Properties

Label 3.82
Level $3$
Weight $0$
Character 3.1
Symmetry odd
\(R\) 24.91665
Fricke sign not computed rigorously

Related objects

Downloads

Learn more

Maass form invariants

Level: \( 3 \)
Weight: \( 0 \)
Character: 3.1
Symmetry: odd
Fricke sign: not computed rigorously
Spectral parameter: \(24.9166573878637825680236662309 \pm 10 \cdot 10^{-3}\)

Maass form coefficients

The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.

\(a_{1}= +1 \) \(a_{2}= -1.67503320 \pm 17. \) \(a_{3}= \pm0.57735027 \pm 1.0 \cdot 10^{-8} \)
\(a_{4}= +1.80573622 \pm 31. \) \(a_{5}= +1.71553473 \pm 24. \) \(a_{6}= \pm0.96708087 \pm 10. \)
\(a_{7}= -0.21724619 \pm 19. \) \(a_{8}= -1.34963492 \pm 21. \) \(a_{9}= \pm0.33333333 \pm 1.0 \cdot 10^{-8} \)
\(a_{10}= -2.87357762 \pm 13. \) \(a_{11}= -1.43012287 \pm 22. \) \(a_{12}= \pm1.04254229 \pm 18. \)
\(a_{13}= +1.02360186 \pm 21. \) \(a_{14}= +0.36389458 \pm 13. \) \(a_{15}= \pm0.99046444 \pm 13. \)
\(a_{16}= +0.45494708 \pm 25. \) \(a_{17}= -0.24156646 \pm 16. \) \(a_{18}= \pm0.55834440 \pm 5.8 \)
\(a_{19}= -0.57134529 \pm 13. \) \(a_{20}= +3.09780320 \pm 22. \) \(a_{21}= \pm0.12542715 \pm 11. \)
\(a_{22}= +2.39550329 \pm 11. \) \(a_{23}= -0.20064668 \pm 48. \) \(a_{24}= \pm0.77921209 \pm 12. \)
\(a_{25}= +1.94305940 \pm 19. \) \(a_{26}= -1.71456710 \pm 7.5 \) \(a_{27}= \pm0.19245009 \pm 1.0 \cdot 10^{-8} \)
\(a_{28}= -0.39228931 \pm 13. \) \(a_{29}= +0.71623302 \pm 45. \) \(a_{30}= \pm1.65906081 \pm 8.0 \)
\(a_{31}= -0.87458943 \pm 20. \) \(a_{32}= +0.58758345 \pm 28. \) \(a_{33}= \pm0.82568182 \pm 12. \)
\(a_{34}= +0.40463184 \pm 19. \) \(a_{35}= -0.37269338 \pm 8.7 \) \(a_{36}= \pm0.60191207 \pm 10. \)
\(a_{37}= -1.28195022 \pm 24. \) \(a_{38}= +0.95702233 \pm 5.9 \) \(a_{39}= \pm0.59097681 \pm 12. \)
\(a_{40}= -2.31534558 \pm 13. \) \(a_{41}= +0.42907132 \pm 46. \) \(a_{42}= \pm0.21009463 \pm 7.8 \)
\(a_{43}= -0.72518867 \pm 30. \) \(a_{44}= -2.58242467 \pm 19. \) \(a_{45}= \pm0.57184491 \pm 8.0 \)
\(a_{46}= +0.33608985 \pm 14. \) \(a_{47}= +0.16064974 \pm 38. \) \(a_{48}= \pm0.26266382 \pm 14. \)
\(a_{49}= -0.95280409 \pm 33. \) \(a_{50}= -3.25468900 \pm 9.8 \) \(a_{51}= \pm0.13946846 \pm 9.3 \)
\(a_{52}= +1.84835496 \pm 19. \) \(a_{53}= +1.22848323 \pm 19. \) \(a_{54}= \pm0.32236029 \pm 3.3 \)
\(a_{55}= -2.45342545 \pm 15. \) \(a_{56}= +0.29320304 \pm 19. \) \(a_{57}= \pm0.32986636 \pm 7.5 \)
\(a_{58}= -1.19971409 \pm 18. \) \(a_{59}= +0.75111190 \pm 30. \) \(a_{60}= \pm1.78851751 \pm 13. \)

Displaying $a_n$ with $n$ up to: 60 180 1000