Maass form invariants
Level: | \( 3 \) |
Weight: | \( 0 \) |
Character: | 3.1 |
Symmetry: | odd |
Fricke sign: | $+1$ |
Spectral parameter: | \(21.6126500168040455946989560285 \pm 2 \cdot 10^{-3}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -1.90379959 \pm 2.0 \cdot 10^{-1} \) | \(a_{3}= -0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= +2.62445287 \pm 3.7 \cdot 10^{-1} \) | \(a_{5}= +0.23860218 \pm 2.8 \cdot 10^{-1} \) | \(a_{6}= +1.09915920 \pm 2.0 \cdot 10^{-1} \) |
\(a_{7}= -1.31532827 \pm 2.3 \cdot 10^{-1} \) | \(a_{8}= -3.09263270 \pm 2.5 \cdot 10^{-1} \) | \(a_{9}= +0.33333333 \pm 4.2 \cdot 10^{-8} \) |
\(a_{10}= -0.45425074 \pm 1.6 \cdot 10^{-1} \) | \(a_{11}= +0.41870906 \pm 2.5 \cdot 10^{-1} \) | \(a_{12}= -1.51522857 \pm 3.7 \cdot 10^{-1} \) |
\(a_{13}= -0.68605132 \pm 2.5 \cdot 10^{-1} \) | \(a_{14}= +2.50412141 \pm 1.5 \cdot 10^{-1} \) | \(a_{15}= -0.13775704 \pm 2.8 \cdot 10^{-1} \) |
\(a_{16}= +3.26329999 \pm 3.0 \cdot 10^{-1} \) | \(a_{17}= +0.53331817 \pm 1.8 \cdot 10^{-1} \) | \(a_{18}= -0.63459986 \pm 2.0 \cdot 10^{-1} \) |
\(a_{19}= +0.68801104 \pm 1.5 \cdot 10^{-1} \) | \(a_{20}= +0.62620019 \pm 2.6 \cdot 10^{-1} \) | \(a_{21}= +0.75940513 \pm 2.3 \cdot 10^{-1} \) |
\(a_{22}= -0.79713814 \pm 1.3 \cdot 10^{-1} \) | \(a_{23}= +0.89149049 \pm 5.6 \cdot 10^{-1} \) | \(a_{24}= +1.78553232 \pm 2.5 \cdot 10^{-1} \) |
\(a_{25}= -0.94306900 \pm 2.3 \cdot 10^{-1} \) | \(a_{26}= +1.30610422 \pm 8.8 \cdot 10^{-2} \) | \(a_{27}= -0.19245009 \pm 9.4 \cdot 10^{-8} \) |
\(a_{28}= -3.45201704 \pm 1.5 \cdot 10^{-1} \) | \(a_{29}= +1.26885256 \pm 5.3 \cdot 10^{-1} \) | \(a_{30}= +0.26226179 \pm 4.8 \cdot 10^{-1} \) |
\(a_{31}= +0.37871522 \pm 2.3 \cdot 10^{-1} \) | \(a_{32}= -3.12003648 \pm 3.3 \cdot 10^{-1} \) | \(a_{33}= -0.24174179 \pm 2.5 \cdot 10^{-1} \) |
\(a_{34}= -1.01533091 \pm 2.2 \cdot 10^{-1} \) | \(a_{35}= -0.31384020 \pm 1.0 \cdot 10^{-1} \) | \(a_{36}= +0.87481762 \pm 3.7 \cdot 10^{-1} \) |
\(a_{37}= -0.43297660 \pm 2.8 \cdot 10^{-1} \) | \(a_{38}= -1.30983513 \pm 6.9 \cdot 10^{-2} \) | \(a_{39}= +0.39609191 \pm 2.5 \cdot 10^{-1} \) |
\(a_{40}= -0.73790892 \pm 1.5 \cdot 10^{-1} \) | \(a_{41}= +0.53662619 \pm 5.4 \cdot 10^{-1} \) | \(a_{42}= -1.44575517 \pm 4.3 \cdot 10^{-1} \) |
\(a_{43}= +0.32046125 \pm 3.6 \cdot 10^{-1} \) | \(a_{44}= +1.09888220 \pm 2.2 \cdot 10^{-1} \) | \(a_{45}= +0.07953406 \pm 2.8 \cdot 10^{-1} \) |
\(a_{46}= -1.69721923 \pm 1.6 \cdot 10^{-1} \) | \(a_{47}= +1.62309674 \pm 4.5 \cdot 10^{-1} \) | \(a_{48}= -1.88406713 \pm 3.0 \cdot 10^{-1} \) |
\(a_{49}= +0.73008845 \pm 3.9 \cdot 10^{-1} \) | \(a_{50}= +1.79541437 \pm 1.1 \cdot 10^{-1} \) | \(a_{51}= -0.30791139 \pm 1.8 \cdot 10^{-1} \) |
\(a_{52}= -1.80050935 \pm 2.2 \cdot 10^{-1} \) | \(a_{53}= -1.17850484 \pm 2.2 \cdot 10^{-1} \) | \(a_{54}= +0.36638640 \pm 2.0 \cdot 10^{-1} \) |
\(a_{55}= +0.09990490 \pm 1.8 \cdot 10^{-1} \) | \(a_{56}= +4.06782721 \pm 2.2 \cdot 10^{-1} \) | \(a_{57}= -0.39722336 \pm 1.5 \cdot 10^{-1} \) |
\(a_{58}= -2.41564097 \pm 2.2 \cdot 10^{-1} \) | \(a_{59}= -0.18564958 \pm 3.6 \cdot 10^{-1} \) | \(a_{60}= -0.36153685 \pm 6.5 \cdot 10^{-1} \) |
\(a_{61}= +0.01234961 \pm 2.9 \cdot 10^{-1} \) | \(a_{62}= -0.72099788 \pm 1.1 \cdot 10^{-1} \) | \(a_{63}= -0.43844276 \pm 2.3 \cdot 10^{-1} \) |
\(a_{64}= +2.67662416 \pm 2.7 \cdot 10^{-1} \) | \(a_{65}= -0.16369334 \pm 1.7 \cdot 10^{-1} \) | \(a_{66}= +0.46022792 \pm 4.6 \cdot 10^{-1} \) |
\(a_{67}= -1.67054943 \pm 6.3 \cdot 10^{-1} \) | \(a_{68}= +1.39966840 \pm 2.1 \cdot 10^{-1} \) | \(a_{69}= -0.51470227 \pm 5.6 \cdot 10^{-1} \) |
\(a_{70}= +0.59748884 \pm 8.0 \cdot 10^{-2} \) | \(a_{71}= -1.88251065 \pm 4.2 \cdot 10^{-1} \) | \(a_{72}= -1.03087757 \pm 2.5 \cdot 10^{-1} \) |
\(a_{73}= +0.46115667 \pm 1.8 \cdot 10^{-1} \) | \(a_{74}= +0.82430068 \pm 2.8 \cdot 10^{-1} \) | \(a_{75}= +0.54448114 \pm 2.3 \cdot 10^{-1} \) |
\(a_{76}= +1.80565255 \pm 1.3 \cdot 10^{-1} \) | \(a_{77}= -0.55073986 \pm 1.5 \cdot 10^{-1} \) | \(a_{78}= -0.75407962 \pm 4.5 \cdot 10^{-1} \) |
\(a_{79}= -1.16946960 \pm 3.1 \cdot 10^{-1} \) | \(a_{80}= +0.77863050 \pm 2.2 \cdot 10^{-1} \) | \(a_{81}= +0.11111111 \pm 2.3 \cdot 10^{-7} \) |
\(a_{82}= -1.02162872 \pm 1.7 \cdot 10^{-1} \) | \(a_{83}= -0.18751301 \pm 4.4 \cdot 10^{-1} \) | \(a_{84}= +1.99302297 \pm 6.0 \cdot 10^{-1} \) |
\(a_{85}= +0.12725088 \pm 1.5 \cdot 10^{-1} \) | \(a_{86}= -0.61009399 \pm 2.7 \cdot 10^{-1} \) | \(a_{87}= -0.73257237 \pm 5.3 \cdot 10^{-1} \) |
\(a_{88}= -1.29491333 \pm 1.6 \cdot 10^{-1} \) | \(a_{89}= +0.56515545 \pm 1.8 \cdot 10^{-1} \) | \(a_{90}= -0.15141691 \pm 4.8 \cdot 10^{-1} \) |
\(a_{91}= +0.90238269 \pm 9.4 \cdot 10^{-2} \) | \(a_{92}= +2.33967478 \pm 5.2 \cdot 10^{-1} \) | \(a_{93}= -0.21865134 \pm 2.3 \cdot 10^{-1} \) |
\(a_{94}= -3.09005090 \pm 1.8 \cdot 10^{-1} \) | \(a_{95}= +0.16416094 \pm 1.1 \cdot 10^{-1} \) | \(a_{96}= +1.80135390 \pm 3.3 \cdot 10^{-1} \) |
\(a_{97}= +1.29364358 \pm 4.2 \cdot 10^{-1} \) | \(a_{98}= -1.38994209 \pm 1.8 \cdot 10^{-1} \) | \(a_{99}= +0.13956969 \pm 2.5 \cdot 10^{-1} \) |
\(a_{100}= -2.47504014 \pm 1.9 \cdot 10^{-1} \) | \(a_{101}= +0.00304773 \pm 2.3 \cdot 10^{-1} \) | \(a_{102}= +0.58620158 \pm 3.9 \cdot 10^{-1} \) |
\(a_{103}= -1.61804589 \pm 3.0 \cdot 10^{-1} \) | \(a_{104}= +2.12170474 \pm 1.4 \cdot 10^{-1} \) | \(a_{105}= +0.18119572 \pm 5.1 \cdot 10^{-1} \) |
\(a_{106}= +2.24363703 \pm 1.4 \cdot 10^{-1} \) | \(a_{107}= -0.19576393 \pm 2.0 \cdot 10^{-1} \) | \(a_{108}= -0.50507619 \pm 3.7 \cdot 10^{-1} \) |
\(a_{109}= +1.00652708 \pm 4.1 \cdot 10^{-1} \) | \(a_{110}= -0.19019890 \pm 1.1 \cdot 10^{-1} \) | \(a_{111}= +0.24997916 \pm 2.8 \cdot 10^{-1} \) |
\(a_{112}= -4.29231072 \pm 8.3 \cdot 10^{-2} \) | \(a_{113}= -1.31171271 \pm 2.3 \cdot 10^{-1} \) | \(a_{114}= +0.75623367 \pm 3.5 \cdot 10^{-1} \) |
\(a_{115}= +0.21271158 \pm 3.9 \cdot 10^{-1} \) | \(a_{116}= +3.33004373 \pm 4.9 \cdot 10^{-1} \) | \(a_{117}= -0.22868377 \pm 2.5 \cdot 10^{-1} \) |
\(a_{118}= +0.35343959 \pm 2.3 \cdot 10^{-1} \) | \(a_{119}= -0.70148847 \pm 1.0 \cdot 10^{-1} \) | \(a_{120}= +0.42603191 \pm 5.3 \cdot 10^{-1} \) |
\(a_{121}= -0.82468272 \pm 2.5 \cdot 10^{-1} \) | \(a_{122}= -0.02351117 \pm 1.2 \cdot 10^{-1} \) | \(a_{123}= -0.30982128 \pm 5.4 \cdot 10^{-1} \) |
\(a_{124}= +0.99392025 \pm 2.1 \cdot 10^{-1} \) | \(a_{125}= -0.46362051 \pm 4.1 \cdot 10^{-1} \) | \(a_{126}= +0.83470714 \pm 4.3 \cdot 10^{-1} \) |
\(a_{127}= +0.45919741 \pm 4.6 \cdot 10^{-1} \) | \(a_{128}= -1.97571950 \pm 3.4 \cdot 10^{-1} \) | \(a_{129}= -0.18501839 \pm 3.6 \cdot 10^{-1} \) |
\(a_{130}= +0.31163932 \pm 6.7 \cdot 10^{-2} \) | \(a_{131}= +0.09425694 \pm 2.6 \cdot 10^{-1} \) | \(a_{132}= -0.63443993 \pm 6.2 \cdot 10^{-1} \) |
\(a_{133}= -0.90496037 \pm 4.2 \cdot 10^{-2} \) | \(a_{134}= +3.18039131 \pm 2.1 \cdot 10^{-1} \) | \(a_{135}= -0.04591901 \pm 2.8 \cdot 10^{-1} \) |
\(a_{136}= -1.64935722 \pm 9.6 \cdot 10^{-2} \) | \(a_{137}= +0.24206502 \pm 4.6 \cdot 10^{-1} \) | \(a_{138}= +0.97988998 \pm 7.7 \cdot 10^{-1} \) |
\(a_{139}= -1.61881228 \pm 3.1 \cdot 10^{-1} \) | \(a_{140}= -0.82365881 \pm 8.6 \cdot 10^{-2} \) | \(a_{141}= -0.93709534 \pm 4.5 \cdot 10^{-1} \) |
\(a_{142}= +3.58392299 \pm 1.8 \cdot 10^{-1} \) | \(a_{143}= -0.28725590 \pm 1.5 \cdot 10^{-1} \) | \(a_{144}= +1.08776666 \pm 3.0 \cdot 10^{-1} \) |
\(a_{145}= +0.30275099 \pm 3.6 \cdot 10^{-1} \) | \(a_{146}= -0.87794988 \pm 1.4 \cdot 10^{-1} \) | \(a_{147}= -0.42151676 \pm 3.9 \cdot 10^{-1} \) |
\(a_{148}= -1.13632669 \pm 3.0 \cdot 10^{-1} \) | \(a_{149}= +1.25945072 \pm 3.4 \cdot 10^{-1} \) | \(a_{150}= -1.03658297 \pm 4.3 \cdot 10^{-1} \) |
\(a_{151}= -0.73846183 \pm 5.3 \cdot 10^{-1} \) | \(a_{152}= -2.12776544 \pm 8.6 \cdot 10^{-2} \) | \(a_{153}= +0.17777272 \pm 1.8 \cdot 10^{-1} \) |
\(a_{154}= +1.04849832 \pm 1.0 \cdot 10^{-1} \) | \(a_{155}= +0.09036228 \pm 1.5 \cdot 10^{-1} \) | \(a_{156}= +1.03952456 \pm 6.2 \cdot 10^{-1} \) |
\(a_{157}= +0.35100187 \pm 5.6 \cdot 10^{-1} \) | \(a_{158}= +2.22643574 \pm 1.5 \cdot 10^{-1} \) | \(a_{159}= +0.68041009 \pm 2.2 \cdot 10^{-1} \) |
\(a_{160}= -0.74444752 \pm 2.3 \cdot 10^{-1} \) | \(a_{161}= -1.17260264 \pm 1.4 \cdot 10^{-1} \) | \(a_{162}= -0.21153329 \pm 2.0 \cdot 10^{-1} \) |
\(a_{163}= -0.86265692 \pm 7.0 \cdot 10^{-2} \) | \(a_{164}= +1.40835014 \pm 4.9 \cdot 10^{-1} \) | \(a_{165}= -0.05768012 \pm 5.3 \cdot 10^{-1} \) |
\(a_{166}= +0.35698719 \pm 1.7 \cdot 10^{-1} \) | \(a_{167}= -0.64725519 \pm 2.6 \cdot 10^{-1} \) | \(a_{168}= -2.34856114 \pm 4.8 \cdot 10^{-1} \) |
\(a_{169}= -0.52933359 \pm 2.7 \cdot 10^{-1} \) | \(a_{170}= -0.24226017 \pm 1.9 \cdot 10^{-1} \) | \(a_{171}= +0.22933701 \pm 1.5 \cdot 10^{-1} \) |
\(a_{172}= +0.84103544 \pm 3.0 \cdot 10^{-1} \) | \(a_{173}= -0.59166634 \pm 2.3 \cdot 10^{-1} \) | \(a_{174}= +1.39467097 \pm 7.3 \cdot 10^{-1} \) |
\(a_{175}= +1.24044531 \pm 1.9 \cdot 10^{-1} \) | \(a_{176}= +1.36637327 \pm 1.9 \cdot 10^{-1} \) | \(a_{177}= +0.10718484 \pm 3.6 \cdot 10^{-1} \) |
\(a_{178}= -1.07594272 \pm 1.4 \cdot 10^{-1} \) | \(a_{179}= -0.93516647 \pm 3.5 \cdot 10^{-1} \) | \(a_{180}= +0.20873340 \pm 6.5 \cdot 10^{-1} \) |
\(a_{181}= +1.75524510 \pm 4.2 \cdot 10^{-1} \) | \(a_{182}= -1.71795580 \pm 5.5 \cdot 10^{-2} \) | \(a_{183}= -0.00713005 \pm 2.9 \cdot 10^{-1} \) |
\(a_{184}= -2.75705264 \pm 2.9 \cdot 10^{-1} \) | \(a_{185}= -0.10330916 \pm 2.2 \cdot 10^{-1} \) | \(a_{186}= +0.41626832 \pm 4.4 \cdot 10^{-1} \) |
\(a_{187}= +0.22330515 \pm 1.0 \cdot 10^{-1} \) | \(a_{188}= +4.25974088 \pm 3.9 \cdot 10^{-1} \) | \(a_{189}= +0.25313504 \pm 2.3 \cdot 10^{-1} \) |
\(a_{190}= -0.31252952 \pm 7.3 \cdot 10^{-2} \) | \(a_{191}= -1.29049008 \pm 2.9 \cdot 10^{-1} \) | \(a_{192}= -1.54534968 \pm 2.7 \cdot 10^{-1} \) |
\(a_{193}= +0.42822903 \pm 4.9 \cdot 10^{-1} \) | \(a_{194}= -2.46283811 \pm 1.6 \cdot 10^{-1} \) | \(a_{195}= +0.09450840 \pm 5.3 \cdot 10^{-1} \) |
\(a_{196}= +1.91608273 \pm 3.4 \cdot 10^{-1} \) | \(a_{197}= -0.72753381 \pm 7.2 \cdot 10^{-1} \) | \(a_{198}= -0.26571271 \pm 4.6 \cdot 10^{-1} \) |
\(a_{199}= -0.68433982 \pm 2.7 \cdot 10^{-1} \) | \(a_{200}= +2.91656602 \pm 1.6 \cdot 10^{-1} \) | \(a_{201}= +0.96449216 \pm 6.3 \cdot 10^{-1} \) |
\(a_{202}= -0.00580227 \pm 1.7 \cdot 10^{-1} \) | \(a_{203}= -1.66895763 \pm 2.3 \cdot 10^{-1} \) | \(a_{204}= -0.80809893 \pm 5.6 \cdot 10^{-1} \) |
\(a_{205}= +0.12804018 \pm 3.6 \cdot 10^{-1} \) | \(a_{206}= +3.08043511 \pm 2.3 \cdot 10^{-1} \) | \(a_{207}= +0.29716350 \pm 5.6 \cdot 10^{-1} \) |
\(a_{208}= -2.23879126 \pm 1.9 \cdot 10^{-1} \) | \(a_{209}= +0.28807646 \pm 1.0 \cdot 10^{-1} \) | \(a_{210}= -0.34496034 \pm 7.1 \cdot 10^{-1} \) |
\(a_{211}= +0.65979999 \pm 1.6 \cdot 10^{-1} \) | \(a_{212}= -3.09293041 \pm 2.0 \cdot 10^{-1} \) | \(a_{213}= +1.08686803 \pm 4.2 \cdot 10^{-1} \) |
\(a_{214}= +0.37269528 \pm 1.3 \cdot 10^{-1} \) | \(a_{215}= +0.07646275 \pm 2.3 \cdot 10^{-1} \) | \(a_{216}= +0.59517744 \pm 2.5 \cdot 10^{-1} \) |
\(a_{217}= -0.49813484 \pm 1.5 \cdot 10^{-1} \) | \(a_{218}= -1.91622584 \pm 1.7 \cdot 10^{-1} \) | \(a_{219}= -0.26624893 \pm 1.8 \cdot 10^{-1} \) |
\(a_{220}= +0.26219569 \pm 1.6 \cdot 10^{-1} \) | \(a_{221}= -0.36588364 \pm 8.2 \cdot 10^{-2} \) | \(a_{222}= -0.47591022 \pm 4.9 \cdot 10^{-1} \) |
\(a_{223}= +1.87402266 \pm 1.4 \cdot 10^{-1} \) | \(a_{224}= +4.10387217 \pm 2.1 \cdot 10^{-1} \) | \(a_{225}= -0.31435633 \pm 2.3 \cdot 10^{-1} \) |
\(a_{226}= +2.49723812 \pm 1.9 \cdot 10^{-1} \) | \(a_{227}= -1.04294832 \pm 5.5 \cdot 10^{-1} \) | \(a_{228}= -1.04249398 \pm 5.2 \cdot 10^{-1} \) |
\(a_{229}= -1.86967182 \pm 2.4 \cdot 10^{-1} \) | \(a_{230}= -0.40496021 \pm 1.2 \cdot 10^{-1} \) | \(a_{231}= +0.31796981 \pm 4.8 \cdot 10^{-1} \) |
\(a_{232}= -3.92409491 \pm 3.0 \cdot 10^{-1} \) | \(a_{233}= +0.86802523 \pm 3.9 \cdot 10^{-1} \) | \(a_{234}= +0.43536807 \pm 4.5 \cdot 10^{-1} \) |
\(a_{235}= +0.38727443 \pm 3.1 \cdot 10^{-1} \) | \(a_{236}= -0.48722857 \pm 2.7 \cdot 10^{-1} \) | \(a_{237}= +0.67519359 \pm 3.1 \cdot 10^{-1} \) |
\(a_{238}= +1.33549345 \pm 1.2 \cdot 10^{-1} \) | \(a_{239}= -0.97700797 \pm 3.4 \cdot 10^{-1} \) | \(a_{240}= -0.44954253 \pm 5.8 \cdot 10^{-1} \) |
\(a_{241}= -0.15557003 \pm 3.3 \cdot 10^{-1} \) | \(a_{242}= +1.57003063 \pm 1.2 \cdot 10^{-1} \) | \(a_{243}= -0.06415003 \pm 5.5 \cdot 10^{-7} \) |
\(a_{244}= +0.03241096 \pm 2.6 \cdot 10^{-1} \) | \(a_{245}= +0.17420070 \pm 2.6 \cdot 10^{-1} \) | \(a_{246}= +0.58983762 \pm 7.4 \cdot 10^{-1} \) |
\(a_{247}= -0.47201088 \pm 1.1 \cdot 10^{-1} \) | \(a_{248}= -1.17122708 \pm 1.5 \cdot 10^{-1} \) | \(a_{249}= +0.10826069 \pm 4.4 \cdot 10^{-1} \) |
\(a_{250}= +0.88264053 \pm 1.9 \cdot 10^{-1} \) | \(a_{251}= +1.03168016 \pm 4.8 \cdot 10^{-1} \) | \(a_{252}= -1.15067235 \pm 6.0 \cdot 10^{-1} \) |
\(a_{253}= +0.37327515 \pm 3.4 \cdot 10^{-1} \) | \(a_{254}= -0.87421984 \pm 2.2 \cdot 10^{-1} \) | \(a_{255}= -0.07346833 \pm 4.7 \cdot 10^{-1} \) |
\(a_{256}= +1.08474981 \pm 2.0 \cdot 10^{-1} \) | \(a_{257}= -1.42605038 \pm 4.5 \cdot 10^{-1} \) | \(a_{258}= +0.35223793 \pm 5.6 \cdot 10^{-1} \) |
\(a_{259}= +0.56950636 \pm 1.5 \cdot 10^{-1} \) | \(a_{260}= -0.42960546 \pm 1.6 \cdot 10^{-1} \) | \(a_{261}= +0.42295085 \pm 5.3 \cdot 10^{-1} \) |
\(a_{262}= -0.17944632 \pm 1.5 \cdot 10^{-1} \) | \(a_{263}= -0.09375624 \pm 3.2 \cdot 10^{-1} \) | \(a_{264}= +0.74761856 \pm 5.0 \cdot 10^{-1} \) |
\(a_{265}= -0.28119383 \pm 1.5 \cdot 10^{-1} \) | \(a_{266}= +1.72286318 \pm 2.3 \cdot 10^{-2} \) | \(a_{267}= -0.32629265 \pm 1.8 \cdot 10^{-1} \) |
\(a_{268}= -4.38427824 \pm 5.8 \cdot 10^{-1} \) | \(a_{269}= -0.71001319 \pm 2.7 \cdot 10^{-1} \) | \(a_{270}= +0.08742060 \pm 4.8 \cdot 10^{-1} \) |
\(a_{271}= +1.37417287 \pm 3.8 \cdot 10^{-1} \) | \(a_{272}= +1.74037718 \pm 1.2 \cdot 10^{-1} \) | \(a_{273}= -0.52099089 \pm 4.8 \cdot 10^{-1} \) |
\(a_{274}= -0.46084328 \pm 2.4 \cdot 10^{-1} \) | \(a_{275}= -0.39487153 \pm 1.5 \cdot 10^{-1} \) | \(a_{276}= -1.35081186 \pm 9.3 \cdot 10^{-1} \) |
\(a_{277}= +1.72507339 \pm 2.0 \cdot 10^{-1} \) | \(a_{278}= +3.08189415 \pm 2.8 \cdot 10^{-1} \) | \(a_{279}= +0.12623841 \pm 2.3 \cdot 10^{-1} \) |
\(a_{280}= +0.97059246 \pm 8.1 \cdot 10^{-2} \) | \(a_{281}= +0.23648112 \pm 4.3 \cdot 10^{-1} \) | \(a_{282}= +1.78404172 \pm 6.5 \cdot 10^{-1} \) |
\(a_{283}= -0.47177377 \pm 6.0 \cdot 10^{-1} \) | \(a_{284}= -4.94056047 \pm 3.6 \cdot 10^{-1} \) | \(a_{285}= -0.09477836 \pm 4.3 \cdot 10^{-1} \) |
\(a_{286}= +0.54687767 \pm 5.7 \cdot 10^{-2} \) | \(a_{287}= -0.70583960 \pm 2.4 \cdot 10^{-1} \) | \(a_{288}= -1.04001216 \pm 3.3 \cdot 10^{-1} \) |
\(a_{289}= -0.71557173 \pm 3.9 \cdot 10^{-1} \) | \(a_{290}= -0.57637721 \pm 1.6 \cdot 10^{-1} \) | \(a_{291}= -0.74688547 \pm 4.2 \cdot 10^{-1} \) |
\(a_{292}= +1.21028394 \pm 1.8 \cdot 10^{-1} \) | \(a_{293}= +1.29258488 \pm 6.4 \cdot 10^{-1} \) | \(a_{294}= +0.80248344 \pm 5.9 \cdot 10^{-1} \) |
\(a_{295}= -0.04429640 \pm 1.9 \cdot 10^{-1} \) | \(a_{296}= +1.33903760 \pm 1.5 \cdot 10^{-1} \) | \(a_{297}= -0.08058060 \pm 2.5 \cdot 10^{-1} \) |
\(a_{298}= -2.39774175 \pm 1.8 \cdot 10^{-1} \) | \(a_{299}= -0.61160823 \pm 3.6 \cdot 10^{-1} \) | \(a_{300}= +1.42896509 \pm 6.0 \cdot 10^{-1} \) |
\(a_{301}= -0.42151174 \pm 3.3 \cdot 10^{-1} \) | \(a_{302}= +1.40588333 \pm 1.6 \cdot 10^{-1} \) | \(a_{303}= -0.00175961 \pm 2.3 \cdot 10^{-1} \) |
\(a_{304}= +2.24518642 \pm 1.2 \cdot 10^{-1} \) | \(a_{305}= +0.00294664 \pm 2.2 \cdot 10^{-1} \) | \(a_{306}= -0.33844364 \pm 3.9 \cdot 10^{-1} \) |
\(a_{307}= -0.34142657 \pm 1.8 \cdot 10^{-1} \) | \(a_{308}= -1.44539081 \pm 9.9 \cdot 10^{-2} \) | \(a_{309}= +0.93417923 \pm 3.0 \cdot 10^{-1} \) |
\(a_{310}= -0.17203167 \pm 8.0 \cdot 10^{-2} \) | \(a_{311}= -0.31793728 \pm 5.9 \cdot 10^{-1} \) | \(a_{312}= -1.22496681 \pm 5.0 \cdot 10^{-1} \) |
\(a_{313}= +1.11114316 \pm 2.5 \cdot 10^{-1} \) | \(a_{314}= -0.66823722 \pm 1.7 \cdot 10^{-1} \) | \(a_{315}= -0.10461340 \pm 5.1 \cdot 10^{-1} \) |
\(a_{316}= -3.06921784 \pm 2.7 \cdot 10^{-1} \) | \(a_{317}= +1.17437415 \pm 2.5 \cdot 10^{-1} \) | \(a_{318}= -1.29536444 \pm 4.3 \cdot 10^{-1} \) |
\(a_{319}= +0.53128006 \pm 3.2 \cdot 10^{-1} \) | \(a_{320}= +0.63864837 \pm 1.9 \cdot 10^{-1} \) | \(a_{321}= +0.11302436 \pm 2.0 \cdot 10^{-1} \) |
\(a_{322}= +2.23240043 \pm 4.8 \cdot 10^{-2} \) | \(a_{323}= +0.36692879 \pm 5.5 \cdot 10^{-2} \) | \(a_{324}= +0.29160587 \pm 3.7 \cdot 10^{-1} \) |
\(a_{325}= +0.64699373 \pm 1.3 \cdot 10^{-1} \) | \(a_{326}= +1.64232588 \pm 8.7 \cdot 10^{-2} \) | \(a_{327}= -0.58111868 \pm 4.1 \cdot 10^{-1} \) |
\(a_{328}= -1.65958770 \pm 3.1 \cdot 10^{-1} \) | \(a_{329}= -2.13490502 \pm 2.2 \cdot 10^{-1} \) | \(a_{330}= +0.10981139 \pm 7.4 \cdot 10^{-1} \) |
\(a_{331}= -0.59766252 \pm 2.4 \cdot 10^{-1} \) | \(a_{332}= -0.49211905 \pm 3.8 \cdot 10^{-1} \) | \(a_{333}= -0.14432553 \pm 2.8 \cdot 10^{-1} \) |
\(a_{334}= +1.23224416 \pm 2.0 \cdot 10^{-1} \) | \(a_{335}= -0.39859674 \pm 4.4 \cdot 10^{-1} \) | \(a_{336}= +2.47816675 \pm 5.3 \cdot 10^{-1} \) |
\(a_{337}= -1.58567176 \pm 4.6 \cdot 10^{-1} \) | \(a_{338}= +1.00774507 \pm 1.7 \cdot 10^{-1} \) | \(a_{339}= +0.75731769 \pm 2.3 \cdot 10^{-1} \) |
\(a_{340}= +0.33396394 \pm 1.7 \cdot 10^{-1} \) | \(a_{341}= +0.15857150 \pm 1.5 \cdot 10^{-1} \) | \(a_{342}= -0.43661171 \pm 3.5 \cdot 10^{-1} \) |
\(a_{343}= +0.35502229 \pm 1.9 \cdot 10^{-1} \) | \(a_{344}= -0.99106893 \pm 2.7 \cdot 10^{-1} \) | \(a_{345}= -0.12280909 \pm 8.4 \cdot 10^{-1} \) |
\(a_{346}= +1.12641414 \pm 1.5 \cdot 10^{-1} \) | \(a_{347}= +0.96170578 \pm 1.4 \cdot 10^{-1} \) | \(a_{348}= -1.92260164 \pm 9.0 \cdot 10^{-1} \) |
\(a_{349}= -0.13987011 \pm 6.4 \cdot 10^{-1} \) | \(a_{350}= -2.36155927 \pm 1.2 \cdot 10^{-1} \) | \(a_{351}= +0.13203064 \pm 2.5 \cdot 10^{-1} \) |
\(a_{352}= -1.30638754 \pm 2.0 \cdot 10^{-1} \) | \(a_{353}= +0.10103335 \pm 5.6 \cdot 10^{-1} \) | \(a_{354}= -0.20405844 \pm 5.6 \cdot 10^{-1} \) |
\(a_{355}= -0.44917115 \pm 2.8 \cdot 10^{-1} \) | \(a_{356}= +1.48322385 \pm 1.3 \cdot 10^{-1} \) | \(a_{357}= +0.40500455 \pm 4.2 \cdot 10^{-1} \) |
\(a_{358}= +1.78036954 \pm 2.1 \cdot 10^{-1} \) | \(a_{359}= +1.47675975 \pm 2.9 \cdot 10^{-1} \) | \(a_{360}= -0.24596964 \pm 5.3 \cdot 10^{-1} \) |
\(a_{361}= -0.52664081 \pm 3.5 \cdot 10^{-1} \) | \(a_{362}= -3.34163490 \pm 2.6 \cdot 10^{-1} \) | \(a_{363}= +0.47613079 \pm 2.5 \cdot 10^{-1} \) |
\(a_{364}= +2.36826085 \pm 7.0 \cdot 10^{-2} \) | \(a_{365}= +0.11003299 \pm 1.3 \cdot 10^{-1} \) | \(a_{366}= +0.01357418 \pm 5.0 \cdot 10^{-1} \) |
\(a_{367}= -0.84349614 \pm 2.7 \cdot 10^{-1} \) | \(a_{368}= +2.90920091 \pm 4.4 \cdot 10^{-1} \) | \(a_{369}= +0.17887540 \pm 5.4 \cdot 10^{-1} \) |
\(a_{370}= +0.19667994 \pm 2.5 \cdot 10^{-1} \) | \(a_{371}= +1.55012073 \pm 1.3 \cdot 10^{-1} \) | \(a_{372}= -0.57384012 \pm 6.0 \cdot 10^{-1} \) |
\(a_{373}= -1.07057980 \pm 2.4 \cdot 10^{-1} \) | \(a_{374}= -0.42512825 \pm 1.2 \cdot 10^{-1} \) | \(a_{375}= +0.26767142 \pm 4.1 \cdot 10^{-1} \) |
\(a_{376}= -5.01964204 \pm 2.6 \cdot 10^{-1} \) | \(a_{377}= -0.87049797 \pm 3.3 \cdot 10^{-1} \) | \(a_{378}= -0.48191839 \pm 4.3 \cdot 10^{-1} \) |
\(a_{379}= -0.19306495 \pm 1.0 \cdot 10^{-1} \) | \(a_{380}= +0.43083264 \pm 1.0 \cdot 10^{-1} \) | \(a_{381}= -0.26511775 \pm 4.6 \cdot 10^{-1} \) |
\(a_{382}= +2.45683449 \pm 2.8 \cdot 10^{-1} \) | \(a_{383}= -0.69896821 \pm 3.0 \cdot 10^{-1} \) | \(a_{384}= +1.14068219 \pm 3.4 \cdot 10^{-1} \) |
\(a_{385}= -0.13140773 \pm 6.7 \cdot 10^{-2} \) | \(a_{386}= -0.81526225 \pm 2.1 \cdot 10^{-1} \) | \(a_{387}= +0.10682042 \pm 3.6 \cdot 10^{-1} \) |
\(a_{388}= +3.39510660 \pm 3.7 \cdot 10^{-1} \) | \(a_{389}= -0.05493627 \pm 1.3 \cdot 10^{-1} \) | \(a_{390}= -0.17992504 \pm 7.3 \cdot 10^{-1} \) |
\(a_{391}= +0.47544808 \pm 1.6 \cdot 10^{-1} \) | \(a_{392}= -2.25789542 \pm 2.5 \cdot 10^{-1} \) | \(a_{393}= -0.05441927 \pm 2.6 \cdot 10^{-1} \) |
\(a_{394}= +1.38507857 \pm 2.0 \cdot 10^{-1} \) | \(a_{395}= -0.27903800 \pm 2.1 \cdot 10^{-1} \) | \(a_{396}= +0.36629407 \pm 6.2 \cdot 10^{-1} \) |
\(a_{397}= -0.56583088 \pm 4.9 \cdot 10^{-1} \) | \(a_{398}= +1.30284587 \pm 1.8 \cdot 10^{-1} \) | \(a_{399}= +0.52247911 \pm 3.8 \cdot 10^{-1} \) |
\(a_{400}= -3.07751705 \pm 1.5 \cdot 10^{-1} \) | \(a_{401}= +0.96671505 \pm 5.6 \cdot 10^{-1} \) | \(a_{402}= -1.83619978 \pm 8.4 \cdot 10^{-1} \) |
\(a_{403}= -0.25981808 \pm 1.4 \cdot 10^{-1} \) | \(a_{404}= +0.00799862 \pm 1.9 \cdot 10^{-1} \) | \(a_{405}= +0.02651135 \pm 2.8 \cdot 10^{-1} \) |
\(a_{406}= +3.17736086 \pm 1.5 \cdot 10^{-1} \) | \(a_{407}= -0.18129123 \pm 1.7 \cdot 10^{-1} \) | \(a_{408}= +0.95225683 \pm 4.3 \cdot 10^{-1} \) |
\(a_{409}= +0.12664267 \pm 5.8 \cdot 10^{-1} \) | \(a_{410}= -0.24376284 \pm 1.1 \cdot 10^{-1} \) | \(a_{411}= -0.13975630 \pm 4.6 \cdot 10^{-1} \) |
\(a_{412}= -4.24648519 \pm 2.9 \cdot 10^{-1} \) | \(a_{413}= +0.24419014 \pm 4.0 \cdot 10^{-1} \) | \(a_{414}= -0.56573974 \pm 7.7 \cdot 10^{-1} \) |
\(a_{415}= -0.04474101 \pm 2.8 \cdot 10^{-1} \) | \(a_{416}= +2.14050514 \pm 1.9 \cdot 10^{-1} \) | \(a_{417}= +0.93462170 \pm 3.1 \cdot 10^{-1} \) |
\(a_{418}= -0.54843984 \pm 5.6 \cdot 10^{-2} \) | \(a_{419}= +0.00843856 \pm 2.2 \cdot 10^{-1} \) | \(a_{420}= +0.47553963 \pm 8.8 \cdot 10^{-1} \) |
\(a_{421}= -1.11133952 \pm 6.2 \cdot 10^{-1} \) | \(a_{422}= -1.25612695 \pm 1.6 \cdot 10^{-1} \) | \(a_{423}= +0.54103225 \pm 4.5 \cdot 10^{-1} \) |
\(a_{424}= +3.64468260 \pm 1.3 \cdot 10^{-1} \) | \(a_{425}= -0.50295583 \pm 7.8 \cdot 10^{-2} \) | \(a_{426}= -2.06917891 \pm 6.2 \cdot 10^{-1} \) |
\(a_{427}= -0.01624379 \pm 7.9 \cdot 10^{-2} \) | \(a_{428}= -0.51377320 \pm 2.0 \cdot 10^{-1} \) | \(a_{429}= +0.16584727 \pm 5.0 \cdot 10^{-1} \) |
\(a_{430}= -0.14556976 \pm 2.1 \cdot 10^{-1} \) | \(a_{431}= +0.72014183 \pm 2.6 \cdot 10^{-1} \) | \(a_{432}= -0.62802238 \pm 3.0 \cdot 10^{-1} \) |
\(a_{433}= -1.09814074 \pm 5.0 \cdot 10^{-1} \) | \(a_{434}= +0.94834890 \pm 1.0 \cdot 10^{-1} \) | \(a_{435}= -0.17479337 \pm 8.1 \cdot 10^{-1} \) |
\(a_{436}= +2.64158289 \pm 3.8 \cdot 10^{-1} \) | \(a_{437}= +0.61335530 \pm 2.1 \cdot 10^{-1} \) | \(a_{438}= +0.50688460 \pm 3.8 \cdot 10^{-1} \) |
\(a_{439}= -0.51402107 \pm 3.8 \cdot 10^{-1} \) | \(a_{440}= -0.30896915 \pm 1.0 \cdot 10^{-1} \) | \(a_{441}= +0.24336282 \pm 3.9 \cdot 10^{-1} \) |
\(a_{442}= +0.69656911 \pm 6.8 \cdot 10^{-2} \) | \(a_{443}= +0.80389504 \pm 5.8 \cdot 10^{-1} \) | \(a_{444}= +0.65605852 \pm 6.5 \cdot 10^{-1} \) |
\(a_{445}= +0.13484733 \pm 1.1 \cdot 10^{-1} \) | \(a_{446}= -3.56776357 \pm 1.4 \cdot 10^{-1} \) | \(a_{447}= -0.72714421 \pm 3.4 \cdot 10^{-1} \) |
\(a_{448}= -3.52063942 \pm 1.8 \cdot 10^{-1} \) | \(a_{449}= +0.11239311 \pm 5.8 \cdot 10^{-1} \) | \(a_{450}= +0.59847146 \pm 4.3 \cdot 10^{-1} \) |
\(a_{451}= +0.22469025 \pm 3.3 \cdot 10^{-1} \) | \(a_{452}= -3.44252820 \pm 1.7 \cdot 10^{-1} \) | \(a_{453}= +0.42635114 \pm 5.3 \cdot 10^{-1} \) |
\(a_{454}= +1.98556458 \pm 2.6 \cdot 10^{-1} \) | \(a_{455}= +0.21531048 \pm 5.3 \cdot 10^{-2} \) | \(a_{456}= +1.22846595 \pm 4.0 \cdot 10^{-1} \) |
\(a_{457}= -0.44475687 \pm 3.6 \cdot 10^{-1} \) | \(a_{458}= +3.55948045 \pm 2.0 \cdot 10^{-1} \) | \(a_{459}= -0.10263713 \pm 1.8 \cdot 10^{-1} \) |
\(a_{460}= +0.55825151 \pm 3.6 \cdot 10^{-1} \) | \(a_{461}= +0.31877903 \pm 1.8 \cdot 10^{-1} \) | \(a_{462}= -0.60535079 \pm 6.9 \cdot 10^{-1} \) |
\(a_{463}= -1.51896655 \pm 4.4 \cdot 10^{-1} \) | \(a_{464}= +4.14064654 \pm 4.0 \cdot 10^{-1} \) | \(a_{465}= -0.05217069 \pm 5.2 \cdot 10^{-1} \) |
\(a_{466}= -1.65254607 \pm 1.8 \cdot 10^{-1} \) | \(a_{467}= -1.33992074 \pm 5.0 \cdot 10^{-1} \) | \(a_{468}= -0.60016978 \pm 6.2 \cdot 10^{-1} \) |
\(a_{469}= +2.19732088 \pm 2.1 \cdot 10^{-1} \) | \(a_{470}= -0.73729289 \pm 1.6 \cdot 10^{-1} \) | \(a_{471}= -0.20265103 \pm 5.6 \cdot 10^{-1} \) |
\(a_{472}= +0.57414596 \pm 3.1 \cdot 10^{-1} \) | \(a_{473}= +0.13418003 \pm 2.3 \cdot 10^{-1} \) | \(a_{474}= -1.28543327 \pm 5.2 \cdot 10^{-1} \) |
\(a_{475}= -0.64884188 \pm 7.9 \cdot 10^{-2} \) | \(a_{476}= -1.84102342 \pm 1.0 \cdot 10^{-1} \) | \(a_{477}= -0.39283495 \pm 2.2 \cdot 10^{-1} \) |
\(a_{478}= +1.86002736 \pm 1.4 \cdot 10^{-1} \) | \(a_{479}= -1.08119479 \pm 3.4 \cdot 10^{-1} \) | \(a_{480}= +0.42980697 \pm 6.1 \cdot 10^{-1} \) |
\(a_{481}= +0.29704417 \pm 1.4 \cdot 10^{-1} \) | \(a_{482}= +0.29617416 \pm 2.0 \cdot 10^{-1} \) | \(a_{483}= +0.67700245 \pm 7.9 \cdot 10^{-1} \) |
\(a_{484}= -2.16434094 \pm 2.3 \cdot 10^{-1} \) | \(a_{485}= +0.30866618 \pm 2.7 \cdot 10^{-1} \) | \(a_{486}= +0.12212880 \pm 2.0 \cdot 10^{-1} \) |
\(a_{487}= -0.10537396 \pm 2.4 \cdot 10^{-1} \) | \(a_{488}= -0.03819279 \pm 1.6 \cdot 10^{-1} \) | \(a_{489}= +0.49805520 \pm 7.0 \cdot 10^{-2} \) |
\(a_{490}= -0.33164322 \pm 1.3 \cdot 10^{-1} \) | \(a_{491}= +0.51094684 \pm 2.2 \cdot 10^{-1} \) | \(a_{492}= -0.81311134 \pm 9.1 \cdot 10^{-1} \) |
\(a_{493}= +0.67670213 \pm 2.1 \cdot 10^{-1} \) | \(a_{494}= +0.89861412 \pm 4.4 \cdot 10^{-2} \) | \(a_{495}= +0.03330163 \pm 5.3 \cdot 10^{-1} \) |
\(a_{496}= +1.23586138 \pm 1.7 \cdot 10^{-1} \) | \(a_{497}= +2.47611947 \pm 2.7 \cdot 10^{-1} \) | \(a_{498}= -0.20610665 \pm 6.5 \cdot 10^{-1} \) |
\(a_{499}= -1.28015390 \pm 6.2 \cdot 10^{-1} \) | \(a_{500}= -1.21675017 \pm 3.8 \cdot 10^{-1} \) | \(a_{501}= +0.37369296 \pm 2.6 \cdot 10^{-1} \) |
\(a_{502}= -1.96411226 \pm 1.6 \cdot 10^{-1} \) | \(a_{503}= -1.84896750 \pm 5.9 \cdot 10^{-1} \) | \(a_{504}= +1.35594240 \pm 4.8 \cdot 10^{-1} \) |
\(a_{505}= +0.00072720 \pm 1.7 \cdot 10^{-1} \) | \(a_{506}= -0.71064107 \pm 1.0 \cdot 10^{-1} \) | \(a_{507}= +0.30561089 \pm 2.7 \cdot 10^{-1} \) |
\(a_{508}= +1.20514196 \pm 3.8 \cdot 10^{-1} \) | \(a_{509}= +0.76863496 \pm 1.4 \cdot 10^{-1} \) | \(a_{510}= +0.13986898 \pm 6.7 \cdot 10^{-1} \) |
\(a_{511}= -0.60657240 \pm 6.4 \cdot 10^{-2} \) | \(a_{512}= -0.08942674 \pm 3.8 \cdot 10^{-1} \) | \(a_{513}= -0.13240779 \pm 1.5 \cdot 10^{-1} \) |
\(a_{514}= +2.71491412 \pm 1.8 \cdot 10^{-1} \) | \(a_{515}= -0.38606928 \pm 2.2 \cdot 10^{-1} \) | \(a_{516}= -0.48557204 \pm 7.3 \cdot 10^{-1} \) |
\(a_{517}= +0.67960531 \pm 2.8 \cdot 10^{-1} \) | \(a_{518}= -1.08422598 \pm 1.5 \cdot 10^{-1} \) | \(a_{519}= +0.34159872 \pm 2.3 \cdot 10^{-1} \) |
\(a_{520}= +0.50624339 \pm 1.0 \cdot 10^{-1} \) | \(a_{521}= -1.13654820 \pm 5.4 \cdot 10^{-1} \) | \(a_{522}= -0.80521366 \pm 7.3 \cdot 10^{-1} \) |
\(a_{523}= -1.31589910 \pm 2.1 \cdot 10^{-1} \) | \(a_{524}= +0.24737289 \pm 2.1 \cdot 10^{-1} \) | \(a_{525}= -0.71617143 \pm 4.6 \cdot 10^{-1} \) |
\(a_{526}= +0.17849309 \pm 2.4 \cdot 10^{-1} \) | \(a_{527}= +0.20197571 \pm 9.6 \cdot 10^{-2} \) | \(a_{528}= -0.78887598 \pm 5.5 \cdot 10^{-1} \) |
\(a_{529}= -0.20524471 \pm 5.1 \cdot 10^{-1} \) | \(a_{530}= +0.53533669 \pm 1.1 \cdot 10^{-1} \) | \(a_{531}= -0.06188319 \pm 3.6 \cdot 10^{-1} \) |
\(a_{532}= -2.37502583 \pm 3.8 \cdot 10^{-2} \) | \(a_{533}= -0.36815311 \pm 3.4 \cdot 10^{-1} \) | \(a_{534}= +0.62119582 \pm 3.9 \cdot 10^{-1} \) |
\(a_{535}= -0.04670970 \pm 1.4 \cdot 10^{-1} \) | \(a_{536}= +5.16639579 \pm 3.4 \cdot 10^{-1} \) | \(a_{537}= +0.53991861 \pm 3.5 \cdot 10^{-1} \) |
\(a_{538}= +1.35172281 \pm 1.2 \cdot 10^{-1} \) | \(a_{539}= +0.30569465 \pm 2.4 \cdot 10^{-1} \) | \(a_{540}= -0.12051228 \pm 6.5 \cdot 10^{-1} \) |
\(a_{541}= +0.47743909 \pm 1.7 \cdot 10^{-1} \) | \(a_{542}= -2.61614974 \pm 2.7 \cdot 10^{-1} \) | \(a_{543}= -1.01339123 \pm 4.2 \cdot 10^{-1} \) |
\(a_{544}= -1.66397215 \pm 2.2 \cdot 10^{-1} \) | \(a_{545}= +0.24015956 \pm 2.9 \cdot 10^{-1} \) | \(a_{546}= +0.99186224 \pm 6.8 \cdot 10^{-1} \) |
\(a_{547}= +0.72402779 \pm 2.8 \cdot 10^{-1} \) | \(a_{548}= +0.63528823 \pm 4.3 \cdot 10^{-1} \) | \(a_{549}= +0.00411654 \pm 2.9 \cdot 10^{-1} \) |
\(a_{550}= +0.75175626 \pm 8.3 \cdot 10^{-2} \) | \(a_{551}= +0.87298457 \pm 1.9 \cdot 10^{-1} \) | \(a_{552}= +1.59178509 \pm 8.1 \cdot 10^{-1} \) |
\(a_{553}= +1.53823642 \pm 2.1 \cdot 10^{-1} \) | \(a_{554}= -3.28419400 \pm 1.5 \cdot 10^{-1} \) | \(a_{555}= +0.05964557 \pm 5.6 \cdot 10^{-1} \) |
\(a_{556}= -4.24849652 \pm 2.8 \cdot 10^{-1} \) | \(a_{557}= +1.29877150 \pm 3.2 \cdot 10^{-1} \) | \(a_{558}= -0.24033263 \pm 4.4 \cdot 10^{-1} \) |
\(a_{559}= -0.21985286 \pm 1.7 \cdot 10^{-1} \) | \(a_{560}= -1.02415471 \pm 5.9 \cdot 10^{-2} \) | \(a_{561}= -0.12892529 \pm 4.4 \cdot 10^{-1} \) |
\(a_{562}= -0.45021265 \pm 1.4 \cdot 10^{-1} \) | \(a_{563}= -0.79213727 \pm 5.6 \cdot 10^{-1} \) | \(a_{564}= -2.45936255 \pm 8.2 \cdot 10^{-1} \) |
\(a_{565}= -0.31297752 \pm 1.4 \cdot 10^{-1} \) | \(a_{566}= +0.89816271 \pm 1.7 \cdot 10^{-1} \) | \(a_{567}= -0.14614759 \pm 2.3 \cdot 10^{-1} \) |
\(a_{568}= +5.82191399 \pm 2.7 \cdot 10^{-1} \) | \(a_{569}= +0.30460053 \pm 3.1 \cdot 10^{-1} \) | \(a_{570}= +0.18043900 \pm 6.4 \cdot 10^{-1} \) |
\(a_{571}= -1.21515819 \pm 3.6 \cdot 10^{-1} \) | \(a_{572}= -0.75388958 \pm 1.4 \cdot 10^{-1} \) | \(a_{573}= +0.74506480 \pm 2.9 \cdot 10^{-1} \) |
\(a_{574}= +1.34377713 \pm 1.4 \cdot 10^{-1} \) | \(a_{575}= -0.84073704 \pm 2.9 \cdot 10^{-1} \) | \(a_{576}= +0.89220805 \pm 2.7 \cdot 10^{-1} \) |
\(a_{577}= -0.25057041 \pm 4.0 \cdot 10^{-1} \) | \(a_{578}= +1.36230516 \pm 2.5 \cdot 10^{-1} \) | \(a_{579}= -0.24723815 \pm 4.9 \cdot 10^{-1} \) |
\(a_{580}= +0.79455571 \pm 3.4 \cdot 10^{-1} \) | \(a_{581}= +0.24664116 \pm 2.9 \cdot 10^{-1} \) | \(a_{582}= +1.42192025 \pm 6.3 \cdot 10^{-1} \) |
\(a_{583}= -0.49345065 \pm 1.4 \cdot 10^{-1} \) | \(a_{584}= -1.42618820 \pm 9.1 \cdot 10^{-2} \) | \(a_{585}= -0.05456445 \pm 5.3 \cdot 10^{-1} \) |
\(a_{586}= -2.46082256 \pm 1.8 \cdot 10^{-1} \) | \(a_{587}= -1.70976285 \pm 4.1 \cdot 10^{-1} \) | \(a_{588}= -1.10625088 \pm 7.6 \cdot 10^{-1} \) |
\(a_{589}= +0.26056025 \pm 8.3 \cdot 10^{-2} \) | \(a_{590}= +0.08433146 \pm 1.4 \cdot 10^{-1} \) | \(a_{591}= +0.42004184 \pm 7.2 \cdot 10^{-1} \) |
\(a_{592}= -1.41293254 \pm 2.0 \cdot 10^{-1} \) | \(a_{593}= +0.71953900 \pm 4.0 \cdot 10^{-1} \) | \(a_{594}= +0.15340931 \pm 4.6 \cdot 10^{-1} \) |
\(a_{595}= -0.16737668 \pm 7.1 \cdot 10^{-2} \) | \(a_{596}= +3.30536905 \pm 2.7 \cdot 10^{-1} \) | \(a_{597}= +0.39510378 \pm 2.7 \cdot 10^{-1} \) |
\(a_{598}= +1.16437949 \pm 1.0 \cdot 10^{-1} \) | \(a_{599}= +1.48950907 \pm 1.6 \cdot 10^{-1} \) | \(a_{600}= -1.68388018 \pm 4.8 \cdot 10^{-1} \) |
\(a_{601}= -0.67651313 \pm 2.4 \cdot 10^{-1} \) | \(a_{602}= +0.80247387 \pm 2.4 \cdot 10^{-1} \) | \(a_{603}= -0.55684981 \pm 6.3 \cdot 10^{-1} \) |
\(a_{604}= -1.93805828 \pm 4.8 \cdot 10^{-1} \) | \(a_{605}= -0.19677110 \pm 1.7 \cdot 10^{-1} \) | \(a_{606}= +0.00334994 \pm 4.4 \cdot 10^{-1} \) |
\(a_{607}= -0.03227819 \pm 6.1 \cdot 10^{-1} \) | \(a_{608}= -2.14661954 \pm 1.2 \cdot 10^{-1} \) | \(a_{609}= +0.96357314 \pm 7.6 \cdot 10^{-1} \) |
\(a_{610}= -0.00560982 \pm 1.4 \cdot 10^{-1} \) | \(a_{611}= -1.11352766 \pm 2.7 \cdot 10^{-1} \) | \(a_{612}= +0.46655613 \pm 5.6 \cdot 10^{-1} \) |
\(a_{613}= +0.74752198 \pm 3.4 \cdot 10^{-1} \) | \(a_{614}= +0.65000777 \pm 1.4 \cdot 10^{-1} \) | \(a_{615}= -0.07392403 \pm 8.2 \cdot 10^{-1} \) |
\(a_{616}= +1.70323611 \pm 1.5 \cdot 10^{-1} \) | \(a_{617}= -0.04950333 \pm 6.3 \cdot 10^{-1} \) | \(a_{618}= -1.77849004 \pm 5.1 \cdot 10^{-1} \) |
\(a_{619}= +1.13889145 \pm 2.6 \cdot 10^{-1} \) | \(a_{620}= +0.23715154 \pm 1.4 \cdot 10^{-1} \) | \(a_{621}= -0.17156742 \pm 5.6 \cdot 10^{-1} \) |
\(a_{622}= +0.60528887 \pm 2.4 \cdot 10^{-1} \) | \(a_{623}= -0.74336494 \pm 2.1 \cdot 10^{-1} \) | \(a_{624}= +1.29256674 \pm 5.5 \cdot 10^{-1} \) |
\(a_{625}= +0.83244813 \pm 1.5 \cdot 10^{-1} \) | \(a_{626}= -2.11539389 \pm 2.5 \cdot 10^{-1} \) | \(a_{627}= -0.16632102 \pm 4.1 \cdot 10^{-1} \) |
\(a_{628}= +0.92118788 \pm 5.1 \cdot 10^{-1} \) | \(a_{629}= -0.23091429 \pm 3.0 \cdot 10^{-1} \) | \(a_{630}= +0.19916295 \pm 7.1 \cdot 10^{-1} \) |
\(a_{631}= -0.93375119 \pm 3.7 \cdot 10^{-1} \) | \(a_{632}= +3.61673993 \pm 2.0 \cdot 10^{-1} \) | \(a_{633}= -0.38093570 \pm 1.6 \cdot 10^{-1} \) |
\(a_{634}= -2.23577302 \pm 1.0 \cdot 10^{-1} \) | \(a_{635}= +0.10956550 \pm 2.7 \cdot 10^{-1} \) | \(a_{636}= +1.78570420 \pm 5.9 \cdot 10^{-1} \) |
\(a_{637}= -0.50087815 \pm 2.3 \cdot 10^{-1} \) | \(a_{638}= -1.01145076 \pm 1.3 \cdot 10^{-1} \) | \(a_{639}= -0.62750355 \pm 4.2 \cdot 10^{-1} \) |
\(a_{640}= -0.47141099 \pm 2.5 \cdot 10^{-1} \) | \(a_{641}= +1.62119243 \pm 1.5 \cdot 10^{-1} \) | \(a_{642}= -0.21517572 \pm 4.1 \cdot 10^{-1} \) |
\(a_{643}= +0.88176996 \pm 3.9 \cdot 10^{-1} \) | \(a_{644}= -3.07744037 \pm 1.2 \cdot 10^{-1} \) | \(a_{645}= -0.04414579 \pm 6.4 \cdot 10^{-1} \) |
\(a_{646}= -0.69855888 \pm 5.7 \cdot 10^{-2} \) | \(a_{647}= -0.55755637 \pm 3.1 \cdot 10^{-1} \) | \(a_{648}= -0.34362586 \pm 2.5 \cdot 10^{-1} \) |
\(a_{649}= -0.07773316 \pm 2.3 \cdot 10^{-1} \) | \(a_{650}= -1.23174640 \pm 4.7 \cdot 10^{-2} \) | \(a_{651}= +0.28759828 \pm 4.7 \cdot 10^{-1} \) |
\(a_{652}= -2.26400242 \pm 7.6 \cdot 10^{-2} \) | \(a_{653}= +0.57059502 \pm 2.8 \cdot 10^{-1} \) | \(a_{654}= +1.10633351 \pm 6.2 \cdot 10^{-1} \) |
\(a_{655}= +0.02248991 \pm 1.6 \cdot 10^{-1} \) | \(a_{656}= +1.75117224 \pm 4.1 \cdot 10^{-1} \) | \(a_{657}= +0.15371889 \pm 1.8 \cdot 10^{-1} \) |
\(a_{658}= +4.06443129 \pm 1.3 \cdot 10^{-1} \) | \(a_{659}= +0.32035227 \pm 3.7 \cdot 10^{-1} \) | \(a_{660}= -0.15137875 \pm 9.1 \cdot 10^{-1} \) |
\(a_{661}= -1.06691628 \pm 4.0 \cdot 10^{-1} \) | \(a_{662}= +1.13782966 \pm 1.7 \cdot 10^{-1} \) | \(a_{663}= +0.21124302 \pm 4.4 \cdot 10^{-1} \) |
\(a_{664}= +0.57990886 \pm 2.9 \cdot 10^{-1} \) | \(a_{665}= -0.21592552 \pm 3.3 \cdot 10^{-2} \) | \(a_{666}= +0.27476689 \pm 4.9 \cdot 10^{-1} \) |
\(a_{667}= +1.13116999 \pm 7.7 \cdot 10^{-1} \) | \(a_{668}= -1.69869074 \pm 2.5 \cdot 10^{-1} \) | \(a_{669}= -1.08196749 \pm 1.4 \cdot 10^{-1} \) |
\(a_{670}= +0.75884831 \pm 1.5 \cdot 10^{-1} \) | \(a_{671}= +0.00517089 \pm 1.9 \cdot 10^{-1} \) | \(a_{672}= -2.36937170 \pm 5.6 \cdot 10^{-1} \) |
\(a_{673}= -0.11095089 \pm 3.0 \cdot 10^{-1} \) | \(a_{674}= +3.01880124 \pm 2.0 \cdot 10^{-1} \) | \(a_{675}= +0.18149371 \pm 2.3 \cdot 10^{-1} \) |
\(a_{676}= -1.38921105 \pm 2.3 \cdot 10^{-1} \) | \(a_{677}= -0.58141026 \pm 2.8 \cdot 10^{-1} \) | \(a_{678}= -1.44178110 \pm 4.4 \cdot 10^{-1} \) |
\(a_{679}= -1.70156597 \pm 2.8 \cdot 10^{-1} \) | \(a_{680}= -0.39354023 \pm 6.9 \cdot 10^{-2} \) | \(a_{681}= +0.60214649 \pm 5.5 \cdot 10^{-1} \) |
\(a_{682}= -0.30188835 \pm 7.2 \cdot 10^{-2} \) | \(a_{683}= +0.29889047 \pm 6.5 \cdot 10^{-1} \) | \(a_{684}= +0.60188418 \pm 5.2 \cdot 10^{-1} \) |
\(a_{685}= +0.05775724 \pm 3.2 \cdot 10^{-1} \) | \(a_{686}= -0.67589129 \pm 1.3 \cdot 10^{-1} \) | \(a_{687}= +1.07945553 \pm 2.4 \cdot 10^{-1} \) |
\(a_{688}= +1.04576118 \pm 2.2 \cdot 10^{-1} \) | \(a_{689}= +0.80851480 \pm 1.3 \cdot 10^{-1} \) | \(a_{690}= +0.23380389 \pm 1.0 \) |
\(a_{691}= -0.82686372 \pm 5.1 \cdot 10^{-1} \) | \(a_{692}= -1.55280043 \pm 2.1 \cdot 10^{-1} \) | \(a_{693}= -0.18357995 \pm 4.8 \cdot 10^{-1} \) |
\(a_{694}= -1.83089506 \pm 1.6 \cdot 10^{-1} \) | \(a_{695}= -0.38625214 \pm 2.0 \cdot 10^{-1} \) | \(a_{696}= +2.26557725 \pm 7.8 \cdot 10^{-1} \) |
\(a_{697}= +0.28619250 \pm 1.5 \cdot 10^{-1} \) | \(a_{698}= +0.26628465 \pm 2.3 \cdot 10^{-1} \) | \(a_{699}= -0.50115460 \pm 3.9 \cdot 10^{-1} \) |
\(a_{700}= +3.25549026 \pm 1.1 \cdot 10^{-1} \) | \(a_{701}= -0.74400975 \pm 3.7 \cdot 10^{-1} \) | \(a_{702}= -0.25135987 \pm 4.5 \cdot 10^{-1} \) |
\(a_{703}= -0.29789268 \pm 9.4 \cdot 10^{-2} \) | \(a_{704}= +1.12072679 \pm 1.6 \cdot 10^{-1} \) | \(a_{705}= -0.22359299 \pm 7.3 \cdot 10^{-1} \) |
\(a_{706}= -0.19234726 \pm 2.7 \cdot 10^{-1} \) | \(a_{707}= -0.00400877 \pm 2.1 \cdot 10^{-1} \) | \(a_{708}= +0.28130155 \pm 7.3 \cdot 10^{-1} \) |
\(a_{709}= +0.31292076 \pm 1.7 \cdot 10^{-1} \) | \(a_{710}= +0.85513185 \pm 1.3 \cdot 10^{-1} \) | \(a_{711}= -0.38982320 \pm 3.1 \cdot 10^{-1} \) |
\(a_{712}= -1.74781823 \pm 1.6 \cdot 10^{-1} \) | \(a_{713}= +0.33762102 \pm 3.2 \cdot 10^{-1} \) | \(a_{714}= -0.77104750 \pm 6.2 \cdot 10^{-1} \) |
\(a_{715}= -0.06853989 \pm 1.1 \cdot 10^{-1} \) | \(a_{716}= -2.45430032 \pm 3.3 \cdot 10^{-1} \) | \(a_{717}= +0.56407581 \pm 3.4 \cdot 10^{-1} \) |
\(a_{718}= -2.81145460 \pm 2.4 \cdot 10^{-1} \) | \(a_{719}= +1.16534629 \pm 1.6 \cdot 10^{-1} \) | \(a_{720}= +0.25954350 \pm 5.8 \cdot 10^{-1} \) |
\(a_{721}= +2.12826150 \pm 1.8 \cdot 10^{-1} \) | \(a_{722}= +1.00261856 \pm 1.8 \cdot 10^{-1} \) | \(a_{723}= +0.08981840 \pm 3.3 \cdot 10^{-1} \) |
\(a_{724}= +4.60655804 \pm 3.8 \cdot 10^{-1} \) | \(a_{725}= -1.19661551 \pm 2.8 \cdot 10^{-1} \) | \(a_{726}= -0.90645760 \pm 4.5 \cdot 10^{-1} \) |
\(a_{727}= +0.64720629 \pm 1.7 \cdot 10^{-1} \) | \(a_{728}= -2.79073823 \pm 8.1 \cdot 10^{-2} \) | \(a_{729}= +0.03703704 \pm 1.3 \cdot 10^{-6} \) |
\(a_{730}= -0.20948076 \pm 1.2 \cdot 10^{-1} \) | \(a_{731}= +0.17090781 \pm 2.3 \cdot 10^{-1} \) | \(a_{732}= -0.01871248 \pm 6.6 \cdot 10^{-1} \) |
\(a_{733}= +1.19468245 \pm 7.1 \cdot 10^{-1} \) | \(a_{734}= +1.60584760 \pm 1.5 \cdot 10^{-1} \) | \(a_{735}= -0.10057482 \pm 6.7 \cdot 10^{-1} \) |
\(a_{736}= -2.78148285 \pm 4.1 \cdot 10^{-1} \) | \(a_{737}= -0.69947418 \pm 3.9 \cdot 10^{-1} \) | \(a_{738}= -0.34054291 \pm 7.4 \cdot 10^{-1} \) |
\(a_{739}= -1.04294556 \pm 4.2 \cdot 10^{-1} \) | \(a_{740}= -0.27113003 \pm 2.4 \cdot 10^{-1} \) | \(a_{741}= +0.27251561 \pm 4.0 \cdot 10^{-1} \) |
\(a_{742}= -2.95111920 \pm 9.9 \cdot 10^{-2} \) | \(a_{743}= -1.17742471 \pm 5.9 \cdot 10^{-1} \) | \(a_{744}= +0.67620827 \pm 4.8 \cdot 10^{-1} \) |
\(a_{745}= +0.30050769 \pm 2.0 \cdot 10^{-1} \) | \(a_{746}= +2.03816939 \pm 1.3 \cdot 10^{-1} \) | \(a_{747}= -0.06250434 \pm 4.4 \cdot 10^{-1} \) |
\(a_{748}= +0.58605384 \pm 1.1 \cdot 10^{-1} \) | \(a_{749}= +0.25749383 \pm 1.0 \cdot 10^{-1} \) | \(a_{750}= -0.50959275 \pm 6.1 \cdot 10^{-1} \) |
\(a_{751}= -0.46013043 \pm 3.3 \cdot 10^{-1} \) | \(a_{752}= +5.29665156 \pm 3.4 \cdot 10^{-1} \) | \(a_{753}= -0.59564082 \pm 4.8 \cdot 10^{-1} \) |
\(a_{754}= +1.65725368 \pm 1.0 \cdot 10^{-1} \) | \(a_{755}= -0.17619861 \pm 3.6 \cdot 10^{-1} \) | \(a_{756}= +0.66434099 \pm 6.0 \cdot 10^{-1} \) |
\(a_{757}= -0.14582095 \pm 1.1 \cdot 10^{-1} \) | \(a_{758}= +0.36755696 \pm 1.0 \cdot 10^{-1} \) | \(a_{759}= -0.21551051 \pm 8.2 \cdot 10^{-1} \) |
\(a_{760}= -0.50768948 \pm 7.2 \cdot 10^{-2} \) | \(a_{761}= +0.25486828 \pm 6.4 \cdot 10^{-1} \) | \(a_{762}= +0.50473106 \pm 6.6 \cdot 10^{-1} \) |
\(a_{763}= -1.32391352 \pm 1.6 \cdot 10^{-1} \) | \(a_{764}= -3.38683040 \pm 2.4 \cdot 10^{-1} \) | \(a_{765}= +0.04241696 \pm 4.7 \cdot 10^{-1} \) |
\(a_{766}= +1.33069540 \pm 1.2 \cdot 10^{-1} \) | \(a_{767}= +0.12736514 \pm 1.8 \cdot 10^{-1} \) | \(a_{768}= -0.62628059 \pm 2.0 \cdot 10^{-1} \) |
\(a_{769}= -0.66512935 \pm 3.4 \cdot 10^{-1} \) | \(a_{770}= +0.25017399 \pm 5.0 \cdot 10^{-2} \) | \(a_{771}= +0.82333057 \pm 4.5 \cdot 10^{-1} \) |
\(a_{772}= +1.12386691 \pm 4.6 \cdot 10^{-1} \) | \(a_{773}= +0.24612589 \pm 3.0 \cdot 10^{-1} \) | \(a_{774}= -0.20336466 \pm 5.6 \cdot 10^{-1} \) |
\(a_{775}= -0.35715459 \pm 1.4 \cdot 10^{-1} \) | \(a_{776}= -4.00076443 \pm 2.7 \cdot 10^{-1} \) | \(a_{777}= -0.32880465 \pm 5.1 \cdot 10^{-1} \) |
\(a_{778}= +0.10458766 \pm 1.0 \cdot 10^{-1} \) | \(a_{779}= +0.36920474 \pm 2.0 \cdot 10^{-1} \) | \(a_{780}= +0.24803283 \pm 9.0 \cdot 10^{-1} \) |
\(a_{781}= -0.78822427 \pm 2.6 \cdot 10^{-1} \) | \(a_{782}= -0.90515786 \pm 7.5 \cdot 10^{-2} \) | \(a_{783}= -0.24419079 \pm 5.3 \cdot 10^{-1} \) |
\(a_{784}= +2.38249764 \pm 2.8 \cdot 10^{-1} \) | \(a_{785}= +0.08374981 \pm 3.9 \cdot 10^{-1} \) | \(a_{786}= +0.10360338 \pm 4.7 \cdot 10^{-1} \) |
\(a_{787}= +1.46138287 \pm 6.2 \cdot 10^{-1} \) | \(a_{788}= -1.90937820 \pm 6.6 \cdot 10^{-1} \) | \(a_{789}= +0.05413019 \pm 3.2 \cdot 10^{-1} \) |
\(a_{790}= +0.53123243 \pm 1.3 \cdot 10^{-1} \) | \(a_{791}= +1.72533281 \pm 2.7 \cdot 10^{-1} \) | \(a_{792}= -0.43163778 \pm 5.0 \cdot 10^{-1} \) |
\(a_{793}= -0.00847246 \pm 1.8 \cdot 10^{-1} \) | \(a_{794}= +1.07722859 \pm 1.8 \cdot 10^{-1} \) | \(a_{795}= +0.16234733 \pm 5.0 \cdot 10^{-1} \) |
\(a_{796}= -1.79601761 \pm 2.7 \cdot 10^{-1} \) | \(a_{797}= +0.52121531 \pm 1.4 \cdot 10^{-1} \) | \(a_{798}= -0.99469552 \pm 5.9 \cdot 10^{-1} \) |
\(a_{799}= +0.86562698 \pm 1.4 \cdot 10^{-1} \) | \(a_{800}= +2.94240967 \pm 1.8 \cdot 10^{-1} \) | \(a_{801}= +0.18838515 \pm 1.8 \cdot 10^{-1} \) |
\(a_{802}= -1.84043172 \pm 1.7 \cdot 10^{-1} \) | \(a_{803}= +0.19309048 \pm 1.0 \cdot 10^{-1} \) | \(a_{804}= +2.53126422 \pm 1.0 \) |
\(a_{805}= -0.27978555 \pm 9.6 \cdot 10^{-2} \) | \(a_{806}= +0.49464155 \pm 4.8 \cdot 10^{-2} \) | \(a_{807}= +0.40992630 \pm 2.7 \cdot 10^{-1} \) |
\(a_{808}= -0.00942551 \pm 1.8 \cdot 10^{-1} \) | \(a_{809}= -0.33433355 \pm 3.6 \cdot 10^{-1} \) | \(a_{810}= -0.05047230 \pm 4.8 \cdot 10^{-1} \) |
\(a_{811}= -1.59157030 \pm 1.5 \cdot 10^{-1} \) | \(a_{812}= -4.38010065 \pm 1.6 \cdot 10^{-1} \) | \(a_{813}= -0.79337907 \pm 3.8 \cdot 10^{-1} \) |
\(a_{814}= +0.34514216 \pm 1.5 \cdot 10^{-1} \) | \(a_{815}= -0.20583182 \pm 6.6 \cdot 10^{-2} \) | \(a_{816}= -1.00480724 \pm 4.9 \cdot 10^{-1} \) |
\(a_{817}= +0.22048088 \pm 1.1 \cdot 10^{-1} \) | \(a_{818}= -0.24110226 \pm 2.0 \cdot 10^{-1} \) | \(a_{819}= +0.30079423 \pm 4.8 \cdot 10^{-1} \) |
\(a_{820}= +0.33603542 \pm 3.3 \cdot 10^{-1} \) | \(a_{821}= -0.22892090 \pm 4.5 \cdot 10^{-1} \) | \(a_{822}= +0.26606799 \pm 6.7 \cdot 10^{-1} \) |
\(a_{823}= +1.68496952 \pm 1.9 \cdot 10^{-1} \) | \(a_{824}= +5.00402164 \pm 1.8 \cdot 10^{-1} \) | \(a_{825}= +0.22797919 \pm 4.9 \cdot 10^{-1} \) |
\(a_{826}= -0.46488909 \pm 2.7 \cdot 10^{-1} \) | \(a_{827}= -1.41378555 \pm 2.9 \cdot 10^{-1} \) | \(a_{828}= +0.77989159 \pm 9.3 \cdot 10^{-1} \) |
\(a_{829}= -0.72430682 \pm 4.4 \cdot 10^{-1} \) | \(a_{830}= +0.08517792 \pm 9.3 \cdot 10^{-2} \) | \(a_{831}= -0.99597158 \pm 2.0 \cdot 10^{-1} \) |
\(a_{832}= -1.83630154 \pm 1.4 \cdot 10^{-1} \) | \(a_{833}= +0.38936944 \pm 1.5 \cdot 10^{-1} \) | \(a_{834}= -1.77933241 \pm 5.1 \cdot 10^{-1} \) |
\(a_{835}= -0.15443650 \pm 1.9 \cdot 10^{-1} \) | \(a_{836}= +0.75604308 \pm 8.7 \cdot 10^{-2} \) | \(a_{837}= -0.07288378 \pm 2.3 \cdot 10^{-1} \) |
\(a_{838}= -0.01606532 \pm 9.7 \cdot 10^{-2} \) | \(a_{839}= -0.91439023 \pm 2.0 \cdot 10^{-1} \) | \(a_{840}= -0.56037182 \pm 7.6 \cdot 10^{-1} \) |
\(a_{841}= +0.60998681 \pm 3.3 \cdot 10^{-1} \) | \(a_{842}= +2.11576772 \pm 2.9 \cdot 10^{-1} \) | \(a_{843}= -0.13653244 \pm 4.3 \cdot 10^{-1} \) |
\(a_{844}= +1.73161397 \pm 1.6 \cdot 10^{-1} \) | \(a_{845}= -0.12630015 \pm 1.8 \cdot 10^{-1} \) | \(a_{846}= -1.03001697 \pm 6.5 \cdot 10^{-1} \) |
\(a_{847}= +1.08472850 \pm 1.2 \cdot 10^{-1} \) | \(a_{848}= -3.84581483 \pm 1.6 \cdot 10^{-1} \) | \(a_{849}= +0.27237871 \pm 6.0 \cdot 10^{-1} \) |
\(a_{850}= +0.95752711 \pm 6.3 \cdot 10^{-2} \) | \(a_{851}= -0.38599452 \pm 3.1 \cdot 10^{-1} \) | \(a_{852}= +2.85243392 \pm 7.9 \cdot 10^{-1} \) |
\(a_{853}= -0.09241555 \pm 4.9 \cdot 10^{-1} \) | \(a_{854}= +0.03092491 \pm 3.5 \cdot 10^{-2} \) | \(a_{855}= +0.05472031 \pm 4.3 \cdot 10^{-1} \) |
\(a_{856}= +0.60542592 \pm 1.2 \cdot 10^{-1} \) | \(a_{857}= +0.43085559 \pm 2.8 \cdot 10^{-1} \) | \(a_{858}= -0.31573997 \pm 7.1 \cdot 10^{-1} \) |
\(a_{859}= -0.67640781 \pm 3.1 \cdot 10^{-1} \) | \(a_{860}= +0.20067289 \pm 2.2 \cdot 10^{-1} \) | \(a_{861}= +0.40751668 \pm 7.7 \cdot 10^{-1} \) |
\(a_{862}= -1.37100572 \pm 1.9 \cdot 10^{-1} \) | \(a_{863}= -0.04796386 \pm 4.6 \cdot 10^{-1} \) | \(a_{864}= +0.60045130 \pm 3.3 \cdot 10^{-1} \) |
\(a_{865}= -0.14117288 \pm 1.7 \cdot 10^{-1} \) | \(a_{866}= +2.09063989 \pm 2.5 \cdot 10^{-1} \) | \(a_{867}= +0.41313553 \pm 3.9 \cdot 10^{-1} \) |
\(a_{868}= -1.30733140 \pm 9.4 \cdot 10^{-2} \) | \(a_{869}= -0.48966752 \pm 2.0 \cdot 10^{-1} \) | \(a_{870}= +0.33277154 \pm 1.0 \) |
\(a_{871}= +1.14608264 \pm 4.1 \cdot 10^{-1} \) | \(a_{872}= -3.11281857 \pm 2.3 \cdot 10^{-1} \) | \(a_{873}= +0.43121453 \pm 4.2 \cdot 10^{-1} \) |
\(a_{874}= -1.16770556 \pm 6.7 \cdot 10^{-2} \) | \(a_{875}= +0.60981316 \pm 1.6 \cdot 10^{-1} \) | \(a_{876}= -0.69875776 \pm 5.5 \cdot 10^{-1} \) |
\(a_{877}= -0.20993846 \pm 2.4 \cdot 10^{-1} \) | \(a_{878}= +0.97859310 \pm 1.7 \cdot 10^{-1} \) | \(a_{879}= -0.74627423 \pm 6.4 \cdot 10^{-1} \) |
\(a_{880}= +0.32601965 \pm 1.4 \cdot 10^{-1} \) | \(a_{881}= +0.73381978 \pm 6.1 \cdot 10^{-1} \) | \(a_{882}= -0.46331403 \pm 5.9 \cdot 10^{-1} \) |
\(a_{883}= -0.83969668 \pm 1.0 \cdot 10^{-1} \) | \(a_{884}= -0.96024436 \pm 8.4 \cdot 10^{-2} \) | \(a_{885}= +0.02557454 \pm 6.4 \cdot 10^{-1} \) |
\(a_{886}= -1.53045505 \pm 3.1 \cdot 10^{-1} \) | \(a_{887}= -1.64934286 \pm 5.1 \cdot 10^{-1} \) | \(a_{888}= -0.77309372 \pm 5.3 \cdot 10^{-1} \) |
\(a_{889}= -0.60399533 \pm 4.0 \cdot 10^{-1} \) | \(a_{890}= -0.25672228 \pm 1.0 \cdot 10^{-1} \) | \(a_{891}= +0.04652323 \pm 2.5 \cdot 10^{-1} \) |
\(a_{892}= +4.91828416 \pm 1.5 \cdot 10^{-1} \) | \(a_{893}= +1.11670847 \pm 1.7 \cdot 10^{-1} \) | \(a_{894}= +1.38433685 \pm 5.5 \cdot 10^{-1} \) |
\(a_{895}= -0.22313276 \pm 2.4 \cdot 10^{-1} \) | \(a_{896}= +2.59871971 \pm 1.2 \cdot 10^{-1} \) | \(a_{897}= +0.35311217 \pm 8.1 \cdot 10^{-1} \) |
\(a_{898}= -0.21397397 \pm 2.6 \cdot 10^{-1} \) | \(a_{899}= +0.48053378 \pm 3.0 \cdot 10^{-1} \) | \(a_{900}= -0.82501338 \pm 6.0 \cdot 10^{-1} \) |
\(a_{901}= -0.62851805 \pm 1.3 \cdot 10^{-1} \) | \(a_{902}= -0.42776520 \pm 1.1 \cdot 10^{-1} \) | \(a_{903}= +0.24335991 \pm 5.9 \cdot 10^{-1} \) |
\(a_{904}= +4.05664563 \pm 2.0 \cdot 10^{-1} \) | \(a_{905}= +0.41880531 \pm 3.0 \cdot 10^{-1} \) | \(a_{906}= -0.81168712 \pm 7.3 \cdot 10^{-1} \) |
\(a_{907}= -0.07229031 \pm 7.3 \cdot 10^{-1} \) | \(a_{908}= -2.73716871 \pm 5.2 \cdot 10^{-1} \) | \(a_{909}= +0.00101591 \pm 2.3 \cdot 10^{-1} \) |
\(a_{910}= -0.40990801 \pm 3.0 \cdot 10^{-2} \) | \(a_{911}= -0.43929714 \pm 5.1 \cdot 10^{-1} \) | \(a_{912}= -1.29625898 \pm 4.5 \cdot 10^{-1} \) |
\(a_{913}= -0.07851340 \pm 2.8 \cdot 10^{-1} \) | \(a_{914}= +0.84672794 \pm 2.3 \cdot 10^{-1} \) | \(a_{915}= -0.00170125 \pm 5.7 \cdot 10^{-1} \) |
\(a_{916}= -4.90686558 \pm 1.9 \cdot 10^{-1} \) | \(a_{917}= -0.12397882 \pm 2.6 \cdot 10^{-1} \) | \(a_{918}= +0.19540053 \pm 3.9 \cdot 10^{-1} \) |
\(a_{919}= +0.84719002 \pm 2.7 \cdot 10^{-1} \) | \(a_{920}= -0.65783878 \pm 2.0 \cdot 10^{-1} \) | \(a_{921}= +0.19712272 \pm 1.8 \cdot 10^{-1} \) |
\(a_{922}= -0.60689138 \pm 9.8 \cdot 10^{-2} \) | \(a_{923}= +1.29149891 \pm 2.5 \cdot 10^{-1} \) | \(a_{924}= +0.83449678 \pm 8.6 \cdot 10^{-1} \) |
\(a_{925}= +0.40832681 \pm 1.3 \cdot 10^{-1} \) | \(a_{926}= +2.89180790 \pm 2.2 \cdot 10^{-1} \) | \(a_{927}= -0.53934863 \pm 3.0 \cdot 10^{-1} \) |
\(a_{928}= -3.95886626 \pm 4.1 \cdot 10^{-1} \) | \(a_{929}= +0.02122637 \pm 3.8 \cdot 10^{-1} \) | \(a_{930}= +0.09932253 \pm 7.2 \cdot 10^{-1} \) |
\(a_{931}= +0.50230891 \pm 1.4 \cdot 10^{-1} \) | \(a_{932}= +2.27809129 \pm 3.7 \cdot 10^{-1} \) | \(a_{933}= +0.18356118 \pm 5.9 \cdot 10^{-1} \) |
\(a_{934}= +2.55094056 \pm 2.3 \cdot 10^{-1} \) | \(a_{935}= +0.05328110 \pm 8.6 \cdot 10^{-2} \) | \(a_{936}= +0.70723491 \pm 5.0 \cdot 10^{-1} \) |
\(a_{937}= -0.50833395 \pm 2.7 \cdot 10^{-1} \) | \(a_{938}= -4.18325859 \pm 1.1 \cdot 10^{-1} \) | \(a_{939}= -0.64151880 \pm 2.5 \cdot 10^{-1} \) |
\(a_{940}= +1.01638348 \pm 2.7 \cdot 10^{-1} \) | \(a_{941}= -1.43024722 \pm 3.0 \cdot 10^{-1} \) | \(a_{942}= +0.38580694 \pm 7.6 \cdot 10^{-1} \) |
\(a_{943}= +0.47839715 \pm 7.9 \cdot 10^{-1} \) | \(a_{944}= -0.60583027 \pm 1.8 \cdot 10^{-1} \) | \(a_{945}= +0.06039857 \pm 5.1 \cdot 10^{-1} \) |
\(a_{946}= -0.25545188 \pm 1.7 \cdot 10^{-1} \) | \(a_{947}= +0.59530310 \pm 2.0 \cdot 10^{-1} \) | \(a_{948}= +1.77201375 \pm 6.8 \cdot 10^{-1} \) |
\(a_{949}= -0.31637714 \pm 1.0 \cdot 10^{-1} \) | \(a_{950}= +1.23526491 \pm 4.2 \cdot 10^{-2} \) | \(a_{951}= -0.67802523 \pm 2.5 \cdot 10^{-1} \) |
\(a_{952}= +2.16944617 \pm 7.9 \cdot 10^{-2} \) | \(a_{953}= -0.21732869 \pm 7.0 \cdot 10^{-1} \) | \(a_{954}= +0.74787901 \pm 4.3 \cdot 10^{-1} \) |
\(a_{955}= -0.30791375 \pm 1.6 \cdot 10^{-1} \) | \(a_{956}= -2.56411136 \pm 2.9 \cdot 10^{-1} \) | \(a_{957}= -0.30673469 \pm 7.9 \cdot 10^{-1} \) |
\(a_{958}= +2.05837819 \pm 2.0 \cdot 10^{-1} \) | \(a_{959}= -0.31839496 \pm 2.2 \cdot 10^{-1} \) | \(a_{960}= -0.36872381 \pm 5.5 \cdot 10^{-1} \) |
\(a_{961}= -0.85657478 \pm 2.7 \cdot 10^{-1} \) | \(a_{962}= -0.56551257 \pm 9.1 \cdot 10^{-2} \) | \(a_{963}= -0.06525464 \pm 2.0 \cdot 10^{-1} \) |
\(a_{964}= -0.40828621 \pm 2.8 \cdot 10^{-1} \) | \(a_{965}= +0.10217638 \pm 3.5 \cdot 10^{-1} \) | \(a_{966}= -1.28887699 \pm 1.0 \) |
\(a_{967}= -0.83544376 \pm 7.1 \cdot 10^{-1} \) | \(a_{968}= +2.55044076 \pm 1.4 \cdot 10^{-1} \) | \(a_{969}= -0.21184644 \pm 3.4 \cdot 10^{-1} \) |
\(a_{970}= -0.58763855 \pm 9.0 \cdot 10^{-2} \) | \(a_{971}= +0.69946172 \pm 6.4 \cdot 10^{-1} \) | \(a_{972}= -0.16835873 \pm 3.7 \cdot 10^{-1} \) |
\(a_{973}= +2.12926955 \pm 3.1 \cdot 10^{-1} \) | \(a_{974}= +0.20061090 \pm 1.1 \cdot 10^{-1} \) | \(a_{975}= -0.37354200 \pm 4.8 \cdot 10^{-1} \) |
\(a_{976}= +0.04030047 \pm 2.4 \cdot 10^{-1} \) | \(a_{977}= -1.20612571 \pm 3.9 \cdot 10^{-1} \) | \(a_{978}= -0.94819729 \pm 2.7 \cdot 10^{-1} \) |
\(a_{979}= +0.23663571 \pm 1.2 \cdot 10^{-1} \) | \(a_{980}= +0.45718152 \pm 2.4 \cdot 10^{-1} \) | \(a_{981}= +0.33550903 \pm 4.1 \cdot 10^{-1} \) |
\(a_{982}= -0.97274038 \pm 1.2 \cdot 10^{-1} \) | \(a_{983}= +0.12456058 \pm 1.7 \cdot 10^{-1} \) | \(a_{984}= +0.95816341 \pm 7.9 \cdot 10^{-1} \) |
\(a_{985}= -0.17359116 \pm 5.0 \cdot 10^{-1} \) | \(a_{986}= -1.28830523 \pm 2.4 \cdot 10^{-1} \) | \(a_{987}= +1.23258799 \pm 6.8 \cdot 10^{-1} \) |
\(a_{988}= -1.23877031 \pm 9.9 \cdot 10^{-2} \) | \(a_{989}= +0.28568815 \pm 3.7 \cdot 10^{-1} \) | \(a_{990}= -0.06339963 \pm 7.4 \cdot 10^{-1} \) |
\(a_{991}= +1.03668826 \pm 4.7 \cdot 10^{-1} \) | \(a_{992}= -1.18160531 \pm 1.9 \cdot 10^{-1} \) | \(a_{993}= +0.34506062 \pm 2.4 \cdot 10^{-1} \) |
\(a_{994}= -4.71403522 \pm 1.8 \cdot 10^{-1} \) | \(a_{995}= -0.16328498 \pm 2.0 \cdot 10^{-1} \) | \(a_{996}= +0.28412507 \pm 8.1 \cdot 10^{-1} \) |
\(a_{997}= -1.27823720 \pm 5.7 \cdot 10^{-1} \) | \(a_{998}= +2.43715647 \pm 2.4 \cdot 10^{-1} \) | \(a_{999}= +0.08332639 \pm 2.8 \cdot 10^{-1} \) |
\(a_{1000}= +1.43380794 \pm 2.2 \cdot 10^{-1} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000