 \pm 7.9 \cdot 10^{-6} \) |
\(a_{175}= -1.16727796 \pm 5.3 \cdot 10^{-6} \) | \(a_{176}= +1.52944750 \pm 3.9 \cdot 10^{-6} \) | \(a_{177}= +0.26924803 \pm 6.6 \cdot 10^{-6} \) |
\(a_{178}= +0.72573618 \pm 5.8 \cdot 10^{-6} \) | \(a_{179}= +0.71674975 \pm 6.5 \cdot 10^{-6} \) | \(a_{180}= +0.63119486 \pm 8.2 \cdot 10^{-6} \) |
\(a_{181}= +0.50738373 \pm 5.3 \cdot 10^{-6} \) | \(a_{182}= +2.46592421 \pm 5.9 \cdot 10^{-6} \) | \(a_{183}= +0.06373850 \pm 5.9 \cdot 10^{-6} \) |
\(a_{184}= -4.30018720 \pm 7.1 \cdot 10^{-6} \) | \(a_{185}= -0.47310120 \pm 5.1 \cdot 10^{-6} \) | \(a_{186}= +0.06037180 \pm 1.3 \cdot 10^{-5} \) |
\(a_{187}= -0.46904710 \pm 4.4 \cdot 10^{-6} \) | \(a_{188}= -3.73073981 \pm 8.4 \cdot 10^{-6} \) | \(a_{189}= -0.44365315 \pm 6.4 \cdot 10^{-6} \) |
\(a_{190}= +0.38965131 \pm 8.1 \cdot 10^{-6} \) | \(a_{191}= -1.19235654 \pm 5.9 \cdot 10^{-6} \) | \(a_{192}= +0.27935972 \pm 9.5 \cdot 10^{-6} \) |
\(a_{193}= +0.73323020 \pm 5.6 \cdot 10^{-6} \) | \(a_{194}= -1.70723945 \pm 7.3 \cdot 10^{-6} \) | \(a_{195}= -0.04962542 \pm 5.1 \cdot 10^{-6} \) |
\(a_{196}= +1.42119964 \pm 6.9 \cdot 10^{-6} \) | \(a_{197}= -0.84198551 \pm 4.4 \cdot 10^{-6} \) | \(a_{198}= -1.01933841 \pm 6.1 \cdot 10^{-6} \) |
\(a_{199}= -0.03544615 \pm 5.3 \cdot 10^{-6} \) | \(a_{200}= -2.59390819 \pm 6.0 \cdot 10^{-6} \) | \(a_{201}= -0.01904011 \pm 5.3 \cdot 10^{-6} \) |
\(a_{202}= -0.91161192 \pm 7.4 \cdot 10^{-6} \) | \(a_{203}= -0.80449288 \pm 5.6 \cdot 10^{-6} \) | \(a_{204}= -0.37276000 \pm 1.1 \cdot 10^{-5} \) |
\(a_{205}= -0.00898555 \pm 5.2 \cdot 10^{-6} \) | \(a_{206}= +3.40718360 \pm 6.2 \cdot 10^{-6} \) | \(a_{207}= +1.49410459 \pm 5.1 \cdot 10^{-6} \) |
\(a_{208}= +2.85673441 \pm 6.0 \cdot 10^{-6} \) | \(a_{209}= -0.44898898 \pm 6.8 \cdot 10^{-6} \) | \(a_{210}= -0.11033111 \pm 7.6 \cdot 10^{-6} \) |
\(a_{211}= -1.07980062 \pm 5.8 \cdot 10^{-6} \) | \(a_{212}= +0.68588882 \pm 6.9 \cdot 10^{-6} \) | \(a_{213}= -0.18749499 \pm 5.7 \cdot 10^{-6} \) |
\(a_{214}= -2.97634279 \pm 5.8 \cdot 10^{-6} \) | \(a_{215}= -0.15826576 \pm 5.6 \cdot 10^{-6} \) | \(a_{216}= -0.98587962 \pm 6.3 \cdot 10^{-6} \) |
\(a_{217}= +0.22508938 \pm 5.9 \cdot 10^{-6} \) | \(a_{218}= +1.07142773 \pm 7.3 \cdot 10^{-6} \) | \(a_{219}= +0.18843764 \pm 5.3 \cdot 10^{-6} \) |
\(a_{220}= -0.36779963 \pm 5.3 \cdot 10^{-6} \) | \(a_{221}= -0.87609609 \pm 5.5 \cdot 10^{-6} \) | \(a_{222}= +0.60718612 \pm 6.9 \cdot 10^{-6} \) |
\(a_{223}= +1.24535344 \pm 6.6 \cdot 10^{-6} \) | \(a_{224}= +2.86110202 \pm 6.0 \cdot 10^{-6} \) | \(a_{225}= +0.90125615 \pm 5.2 \cdot 10^{-6} \) |
\(a_{226}= +1.00148104 \pm 6.6 \cdot 10^{-6} \) | \(a_{227}= +0.91781412 \pm 5.6 \cdot 10^{-6} \) | \(a_{228}= -0.35681946 \pm 7.3 \cdot 10^{-6} \) |
\(a_{229}= -0.42437964 \pm 6.0 \cdot 10^{-6} \) | \(a_{230}= +0.75556058 \pm 5.6 \cdot 10^{-6} \) | \(a_{231}= +0.12713278 \pm 6.3 \cdot 10^{-6} \) |
\(a_{232}= -1.78773243 \pm 6.7 \cdot 10^{-6} \) | \(a_{233}= -0.62476284 \pm 4.6 \cdot 10^{-6} \) | \(a_{234}= -1.90394185 \pm 6.6 \cdot 10^{-6} \) |
\(a_{235}= +0.39231570 \pm 5.6 \cdot 10^{-6} \) | \(a_{236}= +3.72730514 \pm 9.4 \cdot 10^{-6} \) | \(a_{237}= -0.31927835 \pm 6.7 \cdot 10^{-6} \) |
\(a_{238}= -1.94780550 \pm 4.3 \cdot 10^{-6} \) | \(a_{239}= -0.17336079 \pm 6.0 \cdot 10^{-6} \) | \(a_{240}= -0.12781686 \pm 8.1 \cdot 10^{-6} \) |
\(a_{241}= -0.19713181 \pm 4.7 \cdot 10^{-6} \) | \(a_{242}= -1.27434620 \pm 6.9 \cdot 10^{-6} \) | \(a_{243}= +0.51663493 \pm 6.7 \cdot 10^{-6} \) |
\(a_{244}= +0.88235684 \pm 9.6 \cdot 10^{-6} \) | \(a_{245}= -0.14944996 \pm 5.3 \cdot 10^{-6} \) | \(a_{246}= +0.01153221 \pm 9.8 \cdot 10^{-6} \) |
\(a_{247}= -0.83863113 \pm 6.2 \cdot 10^{-6} \) | \(a_{248}= +0.50019037 \pm 8.2 \cdot 10^{-6} \) | \(a_{249}= +0.26173517 \pm 5.4 \cdot 10^{-6} \) |
\(a_{250}= +0.94508613 \pm 8.1 \cdot 10^{-6} \) | \(a_{251}= -0.46630332 \pm 5.5 \cdot 10^{-6} \) | \(a_{252}= -3.02031425 \pm 8.8 \cdot 10^{-6} \) |
\(a_{253}= -0.87062039 \pm 5.2 \cdot 10^{-6} \) | \(a_{254}= +1.40771373 \pm 7.2 \cdot 10^{-6} \) | \(a_{255}= +0.03919855 \pm 6.0 \cdot 10^{-6} \) |
\(a_{256}= -0.39800315 \pm 7.0 \cdot 10^{-6} \) | \(a_{257}= -0.17035819 \pm 5.8 \cdot 10^{-6} \) | \(a_{258}= +0.20312097 \pm 6.4 \cdot 10^{-6} \) |
\(a_{259}= +2.26382438 \pm 5.5 \cdot 10^{-6} \) | \(a_{260}= -0.68698393 \pm 5.7 \cdot 10^{-6} \) | \(a_{261}= +0.62114953 \pm 5.7 \cdot 10^{-6} \) |
\(a_{262}= +0.86565058 \pm 7.1 \cdot 10^{-6} \) | \(a_{263}= +1.96191302 \pm 6.2 \cdot 10^{-6} \) | \(a_{264}= +0.28251262 \pm 6.0 \cdot 10^{-6} \) |
\(a_{265}= -0.07212643 \pm 5.1 \cdot 10^{-6} \) | \(a_{266}= -1.86451045 \pm 6.5 \cdot 10^{-6} \) | \(a_{267}= +0.06988627 \pm 5.0 \cdot 10^{-6} \) |
\(a_{268}= -0.26357959 \pm 5.4 \cdot 10^{-6} \) | \(a_{269}= +0.68721576 \pm 5.3 \cdot 10^{-6} \) | \(a_{270}= +0.17322310 \pm 6.5 \cdot 10^{-6} \) |
\(a_{271}= +0.61985802 \pm 6.9 \cdot 10^{-6} \) | \(a_{272}= -2.25650203 \pm 8.9 \cdot 10^{-6} \) | \(a_{273}= +0.23746130 \pm 6.2 \cdot 10^{-6} \) |
\(a_{274}= +1.88021834 \pm 7.1 \cdot 10^{-6} \) | \(a_{275}= -0.52516536 \pm 6.7 \cdot 10^{-6} \) | \(a_{276}= -0.69189737 \pm 6.7 \cdot 10^{-6} \) |
\(a_{277}= -0.06843822 \pm 5.6 \cdot 10^{-6} \) | \(a_{278}= -0.01444966 \pm 5.6 \cdot 10^{-6} \) | \(a_{279}= -0.17379167 \pm 6.1 \cdot 10^{-6} \) |
\(a_{280}= -0.91411159 \pm 5.7 \cdot 10^{-6} \) | \(a_{281}= -1.19137670 \pm 5.8 \cdot 10^{-6} \) | \(a_{282}= -0.50350463 \pm 9.1 \cdot 10^{-6} \) |
\(a_{283}= +1.39523054 \pm 5.6 \cdot 10^{-6} \) | \(a_{284}= -2.59556601 \pm 4.9 \cdot 10^{-6} \) | \(a_{285}= +0.03752228 \pm 6.5 \cdot 10^{-6} \) |
\(a_{286}= +1.10943411 \pm 6.4 \cdot 10^{-6} \) | \(a_{287}= +0.04299652 \pm 4.9 \cdot 10^{-6} \) | \(a_{288}= -2.20905891 \pm 8.3 \cdot 10^{-6} \) |
\(a_{289}= -0.30798166 \pm 6.0 \cdot 10^{-6} \) | \(a_{290}= +0.31411194 \pm 6.8 \cdot 10^{-6} \) | \(a_{291}= -0.16440217 \pm 6.9 \cdot 10^{-6} \) |
\(a_{292}= +2.60861557 \pm 6.6 \cdot 10^{-6} \) | \(a_{293}= -1.21944584 \pm 5.0 \cdot 10^{-6} \) | \(a_{294}= +0.19180662 \pm 6.7 \cdot 10^{-6} \) |
\(a_{295}= -0.39195452 \pm 5.5 \cdot 10^{-6} \) | \(a_{296}= +5.03063778 \pm 7.6 \cdot 10^{-6} \) | \(a_{297}= -0.19960222 \pm 4.7 \cdot 10^{-6} \) |
\(a_{298}= +0.59869806 \pm 6.4 \cdot 10^{-6} \) | \(a_{299}= -1.62616320 \pm 5.8 \cdot 10^{-6} \) | \(a_{300}= -0.41735817 \pm 7.4 \cdot 10^{-6} \) |
\(a_{301}= +0.75731343 \pm 5.0 \cdot 10^{-6} \) | \(a_{302}= -0.85750279 \pm 6.2 \cdot 10^{-6} \) | \(a_{303}= -0.08778556 \pm 7.4 \cdot 10^{-6} \) |
\(a_{304}= -2.16000603 \pm 4.7 \cdot 10^{-6} \) | \(a_{305}= -0.09278654 \pm 5.5 \cdot 10^{-6} \) | \(a_{306}= +1.50390202 \pm 6.7 \cdot 10^{-6} \) |
\(a_{307}= +1.58691639 \pm 6.2 \cdot 10^{-6} \) | \(a_{308}= +1.75994853 \pm 5.9 \cdot 10^{-6} \) | \(a_{309}= +0.32810183 \pm 6.0 \cdot 10^{-6} \) |
\(a_{310}= -0.08788551 \pm 1.3 \cdot 10^{-5} \) | \(a_{311}= -0.57352950 \pm 4.7 \cdot 10^{-6} \) | \(a_{312}= +0.52768306 \pm 6.9 \cdot 10^{-6} \) |
\(a_{313}= +0.82542555 \pm 5.9 \cdot 10^{-6} \) | \(a_{314}= -2.66968134 \pm 6.2 \cdot 10^{-6} \) | \(a_{315}= +0.31760904 \pm 5.9 \cdot 10^{-6} \) |
\(a_{316}= -4.41989440 \pm 8.9 \cdot 10^{-6} \) | \(a_{317}= -0.46237826 \pm 5.7 \cdot 10^{-6} \) | \(a_{318}= +0.09256829 \pm 7.3 \cdot 10^{-6} \) |
\(a_{319}= -0.36194618 \pm 5.8 \cdot 10^{-6} \) | \(a_{320}= -0.40667450 \pm 7.6 \cdot 10^{-6} \) | \(a_{321}= -0.28661312 \pm 5.0 \cdot 10^{-6} \) |
\(a_{322}= -3.61541347 \pm 4.5 \cdot 10^{-6} \) | \(a_{323}= +0.66242519 \pm 4.8 \cdot 10^{-6} \) | \(a_{324}= +2.25136832 \pm 8.8 \cdot 10^{-6} \) |
\(a_{325}= -0.98091498 \pm 5.1 \cdot 10^{-6} \) | \(a_{326}= +1.82741329 \pm 7.0 \cdot 10^{-6} \) | \(a_{327}= +0.10317536 \pm 5.2 \cdot 10^{-6} \) |
\(a_{328}= +0.09554624 \pm 9.7 \cdot 10^{-6} \) | \(a_{329}= -1.87725973 \pm 4.3 \cdot 10^{-6} \) | \(a_{330}= -0.04963863 \pm 5.9 \cdot 10^{-6} \) |
\(a_{331}= -0.41102925 \pm 5.3 \cdot 10^{-6} \) | \(a_{332}= +3.62330179 \pm 7.6 \cdot 10^{-6} \) | \(a_{333}= -1.74790042 \pm 5.3 \cdot 10^{-6} \) |
\(a_{334}= +1.09875845 \pm 6.8 \cdot 10^{-6} \) | \(a_{335}= +0.02771740 \pm 5.0 \cdot 10^{-6} \) | \(a_{336}= +0.61161316 \pm 5.7 \cdot 10^{-6} \) |
\(a_{337}= +0.43033090 \pm 6.1 \cdot 10^{-6} \) | \(a_{338}= +0.20390596 \pm 5.9 \cdot 10^{-6} \) | \(a_{339}= +0.09643970 \pm 5.5 \cdot 10^{-6} \) |
\(a_{340}= +0.54264080 \pm 8.0 \cdot 10^{-6} \) | \(a_{341}= +0.10126907 \pm 5.9 \cdot 10^{-6} \) | \(a_{342}= +1.43958985 \pm 7.3 \cdot 10^{-6} \) |
\(a_{343}= -0.53811549 \pm 5.6 \cdot 10^{-6} \) | \(a_{344}= +1.68289094 \pm 6.1 \cdot 10^{-6} \) | \(a_{345}= +0.07275828 \pm 5.4 \cdot 10^{-6} \) |
\(a_{346}= +1.44613910 \pm 8.3 \cdot 10^{-6} \) | \(a_{347}= +0.62893034 \pm 6.1 \cdot 10^{-6} \) | \(a_{348}= -0.28764501 \pm 8.7 \cdot 10^{-6} \) |
\(a_{349}= -0.60171495 \pm 6.2 \cdot 10^{-6} \) | \(a_{350}= -2.18084706 \pm 6.3 \cdot 10^{-6} \) | \(a_{351}= -0.37282125 \pm 4.9 \cdot 10^{-6} \) |
\(a_{352}= +1.28722698 \pm 5.6 \cdot 10^{-6} \) | \(a_{353}= -0.02157889 \pm 6.7 \cdot 10^{-6} \) | \(a_{354}= +0.50304108 \pm 8.6 \cdot 10^{-6} \) |
\(a_{355}= +0.27294353 \pm 4.0 \cdot 10^{-6} \) | \(a_{356}= +0.96746288 \pm 6.3 \cdot 10^{-6} \) | \(a_{357}= -0.18756798 \pm 4.5 \cdot 10^{-6} \) |
\(a_{358}= +1.33911685 \pm 7.5 \cdot 10^{-6} \) | \(a_{359}= +0.19978574 \pm 5.7 \cdot 10^{-6} \) | \(a_{360}= +0.70578621 \pm 7.9 \cdot 10^{-6} \) |
\(a_{361}= -0.36590245 \pm 6.1 \cdot 10^{-6} \) | \(a_{362}= +0.94795443 \pm 6.1 \cdot 10^{-6} \) | \(a_{363}= -0.12271582 \pm 5.9 \cdot 10^{-6} \) |
\(a_{364}= +3.28726910 \pm 6.0 \cdot 10^{-6} \) | \(a_{365}= -0.27431579 \pm 6.2 \cdot 10^{-6} \) | \(a_{366}= +0.11908382 \pm 8.9 \cdot 10^{-6} \) |
\(a_{367}= +0.51994622 \pm 6.6 \cdot 10^{-6} \) | \(a_{368}= -4.18839964 \pm 6.3 \cdot 10^{-6} \) | \(a_{369}= -0.03319764 \pm 6.2 \cdot 10^{-6} \) |
\(a_{370}= -0.88390375 \pm 6.1 \cdot 10^{-6} \) | \(a_{371}= +0.34513033 \pm 5.7 \cdot 10^{-6} \) | \(a_{372}= +0.08048031 \pm 1.4 \cdot 10^{-5} \) |
\(a_{373}= +1.16170826 \pm 5.3 \cdot 10^{-6} \) | \(a_{374}= -0.87632939 \pm 5.4 \cdot 10^{-6} \) | \(a_{375}= +0.09100903 \pm 7.1 \cdot 10^{-6} \) |
\(a_{376}= -4.17161941 \pm 9.7 \cdot 10^{-6} \) | \(a_{377}= -0.67605073 \pm 5.4 \cdot 10^{-6} \) | \(a_{378}= -0.82888541 \pm 8.4 \cdot 10^{-6} \) |
\(a_{379}= +0.55731386 \pm 5.8 \cdot 10^{-6} \) | \(a_{380}= +0.51943556 \pm 7.6 \cdot 10^{-6} \) | \(a_{381}= +0.13555872 \pm 6.1 \cdot 10^{-6} \) |
\(a_{382}= -2.22770184 \pm 7.9 \cdot 10^{-6} \) | \(a_{383}= -1.46491936 \pm 5.6 \cdot 10^{-6} \) | \(a_{384}= +0.11119813 \pm 9.1 \cdot 10^{-6} \) |
\(a_{385}= -0.18507199 \pm 4.8 \cdot 10^{-6} \) | \(a_{386}= +1.36990757 \pm 5.9 \cdot 10^{-6} \) | \(a_{387}= -0.58472224 \pm 5.4 \cdot 10^{-6} \) |
\(a_{388}= -2.27588320 \pm 8.2 \cdot 10^{-6} \) | \(a_{389}= -0.49288075 \pm 5.0 \cdot 10^{-6} \) | \(a_{390}= -0.09271608 \pm 4.9 \cdot 10^{-6} \) |
\(a_{391}= +1.28448782 \pm 4.6 \cdot 10^{-6} \) | \(a_{392}= +1.58914968 \pm 7.4 \cdot 10^{-6} \) | \(a_{393}= +0.08335962 \pm 6.3 \cdot 10^{-6} \) |
\(a_{394}= -1.57309715 \pm 5.4 \cdot 10^{-6} \) | \(a_{395}= +0.46478555 \pm 5.7 \cdot 10^{-6} \) | \(a_{396}= -1.35885751 \pm 6.1 \cdot 10^{-6} \) |
\(a_{397}= +0.70031766 \pm 5.8 \cdot 10^{-6} \) | \(a_{398}= -0.06622470 \pm 6.2 \cdot 10^{-6} \) | \(a_{399}= -0.17954691 \pm 5.7 \cdot 10^{-6} \) |
\(a_{400}= -2.52647701 \pm 4.2 \cdot 10^{-6} \) | \(a_{401}= +0.80480196 \pm 5.9 \cdot 10^{-6} \) | \(a_{402}= -0.03557298 \pm 6.6 \cdot 10^{-6} \) |
\(a_{403}= +0.18915250 \pm 6.1 \cdot 10^{-6} \) | \(a_{404}= -1.21524972 \pm 8.2 \cdot 10^{-6} \) | \(a_{405}= -0.23674852 \pm 5.8 \cdot 10^{-6} \) |
\(a_{406}= -1.50304896 \pm 5.7 \cdot 10^{-6} \) | \(a_{407}= +1.01850818 \pm 5.3 \cdot 10^{-6} \) | \(a_{408}= -0.41681085 \pm 1.1 \cdot 10^{-5} \) |
\(a_{409}= +0.16295152 \pm 4.9 \cdot 10^{-6} \) | \(a_{410}= -0.01678787 \pm 7.1 \cdot 10^{-6} \) | \(a_{411}= +0.18105953 \pm 6.6 \cdot 10^{-6} \) |
\(a_{412}= +4.54204120 \pm 6.5 \cdot 10^{-6} \) | \(a_{413}= +1.87553145 \pm 6.1 \cdot 10^{-6} \) | \(a_{414}= +2.79146332 \pm 5.2 \cdot 10^{-6} \) |
\(a_{415}= -0.38101777 \pm 5.2 \cdot 10^{-6} \) | \(a_{416}= +2.40430979 \pm 6.6 \cdot 10^{-6} \) | \(a_{417}= -0.00139146 \pm 5.4 \cdot 10^{-6} \) |
\(a_{418}= -0.83885445 \pm 7.7 \cdot 10^{-6} \) | \(a_{419}= -0.69687613 \pm 5.5 \cdot 10^{-6} \) | \(a_{420}= -0.14707997 \pm 7.7 \cdot 10^{-6} \) |
\(a_{421}= +0.95092456 \pm 6.8 \cdot 10^{-6} \) | \(a_{422}= -2.01741153 \pm 5.6 \cdot 10^{-6} \) | \(a_{423}= +1.44943358 \pm 5.9 \cdot 10^{-6} \) |
\(a_{424}= +0.76694362 \pm 6.4 \cdot 10^{-6} \) | \(a_{425}= +0.77481359 \pm 3.7 \cdot 10^{-6} \) | \(a_{426}= -0.35030036 \pm 6.1 \cdot 10^{-6} \) |
\(a_{427}= +0.44399048 \pm 4.4 \cdot 10^{-6} \) | \(a_{428}= -3.96769684 \pm 5.8 \cdot 10^{-6} \) | \(a_{429}= +0.10683526 \pm 6.3 \cdot 10^{-6} \) |
\(a_{430}= -0.29569086 \pm 6.3 \cdot 10^{-6} \) | \(a_{431}= -1.63833113 \pm 5.7 \cdot 10^{-6} \) | \(a_{432}= -0.96025071 \pm 5.4 \cdot 10^{-6} \) |
\(a_{433}= -0.90283879 \pm 6.7 \cdot 10^{-6} \) | \(a_{434}= +0.42053867 \pm 1.3 \cdot 10^{-5} \) | \(a_{435}= +0.03024806 \pm 6.4 \cdot 10^{-6} \) |
\(a_{436}= +1.42829664 \pm 7.5 \cdot 10^{-6} \) | \(a_{437}= +1.22955858 \pm 6.0 \cdot 10^{-6} \) | \(a_{438}= +0.35206154 \pm 7.4 \cdot 10^{-6} \) |
\(a_{439}= +0.77295286 \pm 6.0 \cdot 10^{-6} \) | \(a_{440}= -0.41126429 \pm 6.8 \cdot 10^{-6} \) | \(a_{441}= -0.55215174 \pm 6.4 \cdot 10^{-6} \) |
\(a_{442}= -1.63682658 \pm 5.4 \cdot 10^{-6} \) | \(a_{443}= +0.24394066 \pm 5.7 \cdot 10^{-6} \) | \(a_{444}= +0.80942640 \pm 7.9 \cdot 10^{-6} \) |
\(a_{445}= -0.10173609 \pm 5.5 \cdot 10^{-6} \) | \(a_{446}= +2.32671693 \pm 7.0 \cdot 10^{-6} \) | \(a_{447}= +0.05765287 \pm 5.3 \cdot 10^{-6} \) |
\(a_{448}= +1.94596765 \pm 5.9 \cdot 10^{-6} \) | \(a_{449}= -1.05772281 \pm 5.1 \cdot 10^{-6} \) | \(a_{450}= +1.68383357 \pm 6.6 \cdot 10^{-6} \) |
\(a_{451}= +0.01934439 \pm 4.9 \cdot 10^{-6} \) | \(a_{452}= +1.33505225 \pm 6.9 \cdot 10^{-6} \) | \(a_{453}= -0.08257501 \pm 5.6 \cdot 10^{-6} \) |
\(a_{454}= +1.71476914 \pm 7.1 \cdot 10^{-6} \) | \(a_{455}= -0.34568138 \pm 5.4 \cdot 10^{-6} \) | \(a_{456}= -0.39898654 \pm 7.4 \cdot 10^{-6} \) |
\(a_{457}= -0.83103143 \pm 6.3 \cdot 10^{-6} \) | \(a_{458}= -0.79287636 \pm 7.9 \cdot 10^{-6} \) | \(a_{459}= +0.29448726 \pm 4.8 \cdot 10^{-6} \) |
\(a_{460}= +1.00722112 \pm 5.9 \cdot 10^{-6} \) | \(a_{461}= +0.68313865 \pm 5.2 \cdot 10^{-6} \) | \(a_{462}= +0.23752453 \pm 6.1 \cdot 10^{-6} \) |
\(a_{463}= -1.64514211 \pm 6.0 \cdot 10^{-6} \) | \(a_{464}= -1.74125858 \pm 5.0 \cdot 10^{-6} \) | \(a_{465}= -0.00846312 \pm 1.2 \cdot 10^{-5} \) |
\(a_{466}= -1.16725600 \pm 6.7 \cdot 10^{-6} \) | \(a_{467}= -0.64444271 \pm 5.5 \cdot 10^{-6} \) | \(a_{468}= -2.53810282 \pm 6.7 \cdot 10^{-6} \) |
\(a_{469}= -0.13262982 \pm 4.9 \cdot 10^{-6} \) | \(a_{470}= +0.73297069 \pm 6.9 \cdot 10^{-6} \) | \(a_{471}= -0.25708251 \pm 6.1 \cdot 10^{-6} \) |
\(a_{472}= +4.16777884 \pm 9.1 \cdot 10^{-6} \) | \(a_{473}= +0.34071986 \pm 5.2 \cdot 10^{-6} \) | \(a_{474}= -0.59651366 \pm 8.6 \cdot 10^{-6} \) |
\(a_{475}= +0.74167982 \pm 6.6 \cdot 10^{-6} \) | \(a_{476}= -2.59657649 \pm 4.4 \cdot 10^{-6} \) | \(a_{477}= -0.26647537 \pm 6.2 \cdot 10^{-6} \) |
\(a_{478}= -0.32389317 \pm 6.5 \cdot 10^{-6} \) | \(a_{479}= -1.33164791 \pm 5.7 \cdot 10^{-6} \) | \(a_{480}= -0.10757434 \pm 8.7 \cdot 10^{-6} \) |
\(a_{481}= +1.90239114 \pm 5.2 \cdot 10^{-6} \) | \(a_{482}= -0.36830502 \pm 5.4 \cdot 10^{-6} \) | \(a_{483}= -0.34815376 \pm 5.6 \cdot 10^{-6} \) |
\(a_{484}= -1.69880278 \pm 7.0 \cdot 10^{-6} \) | \(a_{485}= +0.23932645 \pm 5.0 \cdot 10^{-6} \) | \(a_{486}= +0.96523861 \pm 8.2 \cdot 10^{-6} \) |
\(a_{487}= -1.10072440 \pm 6.2 \cdot 10^{-6} \) | \(a_{488}= +0.98662922 \pm 1.0 \cdot 10^{-5} \) | \(a_{489}= +0.17597456 \pm 6.3 \cdot 10^{-6} \) |
\(a_{490}= -0.27922014 \pm 6.2 \cdot 10^{-6} \) | \(a_{491}= -0.51277535 \pm 5.0 \cdot 10^{-6} \) | \(a_{492}= +0.01537333 \pm 1.2 \cdot 10^{-5} \) |
\(a_{493}= +0.53400478 \pm 5.5 \cdot 10^{-6} \) | \(a_{494}= -1.56683009 \pm 6.8 \cdot 10^{-6} \) | \(a_{495}= +0.14289421 \pm 5.0 \cdot 10^{-6} \) |
\(a_{496}= +0.48718744 \pm 7.3 \cdot 10^{-6} \) | \(a_{497}= -1.30605504 \pm 5.5 \cdot 10^{-6} \) | \(a_{498}= +0.48900468 \pm 7.3 \cdot 10^{-6} \) |
\(a_{499}= -0.86575757 \pm 6.0 \cdot 10^{-6} \) | \(a_{500}= +1.25987344 \pm 8.8 \cdot 10^{-6} \) | \(a_{501}= +0.10580723 \pm 5.9 \cdot 10^{-6} \) |
\(a_{502}= -0.87120313 \pm 6.7 \cdot 10^{-6} \) | \(a_{503}= +1.51761945 \pm 7.3 \cdot 10^{-6} \) | \(a_{504}= -3.37723941 \pm 7.3 \cdot 10^{-6} \) |
\(a_{505}= +0.12779276 \pm 6.9 \cdot 10^{-6} \) | \(a_{506}= -1.62659623 \pm 3.8 \cdot 10^{-6} \) | \(a_{507}= +0.01963555 \pm 5.2 \cdot 10^{-6} \) |
\(a_{508}= +1.87659208 \pm 6.9 \cdot 10^{-6} \) | \(a_{509}= -0.17884822 \pm 5.8 \cdot 10^{-6} \) | \(a_{510}= +0.07323538 \pm 8.1 \cdot 10^{-6} \) |
\(a_{511}= +1.31262141 \pm 5.3 \cdot 10^{-6} \) | \(a_{512}= -1.36166070 \pm 6.4 \cdot 10^{-6} \) | \(a_{513}= +0.28189395 \pm 4.8 \cdot 10^{-6} \) |
\(a_{514}= -0.31828337 \pm 7.2 \cdot 10^{-6} \) | \(a_{515}= -0.47763021 \pm 5.6 \cdot 10^{-6} \) | \(a_{516}= +0.27077608 \pm 7.1 \cdot 10^{-6} \) |
\(a_{517}= -0.84459042 \pm 4.8 \cdot 10^{-6} \) | \(a_{518}= +4.22954507 \pm 5.8 \cdot 10^{-6} \) | \(a_{519}= +0.13925897 \pm 7.0 \cdot 10^{-6} \) |
\(a_{520}= -0.76816815 \pm 7.1 \cdot 10^{-6} \) | \(a_{521}= -0.58866965 \pm 5.9 \cdot 10^{-6} \) | \(a_{522}= +1.16050518 \pm 6.8 \cdot 10^{-6} \) |
\(a_{523}= -0.99377266 \pm 5.2 \cdot 10^{-6} \) | \(a_{524}= +1.15397967 \pm 8.0 \cdot 10^{-6} \) | \(a_{525}= -0.21000920 \pm 5.9 \cdot 10^{-6} \) |
\(a_{526}= +3.66547847 \pm 7.0 \cdot 10^{-6} \) | \(a_{527}= -0.14940941 \pm 5.6 \cdot 10^{-6} \) | \(a_{528}= +0.27516843 \pm 4.1 \cdot 10^{-6} \) |
\(a_{529}= +1.38419830 \pm 6.0 \cdot 10^{-6} \) | \(a_{530}= -0.13475515 \pm 6.7 \cdot 10^{-6} \) | \(a_{531}= -1.44809917 \pm 6.1 \cdot 10^{-6} \) |
\(a_{532}= -2.48553770 \pm 6.4 \cdot 10^{-6} \) | \(a_{533}= +0.03613186 \pm 5.4 \cdot 10^{-6} \) | \(a_{534}= +0.13056982 \pm 6.8 \cdot 10^{-6} \) |
\(a_{535}= +0.41723353 \pm 5.7 \cdot 10^{-6} \) | \(a_{536}= -0.29472807 \pm 5.2 \cdot 10^{-6} \) | \(a_{537}= +0.12895304 \pm 7.4 \cdot 10^{-6} \) |
\(a_{538}= +1.28393795 \pm 6.7 \cdot 10^{-6} \) | \(a_{539}= +0.32174091 \pm 4.9 \cdot 10^{-6} \) | \(a_{540}= +0.23091989 \pm 6.8 \cdot 10^{-6} \) |
\(a_{541}= +0.26745200 \pm 6.0 \cdot 10^{-6} \) | \(a_{542}= +1.15809223 \pm 6.9 \cdot 10^{-6} \) | \(a_{543}= +0.09128524 \pm 6.4 \cdot 10^{-6} \) |
\(a_{544}= -1.89913697 \pm 8.1 \cdot 10^{-6} \) | \(a_{545}= -0.15019627 \pm 5.8 \cdot 10^{-6} \) | \(a_{546}= +0.44365335 \pm 5.8 \cdot 10^{-6} \) |
\(a_{547}= -0.82593832 \pm 5.7 \cdot 10^{-6} \) | \(a_{548}= +2.50647754 \pm 7.7 \cdot 10^{-6} \) | \(a_{549}= -0.34280537 \pm 5.0 \cdot 10^{-6} \) |
\(a_{550}= -0.98117619 \pm 7.4 \cdot 10^{-6} \) | \(a_{551}= +0.51116885 \pm 5.8 \cdot 10^{-6} \) | \(a_{552}= -0.77366224 \pm 8.2 \cdot 10^{-6} \) |
\(a_{553}= -2.22403335 \pm 6.8 \cdot 10^{-6} \) | \(a_{554}= -0.12786440 \pm 5.9 \cdot 10^{-6} \) | \(a_{555}= -0.08511735 \pm 4.8 \cdot 10^{-6} \) |
\(a_{556}= -0.01926252 \pm 6.3 \cdot 10^{-6} \) | \(a_{557}= -1.33323652 \pm 5.0 \cdot 10^{-6} \) | \(a_{558}= -0.32469821 \pm 1.3 \cdot 10^{-5} \) |
\(a_{559}= +0.63640376 \pm 6.4 \cdot 10^{-6} \) | \(a_{560}= -0.89034837 \pm 4.2 \cdot 10^{-6} \) | \(a_{561}= -0.08438796 \pm 5.3 \cdot 10^{-6} \) |
\(a_{562}= -2.22587119 \pm 6.4 \cdot 10^{-6} \) | \(a_{563}= -0.46906801 \pm 5.5 \cdot 10^{-6} \) | \(a_{564}= -0.67121090 \pm 1.1 \cdot 10^{-5} \) |
\(a_{565}= -0.14039091 \pm 5.3 \cdot 10^{-6} \) | \(a_{566}= +2.60673509 \pm 7.5 \cdot 10^{-6} \) | \(a_{567}= +1.13285924 \pm 6.5 \cdot 10^{-6} \) |
\(a_{568}= -2.90229661 \pm 4.5 \cdot 10^{-6} \) | \(a_{569}= -0.36081416 \pm 5.3 \cdot 10^{-6} \) | \(a_{570}= +0.07010358 \pm 8.3 \cdot 10^{-6} \) |
\(a_{571}= -0.06976080 \pm 5.8 \cdot 10^{-6} \) | \(a_{572}= +1.47896211 \pm 5.8 \cdot 10^{-6} \) | \(a_{573}= -0.21452118 \pm 6.3 \cdot 10^{-6} \) |
\(a_{574}= +0.08033119 \pm 6.0 \cdot 10^{-6} \) | \(a_{575}= +1.43816797 \pm 4.6 \cdot 10^{-6} \) | \(a_{576}= -1.50248301 \pm 8.3 \cdot 10^{-6} \) |
\(a_{577}= +0.94740431 \pm 5.4 \cdot 10^{-6} \) | \(a_{578}= -0.57540784 \pm 9.1 \cdot 10^{-6} \) | \(a_{579}= +0.13191810 \pm 5.1 \cdot 10^{-6} \) |
\(a_{580}= +0.41873569 \pm 7.1 \cdot 10^{-6} \) | \(a_{581}= +1.82319831 \pm 4.7 \cdot 10^{-6} \) | \(a_{582}= -0.30715563 \pm 9.1 \cdot 10^{-6} \) |
\(a_{583}= +0.15527621 \pm 4.2 \cdot 10^{-6} \) | \(a_{584}= +2.91688831 \pm 7.2 \cdot 10^{-6} \) | \(a_{585}= +0.26690084 \pm 5.8 \cdot 10^{-6} \) |
\(a_{586}= -2.27831327 \pm 5.7 \cdot 10^{-6} \) | \(a_{587}= +0.92758156 \pm 5.7 \cdot 10^{-6} \) | \(a_{588}= +0.25569317 \pm 8.5 \cdot 10^{-6} \) |
\(a_{589}= -0.14302014 \pm 6.2 \cdot 10^{-6} \) | \(a_{590}= -0.73229589 \pm 7.0 \cdot 10^{-6} \) | \(a_{591}= -0.15148466 \pm 5.2 \cdot 10^{-6} \) |
\(a_{592}= +4.89986144 \pm 6.7 \cdot 10^{-6} \) | \(a_{593}= +0.84338990 \pm 6.5 \cdot 10^{-6} \) | \(a_{594}= -0.37292052 \pm 5.3 \cdot 10^{-6} \) |
\(a_{595}= +0.27304979 \pm 4.0 \cdot 10^{-6} \) | \(a_{596}= +0.79811116 \pm 6.8 \cdot 10^{-6} \) | \(a_{597}= -0.00637725 \pm 6.0 \cdot 10^{-6} \) |
\(a_{598}= -3.03819086 \pm 5.5 \cdot 10^{-6} \) | \(a_{599}= -0.11211781 \pm 6.5 \cdot 10^{-6} \) | \(a_{600}= -0.46667941 \pm 5.6 \cdot 10^{-6} \) |
\(a_{601}= +0.33166071 \pm 6.4 \cdot 10^{-6} \) | \(a_{602}= +1.41490272 \pm 5.4 \cdot 10^{-6} \) | \(a_{603}= +0.10240358 \pm 4.7 \cdot 10^{-6} \) |
\(a_{604}= -1.14311803 \pm 5.7 \cdot 10^{-6} \) | \(a_{605}= +0.17864205 \pm 6.9 \cdot 10^{-6} \) | \(a_{606}= -0.16401140 \pm 8.2 \cdot 10^{-6} \) |
\(a_{607}= -0.52811793 \pm 5.6 \cdot 10^{-6} \) | \(a_{608}= -1.81792315 \pm 6.2 \cdot 10^{-6} \) | \(a_{609}= -0.14473922 \pm 6.5 \cdot 10^{-6} \) |
\(a_{610}= -0.17335481 \pm 7.4 \cdot 10^{-6} \) | \(a_{611}= -1.57754387 \pm 4.5 \cdot 10^{-6} \) | \(a_{612}= +2.00481856 \pm 6.9 \cdot 10^{-6} \) |
\(a_{613}= -0.41991799 \pm 6.2 \cdot 10^{-6} \) | \(a_{614}= +2.96486532 \pm 8.7 \cdot 10^{-6} \) | \(a_{615}= -0.00161662 \pm 6.0 \cdot 10^{-6} \) |
\(a_{616}= +1.96793017 \pm 4.6 \cdot 10^{-6} \) | \(a_{617}= -1.37468432 \pm 5.9 \cdot 10^{-6} \) | \(a_{618}= +0.61299873 \pm 7.2 \cdot 10^{-6} \) |
\(a_{619}= +0.62670007 \pm 5.9 \cdot 10^{-6} \) | \(a_{620}= -0.11715823 \pm 1.4 \cdot 10^{-5} \) | \(a_{621}= +0.54661167 \pm 3.8 \cdot 10^{-6} \) |
\(a_{622}= -1.07153581 \pm 4.9 \cdot 10^{-6} \) | \(a_{623}= +0.48681473 \pm 4.8 \cdot 10^{-6} \) | \(a_{624}= +0.51396542 \pm 6.0 \cdot 10^{-6} \) |
\(a_{625}= +0.79891941 \pm 5.5 \cdot 10^{-6} \) | \(a_{626}= +1.54215786 \pm 7.8 \cdot 10^{-6} \) | \(a_{627}= -0.08077923 \pm 6.7 \cdot 10^{-6} \) |
\(a_{628}= -3.55889323 \pm 6.9 \cdot 10^{-6} \) | \(a_{629}= -1.50267713 \pm 5.2 \cdot 10^{-6} \) | \(a_{630}= +0.59339486 \pm 8.1 \cdot 10^{-6} \) |
\(a_{631}= +0.69252447 \pm 6.1 \cdot 10^{-6} \) | \(a_{632}= -4.94221472 \pm 9.5 \cdot 10^{-6} \) | \(a_{633}= -0.19427084 \pm 4.6 \cdot 10^{-6} \) |
\(a_{634}= -0.86386988 \pm 6.9 \cdot 10^{-6} \) | \(a_{635}= -0.19733795 \pm 6.1 \cdot 10^{-6} \) | \(a_{636}= +0.12340074 \pm 8.5 \cdot 10^{-6} \) |
\(a_{637}= +0.60095447 \pm 5.6 \cdot 10^{-6} \) | \(a_{638}= -0.67623075 \pm 6.6 \cdot 10^{-6} \) | \(a_{639}= +1.00840603 \pm 6.1 \cdot 10^{-6} \) |
\(a_{640}= -0.16187532 \pm 7.1 \cdot 10^{-6} \) | \(a_{641}= -0.70470514 \pm 6.5 \cdot 10^{-6} \) | \(a_{642}= -0.53548460 \pm 4.8 \cdot 10^{-6} \) |
\(a_{643}= -0.22280132 \pm 5.8 \cdot 10^{-6} \) | \(a_{644}= -4.81962784 \pm 5.1 \cdot 10^{-6} \) | \(a_{645}= -0.02847417 \pm 4.5 \cdot 10^{-6} \) |
\(a_{646}= +1.23762127 \pm 5.9 \cdot 10^{-6} \) | \(a_{647}= +0.00945383 \pm 6.7 \cdot 10^{-6} \) | \(a_{648}= +2.51742342 \pm 8.5 \cdot 10^{-6} \) |
\(a_{649}= +0.84381286 \pm 5.8 \cdot 10^{-6} \) | \(a_{650}= -1.83266164 \pm 5.8 \cdot 10^{-6} \) | \(a_{651}= +0.04049665 \pm 1.2 \cdot 10^{-5} \) |
\(a_{652}= +2.43608429 \pm 7.3 \cdot 10^{-6} \) | \(a_{653}= -0.25331749 \pm 5.8 \cdot 10^{-6} \) | \(a_{654}= +0.19276444 \pm 7.2 \cdot 10^{-6} \) |
\(a_{655}= -0.12134975 \pm 6.3 \cdot 10^{-6} \) | \(a_{656}= +0.09306242 \pm 9.9 \cdot 10^{-6} \) | \(a_{657}= -1.01347593 \pm 5.3 \cdot 10^{-6} \) |
\(a_{658}= -3.50731917 \pm 5.3 \cdot 10^{-6} \) | \(a_{659}= +1.08366547 \pm 6.3 \cdot 10^{-6} \) | \(a_{660}= -0.06617216 \pm 5.9 \cdot 10^{-6} \) |
\(a_{661}= -1.20508623 \pm 6.3 \cdot 10^{-6} \) | \(a_{662}= -0.76793357 \pm 5.9 \cdot 10^{-6} \) | \(a_{663}= -0.15762162 \pm 5.6 \cdot 10^{-6} \) |
\(a_{664}= +4.05148491 \pm 7.5 \cdot 10^{-6} \) | \(a_{665}= +0.26137321 \pm 5.6 \cdot 10^{-6} \) | \(a_{666}= -3.26563477 \pm 6.6 \cdot 10^{-6} \) |
\(a_{667}= +0.99119141 \pm 5.5 \cdot 10^{-6} \) | \(a_{668}= +1.46473062 \pm 7.2 \cdot 10^{-6} \) | \(a_{669}= +0.22405604 \pm 7.6 \cdot 10^{-6} \) |
\(a_{670}= +0.05178493 \pm 5.8 \cdot 10^{-6} \) | \(a_{671}= +0.19975398 \pm 5.2 \cdot 10^{-6} \) | \(a_{672}= +0.51475121 \pm 6.3 \cdot 10^{-6} \) |
\(a_{673}= +1.45949566 \pm 5.1 \cdot 10^{-6} \) | \(a_{674}= +0.80399521 \pm 7.4 \cdot 10^{-6} \) | \(a_{675}= +0.32972064 \pm 4.9 \cdot 10^{-6} \) |
\(a_{676}= +0.27182254 \pm 6.4 \cdot 10^{-6} \) | \(a_{677}= -1.85477035 \pm 5.5 \cdot 10^{-6} \) | \(a_{678}= +0.18018008 \pm 7.3 \cdot 10^{-6} \) |
\(a_{679}= -1.14519481 \pm 5.5 \cdot 10^{-6} \) | \(a_{680}= +0.60676729 \pm 8.6 \cdot 10^{-6} \) | \(a_{681}= +0.16512726 \pm 5.8 \cdot 10^{-6} \) |
\(a_{682}= +0.18920287 \pm 1.3 \cdot 10^{-5} \) | \(a_{683}= -0.42426606 \pm 5.5 \cdot 10^{-6} \) | \(a_{684}= +1.91908543 \pm 7.5 \cdot 10^{-6} \) |
\(a_{685}= -0.26357520 \pm 5.2 \cdot 10^{-6} \) | \(a_{686}= -1.00537114 \pm 5.4 \cdot 10^{-6} \) | \(a_{687}= -0.07635168 \pm 6.6 \cdot 10^{-6} \) |
\(a_{688}= +1.63914254 \pm 6.0 \cdot 10^{-6} \) | \(a_{689}= +0.29002819 \pm 5.9 \cdot 10^{-6} \) | \(a_{690}= +0.13593564 \pm 4.6 \cdot 10^{-6} \) |
\(a_{691}= -0.87170219 \pm 5.7 \cdot 10^{-6} \) | \(a_{692}= +1.92781609 \pm 9.5 \cdot 10^{-6} \) | \(a_{693}= -0.68375942 \pm 5.5 \cdot 10^{-6} \) |
\(a_{694}= +1.17504222 \pm 7.5 \cdot 10^{-6} \) | \(a_{695}= +0.00202560 \pm 4.0 \cdot 10^{-6} \) | \(a_{696}= -0.32163741 \pm 7.8 \cdot 10^{-6} \) |
\(a_{697}= -0.02854015 \pm 4.7 \cdot 10^{-6} \) | \(a_{698}= -1.12419519 \pm 6.5 \cdot 10^{-6} \) | \(a_{699}= -0.11240334 \pm 5.5 \cdot 10^{-6} \) |
\(a_{700}= -2.90723904 \pm 6.2 \cdot 10^{-6} \) | \(a_{701}= +1.34184310 \pm 6.3 \cdot 10^{-6} \) | \(a_{702}= -0.69654885 \pm 5.4 \cdot 10^{-6} \) |
\(a_{703}= -1.43841734 \pm 5.6 \cdot 10^{-6} \) | \(a_{704}= +0.87550253 \pm 6.7 \cdot 10^{-6} \) | \(a_{705}= +0.07058294 \pm 6.6 \cdot 10^{-6} \) |
\(a_{706}= -0.04031624 \pm 8.3 \cdot 10^{-6} \) | \(a_{707}= -0.61149784 \pm 5.5 \cdot 10^{-6} \) | \(a_{708}= +0.67059295 \pm 9.9 \cdot 10^{-6} \) |
\(a_{709}= -0.00947669 \pm 4.8 \cdot 10^{-6} \) | \(a_{710}= +0.50994546 \pm 3.9 \cdot 10^{-6} \) | \(a_{711}= +1.71717774 \pm 6.8 \cdot 10^{-6} \) |
\(a_{712}= +1.08179265 \pm 7.5 \cdot 10^{-6} \) | \(a_{713}= -0.27732584 \pm 5.6 \cdot 10^{-6} \) | \(a_{714}= -0.35043673 \pm 5.2 \cdot 10^{-6} \) |
\(a_{715}= -0.15552413 \pm 6.6 \cdot 10^{-6} \) | \(a_{716}= +1.78514709 \pm 8.9 \cdot 10^{-6} \) | \(a_{717}= -0.03118997 \pm 6.7 \cdot 10^{-6} \) |
\(a_{718}= +0.37326341 \pm 7.0 \cdot 10^{-6} \) | \(a_{719}= -0.64239546 \pm 4.9 \cdot 10^{-6} \) | \(a_{720}= +0.68743861 \pm 6.9 \cdot 10^{-6} \) |
\(a_{721}= +2.28549603 \pm 5.4 \cdot 10^{-6} \) | \(a_{722}= -0.68362234 \pm 7.8 \cdot 10^{-6} \) | \(a_{723}= -0.03546670 \pm 5.0 \cdot 10^{-6} \) |
\(a_{724}= +1.26369712 \pm 7.7 \cdot 10^{-6} \) | \(a_{725}= +0.59789479 \pm 5.3 \cdot 10^{-6} \) | \(a_{726}= -0.22927224 \pm 7.6 \cdot 10^{-6} \) |
\(a_{727}= +0.30185835 \pm 4.3 \cdot 10^{-6} \) | \(a_{728}= +3.67574162 \pm 6.1 \cdot 10^{-6} \) | \(a_{729}= -0.81099136 \pm 5.6 \cdot 10^{-6} \) |
\(a_{730}= -0.51250928 \pm 7.7 \cdot 10^{-6} \) | \(a_{731}= -0.50268810 \pm 4.4 \cdot 10^{-6} \) | \(a_{732}= +0.15874801 \pm 1.1 \cdot 10^{-5} \) |
\(a_{733}= +1.69464883 \pm 6.5 \cdot 10^{-6} \) | \(a_{734}= +0.97142516 \pm 7.9 \cdot 10^{-6} \) | \(a_{735}= -0.02688808 \pm 4.8 \cdot 10^{-6} \) |
\(a_{736}= -3.52507752 \pm 7.4 \cdot 10^{-6} \) | \(a_{737}= -0.05967095 \pm 5.7 \cdot 10^{-6} \) | \(a_{738}= -0.06202377 \pm 9.3 \cdot 10^{-6} \) |
\(a_{739}= +1.44533930 \pm 5.8 \cdot 10^{-6} \) | \(a_{740}= -1.17831257 \pm 6.5 \cdot 10^{-6} \) | \(a_{741}= -0.15088116 \pm 5.6 \cdot 10^{-6} \) |
\(a_{742}= +0.64481339 \pm 6.3 \cdot 10^{-6} \) | \(a_{743}= +0.23606932 \pm 5.9 \cdot 10^{-6} \) | \(a_{744}= +0.08999106 \pm 1.4 \cdot 10^{-5} \) |
\(a_{745}= -0.08392747 \pm 5.7 \cdot 10^{-6} \) | \(a_{746}= +2.17044109 \pm 6.6 \cdot 10^{-6} \) | \(a_{747}= -1.40769272 \pm 5.6 \cdot 10^{-6} \) |
\(a_{748}= -1.16821535 \pm 5.7 \cdot 10^{-6} \) | \(a_{749}= -1.99649342 \pm 4.4 \cdot 10^{-6} \) | \(a_{750}= +0.17003386 \pm 9.9 \cdot 10^{-6} \) |
\(a_{751}= +1.43172484 \pm 5.3 \cdot 10^{-6} \) | \(a_{752}= -4.06317409 \pm 9.9 \cdot 10^{-6} \) | \(a_{753}= -0.08389432 \pm 6.4 \cdot 10^{-6} \) |
\(a_{754}= -1.26307811 \pm 5.3 \cdot 10^{-6} \) | \(a_{755}= +0.12020756 \pm 6.2 \cdot 10^{-6} \) | \(a_{756}= -1.10496884 \pm 8.2 \cdot 10^{-6} \) |
\(a_{757}= -0.89606074 \pm 5.8 \cdot 10^{-6} \) | \(a_{758}= +1.04123982 \pm 5.5 \cdot 10^{-6} \) | \(a_{759}= -0.15663646 \pm 6.5 \cdot 10^{-6} \) |
\(a_{760}= +0.58081977 \pm 6.7 \cdot 10^{-6} \) | \(a_{761}= -0.14645457 \pm 6.9 \cdot 10^{-6} \) | \(a_{762}= +0.25326687 \pm 7.6 \cdot 10^{-6} \) |
\(a_{763}= +0.71870029 \pm 6.6 \cdot 10^{-6} \) | \(a_{764}= -2.96970011 \pm 8.7 \cdot 10^{-6} \) | \(a_{765}= -0.21082194 \pm 4.8 \cdot 10^{-6} \) |
\(a_{766}= -2.73693601 \pm 6.5 \cdot 10^{-6} \) | \(a_{767}= +1.57609152 \pm 6.1 \cdot 10^{-6} \) | \(a_{768}= -0.07160619 \pm 9.0 \cdot 10^{-6} \) |
\(a_{769}= -0.98560980 \pm 5.1 \cdot 10^{-6} \) | \(a_{770}= -0.34577343 \pm 5.1 \cdot 10^{-6} \) | \(a_{771}= -0.03064976 \pm 6.7 \cdot 10^{-6} \) |
\(a_{772}= +1.82619353 \pm 5.8 \cdot 10^{-6} \) | \(a_{773}= -1.93429195 \pm 4.9 \cdot 10^{-6} \) | \(a_{774}= -1.09244740 \pm 7.1 \cdot 10^{-6} \) |
\(a_{775}= -0.16728522 \pm 5.7 \cdot 10^{-6} \) | \(a_{776}= -2.54483534 \pm 8.9 \cdot 10^{-6} \) | \(a_{777}= +0.40729283 \pm 5.0 \cdot 10^{-6} \) |
\(a_{778}= -0.92085825 \pm 5.6 \cdot 10^{-6} \) | \(a_{779}= -0.02731967 \pm 5.6 \cdot 10^{-6} \) | \(a_{780}= -0.12359776 \pm 5.5 \cdot 10^{-6} \) |
\(a_{781}= -0.58760200 \pm 5.0 \cdot 10^{-6} \) | \(a_{782}= +2.39983242 \pm 4.5 \cdot 10^{-6} \) | \(a_{783}= +0.22724485 \pm 4.7 \cdot 10^{-6} \) |
\(a_{784}= +1.54783819 \pm 6.8 \cdot 10^{-6} \) | \(a_{785}= +0.37424472 \pm 4.8 \cdot 10^{-6} \) | \(a_{786}= +0.15574233 \pm 8.3 \cdot 10^{-6} \) |
\(a_{787}= +1.96193660 \pm 6.0 \cdot 10^{-6} \) | \(a_{788}= -2.09706106 \pm 5.6 \cdot 10^{-6} \) | \(a_{789}= +0.35297487 \pm 6.4 \cdot 10^{-6} \) |
\(a_{790}= +0.86836746 \pm 6.5 \cdot 10^{-6} \) | \(a_{791}= +0.67178092 \pm 4.5 \cdot 10^{-6} \) | \(a_{792}= -1.51944029 \pm 4.8 \cdot 10^{-6} \) |
\(a_{793}= +0.37310472 \pm 5.6 \cdot 10^{-6} \) | \(a_{794}= +1.30841647 \pm 7.3 \cdot 10^{-6} \) | \(a_{795}= -0.01297653 \pm 5.1 \cdot 10^{-6} \) |
\(a_{796}= -0.08828269 \pm 6.7 \cdot 10^{-6} \) | \(a_{797}= +0.51329290 \pm 6.1 \cdot 10^{-6} \) | \(a_{798}= -0.33545082 \pm 6.5 \cdot 10^{-6} \) |
\(a_{799}= +1.24608397 \pm 5.0 \cdot 10^{-6} \) | \(a_{800}= -2.12635567 \pm 5.7 \cdot 10^{-6} \) | \(a_{801}= -0.37587000 \pm 4.9 \cdot 10^{-6} \) |
\(a_{802}= +1.50362642 \pm 6.0 \cdot 10^{-6} \) | \(a_{803}= +0.59055625 \pm 4.6 \cdot 10^{-6} \) | \(a_{804}= -0.04742156 \pm 6.6 \cdot 10^{-6} \) |
\(a_{805}= +0.50682056 \pm 4.1 \cdot 10^{-6} \) | \(a_{806}= +0.35339713 \pm 1.3 \cdot 10^{-5} \) | \(a_{807}= +0.12363947 \pm 5.1 \cdot 10^{-6} \) |
\(a_{808}= -1.35886166 \pm 8.2 \cdot 10^{-6} \) | \(a_{809}= -0.91233563 \pm 6.0 \cdot 10^{-6} \) | \(a_{810}= -0.44232165 \pm 8.2 \cdot 10^{-6} \) |
\(a_{811}= -0.81544788 \pm 6.5 \cdot 10^{-6} \) | \(a_{812}= -2.00368137 \pm 6.0 \cdot 10^{-6} \) | \(a_{813}= +0.11152090 \pm 8.1 \cdot 10^{-6} \) |
\(a_{814}= +1.90289772 \pm 6.2 \cdot 10^{-6} \) | \(a_{815}= -0.25617281 \pm 5.6 \cdot 10^{-6} \) | \(a_{816}= -0.40597544 \pm 1.1 \cdot 10^{-5} \) |
\(a_{817}= -0.48119137 \pm 4.4 \cdot 10^{-6} \) | \(a_{818}= +0.30444535 \pm 5.9 \cdot 10^{-6} \) | \(a_{819}= -1.27714032 \pm 6.8 \cdot 10^{-6} \) |
\(a_{820}= -0.02237954 \pm 8.0 \cdot 10^{-6} \) | \(a_{821}= +1.35372094 \pm 6.5 \cdot 10^{-6} \) | \(a_{822}= +0.33827688 \pm 8.2 \cdot 10^{-6} \) |
\(a_{823}= +1.35202991 \pm 5.4 \cdot 10^{-6} \) | \(a_{824}= +5.07879620 \pm 6.5 \cdot 10^{-6} \) | \(a_{825}= -0.09448440 \pm 6.1 \cdot 10^{-6} \) |
\(a_{826}= +3.50409019 \pm 6.7 \cdot 10^{-6} \) | \(a_{827}= -1.60083956 \pm 6.0 \cdot 10^{-6} \) | \(a_{828}= +3.72123810 \pm 6.2 \cdot 10^{-6} \) |
\(a_{829}= -1.13291509 \pm 6.2 \cdot 10^{-6} \) | \(a_{830}= -0.71186257 \pm 7.5 \cdot 10^{-6} \) | \(a_{831}= -0.01231297 \pm 5.4 \cdot 10^{-6} \) |
\(a_{832}= +1.63528215 \pm 6.4 \cdot 10^{-6} \) | \(a_{833}= -0.47468711 \pm 5.2 \cdot 10^{-6} \) | \(a_{834}= -0.00259969 \pm 7.1 \cdot 10^{-6} \) |
\(a_{835}= -0.15402758 \pm 5.6 \cdot 10^{-6} \) | \(a_{836}= -1.11825833 \pm 7.4 \cdot 10^{-6} \) | \(a_{837}= -0.06358093 \pm 5.4 \cdot 10^{-6} \) |
\(a_{838}= -1.30198661 \pm 7.0 \cdot 10^{-6} \) | \(a_{839}= +0.38535045 \pm 5.1 \cdot 10^{-6} \) | \(a_{840}= -0.16446112 \pm 6.8 \cdot 10^{-6} \) |
\(a_{841}= -0.58792840 \pm 4.0 \cdot 10^{-6} \) | \(a_{842}= +1.77663000 \pm 8.1 \cdot 10^{-6} \) | \(a_{843}= -0.21434489 \pm 5.7 \cdot 10^{-6} \) |
\(a_{844}= -2.68936675 \pm 5.6 \cdot 10^{-6} \) | \(a_{845}= -0.02858421 \pm 6.0 \cdot 10^{-6} \) | \(a_{846}= +2.70800364 \pm 8.4 \cdot 10^{-6} \) |
\(a_{847}= -0.85481545 \pm 5.8 \cdot 10^{-6} \) | \(a_{848}= +0.74700617 \pm 5.3 \cdot 10^{-6} \) | \(a_{849}= +0.25102097 \pm 5.7 \cdot 10^{-6} \) |
\(a_{850}= +1.44759860 \pm 4.7 \cdot 10^{-6} \) | \(a_{851}= -2.78918975 \pm 5.5 \cdot 10^{-6} \) | \(a_{852}= -0.46697767 \pm 5.7 \cdot 10^{-6} \) |
\(a_{853}= +1.71318838 \pm 5.6 \cdot 10^{-6} \) | \(a_{854}= +0.82951565 \pm 4.5 \cdot 10^{-6} \) | \(a_{855}= -0.20180644 \pm 6.1 \cdot 10^{-6} \) |
\(a_{856}= -4.43657879 \pm 5.9 \cdot 10^{-6} \) | \(a_{857}= +0.31383976 \pm 5.3 \cdot 10^{-6} \) | \(a_{858}= +0.19960230 \pm 6.4 \cdot 10^{-6} \) |
\(a_{859}= -0.88701732 \pm 5.9 \cdot 10^{-6} \) | \(a_{860}= -0.39417896 \pm 5.4 \cdot 10^{-6} \) | \(a_{861}= +0.00773566 \pm 6.2 \cdot 10^{-6} \) |
\(a_{862}= -3.06092443 \pm 6.9 \cdot 10^{-6} \) | \(a_{863}= -0.25330557 \pm 5.9 \cdot 10^{-6} \) | \(a_{864}= -0.80817460 \pm 5.6 \cdot 10^{-6} \) |
\(a_{865}= -0.20272454 \pm 7.5 \cdot 10^{-6} \) | \(a_{866}= -1.68679046 \pm 7.5 \cdot 10^{-6} \) | \(a_{867}= -0.05541009 \pm 6.9 \cdot 10^{-6} \) |
\(a_{868}= +0.56061081 \pm 1.3 \cdot 10^{-5} \) | \(a_{869}= -1.00060596 \pm 6.3 \cdot 10^{-6} \) | \(a_{870}= +0.05651302 \pm 8.4 \cdot 10^{-6} \) |
\(a_{871}= -0.11145467 \pm 4.8 \cdot 10^{-6} \) | \(a_{872}= +1.59708537 \pm 7.3 \cdot 10^{-6} \) | \(a_{873}= +0.88420573 \pm 6.4 \cdot 10^{-6} \) |
\(a_{874}= +2.29720710 \pm 5.8 \cdot 10^{-6} \) | \(a_{875}= +0.63395192 \pm 6.2 \cdot 10^{-6} \) | \(a_{876}= +0.46932546 \pm 8.1 \cdot 10^{-6} \) |
\(a_{877}= -0.98614822 \pm 6.3 \cdot 10^{-6} \) | \(a_{878}= +1.44412217 \pm 7.3 \cdot 10^{-6} \) | \(a_{879}= -0.21939491 \pm 5.3 \cdot 10^{-6} \) |
\(a_{880}= -0.40057308 \pm 4.1 \cdot 10^{-6} \) | \(a_{881}= +0.66668921 \pm 5.9 \cdot 10^{-6} \) | \(a_{882}= -1.03159533 \pm 6.7 \cdot 10^{-6} \) |
\(a_{883}= -1.40282253 \pm 6.0 \cdot 10^{-6} \) | \(a_{884}= -2.18201736 \pm 6.3 \cdot 10^{-6} \) | \(a_{885}= -0.07051795 \pm 6.2 \cdot 10^{-6} \) |
\(a_{886}= +0.45575885 \pm 8.0 \cdot 10^{-6} \) | \(a_{887}= -0.49115911 \pm 5.3 \cdot 10^{-6} \) | \(a_{888}= +0.90508024 \pm 8.0 \cdot 10^{-6} \) |
\(a_{889}= +0.94427672 \pm 5.5 \cdot 10^{-6} \) | \(a_{890}= -0.19007542 \pm 5.8 \cdot 10^{-6} \) | \(a_{891}= +0.50968018 \pm 4.8 \cdot 10^{-6} \) |
\(a_{892}= +3.10169495 \pm 8.0 \cdot 10^{-6} \) | \(a_{893}= +1.19279701 \pm 4.0 \cdot 10^{-6} \) | \(a_{894}= +0.10771393 \pm 6.9 \cdot 10^{-6} \) |
\(a_{895}= -0.18772181 \pm 6.7 \cdot 10^{-6} \) | \(a_{896}= +0.77458543 \pm 5.6 \cdot 10^{-6} \) | \(a_{897}= -0.29256890 \pm 6.5 \cdot 10^{-6} \) |
\(a_{898}= -1.97616315 \pm 6.9 \cdot 10^{-6} \) | \(a_{899}= -0.11529368 \pm 5.6 \cdot 10^{-6} \) | \(a_{900}= +2.24468134 \pm 6.6 \cdot 10^{-6} \) |
\(a_{901}= -0.22908997 \pm 4.4 \cdot 10^{-6} \) | \(a_{902}= +0.03614149 \pm 4.8 \cdot 10^{-6} \) | \(a_{903}= +0.13625100 \pm 5.3 \cdot 10^{-6} \) |
\(a_{904}= +1.49282185 \pm 7.1 \cdot 10^{-6} \) | \(a_{905}= -0.13288737 \pm 4.7 \cdot 10^{-6} \) | \(a_{906}= -0.15427643 \pm 6.6 \cdot 10^{-6} \) |
\(a_{907}= -0.79791217 \pm 4.9 \cdot 10^{-6} \) | \(a_{908}= +2.28592087 \pm 8.0 \cdot 10^{-6} \) | \(a_{909}= +0.47213792 \pm 5.9 \cdot 10^{-6} \) |
\(a_{910}= -0.64584292 \pm 5.3 \cdot 10^{-6} \) | \(a_{911}= +1.62515791 \pm 5.7 \cdot 10^{-6} \) | \(a_{912}= -0.38861450 \pm 4.8 \cdot 10^{-6} \) |
\(a_{913}= +0.82026787 \pm 4.1 \cdot 10^{-6} \) | \(a_{914}= -1.55263143 \pm 6.9 \cdot 10^{-6} \) | \(a_{915}= -0.01669356 \pm 5.3 \cdot 10^{-6} \) |
\(a_{916}= -1.05696596 \pm 9.1 \cdot 10^{-6} \) | \(a_{917}= +0.58066755 \pm 7.0 \cdot 10^{-6} \) | \(a_{918}= +0.55019602 \pm 6.7 \cdot 10^{-6} \) |
\(a_{919}= -0.28728058 \pm 6.1 \cdot 10^{-6} \) | \(a_{920}= +1.12624932 \pm 6.1 \cdot 10^{-6} \) | \(a_{921}= +0.28550787 \pm 6.5 \cdot 10^{-6} \) |
\(a_{922}= +1.27632061 \pm 5.5 \cdot 10^{-6} \) | \(a_{923}= -1.09753546 \pm 5.7 \cdot 10^{-6} \) | \(a_{924}= +0.31663871 \pm 6.9 \cdot 10^{-6} \) |
\(a_{925}= -1.68246213 \pm 4.6 \cdot 10^{-6} \) | \(a_{926}= -3.07364952 \pm 7.7 \cdot 10^{-6} \) | \(a_{927}= -1.76463312 \pm 6.1 \cdot 10^{-6} \) |
\(a_{928}= -1.46549327 \pm 6.0 \cdot 10^{-6} \) | \(a_{929}= -0.42118562 \pm 5.7 \cdot 10^{-6} \) | \(a_{930}= -0.01581180 \pm 1.9 \cdot 10^{-5} \) |
\(a_{931}= -0.45438781 \pm 4.4 \cdot 10^{-6} \) | \(a_{932}= -1.55604319 \pm 8.4 \cdot 10^{-6} \) | \(a_{933}= -0.10318577 \pm 4.3 \cdot 10^{-6} \) |
\(a_{934}= -1.20402427 \pm 7.2 \cdot 10^{-6} \) | \(a_{935}= +0.12284674 \pm 4.0 \cdot 10^{-6} \) | \(a_{936}= -2.83804273 \pm 6.5 \cdot 10^{-6} \) |
\(a_{937}= +0.26521200 \pm 5.8 \cdot 10^{-6} \) | \(a_{938}= -0.24779476 \pm 5.3 \cdot 10^{-6} \) | \(a_{939}= +0.14850530 \pm 6.8 \cdot 10^{-6} \) |
\(a_{940}= +0.97710704 \pm 7.8 \cdot 10^{-6} \) | \(a_{941}= +1.21921056 \pm 5.7 \cdot 10^{-6} \) | \(a_{942}= -0.48031203 \pm 7.4 \cdot 10^{-6} \) |
\(a_{943}= -0.05297471 \pm 5.2 \cdot 10^{-6} \) | \(a_{944}= +4.05943337 \pm 7.0 \cdot 10^{-6} \) | \(a_{945}= +0.11619589 \pm 5.7 \cdot 10^{-6} \) |
\(a_{946}= +0.63657323 \pm 5.6 \cdot 10^{-6} \) | \(a_{947}= +0.43184838 \pm 6.1 \cdot 10^{-6} \) | \(a_{948}= -0.79519919 \pm 1.0 \cdot 10^{-5} \) |
\(a_{949}= +1.10305347 \pm 6.0 \cdot 10^{-6} \) | \(a_{950}= +1.38569416 \pm 9.1 \cdot 10^{-6} \) | \(a_{951}= -0.08318815 \pm 5.8 \cdot 10^{-6} \) |
\(a_{952}= -2.90342651 \pm 4.4 \cdot 10^{-6} \) | \(a_{953}= +0.93670963 \pm 6.7 \cdot 10^{-6} \) | \(a_{954}= -0.49786088 \pm 8.9 \cdot 10^{-6} \) |
\(a_{955}= +0.31228658 \pm 6.7 \cdot 10^{-6} \) | \(a_{956}= -0.43177483 \pm 7.4 \cdot 10^{-6} \) | \(a_{957}= -0.06511905 \pm 7.4 \cdot 10^{-6} \) |
\(a_{958}= -2.48794249 \pm 8.1 \cdot 10^{-6} \) | \(a_{959}= +1.26122688 \pm 6.1 \cdot 10^{-6} \) | \(a_{960}= -0.07316628 \pm 9.0 \cdot 10^{-6} \) |
\(a_{961}= +0.03225806 \pm 1.7 \cdot 10^{-6} \) | \(a_{962}= +3.55427264 \pm 6.1 \cdot 10^{-6} \) | \(a_{963}= +1.54149400 \pm 4.9 \cdot 10^{-6} \) |
\(a_{964}= -0.49097929 \pm 4.7 \cdot 10^{-6} \) | \(a_{965}= -0.19203815 \pm 5.1 \cdot 10^{-6} \) | \(a_{966}= -0.65046212 \pm 4.2 \cdot 10^{-6} \) |
\(a_{967}= +0.55829251 \pm 5.4 \cdot 10^{-6} \) | \(a_{968}= -1.89955853 \pm 7.9 \cdot 10^{-6} \) | \(a_{969}= +0.11917931 \pm 4.7 \cdot 10^{-6} \) |
\(a_{970}= +0.44713804 \pm 6.5 \cdot 10^{-6} \) | \(a_{971}= +0.37707948 \pm 6.0 \cdot 10^{-6} \) | \(a_{972}= +1.28673828 \pm 8.6 \cdot 10^{-6} \) |
\(a_{973}= -0.00969265 \pm 4.7 \cdot 10^{-6} \) | \(a_{974}= -2.05650380 \pm 8.4 \cdot 10^{-6} \) | \(a_{975}= -0.17647996 \pm 4.2 \cdot 10^{-6} \) |
\(a_{976}= +0.96098083 \pm 9.7 \cdot 10^{-6} \) | \(a_{977}= -1.07030260 \pm 6.8 \cdot 10^{-6} \) | \(a_{978}= +0.32877654 \pm 7.5 \cdot 10^{-6} \) |
\(a_{979}= +0.21902087 \pm 5.5 \cdot 10^{-6} \) | \(a_{980}= -0.37222220 \pm 6.5 \cdot 10^{-6} \) | \(a_{981}= -0.55490900 \pm 6.3 \cdot 10^{-6} \) |
\(a_{982}= -0.95802769 \pm 5.7 \cdot 10^{-6} \) | \(a_{983}= -0.06121729 \pm 4.4 \cdot 10^{-6} \) | \(a_{984}= +0.01719007 \pm 1.3 \cdot 10^{-5} \) |
\(a_{985}= +0.22052194 \pm 4.6 \cdot 10^{-6} \) | \(a_{986}= +0.99769104 \pm 7.4 \cdot 10^{-6} \) | \(a_{987}= -0.33774459 \pm 5.4 \cdot 10^{-6} \) |
\(a_{988}= -2.08870658 \pm 6.0 \cdot 10^{-6} \) | \(a_{989}= -0.93306303 \pm 4.5 \cdot 10^{-6} \) | \(a_{990}= +0.26697191 \pm 4.9 \cdot 10^{-6} \) |
\(a_{991}= +1.53113386 \pm 5.7 \cdot 10^{-6} \) | \(a_{992}= +0.41003095 \pm 7.9 \cdot 10^{-6} \) | \(a_{993}= -0.07394976 \pm 6.6 \cdot 10^{-6} \) |
\(a_{994}= -2.44012685 \pm 5.4 \cdot 10^{-6} \) | \(a_{995}= +0.00928360 \pm 5.2 \cdot 10^{-6} \) | \(a_{996}= +0.65188133 \pm 8.7 \cdot 10^{-6} \) |
\(a_{997}= +1.93474878 \pm 6.1 \cdot 10^{-6} \) | \(a_{998}= -1.61751093 \pm 7.3 \cdot 10^{-6} \) | \(a_{999}= -0.63946177 \pm 4.1 \cdot 10^{-6} \) |
\(a_{1000}= +1.40875879 \pm 8.9 \cdot 10^{-6} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000