Maass form invariants
Level: | \( 31 \) |
Weight: | \( 0 \) |
Character: | 31.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(3.70593927593099352941078846004 \pm 5 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -0.09462920 \pm 1.5 \cdot 10^{-6} \) | \(a_{3}= +1.58605341 \pm 1.4 \cdot 10^{-6} \) |
\(a_{4}= -0.99104532 \pm 1.7 \cdot 10^{-6} \) | \(a_{5}= +0.13251469 \pm 1.3 \cdot 10^{-6} \) | \(a_{6}= -0.15008696 \pm 1.7 \cdot 10^{-6} \) |
\(a_{7}= +1.85802001 \pm 1.2 \cdot 10^{-6} \) | \(a_{8}= +0.18841102 \pm 1.7 \cdot 10^{-6} \) | \(a_{9}= +1.51556544 \pm 1.3 \cdot 10^{-6} \) |
\(a_{10}= -0.01253976 \pm 1.6 \cdot 10^{-6} \) | \(a_{11}= +1.40709082 \pm 1.2 \cdot 10^{-6} \) | \(a_{12}= -1.57185081 \pm 2.0 \cdot 10^{-6} \) |
\(a_{13}= -1.02802903 \pm 1.3 \cdot 10^{-6} \) | \(a_{14}= -0.17582294 \pm 1.3 \cdot 10^{-6} \) | \(a_{15}= +0.21017538 \pm 1.3 \cdot 10^{-6} \) |
\(a_{16}= +0.97321613 \pm 1.5 \cdot 10^{-6} \) | \(a_{17}= -0.08189494 \pm 1.2 \cdot 10^{-6} \) | \(a_{18}= -0.14341674 \pm 1.7 \cdot 10^{-6} \) |
\(a_{19}= -0.38772651 \pm 1.3 \cdot 10^{-6} \) | \(a_{20}= -0.13132807 \pm 1.6 \cdot 10^{-6} \) | \(a_{21}= +2.94691898 \pm 1.3 \cdot 10^{-6} \) |
\(a_{22}= -0.13315187 \pm 1.3 \cdot 10^{-6} \) | \(a_{23}= -0.91583817 \pm 1.2 \cdot 10^{-6} \) | \(a_{24}= +0.29882993 \pm 2.1 \cdot 10^{-6} \) |
\(a_{25}= -0.98243986 \pm 1.2 \cdot 10^{-6} \) | \(a_{26}= +0.09728156 \pm 1.3 \cdot 10^{-6} \) | \(a_{27}= +0.81771432 \pm 1.1 \cdot 10^{-6} \) |
\(a_{28}= -1.84138203 \pm 1.3 \cdot 10^{-6} \) | \(a_{29}= +1.01667504 \pm 1.2 \cdot 10^{-6} \) | \(a_{30}= -0.01988873 \pm 1.7 \cdot 10^{-6} \) |
\(a_{31}= +0.17960530 \pm 1.0 \cdot 10^{-8} \) | \(a_{32}= -0.28050568 \pm 1.7 \cdot 10^{-6} \) | \(a_{33}= +2.23172121 \pm 1.3 \cdot 10^{-6} \) |
\(a_{34}= +0.00774965 \pm 1.6 \cdot 10^{-6} \) | \(a_{35}= +0.24621495 \pm 1.1 \cdot 10^{-6} \) | \(a_{36}= -1.50199402 \pm 1.8 \cdot 10^{-6} \) |
\(a_{37}= +0.62519855 \pm 1.1 \cdot 10^{-6} \) | \(a_{38}= +0.03669025 \pm 1.6 \cdot 10^{-6} \) | \(a_{39}= -1.63050895 \pm 1.3 \cdot 10^{-6} \) |
\(a_{40}= +0.02496723 \pm 1.7 \cdot 10^{-6} \) | \(a_{41}= -0.44574978 \pm 1.1 \cdot 10^{-6} \) | \(a_{42}= -0.27886457 \pm 1.5 \cdot 10^{-6} \) |
\(a_{43}= -0.90662915 \pm 1.1 \cdot 10^{-6} \) | \(a_{44}= -1.39449077 \pm 1.3 \cdot 10^{-6} \) | \(a_{45}= +0.20083469 \pm 1.2 \cdot 10^{-6} \) |
\(a_{46}= +0.08666503 \pm 1.1 \cdot 10^{-6} \) | \(a_{47}= -0.48417268 \pm 1.1 \cdot 10^{-6} \) | \(a_{48}= +1.54357277 \pm 1.9 \cdot 10^{-6} \) |
\(a_{49}= +2.45223835 \pm 1.2 \cdot 10^{-6} \) | \(a_{50}= +0.09296749 \pm 1.5 \cdot 10^{-6} \) | \(a_{51}= -0.12988976 \pm 1.3 \cdot 10^{-6} \) |
\(a_{52}= +1.01882335 \pm 1.3 \cdot 10^{-6} \) | \(a_{53}= -0.64262670 \pm 1.2 \cdot 10^{-6} \) | \(a_{54}= -0.07737965 \pm 1.5 \cdot 10^{-6} \) |
\(a_{55}= +0.18646021 \pm 1.3 \cdot 10^{-6} \) | \(a_{56}= +0.35007144 \pm 1.3 \cdot 10^{-6} \) | \(a_{57}= -0.61495495 \pm 1.3 \cdot 10^{-6} \) |
\(a_{58}= -0.09620714 \pm 1.4 \cdot 10^{-6} \) | \(a_{59}= +0.41963749 \pm 1.3 \cdot 10^{-6} \) | \(a_{60}= -0.20829333 \pm 2.0 \cdot 10^{-6} \) |
\(a_{61}= -0.41856353 \pm 1.2 \cdot 10^{-6} \) | \(a_{62}= -0.01699591 \pm 1.5 \cdot 10^{-6} \) | \(a_{63}= +2.81595090 \pm 1.4 \cdot 10^{-6} \) |
\(a_{64}= -0.94667211 \pm 1.6 \cdot 10^{-6} \) | \(a_{65}= -0.13622895 \pm 1.3 \cdot 10^{-6} \) | \(a_{66}= -0.21118598 \pm 1.3 \cdot 10^{-6} \) |
\(a_{67}= -0.37949741 \pm 1.0 \cdot 10^{-6} \) | \(a_{68}= +0.08116160 \pm 2.0 \cdot 10^{-6} \) | \(a_{69}= -1.45256826 \pm 1.4 \cdot 10^{-6} \) |
\(a_{70}= -0.02329912 \pm 1.3 \cdot 10^{-6} \) | \(a_{71}= -1.75072042 \pm 1.0 \cdot 10^{-6} \) | \(a_{72}= +0.28554922 \pm 1.7 \cdot 10^{-6} \) |
\(a_{73}= +0.00101840 \pm 1.1 \cdot 10^{-6} \) | \(a_{74}= -0.05916204 \pm 1.4 \cdot 10^{-6} \) | \(a_{75}= -1.55820209 \pm 1.2 \cdot 10^{-6} \) |
\(a_{76}= +0.38425454 \pm 1.5 \cdot 10^{-6} \) | \(a_{77}= +2.61440291 \pm 1.1 \cdot 10^{-6} \) | \(a_{78}= +0.15429375 \pm 1.3 \cdot 10^{-6} \) |
\(a_{79}= +1.54291858 \pm 1.3 \cdot 10^{-6} \) | \(a_{80}= +0.12896544 \pm 1.4 \cdot 10^{-6} \) | \(a_{81}= -0.21862685 \pm 1.3 \cdot 10^{-6} \) |
\(a_{82}= +0.04218094 \pm 1.5 \cdot 10^{-6} \) | \(a_{83}= -1.43678123 \pm 1.0 \cdot 10^{-6} \) | \(a_{84}= -2.92053025 \pm 1.7 \cdot 10^{-6} \) |
\(a_{85}= -0.01085228 \pm 1.0 \cdot 10^{-6} \) | \(a_{86}= +0.08579359 \pm 1.2 \cdot 10^{-6} \) | \(a_{87}= +1.61250092 \pm 1.4 \cdot 10^{-6} \) |
\(a_{88}= +0.26511141 \pm 1.3 \cdot 10^{-6} \) | \(a_{89}= +0.03713684 \pm 1.1 \cdot 10^{-6} \) | \(a_{90}= -0.01900482 \pm 1.6 \cdot 10^{-6} \) |
\(a_{91}= -1.91009850 \pm 1.4 \cdot 10^{-6} \) | \(a_{92}= +0.90763713 \pm 1.3 \cdot 10^{-6} \) | \(a_{93}= +0.28486360 \pm 1.4 \cdot 10^{-6} \) |
\(a_{94}= +0.04581687 \pm 1.5 \cdot 10^{-6} \) | \(a_{95}= -0.05137946 \pm 1.4 \cdot 10^{-6} \) | \(a_{96}= -0.44489698 \pm 2.1 \cdot 10^{-6} \) |
\(a_{97}= +1.00748024 \pm 1.2 \cdot 10^{-6} \) | \(a_{98}= -0.23205334 \pm 1.2 \cdot 10^{-6} \) | \(a_{99}= +2.13253822 \pm 1.1 \cdot 10^{-6} \) |
\(a_{100}= +0.97364242 \pm 1.5 \cdot 10^{-6} \) | \(a_{101}= -0.91341378 \pm 1.3 \cdot 10^{-6} \) | \(a_{102}= +0.01229136 \pm 1.9 \cdot 10^{-6} \) |
\(a_{103}= -0.44414232 \pm 1.1 \cdot 10^{-6} \) | \(a_{104}= -0.19369199 \pm 1.4 \cdot 10^{-6} \) | \(a_{105}= +0.39051006 \pm 1.2 \cdot 10^{-6} \) |
\(a_{106}= +0.06081125 \pm 1.4 \cdot 10^{-6} \) | \(a_{107}= -0.10822101 \pm 1.1 \cdot 10^{-6} \) | \(a_{108}= -0.81039195 \pm 1.5 \cdot 10^{-6} \) |
\(a_{109}= +0.65216801 \pm 1.2 \cdot 10^{-6} \) | \(a_{110}= -0.01764458 \pm 1.3 \cdot 10^{-6} \) | \(a_{111}= +0.99159830 \pm 1.2 \cdot 10^{-6} \) |
\(a_{112}= +1.80825505 \pm 1.0 \cdot 10^{-6} \) | \(a_{113}= -0.02457545 \pm 1.1 \cdot 10^{-6} \) | \(a_{114}= +0.05819269 \pm 1.4 \cdot 10^{-6} \) |
\(a_{115}= -0.12136201 \pm 1.1 \cdot 10^{-6} \) | \(a_{116}= -1.00757103 \pm 1.5 \cdot 10^{-6} \) | \(a_{117}= -1.55804526 \pm 1.3 \cdot 10^{-6} \) |
\(a_{118}= -0.03970996 \pm 1.8 \cdot 10^{-6} \) | \(a_{119}= -0.15216245 \pm 9.8 \cdot 10^{-7} \) | \(a_{120}= +0.03959936 \pm 2.0 \cdot 10^{-6} \) |
\(a_{121}= +0.97990459 \pm 1.3 \cdot 10^{-6} \) | \(a_{122}= +0.03960833 \pm 1.7 \cdot 10^{-6} \) | \(a_{123}= -0.70698296 \pm 1.4 \cdot 10^{-6} \) |
\(a_{124}= -0.17799699 \pm 1.7 \cdot 10^{-6} \) | \(a_{125}= -0.26270241 \pm 1.3 \cdot 10^{-6} \) | \(a_{126}= -0.26647117 \pm 1.8 \cdot 10^{-6} \) |
\(a_{127}= +0.02923457 \pm 1.2 \cdot 10^{-6} \) | \(a_{128}= +0.37008849 \pm 1.5 \cdot 10^{-6} \) | \(a_{129}= -1.43796226 \pm 1.0 \cdot 10^{-6} \) |
\(a_{130}= +0.01289124 \pm 1.3 \cdot 10^{-6} \) | \(a_{131}= +1.55219854 \pm 1.3 \cdot 10^{-6} \) | \(a_{132}= -2.21173685 \pm 1.4 \cdot 10^{-6} \) |
\(a_{133}= -0.72040361 \pm 1.2 \cdot 10^{-6} \) | \(a_{134}= +0.03591153 \pm 1.1 \cdot 10^{-6} \) | \(a_{135}= +0.10835916 \pm 1.1 \cdot 10^{-6} \) |
\(a_{136}= -0.01542991 \pm 2.1 \cdot 10^{-6} \) | \(a_{137}= -1.60046199 \pm 1.2 \cdot 10^{-6} \) | \(a_{138}= +0.13745537 \pm 1.1 \cdot 10^{-6} \) |
\(a_{139}= +1.19612325 \pm 9.7 \cdot 10^{-7} \) | \(a_{140}= -0.24401017 \pm 1.2 \cdot 10^{-6} \) | \(a_{141}= -0.76792373 \pm 1.4 \cdot 10^{-6} \) |
\(a_{142}= +0.16566926 \pm 1.1 \cdot 10^{-6} \) | \(a_{143}= -1.44653021 \pm 1.3 \cdot 10^{-6} \) | \(a_{144}= +1.47497273 \pm 1.6 \cdot 10^{-6} \) |
\(a_{145}= +0.13472438 \pm 1.1 \cdot 10^{-6} \) | \(a_{146}= -0.00009637 \pm 1.4 \cdot 10^{-6} \) | \(a_{147}= +3.88938101 \pm 1.2 \cdot 10^{-6} \) |
\(a_{148}= -0.61960009 \pm 1.6 \cdot 10^{-6} \) | \(a_{149}= +0.62236801 \pm 1.1 \cdot 10^{-6} \) | \(a_{150}= +0.14745141 \pm 1.6 \cdot 10^{-6} \) |
\(a_{151}= -0.25435876 \pm 1.2 \cdot 10^{-6} \) | \(a_{152}= -0.07305194 \pm 1.4 \cdot 10^{-6} \) | \(a_{153}= -0.12411715 \pm 1.1 \cdot 10^{-6} \) |
\(a_{154}= -0.24739884 \pm 1.2 \cdot 10^{-6} \) | \(a_{155}= +0.02380034 \pm 1.3 \cdot 10^{-6} \) | \(a_{156}= +1.61590825 \pm 1.4 \cdot 10^{-6} \) |
\(a_{157}= +0.58930152 \pm 1.1 \cdot 10^{-6} \) | \(a_{158}= -0.14600514 \pm 1.6 \cdot 10^{-6} \) | \(a_{159}= -1.01924028 \pm 1.2 \cdot 10^{-6} \) |
\(a_{160}= -0.03717112 \pm 1.5 \cdot 10^{-6} \) | \(a_{161}= -1.70164565 \pm 1.0 \cdot 10^{-6} \) | \(a_{162}= +0.02068848 \pm 1.8 \cdot 10^{-6} \) |
\(a_{163}= +0.04570429 \pm 1.2 \cdot 10^{-6} \) | \(a_{164}= +0.44175823 \pm 1.8 \cdot 10^{-6} \) | \(a_{165}= +0.29573585 \pm 1.2 \cdot 10^{-6} \) |
\(a_{166}= +0.13596145 \pm 1.4 \cdot 10^{-6} \) | \(a_{167}= -0.14613303 \pm 1.2 \cdot 10^{-6} \) | \(a_{168}= +0.55523200 \pm 1.4 \cdot 10^{-6} \) |
\(a_{169}= +0.05684368 \pm 1.2 \cdot 10^{-6} \) | \(a_{170}= +0.00102694 \pm 1.4 \cdot 10^{-6} \) | \(a_{171}= -0.58762489 \pm 1.2 \cdot 10^{-6} \) |
\(a_{172}= +0.89851057 \pm 1.2 \cdot 10^{-6} \) | \(a_{173}= -0.01811988 \pm 1.3 \cdot 10^{-6} \) | \(a_{174}= -0.15258966 \pm 1.7 \cdot 10^{-6} \) |
\(a_{175}= -1.82539291 \pm 1.1 \cdot 10^{-6} \) | \(a_{176}= +1.36940349 \pm 8.4 \cdot 10^{-7} \) | \(a_{177}= +0.66556747 \pm 1.4 \cdot 10^{-6} \) |
\(a_{178}= -0.00351423 \pm 1.2 \cdot 10^{-6} \) | \(a_{179}= -1.71399944 \pm 1.4 \cdot 10^{-6} \) | \(a_{180}= -0.19903628 \pm 1.7 \cdot 10^{-6} \) |
\(a_{181}= +1.52110094 \pm 1.1 \cdot 10^{-6} \) | \(a_{182}= +0.18075108 \pm 1.2 \cdot 10^{-6} \) | \(a_{183}= -0.66386411 \pm 1.2 \cdot 10^{-6} \) |
\(a_{184}= -0.17255400 \pm 1.5 \cdot 10^{-6} \) | \(a_{185}= +0.08284799 \pm 1.1 \cdot 10^{-6} \) | \(a_{186}= -0.02695641 \pm 2.9 \cdot 10^{-6} \) |
\(a_{187}= -0.11523362 \pm 9.5 \cdot 10^{-7} \) | \(a_{188}= +0.47983706 \pm 1.8 \cdot 10^{-6} \) | \(a_{189}= +1.51932957 \pm 1.3 \cdot 10^{-6} \) |
\(a_{190}= +0.00486200 \pm 1.7 \cdot 10^{-6} \) | \(a_{191}= +0.97214924 \pm 1.2 \cdot 10^{-6} \) | \(a_{192}= -1.50147253 \pm 2.0 \cdot 10^{-6} \) |
\(a_{193}= +0.37074004 \pm 1.2 \cdot 10^{-6} \) | \(a_{194}= -0.09533704 \pm 1.5 \cdot 10^{-6} \) | \(a_{195}= -0.21606639 \pm 1.1 \cdot 10^{-6} \) |
\(a_{196}= -2.43027933 \pm 1.5 \cdot 10^{-6} \) | \(a_{197}= -0.55997596 \pm 9.6 \cdot 10^{-7} \) | \(a_{198}= -0.20180038 \pm 1.3 \cdot 10^{-6} \) |
\(a_{199}= +1.47645262 \pm 1.1 \cdot 10^{-6} \) | \(a_{200}= -0.18510249 \pm 1.3 \cdot 10^{-6} \) | \(a_{201}= -0.60190316 \pm 1.1 \cdot 10^{-6} \) |
\(a_{202}= +0.08643561 \pm 1.6 \cdot 10^{-6} \) | \(a_{203}= +1.88900256 \pm 1.2 \cdot 10^{-6} \) | \(a_{204}= +0.12872663 \pm 2.3 \cdot 10^{-6} \) |
\(a_{205}= -0.05906839 \pm 1.1 \cdot 10^{-6} \) | \(a_{206}= +0.04202883 \pm 1.3 \cdot 10^{-6} \) | \(a_{207}= -1.38801268 \pm 1.1 \cdot 10^{-6} \) |
\(a_{208}= -1.00049443 \pm 1.3 \cdot 10^{-6} \) | \(a_{209}= -0.54556641 \pm 1.4 \cdot 10^{-6} \) | \(a_{210}= -0.03695365 \pm 1.6 \cdot 10^{-6} \) |
\(a_{211}= -0.22326437 \pm 1.2 \cdot 10^{-6} \) | \(a_{212}= +0.63687219 \pm 1.5 \cdot 10^{-6} \) | \(a_{213}= -2.77673610 \pm 1.2 \cdot 10^{-6} \) |
\(a_{214}= +0.01024087 \pm 1.2 \cdot 10^{-6} \) | \(a_{215}= -0.12014168 \pm 1.2 \cdot 10^{-6} \) | \(a_{216}= +0.15406639 \pm 1.3 \cdot 10^{-6} \) |
\(a_{217}= +0.33371024 \pm 1.2 \cdot 10^{-6} \) | \(a_{218}= -0.06171413 \pm 1.5 \cdot 10^{-6} \) | \(a_{219}= +0.00161524 \pm 1.1 \cdot 10^{-6} \) |
\(a_{220}= -0.18479052 \pm 1.1 \cdot 10^{-6} \) | \(a_{221}= +0.08419038 \pm 1.1 \cdot 10^{-6} \) | \(a_{222}= -0.09383415 \pm 1.5 \cdot 10^{-6} \) |
\(a_{223}= +0.69917204 \pm 1.4 \cdot 10^{-6} \) | \(a_{224}= -0.52118516 \pm 1.3 \cdot 10^{-6} \) | \(a_{225}= -1.48895189 \pm 1.1 \cdot 10^{-6} \) |
\(a_{226}= +0.00232555 \pm 1.4 \cdot 10^{-6} \) | \(a_{227}= +0.75466211 \pm 1.2 \cdot 10^{-6} \) | \(a_{228}= +0.60944822 \pm 1.5 \cdot 10^{-6} \) |
\(a_{229}= -0.10441423 \pm 1.3 \cdot 10^{-6} \) | \(a_{230}= +0.01148439 \pm 1.2 \cdot 10^{-6} \) | \(a_{231}= +4.14658266 \pm 1.3 \cdot 10^{-6} \) |
\(a_{232}= +0.19155278 \pm 1.4 \cdot 10^{-6} \) | \(a_{233}= +1.58093891 \pm 1.0 \cdot 10^{-6} \) | \(a_{234}= +0.14743657 \pm 1.4 \cdot 10^{-6} \) |
\(a_{235}= -0.06415999 \pm 1.2 \cdot 10^{-6} \) | \(a_{236}= -0.41587977 \pm 2.0 \cdot 10^{-6} \) | \(a_{237}= +2.44715129 \pm 1.4 \cdot 10^{-6} \) |
\(a_{238}= +0.01439901 \pm 9.4 \cdot 10^{-7} \) | \(a_{239}= +0.62849938 \pm 1.3 \cdot 10^{-6} \) | \(a_{240}= +0.20454607 \pm 1.7 \cdot 10^{-6} \) |
\(a_{241}= -0.14110940 \pm 1.0 \cdot 10^{-6} \) | \(a_{242}= -0.09272758 \pm 1.4 \cdot 10^{-6} \) | \(a_{243}= -1.16446818 \pm 1.4 \cdot 10^{-6} \) |
\(a_{244}= +0.41481542 \pm 2.0 \cdot 10^{-6} \) | \(a_{245}= +0.32495761 \pm 1.1 \cdot 10^{-6} \) | \(a_{246}= +0.06690123 \pm 2.1 \cdot 10^{-6} \) |
\(a_{247}= +0.39859410 \pm 1.3 \cdot 10^{-6} \) | \(a_{248}= +0.03383962 \pm 1.7 \cdot 10^{-6} \) | \(a_{249}= -2.27881178 \pm 1.1 \cdot 10^{-6} \) |
\(a_{250}= +0.02485932 \pm 1.7 \cdot 10^{-6} \) | \(a_{251}= -0.02162447 \pm 1.2 \cdot 10^{-6} \) | \(a_{252}= -2.79073495 \pm 1.9 \cdot 10^{-6} \) |
\(a_{253}= -1.28866749 \pm 1.1 \cdot 10^{-6} \) | \(a_{254}= -0.00276644 \pm 1.5 \cdot 10^{-6} \) | \(a_{255}= -0.01721230 \pm 1.3 \cdot 10^{-6} \) |
\(a_{256}= +0.91165093 \pm 1.5 \cdot 10^{-6} \) | \(a_{257}= -1.25961723 \pm 1.2 \cdot 10^{-6} \) | \(a_{258}= +0.13607321 \pm 1.3 \cdot 10^{-6} \) |
\(a_{259}= +1.16163142 \pm 1.2 \cdot 10^{-6} \) | \(a_{260}= +0.13500906 \pm 1.2 \cdot 10^{-6} \) | \(a_{261}= +1.54083755 \pm 1.2 \cdot 10^{-6} \) |
\(a_{262}= -0.14688330 \pm 1.5 \cdot 10^{-6} \) | \(a_{263}= +0.68279708 \pm 1.3 \cdot 10^{-6} \) | \(a_{264}= +0.42048086 \pm 1.3 \cdot 10^{-6} \) |
\(a_{265}= -0.08515748 \pm 1.1 \cdot 10^{-6} \) | \(a_{266}= +0.06817121 \pm 1.4 \cdot 10^{-6} \) | \(a_{267}= +0.05890102 \pm 1.0 \cdot 10^{-6} \) |
\(a_{268}= +0.37609913 \pm 1.1 \cdot 10^{-6} \) | \(a_{269}= -0.25274572 \pm 1.1 \cdot 10^{-6} \) | \(a_{270}= -0.01025394 \pm 1.4 \cdot 10^{-6} \) |
\(a_{271}= -1.51739162 \pm 1.5 \cdot 10^{-6} \) | \(a_{272}= -0.07970148 \pm 1.9 \cdot 10^{-6} \) | \(a_{273}= -3.02951825 \pm 1.3 \cdot 10^{-6} \) |
\(a_{274}= +0.15145043 \pm 1.5 \cdot 10^{-6} \) | \(a_{275}= -1.38238211 \pm 1.4 \cdot 10^{-6} \) | \(a_{276}= +1.43956097 \pm 1.4 \cdot 10^{-6} \) |
\(a_{277}= +1.78714910 \pm 1.2 \cdot 10^{-6} \) | \(a_{278}= -0.11318818 \pm 1.2 \cdot 10^{-6} \) | \(a_{279}= +0.27220359 \pm 1.3 \cdot 10^{-6} \) |
\(a_{280}= +0.04638961 \pm 1.2 \cdot 10^{-6} \) | \(a_{281}= -0.35481896 \pm 1.2 \cdot 10^{-6} \) | \(a_{282}= +0.07266800 \pm 1.9 \cdot 10^{-6} \) |
\(a_{283}= -1.15469776 \pm 1.2 \cdot 10^{-6} \) | \(a_{284}= +1.73504327 \pm 1.0 \cdot 10^{-6} \) | \(a_{285}= -0.08149057 \pm 1.4 \cdot 10^{-6} \) |
\(a_{286}= +0.13688399 \pm 1.3 \cdot 10^{-6} \) | \(a_{287}= -0.82821201 \pm 1.0 \cdot 10^{-6} \) | \(a_{288}= -0.42512471 \pm 1.8 \cdot 10^{-6} \) |
\(a_{289}= -0.99329322 \pm 1.3 \cdot 10^{-6} \) | \(a_{290}= -0.01274886 \pm 1.4 \cdot 10^{-6} \) | \(a_{291}= +1.59791747 \pm 1.5 \cdot 10^{-6} \) |
\(a_{292}= -0.00100928 \pm 1.4 \cdot 10^{-6} \) | \(a_{293}= -0.01205957 \pm 1.0 \cdot 10^{-6} \) | \(a_{294}= -0.36804900 \pm 1.4 \cdot 10^{-6} \) |
\(a_{295}= +0.05560813 \pm 1.1 \cdot 10^{-6} \) | \(a_{296}= +0.11779429 \pm 1.6 \cdot 10^{-6} \) | \(a_{297}= +1.15059832 \pm 1.0 \cdot 10^{-6} \) |
\(a_{298}= -0.05889418 \pm 1.4 \cdot 10^{-6} \) | \(a_{299}= +0.94150822 \pm 1.2 \cdot 10^{-6} \) | \(a_{300}= +1.54424888 \pm 1.6 \cdot 10^{-6} \) |
\(a_{301}= -1.68453510 \pm 1.0 \cdot 10^{-6} \) | \(a_{302}= +0.02406976 \pm 1.3 \cdot 10^{-6} \) | \(a_{303}= -1.44872305 \pm 1.6 \cdot 10^{-6} \) |
\(a_{304}= -0.37734169 \pm 1.0 \cdot 10^{-6} \) | \(a_{305}= -0.05546582 \pm 1.2 \cdot 10^{-6} \) | \(a_{306}= +0.01174511 \pm 1.4 \cdot 10^{-6} \) |
\(a_{307}= -1.06009903 \pm 1.3 \cdot 10^{-6} \) | \(a_{308}= -2.59099175 \pm 1.2 \cdot 10^{-6} \) | \(a_{309}= -0.70443345 \pm 1.3 \cdot 10^{-6} \) |
\(a_{310}= -0.00225221 \pm 2.8 \cdot 10^{-6} \) | \(a_{311}= +0.74397440 \pm 1.0 \cdot 10^{-6} \) | \(a_{312}= -0.30720585 \pm 1.5 \cdot 10^{-6} \) |
\(a_{313}= +1.49126153 \pm 1.2 \cdot 10^{-6} \) | \(a_{314}= -0.05576513 \pm 1.3 \cdot 10^{-6} \) | \(a_{315}= +0.37315487 \pm 1.2 \cdot 10^{-6} \) |
\(a_{316}= -1.52910223 \pm 1.9 \cdot 10^{-6} \) | \(a_{317}= +0.89149786 \pm 1.2 \cdot 10^{-6} \) | \(a_{318}= +0.09644989 \pm 1.5 \cdot 10^{-6} \) |
\(a_{319}= +1.43055412 \pm 1.2 \cdot 10^{-6} \) | \(a_{320}= -0.12544796 \pm 1.6 \cdot 10^{-6} \) | \(a_{321}= -0.17164431 \pm 1.0 \cdot 10^{-6} \) |
\(a_{322}= +0.16102536 \pm 9.8 \cdot 10^{-7} \) | \(a_{323}= +0.03175284 \pm 1.0 \cdot 10^{-6} \) | \(a_{324}= +0.21666911 \pm 1.9 \cdot 10^{-6} \) |
\(a_{325}= +1.00997669 \pm 1.1 \cdot 10^{-6} \) | \(a_{326}= -0.00432496 \pm 1.5 \cdot 10^{-6} \) | \(a_{327}= +1.03437331 \pm 1.1 \cdot 10^{-6} \) |
\(a_{328}= -0.08398417 \pm 2.1 \cdot 10^{-6} \) | \(a_{329}= -0.89960252 \pm 9.3 \cdot 10^{-7} \) | \(a_{330}= -0.02798525 \pm 1.2 \cdot 10^{-6} \) |
\(a_{331}= -1.54702252 \pm 1.1 \cdot 10^{-6} \) | \(a_{332}= +1.42391531 \pm 1.6 \cdot 10^{-6} \) | \(a_{333}= +0.94752931 \pm 1.1 \cdot 10^{-6} \) |
\(a_{334}= +0.01382845 \pm 1.4 \cdot 10^{-6} \) | \(a_{335}= -0.05028898 \pm 1.0 \cdot 10^{-6} \) | \(a_{336}= +2.86798909 \pm 1.2 \cdot 10^{-6} \) |
\(a_{337}= +0.72854077 \pm 1.3 \cdot 10^{-6} \) | \(a_{338}= -0.00537907 \pm 1.2 \cdot 10^{-6} \) | \(a_{339}= -0.03897797 \pm 1.2 \cdot 10^{-6} \) |
\(a_{340}= +0.01075510 \pm 1.7 \cdot 10^{-6} \) | \(a_{341}= +0.25272097 \pm 1.2 \cdot 10^{-6} \) | \(a_{342}= +0.05560647 \pm 1.5 \cdot 10^{-6} \) |
\(a_{343}= +2.69828792 \pm 1.2 \cdot 10^{-6} \) | \(a_{344}= -0.17081892 \pm 1.3 \cdot 10^{-6} \) | \(a_{345}= -0.19248664 \pm 1.1 \cdot 10^{-6} \) |
\(a_{346}= +0.00171467 \pm 1.8 \cdot 10^{-6} \) | \(a_{347}= -0.58414826 \pm 1.3 \cdot 10^{-6} \) | \(a_{348}= -1.59806148 \pm 1.8 \cdot 10^{-6} \) |
\(a_{349}= +0.04311805 \pm 1.3 \cdot 10^{-6} \) | \(a_{350}= +0.17273546 \pm 1.3 \cdot 10^{-6} \) | \(a_{351}= -0.84063405 \pm 1.0 \cdot 10^{-6} \) |
\(a_{352}= -0.39469696 \pm 1.2 \cdot 10^{-6} \) | \(a_{353}= -1.50586517 \pm 1.4 \cdot 10^{-6} \) | \(a_{354}= -0.06298211 \pm 1.8 \cdot 10^{-6} \) |
\(a_{355}= -0.23199618 \pm 8.8 \cdot 10^{-7} \) | \(a_{356}= -0.03680429 \pm 1.3 \cdot 10^{-6} \) | \(a_{357}= -0.24133777 \pm 9.9 \cdot 10^{-7} \) |
\(a_{358}= +0.16219439 \pm 1.6 \cdot 10^{-6} \) | \(a_{359}= -1.56749208 \pm 1.2 \cdot 10^{-6} \) | \(a_{360}= +0.03783947 \pm 1.7 \cdot 10^{-6} \) |
\(a_{361}= -0.84966816 \pm 1.3 \cdot 10^{-6} \) | \(a_{362}= -0.14394056 \pm 1.3 \cdot 10^{-6} \) | \(a_{363}= +1.55418102 \pm 1.2 \cdot 10^{-6} \) |
\(a_{364}= +1.89299417 \pm 1.3 \cdot 10^{-6} \) | \(a_{365}= +0.00013495 \pm 1.3 \cdot 10^{-6} \) | \(a_{366}= +0.06282093 \pm 1.9 \cdot 10^{-6} \) |
\(a_{367}= +0.81740000 \pm 1.4 \cdot 10^{-6} \) | \(a_{368}= -0.89130848 \pm 1.3 \cdot 10^{-6} \) | \(a_{369}= -0.67556296 \pm 1.3 \cdot 10^{-6} \) |
\(a_{370}= -0.00783984 \pm 1.3 \cdot 10^{-6} \) | \(a_{371}= -1.19401328 \pm 1.2 \cdot 10^{-6} \) | \(a_{372}= -0.28231274 \pm 3.1 \cdot 10^{-6} \) |
\(a_{373}= -0.82689502 \pm 1.1 \cdot 10^{-6} \) | \(a_{374}= +0.01090447 \pm 1.1 \cdot 10^{-6} \) | \(a_{375}= -0.41666005 \pm 1.5 \cdot 10^{-6} \) |
\(a_{376}= -0.09122347 \pm 2.1 \cdot 10^{-6} \) | \(a_{377}= -1.04517145 \pm 1.1 \cdot 10^{-6} \) | \(a_{378}= -0.14377293 \pm 1.8 \cdot 10^{-6} \) |
\(a_{379}= +1.53242482 \pm 1.2 \cdot 10^{-6} \) | \(a_{380}= +0.05091937 \pm 1.6 \cdot 10^{-6} \) | \(a_{381}= +0.04636760 \pm 1.3 \cdot 10^{-6} \) |
\(a_{382}= -0.09199370 \pm 1.7 \cdot 10^{-6} \) | \(a_{383}= -0.48469568 \pm 1.2 \cdot 10^{-6} \) | \(a_{384}= +0.58698012 \pm 1.9 \cdot 10^{-6} \) |
\(a_{385}= +0.34644680 \pm 1.0 \cdot 10^{-6} \) | \(a_{386}= -0.03508283 \pm 1.2 \cdot 10^{-6} \) | \(a_{387}= -1.37405580 \pm 1.1 \cdot 10^{-6} \) |
\(a_{388}= -0.99845857 \pm 1.7 \cdot 10^{-6} \) | \(a_{389}= -0.25168214 \pm 1.0 \cdot 10^{-6} \) | \(a_{390}= +0.02044619 \pm 1.0 \cdot 10^{-6} \) |
\(a_{391}= +0.07500252 \pm 1.0 \cdot 10^{-6} \) | \(a_{392}= +0.46202872 \pm 1.6 \cdot 10^{-6} \) | \(a_{393}= +2.46186979 \pm 1.3 \cdot 10^{-6} \) |
\(a_{394}= +0.05299007 \pm 1.1 \cdot 10^{-6} \) | \(a_{395}= +0.20445938 \pm 1.2 \cdot 10^{-6} \) | \(a_{396}= -2.11344201 \pm 1.3 \cdot 10^{-6} \) |
\(a_{397}= +1.07313235 \pm 1.2 \cdot 10^{-6} \) | \(a_{398}= -0.13971552 \pm 1.3 \cdot 10^{-6} \) | \(a_{399}= -1.14259860 \pm 1.2 \cdot 10^{-6} \) |
\(a_{400}= -0.95612632 \pm 9.2 \cdot 10^{-7} \) | \(a_{401}= +1.30610699 \pm 1.2 \cdot 10^{-6} \) | \(a_{402}= +0.05695761 \pm 1.4 \cdot 10^{-6} \) |
\(a_{403}= -0.18463946 \pm 1.3 \cdot 10^{-6} \) | \(a_{404}= +0.90523445 \pm 1.7 \cdot 10^{-6} \) | \(a_{405}= -0.02897127 \pm 1.2 \cdot 10^{-6} \) |
\(a_{406}= -0.17875479 \pm 1.2 \cdot 10^{-6} \) | \(a_{407}= +0.87971114 \pm 1.1 \cdot 10^{-6} \) | \(a_{408}= -0.02447266 \pm 2.5 \cdot 10^{-6} \) |
\(a_{409}= -0.96912975 \pm 1.0 \cdot 10^{-6} \) | \(a_{410}= +0.00558959 \pm 1.5 \cdot 10^{-6} \) | \(a_{411}= -2.53841821 \pm 1.4 \cdot 10^{-6} \) |
\(a_{412}= +0.44016517 \pm 1.4 \cdot 10^{-6} \) | \(a_{413}= +0.77969485 \pm 1.3 \cdot 10^{-6} \) | \(a_{414}= +0.13134652 \pm 1.1 \cdot 10^{-6} \) |
\(a_{415}= -0.19039462 \pm 1.1 \cdot 10^{-6} \) | \(a_{416}= +0.28836798 \pm 1.4 \cdot 10^{-6} \) | \(a_{417}= +1.89711537 \pm 1.1 \cdot 10^{-6} \) |
\(a_{418}= +0.05162651 \pm 1.6 \cdot 10^{-6} \) | \(a_{419}= +0.72037043 \pm 1.2 \cdot 10^{-6} \) | \(a_{420}= -0.38701317 \pm 1.6 \cdot 10^{-6} \) |
\(a_{421}= +1.60642826 \pm 1.4 \cdot 10^{-6} \) | \(a_{422}= +0.02112733 \pm 1.2 \cdot 10^{-6} \) | \(a_{423}= -0.73379538 \pm 1.2 \cdot 10^{-6} \) |
\(a_{424}= -0.12107795 \pm 1.3 \cdot 10^{-6} \) | \(a_{425}= +0.08045686 \pm 8.1 \cdot 10^{-7} \) | \(a_{426}= +0.26276030 \pm 1.3 \cdot 10^{-6} \) |
\(a_{427}= -0.77769941 \pm 9.7 \cdot 10^{-7} \) | \(a_{428}= +0.10725193 \pm 1.2 \cdot 10^{-6} \) | \(a_{429}= -2.29427418 \pm 1.3 \cdot 10^{-6} \) |
\(a_{430}= +0.01136891 \pm 1.3 \cdot 10^{-6} \) | \(a_{431}= +1.68960522 \pm 1.2 \cdot 10^{-6} \) | \(a_{432}= +0.79581277 \pm 1.1 \cdot 10^{-6} \) |
\(a_{433}= +1.08357771 \pm 1.4 \cdot 10^{-6} \) | \(a_{434}= -0.03157873 \pm 2.8 \cdot 10^{-6} \) | \(a_{435}= +0.21368006 \pm 1.3 \cdot 10^{-6} \) |
\(a_{436}= -0.64632806 \pm 1.6 \cdot 10^{-6} \) | \(a_{437}= +0.35509473 \pm 1.3 \cdot 10^{-6} \) | \(a_{438}= -0.00015285 \pm 1.6 \cdot 10^{-6} \) |
\(a_{439}= -1.52441477 \pm 1.3 \cdot 10^{-6} \) | \(a_{440}= +0.03513116 \pm 1.4 \cdot 10^{-6} \) | \(a_{441}= +3.71652769 \pm 1.3 \cdot 10^{-6} \) |
\(a_{442}= -0.00796687 \pm 1.1 \cdot 10^{-6} \) | \(a_{443}= -1.33098398 \pm 1.2 \cdot 10^{-6} \) | \(a_{444}= -0.98271885 \pm 1.7 \cdot 10^{-6} \) |
\(a_{445}= +0.00492118 \pm 1.1 \cdot 10^{-6} \) | \(a_{446}= -0.06616209 \pm 1.5 \cdot 10^{-6} \) | \(a_{447}= +0.98710890 \pm 1.1 \cdot 10^{-6} \) |
\(a_{448}= -1.75893572 \pm 1.2 \cdot 10^{-6} \) | \(a_{449}= -1.14195253 \pm 1.1 \cdot 10^{-6} \) | \(a_{450}= +0.14089832 \pm 1.4 \cdot 10^{-6} \) |
\(a_{451}= -0.62721042 \pm 1.0 \cdot 10^{-6} \) | \(a_{452}= +0.02435538 \pm 1.4 \cdot 10^{-6} \) | \(a_{453}= -0.40342658 \pm 1.2 \cdot 10^{-6} \) |
\(a_{454}= -0.07141307 \pm 1.5 \cdot 10^{-6} \) | \(a_{455}= -0.25311612 \pm 1.1 \cdot 10^{-6} \) | \(a_{456}= -0.11586429 \pm 1.6 \cdot 10^{-6} \) |
\(a_{457}= +1.53348320 \pm 1.3 \cdot 10^{-6} \) | \(a_{458}= +0.00988063 \pm 1.7 \cdot 10^{-6} \) | \(a_{459}= -0.06696667 \pm 1.0 \cdot 10^{-6} \) |
\(a_{460}= +0.12027526 \pm 1.2 \cdot 10^{-6} \) | \(a_{461}= +1.79545364 \pm 1.1 \cdot 10^{-6} \) | \(a_{462}= -0.39238778 \pm 1.3 \cdot 10^{-6} \) |
\(a_{463}= +1.05161883 \pm 1.3 \cdot 10^{-6} \) | \(a_{464}= +0.98944455 \pm 1.0 \cdot 10^{-6} \) | \(a_{465}= +0.03774861 \pm 2.7 \cdot 10^{-6} \) |
\(a_{466}= -0.14960298 \pm 1.4 \cdot 10^{-6} \) | \(a_{467}= +0.54090859 \pm 1.2 \cdot 10^{-6} \) | \(a_{468}= +1.54409345 \pm 1.4 \cdot 10^{-6} \) |
\(a_{469}= -0.70511377 \pm 1.0 \cdot 10^{-6} \) | \(a_{470}= +0.00607141 \pm 1.5 \cdot 10^{-6} \) | \(a_{471}= +0.93466368 \pm 1.3 \cdot 10^{-6} \) |
\(a_{472}= +0.07906433 \pm 1.9 \cdot 10^{-6} \) | \(a_{473}= -1.27570956 \pm 1.1 \cdot 10^{-6} \) | \(a_{474}= -0.23157196 \pm 1.8 \cdot 10^{-6} \) |
\(a_{475}= +0.38091797 \pm 1.4 \cdot 10^{-6} \) | \(a_{476}= +0.15079988 \pm 9.5 \cdot 10^{-7} \) | \(a_{477}= -0.97394282 \pm 1.3 \cdot 10^{-6} \) |
\(a_{478}= -0.05947439 \pm 1.4 \cdot 10^{-6} \) | \(a_{479}= +1.04182291 \pm 1.2 \cdot 10^{-6} \) | \(a_{480}= -0.05895539 \pm 1.8 \cdot 10^{-6} \) |
\(a_{481}= -0.64272226 \pm 1.1 \cdot 10^{-6} \) | \(a_{482}= +0.01335307 \pm 1.1 \cdot 10^{-6} \) | \(a_{483}= -2.69890089 \pm 1.2 \cdot 10^{-6} \) |
\(a_{484}= -0.97112985 \pm 1.5 \cdot 10^{-6} \) | \(a_{485}= +0.13350593 \pm 1.0 \cdot 10^{-6} \) | \(a_{486}= +0.11019269 \pm 1.7 \cdot 10^{-6} \) |
\(a_{487}= +0.19044305 \pm 1.3 \cdot 10^{-6} \) | \(a_{488}= -0.07886198 \pm 2.2 \cdot 10^{-6} \) | \(a_{489}= +0.07248945 \pm 1.3 \cdot 10^{-6} \) |
\(a_{490}= -0.03075048 \pm 1.3 \cdot 10^{-6} \) | \(a_{491}= +0.17140366 \pm 1.1 \cdot 10^{-6} \) | \(a_{492}= +0.70065215 \pm 2.6 \cdot 10^{-6} \) |
\(a_{493}= -0.08326055 \pm 1.1 \cdot 10^{-6} \) | \(a_{494}= -0.03771864 \pm 1.4 \cdot 10^{-6} \) | \(a_{495}= +0.28259265 \pm 1.0 \cdot 10^{-6} \) |
\(a_{496}= +0.17479478 \pm 1.5 \cdot 10^{-6} \) | \(a_{497}= -3.25287356 \pm 1.1 \cdot 10^{-6} \) | \(a_{498}= +0.21564212 \pm 1.5 \cdot 10^{-6} \) |
\(a_{499}= -0.57755015 \pm 1.3 \cdot 10^{-6} \) | \(a_{500}= +0.26034999 \pm 1.9 \cdot 10^{-6} \) | \(a_{501}= -0.23177480 \pm 1.2 \cdot 10^{-6} \) |
\(a_{502}= +0.00204631 \pm 1.4 \cdot 10^{-6} \) | \(a_{503}= -0.99514262 \pm 1.5 \cdot 10^{-6} \) | \(a_{504}= +0.53055617 \pm 1.5 \cdot 10^{-6} \) |
\(a_{505}= -0.12104075 \pm 1.5 \cdot 10^{-6} \) | \(a_{506}= +0.12194557 \pm 8.3 \cdot 10^{-7} \) | \(a_{507}= +0.09015711 \pm 1.1 \cdot 10^{-6} \) |
\(a_{508}= -0.02897279 \pm 1.5 \cdot 10^{-6} \) | \(a_{509}= +0.65871167 \pm 1.2 \cdot 10^{-6} \) | \(a_{510}= +0.00162879 \pm 1.7 \cdot 10^{-6} \) |
\(a_{511}= +0.00189221 \pm 1.1 \cdot 10^{-6} \) | \(a_{512}= -0.45635729 \pm 1.3 \cdot 10^{-6} \) | \(a_{513}= -0.31704952 \pm 1.0 \cdot 10^{-6} \) |
\(a_{514}= +0.11919656 \pm 1.5 \cdot 10^{-6} \) | \(a_{515}= -0.05885538 \pm 1.2 \cdot 10^{-6} \) | \(a_{516}= +1.42508576 \pm 1.5 \cdot 10^{-6} \) |
\(a_{517}= -0.68127493 \pm 1.0 \cdot 10^{-6} \) | \(a_{518}= -0.10992425 \pm 1.2 \cdot 10^{-6} \) | \(a_{519}= -0.02873910 \pm 1.5 \cdot 10^{-6} \) |
\(a_{520}= -0.02566703 \pm 1.5 \cdot 10^{-6} \) | \(a_{521}= +0.45451767 \pm 1.2 \cdot 10^{-6} \) | \(a_{522}= -0.14580822 \pm 1.4 \cdot 10^{-6} \) |
\(a_{523}= -0.58711076 \pm 1.1 \cdot 10^{-6} \) | \(a_{524}= -1.53829909 \pm 1.7 \cdot 10^{-6} \) | \(a_{525}= -2.89517066 \pm 1.2 \cdot 10^{-6} \) |
\(a_{526}= -0.06461254 \pm 1.5 \cdot 10^{-6} \) | \(a_{527}= -0.01470877 \pm 1.2 \cdot 10^{-6} \) | \(a_{528}= +2.17194708 \pm 8.9 \cdot 10^{-7} \) |
\(a_{529}= -0.16124044 \pm 1.3 \cdot 10^{-6} \) | \(a_{530}= +0.00805838 \pm 1.4 \cdot 10^{-6} \) | \(a_{531}= +0.63598807 \pm 1.3 \cdot 10^{-6} \) |
\(a_{532}= +0.71395262 \pm 1.3 \cdot 10^{-6} \) | \(a_{533}= +0.45824371 \pm 1.1 \cdot 10^{-6} \) | \(a_{534}= -0.00557376 \pm 1.4 \cdot 10^{-6} \) |
\(a_{535}= -0.01434087 \pm 1.2 \cdot 10^{-6} \) | \(a_{536}= -0.07150149 \pm 1.1 \cdot 10^{-6} \) | \(a_{537}= -2.71849466 \pm 1.6 \cdot 10^{-6} \) |
\(a_{538}= +0.02391712 \pm 1.4 \cdot 10^{-6} \) | \(a_{539}= +3.45052209 \pm 1.0 \cdot 10^{-6} \) | \(a_{540}= -0.10738884 \pm 1.4 \cdot 10^{-6} \) |
\(a_{541}= -0.49571084 \pm 1.3 \cdot 10^{-6} \) | \(a_{542}= +0.14358955 \pm 1.5 \cdot 10^{-6} \) | \(a_{543}= +2.41254734 \pm 1.3 \cdot 10^{-6} \) |
\(a_{544}= +0.02297200 \pm 1.7 \cdot 10^{-6} \) | \(a_{545}= +0.08642184 \pm 1.2 \cdot 10^{-6} \) | \(a_{546}= +0.28668087 \pm 1.2 \cdot 10^{-6} \) |
\(a_{547}= -1.22998902 \pm 1.2 \cdot 10^{-6} \) | \(a_{548}= +1.58613036 \pm 1.6 \cdot 10^{-6} \) | \(a_{549}= -0.63436041 \pm 1.0 \cdot 10^{-6} \) |
\(a_{550}= +0.13081371 \pm 1.6 \cdot 10^{-6} \) | \(a_{551}= -0.39419186 \pm 1.2 \cdot 10^{-6} \) | \(a_{552}= -0.27367986 \pm 1.7 \cdot 10^{-6} \) |
\(a_{553}= +2.86677360 \pm 1.4 \cdot 10^{-6} \) | \(a_{554}= -0.16911648 \pm 1.2 \cdot 10^{-6} \) | \(a_{555}= +0.13140134 \pm 1.0 \cdot 10^{-6} \) |
\(a_{556}= -1.18541235 \pm 1.3 \cdot 10^{-6} \) | \(a_{557}= +1.14991561 \pm 1.0 \cdot 10^{-6} \) | \(a_{558}= -0.02575841 \pm 2.9 \cdot 10^{-6} \) |
\(a_{559}= +0.93204108 \pm 1.4 \cdot 10^{-6} \) | \(a_{560}= +0.23962036 \pm 9.2 \cdot 10^{-7} \) | \(a_{561}= -0.18276668 \pm 1.1 \cdot 10^{-6} \) |
\(a_{562}= +0.03357623 \pm 1.4 \cdot 10^{-6} \) | \(a_{563}= +0.23593352 \pm 1.1 \cdot 10^{-6} \) | \(a_{564}= +0.76104721 \pm 2.4 \cdot 10^{-6} \) |
\(a_{565}= -0.00325661 \pm 1.1 \cdot 10^{-6} \) | \(a_{566}= +0.10926812 \pm 1.6 \cdot 10^{-6} \) | \(a_{567}= -0.40621306 \pm 1.4 \cdot 10^{-6} \) |
\(a_{568}= -0.32985501 \pm 9.7 \cdot 10^{-7} \) | \(a_{569}= -1.48072016 \pm 1.1 \cdot 10^{-6} \) | \(a_{570}= +0.00771139 \pm 1.7 \cdot 10^{-6} \) |
\(a_{571}= +0.29694136 \pm 1.2 \cdot 10^{-6} \) | \(a_{572}= +1.43357699 \pm 1.2 \cdot 10^{-6} \) | \(a_{573}= +1.54188063 \pm 1.3 \cdot 10^{-6} \) |
\(a_{574}= +0.07837304 \pm 1.2 \cdot 10^{-6} \) | \(a_{575}= +0.89975592 \pm 1.0 \cdot 10^{-6} \) | \(a_{576}= -1.43474352 \pm 1.8 \cdot 10^{-6} \) |
\(a_{577}= +1.01443585 \pm 1.1 \cdot 10^{-6} \) | \(a_{578}= +0.09399454 \pm 1.9 \cdot 10^{-6} \) | \(a_{579}= +0.58801350 \pm 1.1 \cdot 10^{-6} \) |
\(a_{580}= -0.13351797 \pm 1.5 \cdot 10^{-6} \) | \(a_{581}= -2.66956827 \pm 1.0 \cdot 10^{-6} \) | \(a_{582}= -0.15120964 \pm 1.9 \cdot 10^{-6} \) |
\(a_{583}= -0.90423414 \pm 9.1 \cdot 10^{-7} \) | \(a_{584}= +0.00019188 \pm 1.5 \cdot 10^{-6} \) | \(a_{585}= -0.20646389 \pm 1.2 \cdot 10^{-6} \) |
\(a_{586}= +0.00114119 \pm 1.2 \cdot 10^{-6} \) | \(a_{587}= -0.66978915 \pm 1.2 \cdot 10^{-6} \) | \(a_{588}= -3.85455283 \pm 1.8 \cdot 10^{-6} \) |
\(a_{589}= -0.06963774 \pm 1.3 \cdot 10^{-6} \) | \(a_{590}= -0.00526215 \pm 1.5 \cdot 10^{-6} \) | \(a_{591}= -0.88815178 \pm 1.1 \cdot 10^{-6} \) |
\(a_{592}= +0.60845331 \pm 1.4 \cdot 10^{-6} \) | \(a_{593}= -1.30496395 \pm 1.4 \cdot 10^{-6} \) | \(a_{594}= -0.10888019 \pm 1.1 \cdot 10^{-6} \) |
\(a_{595}= -0.02016376 \pm 8.8 \cdot 10^{-7} \) | \(a_{596}= -0.61679490 \pm 1.4 \cdot 10^{-6} \) | \(a_{597}= +2.34173271 \pm 1.3 \cdot 10^{-6} \) |
\(a_{598}= -0.08909417 \pm 1.1 \cdot 10^{-6} \) | \(a_{599}= +1.61675928 \pm 1.4 \cdot 10^{-6} \) | \(a_{600}= -0.29358244 \pm 1.2 \cdot 10^{-6} \) |
\(a_{601}= -0.43702647 \pm 1.3 \cdot 10^{-6} \) | \(a_{602}= +0.15940620 \pm 1.1 \cdot 10^{-6} \) | \(a_{603}= -0.57515315 \pm 1.0 \cdot 10^{-6} \) |
\(a_{604}= +0.25208105 \pm 1.2 \cdot 10^{-6} \) | \(a_{605}= +0.12985176 \pm 1.5 \cdot 10^{-6} \) | \(a_{606}= +0.13709150 \pm 1.7 \cdot 10^{-6} \) |
\(a_{607}= +0.28807270 \pm 1.2 \cdot 10^{-6} \) | \(a_{608}= +0.10875949 \pm 1.3 \cdot 10^{-6} \) | \(a_{609}= +2.99605897 \pm 1.4 \cdot 10^{-6} \) |
\(a_{610}= +0.00524869 \pm 1.6 \cdot 10^{-6} \) | \(a_{611}= +0.49774357 \pm 9.9 \cdot 10^{-7} \) | \(a_{612}= +0.12300572 \pm 1.5 \cdot 10^{-6} \) |
\(a_{613}= -0.58363631 \pm 1.3 \cdot 10^{-6} \) | \(a_{614}= +0.10031632 \pm 1.8 \cdot 10^{-6} \) | \(a_{615}= -0.09368563 \pm 1.3 \cdot 10^{-6} \) |
\(a_{616}= +0.49258231 \pm 1.0 \cdot 10^{-6} \) | \(a_{617}= -0.59631219 \pm 1.2 \cdot 10^{-6} \) | \(a_{618}= +0.06665997 \pm 1.5 \cdot 10^{-6} \) |
\(a_{619}= +1.67438173 \pm 1.2 \cdot 10^{-6} \) | \(a_{620}= -0.02358722 \pm 3.0 \cdot 10^{-6} \) | \(a_{621}= -0.74889399 \pm 8.2 \cdot 10^{-7} \) |
\(a_{622}= -0.07040170 \pm 1.0 \cdot 10^{-6} \) | \(a_{623}= +0.06900100 \pm 1.0 \cdot 10^{-6} \) | \(a_{624}= -1.58683761 \pm 1.2 \cdot 10^{-6} \) |
\(a_{625}= +0.94762793 \pm 1.2 \cdot 10^{-6} \) | \(a_{626}= -0.14111688 \pm 1.6 \cdot 10^{-6} \) | \(a_{627}= -0.86529747 \pm 1.4 \cdot 10^{-6} \) |
\(a_{628}= -0.58402451 \pm 1.4 \cdot 10^{-6} \) | \(a_{629}= -0.05120060 \pm 1.1 \cdot 10^{-6} \) | \(a_{630}= -0.03531134 \pm 1.7 \cdot 10^{-6} \) |
\(a_{631}= -0.13737757 \pm 1.3 \cdot 10^{-6} \) | \(a_{632}= +0.29070286 \pm 2.0 \cdot 10^{-6} \) | \(a_{633}= -0.35410922 \pm 9.9 \cdot 10^{-7} \) |
\(a_{634}= -0.08436173 \pm 1.5 \cdot 10^{-6} \) | \(a_{635}= +0.00387401 \pm 1.3 \cdot 10^{-6} \) | \(a_{636}= +1.01011330 \pm 1.8 \cdot 10^{-6} \) |
\(a_{637}= -2.52097220 \pm 1.2 \cdot 10^{-6} \) | \(a_{638}= -0.13537218 \pm 1.4 \cdot 10^{-6} \) | \(a_{639}= -2.65333135 \pm 1.3 \cdot 10^{-6} \) |
\(a_{640}= +0.04904216 \pm 1.5 \cdot 10^{-6} \) | \(a_{641}= -0.64312246 \pm 1.4 \cdot 10^{-6} \) | \(a_{642}= +0.01624256 \pm 1.0 \cdot 10^{-6} \) |
\(a_{643}= +0.86358790 \pm 1.2 \cdot 10^{-6} \) | \(a_{644}= +1.68640795 \pm 1.1 \cdot 10^{-6} \) | \(a_{645}= -0.19055113 \pm 9.9 \cdot 10^{-7} \) |
\(a_{646}= -0.00300475 \pm 1.2 \cdot 10^{-6} \) | \(a_{647}= -0.00868244 \pm 1.4 \cdot 10^{-6} \) | \(a_{648}= -0.04119171 \pm 1.8 \cdot 10^{-6} \) |
\(a_{649}= +0.59046806 \pm 1.2 \cdot 10^{-6} \) | \(a_{650}= -0.09557328 \pm 1.2 \cdot 10^{-6} \) | \(a_{651}= +0.52928227 \pm 2.7 \cdot 10^{-6} \) |
\(a_{652}= -0.04529503 \pm 1.5 \cdot 10^{-6} \) | \(a_{653}= -0.38672131 \pm 1.2 \cdot 10^{-6} \) | \(a_{654}= -0.09788191 \pm 1.5 \cdot 10^{-6} \) |
\(a_{655}= +0.20568911 \pm 1.3 \cdot 10^{-6} \) | \(a_{656}= -0.43381088 \pm 2.1 \cdot 10^{-6} \) | \(a_{657}= +0.00154345 \pm 1.1 \cdot 10^{-6} \) |
\(a_{658}= +0.08512866 \pm 1.1 \cdot 10^{-6} \) | \(a_{659}= -0.60018192 \pm 1.3 \cdot 10^{-6} \) | \(a_{660}= -0.29308763 \pm 1.2 \cdot 10^{-6} \) |
\(a_{661}= +0.34999884 \pm 1.3 \cdot 10^{-6} \) | \(a_{662}= +0.14639350 \pm 1.2 \cdot 10^{-6} \) | \(a_{663}= +0.13353044 \pm 1.2 \cdot 10^{-6} \) |
\(a_{664}= -0.27070541 \pm 1.6 \cdot 10^{-6} \) | \(a_{665}= -0.09546406 \pm 1.2 \cdot 10^{-6} \) | \(a_{666}= -0.08966394 \pm 1.4 \cdot 10^{-6} \) |
\(a_{667}= -0.93110981 \pm 1.1 \cdot 10^{-6} \) | \(a_{668}= +0.14482446 \pm 1.5 \cdot 10^{-6} \) | \(a_{669}= +1.10892420 \pm 1.6 \cdot 10^{-6} \) |
\(a_{670}= +0.00475881 \pm 1.2 \cdot 10^{-6} \) | \(a_{671}= -0.58895690 \pm 1.1 \cdot 10^{-6} \) | \(a_{672}= -0.82662750 \pm 1.3 \cdot 10^{-6} \) |
\(a_{673}= +0.12141041 \pm 1.1 \cdot 10^{-6} \) | \(a_{674}= -0.06894123 \pm 1.6 \cdot 10^{-6} \) | \(a_{675}= -0.80335514 \pm 1.0 \cdot 10^{-6} \) |
\(a_{676}= -0.05633466 \pm 1.3 \cdot 10^{-6} \) | \(a_{677}= -1.75177841 \pm 1.1 \cdot 10^{-6} \) | \(a_{678}= +0.00368845 \pm 1.5 \cdot 10^{-6} \) |
\(a_{679}= +1.87191844 \pm 1.1 \cdot 10^{-6} \) | \(a_{680}= -0.00204469 \pm 1.8 \cdot 10^{-6} \) | \(a_{681}= +1.19693442 \pm 1.2 \cdot 10^{-6} \) |
\(a_{682}= -0.02391478 \pm 2.8 \cdot 10^{-6} \) | \(a_{683}= -0.98516815 \pm 1.2 \cdot 10^{-6} \) | \(a_{684}= +0.58236290 \pm 1.6 \cdot 10^{-6} \) |
\(a_{685}= -0.21208473 \pm 1.1 \cdot 10^{-6} \) | \(a_{686}= -0.25533681 \pm 1.1 \cdot 10^{-6} \) | \(a_{687}= -0.16560655 \pm 1.4 \cdot 10^{-6} \) |
\(a_{688}= -0.88234611 \pm 1.3 \cdot 10^{-6} \) | \(a_{689}= +0.66063891 \pm 1.2 \cdot 10^{-6} \) | \(a_{690}= +0.01821486 \pm 1.0 \cdot 10^{-6} \) |
\(a_{691}= +0.47927553 \pm 1.2 \cdot 10^{-6} \) | \(a_{692}= +0.01795762 \pm 2.0 \cdot 10^{-6} \) | \(a_{693}= +3.96229868 \pm 1.1 \cdot 10^{-6} \) |
\(a_{694}= +0.05527748 \pm 1.6 \cdot 10^{-6} \) | \(a_{695}= +0.15850391 \pm 8.7 \cdot 10^{-7} \) | \(a_{696}= +0.30381294 \pm 1.7 \cdot 10^{-6} \) |
\(a_{697}= +0.03650465 \pm 1.0 \cdot 10^{-6} \) | \(a_{698}= -0.00408023 \pm 1.4 \cdot 10^{-6} \) | \(a_{699}= +2.50745356 \pm 1.2 \cdot 10^{-6} \) |
\(a_{700}= +1.80904709 \pm 1.3 \cdot 10^{-6} \) | \(a_{701}= +1.43441233 \pm 1.3 \cdot 10^{-6} \) | \(a_{702}= +0.07954852 \pm 1.1 \cdot 10^{-6} \) |
\(a_{703}= -0.24240605 \pm 1.2 \cdot 10^{-6} \) | \(a_{704}= -1.33205363 \pm 1.4 \cdot 10^{-6} \) | \(a_{705}= -0.10176118 \pm 1.4 \cdot 10^{-6} \) |
\(a_{706}= +0.14249881 \pm 1.8 \cdot 10^{-6} \) | \(a_{707}= -1.69714108 \pm 1.1 \cdot 10^{-6} \) | \(a_{708}= -0.65960753 \pm 2.1 \cdot 10^{-6} \) |
\(a_{709}= -1.15650183 \pm 1.0 \cdot 10^{-6} \) | \(a_{710}= +0.02195361 \pm 8.6 \cdot 10^{-7} \) | \(a_{711}= +2.33839407 \pm 1.4 \cdot 10^{-6} \) |
\(a_{712}= +0.00699699 \pm 1.6 \cdot 10^{-6} \) | \(a_{713}= -0.16448939 \pm 1.2 \cdot 10^{-6} \) | \(a_{714}= +0.02283760 \pm 1.1 \cdot 10^{-6} \) |
\(a_{715}= -0.19168651 \pm 1.4 \cdot 10^{-6} \) | \(a_{716}= +1.69865111 \pm 1.9 \cdot 10^{-6} \) | \(a_{717}= +0.99683360 \pm 1.4 \cdot 10^{-6} \) |
\(a_{718}= +0.14833051 \pm 1.5 \cdot 10^{-6} \) | \(a_{719}= +0.73589725 \pm 1.0 \cdot 10^{-6} \) | \(a_{720}= +0.19545556 \pm 1.5 \cdot 10^{-6} \) |
\(a_{721}= -0.82522532 \pm 1.1 \cdot 10^{-6} \) | \(a_{722}= +0.08040341 \pm 1.7 \cdot 10^{-6} \) | \(a_{723}= -0.22380705 \pm 1.0 \cdot 10^{-6} \) |
\(a_{724}= -1.50747996 \pm 1.6 \cdot 10^{-6} \) | \(a_{725}= -0.99882208 \pm 1.1 \cdot 10^{-6} \) | \(a_{726}= -0.14707090 \pm 1.6 \cdot 10^{-6} \) |
\(a_{727}= +0.75808568 \pm 9.4 \cdot 10^{-7} \) | \(a_{728}= -0.35988360 \pm 1.3 \cdot 10^{-6} \) | \(a_{729}= -1.62828188 \pm 1.2 \cdot 10^{-6} \) |
\(a_{730}= -0.00001277 \pm 1.6 \cdot 10^{-6} \) | \(a_{731}= +0.07424834 \pm 9.5 \cdot 10^{-7} \) | \(a_{732}= +0.65791942 \pm 2.4 \cdot 10^{-6} \) |
\(a_{733}= -1.58902668 \pm 1.4 \cdot 10^{-6} \) | \(a_{734}= -0.07734990 \pm 1.7 \cdot 10^{-6} \) | \(a_{735}= +0.51540013 \pm 1.0 \cdot 10^{-6} \) |
\(a_{736}= +0.25689780 \pm 1.6 \cdot 10^{-6} \) | \(a_{737}= -0.53398732 \pm 1.2 \cdot 10^{-6} \) | \(a_{738}= +0.06392798 \pm 2.0 \cdot 10^{-6} \) |
\(a_{739}= +0.17881539 \pm 1.2 \cdot 10^{-6} \) | \(a_{740}= -0.08210612 \pm 1.4 \cdot 10^{-6} \) | \(a_{741}= +0.63219154 \pm 1.2 \cdot 10^{-6} \) |
\(a_{742}= +0.11298852 \pm 1.3 \cdot 10^{-6} \) | \(a_{743}= -1.39587995 \pm 1.2 \cdot 10^{-6} \) | \(a_{744}= +0.05367144 \pm 3.2 \cdot 10^{-6} \) |
\(a_{745}= +0.08247291 \pm 1.2 \cdot 10^{-6} \) | \(a_{746}= +0.07824841 \pm 1.4 \cdot 10^{-6} \) | \(a_{747}= -2.17753597 \pm 1.2 \cdot 10^{-6} \) |
\(a_{748}= +0.11420174 \pm 1.2 \cdot 10^{-6} \) | \(a_{749}= -0.20107681 \pm 9.6 \cdot 10^{-7} \) | \(a_{750}= +0.03942821 \pm 2.1 \cdot 10^{-6} \) |
\(a_{751}= +0.41913566 \pm 1.1 \cdot 10^{-6} \) | \(a_{752}= -0.47120466 \pm 2.1 \cdot 10^{-6} \) | \(a_{753}= -0.03429756 \pm 1.3 \cdot 10^{-6} \) |
\(a_{754}= +0.09890373 \pm 1.1 \cdot 10^{-6} \) | \(a_{755}= -0.03370627 \pm 1.3 \cdot 10^{-6} \) | \(a_{756}= -1.50572445 \pm 1.7 \cdot 10^{-6} \) |
\(a_{757}= +1.29856167 \pm 1.2 \cdot 10^{-6} \) | \(a_{758}= -0.14501213 \pm 1.2 \cdot 10^{-6} \) | \(a_{759}= -2.04389547 \pm 1.4 \cdot 10^{-6} \) |
\(a_{760}= -0.00968046 \pm 1.4 \cdot 10^{-6} \) | \(a_{761}= +0.90509770 \pm 1.4 \cdot 10^{-6} \) | \(a_{762}= -0.00438773 \pm 1.6 \cdot 10^{-6} \) |
\(a_{763}= +1.21174122 \pm 1.4 \cdot 10^{-6} \) | \(a_{764}= -0.96344395 \pm 1.8 \cdot 10^{-6} \) | \(a_{765}= -0.01644735 \pm 1.0 \cdot 10^{-6} \) |
\(a_{766}= +0.04586636 \pm 1.4 \cdot 10^{-6} \) | \(a_{767}= -0.43139952 \pm 1.3 \cdot 10^{-6} \) | \(a_{768}= +1.44592707 \pm 1.9 \cdot 10^{-6} \) |
\(a_{769}= -0.38806074 \pm 1.1 \cdot 10^{-6} \) | \(a_{770}= -0.03278398 \pm 1.1 \cdot 10^{-6} \) | \(a_{771}= -1.99782021 \pm 1.4 \cdot 10^{-6} \) |
\(a_{772}= -0.36742018 \pm 1.2 \cdot 10^{-6} \) | \(a_{773}= +0.67089995 \pm 1.0 \cdot 10^{-6} \) | \(a_{774}= +0.13002579 \pm 1.5 \cdot 10^{-6} \) |
\(a_{775}= -0.17645141 \pm 1.2 \cdot 10^{-6} \) | \(a_{776}= +0.18982037 \pm 1.9 \cdot 10^{-6} \) | \(a_{777}= +1.84240947 \pm 1.0 \cdot 10^{-6} \) |
\(a_{778}= +0.02381648 \pm 1.2 \cdot 10^{-6} \) | \(a_{779}= +0.17282900 \pm 1.2 \cdot 10^{-6} \) | \(a_{780}= +0.21413159 \pm 1.1 \cdot 10^{-6} \) |
\(a_{781}= -2.46342264 \pm 1.1 \cdot 10^{-6} \) | \(a_{782}= -0.00709743 \pm 9.7 \cdot 10^{-7} \) | \(a_{783}= +0.83134974 \pm 1.0 \cdot 10^{-6} \) |
\(a_{784}= +2.38655793 \pm 1.4 \cdot 10^{-6} \) | \(a_{785}= +0.07809111 \pm 1.0 \cdot 10^{-6} \) | \(a_{786}= -0.23296476 \pm 1.8 \cdot 10^{-6} \) |
\(a_{787}= -0.61831272 \pm 1.2 \cdot 10^{-6} \) | \(a_{788}= +0.55496155 \pm 1.2 \cdot 10^{-6} \) | \(a_{789}= +1.08295265 \pm 1.3 \cdot 10^{-6} \) |
\(a_{790}= -0.01934783 \pm 1.4 \cdot 10^{-6} \) | \(a_{791}= -0.04566167 \pm 9.8 \cdot 10^{-7} \) | \(a_{792}= +0.40179369 \pm 1.0 \cdot 10^{-6} \) |
\(a_{793}= +0.43029546 \pm 1.2 \cdot 10^{-6} \) | \(a_{794}= -0.10154965 \pm 1.5 \cdot 10^{-6} \) | \(a_{795}= -0.13506431 \pm 1.1 \cdot 10^{-6} \) |
\(a_{796}= -1.46323145 \pm 1.4 \cdot 10^{-6} \) | \(a_{797}= +1.05663494 \pm 1.3 \cdot 10^{-6} \) | \(a_{798}= +0.10812319 \pm 1.4 \cdot 10^{-6} \) |
\(a_{799}= +0.03965129 \pm 1.0 \cdot 10^{-6} \) | \(a_{800}= +0.27557996 \pm 1.2 \cdot 10^{-6} \) | \(a_{801}= +0.05628332 \pm 1.0 \cdot 10^{-6} \) |
\(a_{802}= -0.12359585 \pm 1.2 \cdot 10^{-6} \) | \(a_{803}= +0.00143298 \pm 1.0 \cdot 10^{-6} \) | \(a_{804}= +0.59651330 \pm 1.4 \cdot 10^{-6} \) |
\(a_{805}= -0.22549305 \pm 9.0 \cdot 10^{-7} \) | \(a_{806}= +0.01747228 \pm 2.9 \cdot 10^{-6} \) | \(a_{807}= -0.40086821 \pm 1.1 \cdot 10^{-6} \) |
\(a_{808}= -0.17209722 \pm 1.7 \cdot 10^{-6} \) | \(a_{809}= -0.98844282 \pm 1.3 \cdot 10^{-6} \) | \(a_{810}= +0.00274153 \pm 1.7 \cdot 10^{-6} \) |
\(a_{811}= +0.03614561 \pm 1.4 \cdot 10^{-6} \) | \(a_{812}= -1.87208714 \pm 1.3 \cdot 10^{-6} \) | \(a_{813}= -2.40666415 \pm 1.7 \cdot 10^{-6} \) |
\(a_{814}= -0.08324636 \pm 1.3 \cdot 10^{-6} \) | \(a_{815}= +0.00605649 \pm 1.2 \cdot 10^{-6} \) | \(a_{816}= -0.12641081 \pm 2.4 \cdot 10^{-6} \) |
\(a_{817}= +0.35152415 \pm 9.6 \cdot 10^{-7} \) | \(a_{818}= +0.09170797 \pm 1.2 \cdot 10^{-6} \) | \(a_{819}= -2.89487926 \pm 1.4 \cdot 10^{-6} \) |
\(a_{820}= +0.05853946 \pm 1.7 \cdot 10^{-6} \) | \(a_{821}= +0.32937005 \pm 1.4 \cdot 10^{-6} \) | \(a_{822}= +0.24020847 \pm 1.7 \cdot 10^{-6} \) |
\(a_{823}= +0.91165918 \pm 1.1 \cdot 10^{-6} \) | \(a_{824}= -0.08368131 \pm 1.4 \cdot 10^{-6} \) | \(a_{825}= -2.19253186 \pm 1.3 \cdot 10^{-6} \) |
\(a_{826}= -0.07378190 \pm 1.4 \cdot 10^{-6} \) | \(a_{827}= +0.61122075 \pm 1.3 \cdot 10^{-6} \) | \(a_{828}= +1.37558346 \pm 1.3 \cdot 10^{-6} \) |
\(a_{829}= +0.95361868 \pm 1.3 \cdot 10^{-6} \) | \(a_{830}= +0.01801689 \pm 1.6 \cdot 10^{-6} \) | \(a_{831}= +2.83451393 \pm 1.1 \cdot 10^{-6} \) |
\(a_{832}= +0.97320640 \pm 1.4 \cdot 10^{-6} \) | \(a_{833}= -0.20082592 \pm 1.1 \cdot 10^{-6} \) | \(a_{834}= -0.17952250 \pm 1.5 \cdot 10^{-6} \) |
\(a_{835}= -0.01936477 \pm 1.2 \cdot 10^{-6} \) | \(a_{836}= +0.54068103 \pm 1.6 \cdot 10^{-6} \) | \(a_{837}= +0.14686583 \pm 1.1 \cdot 10^{-6} \) |
\(a_{838}= -0.06816807 \pm 1.5 \cdot 10^{-6} \) | \(a_{839}= +0.38660571 \pm 1.1 \cdot 10^{-6} \) | \(a_{840}= +0.07357640 \pm 1.4 \cdot 10^{-6} \) |
\(a_{841}= +0.03362813 \pm 8.7 \cdot 10^{-7} \) | \(a_{842}= -0.15201501 \pm 1.7 \cdot 10^{-6} \) | \(a_{843}= -0.56276182 \pm 1.2 \cdot 10^{-6} \) |
\(a_{844}= +0.22126511 \pm 1.2 \cdot 10^{-6} \) | \(a_{845}= +0.00753262 \pm 1.3 \cdot 10^{-6} \) | \(a_{846}= +0.06943847 \pm 1.8 \cdot 10^{-6} \) |
\(a_{847}= +1.82068233 \pm 1.2 \cdot 10^{-6} \) | \(a_{848}= -0.62541468 \pm 1.1 \cdot 10^{-6} \) | \(a_{849}= -1.83141232 \pm 1.2 \cdot 10^{-6} \) |
\(a_{850}= -0.00761357 \pm 1.0 \cdot 10^{-6} \) | \(a_{851}= -0.57258070 \pm 1.2 \cdot 10^{-6} \) | \(a_{852}= +2.75187130 \pm 1.2 \cdot 10^{-6} \) |
\(a_{853}= -0.85511317 \pm 1.2 \cdot 10^{-6} \) | \(a_{854}= +0.07359307 \pm 9.9 \cdot 10^{-7} \) | \(a_{855}= -0.07786893 \pm 1.3 \cdot 10^{-6} \) |
\(a_{856}= -0.02039003 \pm 1.2 \cdot 10^{-6} \) | \(a_{857}= +1.28101507 \pm 1.1 \cdot 10^{-6} \) | \(a_{858}= +0.21710532 \pm 1.3 \cdot 10^{-6} \) |
\(a_{859}= -0.29759447 \pm 1.2 \cdot 10^{-6} \) | \(a_{860}= +0.11906585 \pm 1.1 \cdot 10^{-6} \) | \(a_{861}= -1.31358848 \pm 1.3 \cdot 10^{-6} \) |
\(a_{862}= -0.15988598 \pm 1.4 \cdot 10^{-6} \) | \(a_{863}= +1.77037493 \pm 1.2 \cdot 10^{-6} \) | \(a_{864}= -0.22937351 \pm 1.2 \cdot 10^{-6} \) |
\(a_{865}= -0.00240115 \pm 1.6 \cdot 10^{-6} \) | \(a_{866}= -0.10253809 \pm 1.6 \cdot 10^{-6} \) | \(a_{867}= -1.57541610 \pm 1.5 \cdot 10^{-6} \) |
\(a_{868}= -0.33072197 \pm 3.0 \cdot 10^{-6} \) | \(a_{869}= +2.17102658 \pm 1.3 \cdot 10^{-6} \) | \(a_{870}= -0.02022037 \pm 1.8 \cdot 10^{-6} \) |
\(a_{871}= +0.39013435 \pm 1.0 \cdot 10^{-6} \) | \(a_{872}= +0.12287564 \pm 1.5 \cdot 10^{-6} \) | \(a_{873}= +1.52690222 \pm 1.3 \cdot 10^{-6} \) |
\(a_{874}= -0.03360233 \pm 1.2 \cdot 10^{-6} \) | \(a_{875}= -0.48810633 \pm 1.3 \cdot 10^{-6} \) | \(a_{876}= -0.00160077 \pm 1.7 \cdot 10^{-6} \) |
\(a_{877}= -0.81607053 \pm 1.3 \cdot 10^{-6} \) | \(a_{878}= +0.14425414 \pm 1.5 \cdot 10^{-6} \) | \(a_{879}= -0.01912713 \pm 1.1 \cdot 10^{-6} \) |
\(a_{880}= +0.18146608 \pm 9.0 \cdot 10^{-7} \) | \(a_{881}= +1.32355055 \pm 1.2 \cdot 10^{-6} \) | \(a_{882}= -0.35169202 \pm 1.4 \cdot 10^{-6} \) |
\(a_{883}= -1.01769596 \pm 1.3 \cdot 10^{-6} \) | \(a_{884}= -0.08343648 \pm 1.3 \cdot 10^{-6} \) | \(a_{885}= +0.08819747 \pm 1.3 \cdot 10^{-6} \) |
\(a_{886}= +0.12594994 \pm 1.7 \cdot 10^{-6} \) | \(a_{887}= +0.68654632 \pm 1.1 \cdot 10^{-6} \) | \(a_{888}= +0.18682804 \pm 1.7 \cdot 10^{-6} \) |
\(a_{889}= +0.05431842 \pm 1.2 \cdot 10^{-6} \) | \(a_{890}= -0.00046569 \pm 1.2 \cdot 10^{-6} \) | \(a_{891}= -0.30762783 \pm 1.0 \cdot 10^{-6} \) |
\(a_{892}= -0.69291117 \pm 1.7 \cdot 10^{-6} \) | \(a_{893}= +0.18772658 \pm 8.7 \cdot 10^{-7} \) | \(a_{894}= -0.09340932 \pm 1.5 \cdot 10^{-6} \) |
\(a_{895}= -0.22713011 \pm 1.4 \cdot 10^{-6} \) | \(a_{896}= +0.68763183 \pm 1.2 \cdot 10^{-6} \) | \(a_{897}= +1.49328233 \pm 1.4 \cdot 10^{-6} \) |
\(a_{898}= +0.10806205 \pm 1.5 \cdot 10^{-6} \) | \(a_{899}= +0.18260023 \pm 1.2 \cdot 10^{-6} \) | \(a_{900}= +1.47561879 \pm 1.4 \cdot 10^{-6} \) |
\(a_{901}= +0.05262788 \pm 9.7 \cdot 10^{-7} \) | \(a_{902}= +0.05935242 \pm 1.0 \cdot 10^{-6} \) | \(a_{903}= -2.67176265 \pm 1.1 \cdot 10^{-6} \) |
\(a_{904}= -0.00463028 \pm 1.5 \cdot 10^{-6} \) | \(a_{905}= +0.20156822 \pm 1.0 \cdot 10^{-6} \) | \(a_{906}= +0.03817593 \pm 1.4 \cdot 10^{-6} \) |
\(a_{907}= +1.16654464 \pm 1.0 \cdot 10^{-6} \) | \(a_{908}= -0.74790435 \pm 1.7 \cdot 10^{-6} \) | \(a_{909}= -1.38433836 \pm 1.2 \cdot 10^{-6} \) |
\(a_{910}= +0.02395217 \pm 1.1 \cdot 10^{-6} \) | \(a_{911}= +0.95406760 \pm 1.2 \cdot 10^{-6} \) | \(a_{912}= -0.59848408 \pm 1.0 \cdot 10^{-6} \) |
\(a_{913}= -2.02168169 \pm 8.9 \cdot 10^{-7} \) | \(a_{914}= -0.14511228 \pm 1.5 \cdot 10^{-6} \) | \(a_{915}= -0.08797175 \pm 1.1 \cdot 10^{-6} \) |
\(a_{916}= +0.10347923 \pm 1.9 \cdot 10^{-6} \) | \(a_{917}= +2.88401594 \pm 1.5 \cdot 10^{-6} \) | \(a_{918}= +0.00633700 \pm 1.4 \cdot 10^{-6} \) |
\(a_{919}= -1.55069341 \pm 1.3 \cdot 10^{-6} \) | \(a_{920}= -0.02286594 \pm 1.3 \cdot 10^{-6} \) | \(a_{921}= -1.68137369 \pm 1.4 \cdot 10^{-6} \) |
\(a_{922}= -0.16990233 \pm 1.1 \cdot 10^{-6} \) | \(a_{923}= +1.79979140 \pm 1.2 \cdot 10^{-6} \) | \(a_{924}= -4.10945132 \pm 1.4 \cdot 10^{-6} \) |
\(a_{925}= -0.61421997 \pm 9.9 \cdot 10^{-7} \) | \(a_{926}= -0.09951384 \pm 1.6 \cdot 10^{-6} \) | \(a_{927}= -0.67312675 \pm 1.3 \cdot 10^{-6} \) |
\(a_{928}= -0.28518312 \pm 1.3 \cdot 10^{-6} \) | \(a_{929}= -0.07605754 \pm 1.2 \cdot 10^{-6} \) | \(a_{930}= -0.00357212 \pm 4.2 \cdot 10^{-6} \) |
\(a_{931}= -0.95079781 \pm 9.6 \cdot 10^{-7} \) | \(a_{932}= -1.56678210 \pm 1.8 \cdot 10^{-6} \) | \(a_{933}= +1.17998314 \pm 9.4 \cdot 10^{-7} \) |
\(a_{934}= -0.05118574 \pm 1.5 \cdot 10^{-6} \) | \(a_{935}= -0.01527015 \pm 8.6 \cdot 10^{-7} \) | \(a_{936}= -0.29355289 \pm 1.4 \cdot 10^{-6} \) |
\(a_{937}= +0.00889898 \pm 1.2 \cdot 10^{-6} \) | \(a_{938}= +0.06672435 \pm 1.1 \cdot 10^{-6} \) | \(a_{939}= +2.36522044 \pm 1.4 \cdot 10^{-6} \) |
\(a_{940}= +0.06358546 \pm 1.7 \cdot 10^{-6} \) | \(a_{941}= +0.26134036 \pm 1.2 \cdot 10^{-6} \) | \(a_{942}= -0.08844647 \pm 1.6 \cdot 10^{-6} \) |
\(a_{943}= +0.40823466 \pm 1.1 \cdot 10^{-6} \) | \(a_{944}= +0.40839797 \pm 1.5 \cdot 10^{-6} \) | \(a_{945}= +0.20133349 \pm 1.2 \cdot 10^{-6} \) |
\(a_{946}= +0.12071937 \pm 1.2 \cdot 10^{-6} \) | \(a_{947}= -1.53237335 \pm 1.3 \cdot 10^{-6} \) | \(a_{948}= -2.42523782 \pm 2.3 \cdot 10^{-6} \) |
\(a_{949}= -0.00104694 \pm 1.3 \cdot 10^{-6} \) | \(a_{950}= -0.03604596 \pm 1.9 \cdot 10^{-6} \) | \(a_{951}= +1.41396323 \pm 1.2 \cdot 10^{-6} \) |
\(a_{952}= -0.02866908 \pm 9.5 \cdot 10^{-7} \) | \(a_{953}= +0.20183542 \pm 1.4 \cdot 10^{-6} \) | \(a_{954}= +0.09216343 \pm 1.9 \cdot 10^{-6} \) |
\(a_{955}= +0.12882406 \pm 1.4 \cdot 10^{-6} \) | \(a_{956}= -0.62287137 \pm 1.6 \cdot 10^{-6} \) | \(a_{957}= +2.26893524 \pm 1.6 \cdot 10^{-6} \) |
\(a_{958}= -0.09858686 \pm 1.7 \cdot 10^{-6} \) | \(a_{959}= -2.97369041 \pm 1.3 \cdot 10^{-6} \) | \(a_{960}= -0.19896717 \pm 1.9 \cdot 10^{-6} \) |
\(a_{961}= +0.03225806 \pm 1.7 \cdot 10^{-6} \) | \(a_{962}= +0.06082029 \pm 1.3 \cdot 10^{-6} \) | \(a_{963}= -0.16401602 \pm 1.0 \cdot 10^{-6} \) |
\(a_{964}= +0.13984581 \pm 1.0 \cdot 10^{-6} \) | \(a_{965}= +0.04912850 \pm 1.1 \cdot 10^{-6} \) | \(a_{966}= +0.25539482 \pm 9.0 \cdot 10^{-7} \) |
\(a_{967}= +0.84501458 \pm 1.1 \cdot 10^{-6} \) | \(a_{968}= +0.18462482 \pm 1.7 \cdot 10^{-6} \) | \(a_{969}= +0.05036170 \pm 1.0 \cdot 10^{-6} \) |
\(a_{970}= -0.01263356 \pm 1.4 \cdot 10^{-6} \) | \(a_{971}= -0.84659893 \pm 1.3 \cdot 10^{-6} \) | \(a_{972}= +1.15404073 \pm 1.8 \cdot 10^{-6} \) |
\(a_{973}= +2.22242094 \pm 1.0 \cdot 10^{-6} \) | \(a_{974}= -0.01802147 \pm 1.8 \cdot 10^{-6} \) | \(a_{975}= +1.60187698 \pm 9.1 \cdot 10^{-7} \) |
\(a_{976}= -0.40735278 \pm 2.1 \cdot 10^{-6} \) | \(a_{977}= -0.93386909 \pm 1.4 \cdot 10^{-6} \) | \(a_{978}= -0.00685962 \pm 1.6 \cdot 10^{-6} \) |
\(a_{979}= +0.05225491 \pm 1.2 \cdot 10^{-6} \) | \(a_{980}= -0.32204772 \pm 1.4 \cdot 10^{-6} \) | \(a_{981}= +0.98840330 \pm 1.3 \cdot 10^{-6} \) |
\(a_{982}= -0.01621979 \pm 1.2 \cdot 10^{-6} \) | \(a_{983}= +0.16922971 \pm 9.6 \cdot 10^{-7} \) | \(a_{984}= -0.13320338 \pm 3.0 \cdot 10^{-6} \) |
\(a_{985}= -0.07420504 \pm 9.9 \cdot 10^{-7} \) | \(a_{986}= +0.00787888 \pm 1.6 \cdot 10^{-6} \) | \(a_{987}= -1.42681765 \pm 1.1 \cdot 10^{-6} \) |
\(a_{988}= -0.39502482 \pm 1.2 \cdot 10^{-6} \) | \(a_{989}= +0.83032558 \pm 9.8 \cdot 10^{-7} \) | \(a_{990}= -0.02674151 \pm 1.0 \cdot 10^{-6} \) |
\(a_{991}= +0.51998738 \pm 1.2 \cdot 10^{-6} \) | \(a_{992}= -0.05038031 \pm 1.7 \cdot 10^{-6} \) | \(a_{993}= -2.45366035 \pm 1.4 \cdot 10^{-6} \) |
\(a_{994}= +0.30781681 \pm 1.1 \cdot 10^{-6} \) | \(a_{995}= +0.19565166 \pm 1.1 \cdot 10^{-6} \) | \(a_{996}= +2.25840574 \pm 1.9 \cdot 10^{-6} \) |
\(a_{997}= -0.98949013 \pm 1.3 \cdot 10^{-6} \) | \(a_{998}= +0.05465311 \pm 1.5 \cdot 10^{-6} \) | \(a_{999}= +0.51123381 \pm 9.0 \cdot 10^{-7} \) |
\(a_{1000}= -0.04949603 \pm 1.9 \cdot 10^{-6} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000