Maass form invariants
Level: | \( 3 \) |
Weight: | \( 0 \) |
Character: | 3.1 |
Symmetry: | odd |
Fricke sign: | not computed rigorously |
Spectral parameter: | \(20.4094388902703688987155695619 \pm 10 \cdot 10^{-4}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -0.76955543 \pm 9.7 \cdot 10^{-2} \) | \(a_{3}= \pm0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= -0.40778443 \pm 1.7 \cdot 10^{-1} \) | \(a_{5}= -0.24977912 \pm 1.3 \cdot 10^{-1} \) | \(a_{6}= \pm0.44430304 \pm 5.6 \cdot 10^{-2} \) |
\(a_{7}= -0.54180923 \pm 1.1 \cdot 10^{-1} \) | \(a_{8}= +1.08336816 \pm 1.1 \cdot 10^{-1} \) | \(a_{9}= \pm0.33333333 \pm 1.0 \cdot 10^{-8} \) |
\(a_{10}= +0.19221888 \pm 7.7 \cdot 10^{-2} \) | \(a_{11}= -0.60561611 \pm 1.2 \cdot 10^{-1} \) | \(a_{12}= \pm0.23543445 \pm 1.0 \cdot 10^{-1} \) |
\(a_{13}= +1.62354307 \pm 1.1 \cdot 10^{-1} \) | \(a_{14}= +0.41695224 \pm 7.5 \cdot 10^{-2} \) | \(a_{15}= \pm0.14421004 \pm 7.7 \cdot 10^{-2} \) |
\(a_{16}= -0.42592742 \pm 1.4 \cdot 10^{-1} \) | \(a_{17}= +0.42782663 \pm 9.0 \cdot 10^{-2} \) | \(a_{18}= \pm0.25651848 \pm 3.2 \cdot 10^{-2} \) |
\(a_{19}= +1.14527548 \pm 7.3 \cdot 10^{-2} \) | \(a_{20}= +0.10185604 \pm 1.2 \cdot 10^{-1} \) | \(a_{21}= \pm0.31281371 \pm 6.3 \cdot 10^{-2} \) |
\(a_{22}= +0.46605517 \pm 6.2 \cdot 10^{-2} \) | \(a_{23}= +0.74811490 \pm 2.6 \cdot 10^{-1} \) | \(a_{24}= \pm0.62548290 \pm 6.9 \cdot 10^{-2} \) |
\(a_{25}= -0.93761039 \pm 1.1 \cdot 10^{-1} \) | \(a_{26}= -1.24940640 \pm 4.2 \cdot 10^{-2} \) | \(a_{27}= \pm0.19245009 \pm 1.0 \cdot 10^{-8} \) |
\(a_{28}= +0.22094137 \pm 7.3 \cdot 10^{-2} \) | \(a_{29}= -1.26224600 \pm 2.5 \cdot 10^{-1} \) | \(a_{30}= \pm0.11097762 \pm 4.4 \cdot 10^{-2} \) |
\(a_{31}= -1.56533086 \pm 1.1 \cdot 10^{-1} \) | \(a_{32}= -0.75559340 \pm 1.5 \cdot 10^{-1} \) | \(a_{33}= \pm0.34965263 \pm 7.0 \cdot 10^{-2} \) |
\(a_{34}= -0.32923630 \pm 1.0 \cdot 10^{-1} \) | \(a_{35}= +0.13533263 \pm 4.8 \cdot 10^{-2} \) | \(a_{36}= \pm0.13592814 \pm 5.9 \cdot 10^{-2} \) |
\(a_{37}= +0.24810186 \pm 1.3 \cdot 10^{-1} \) | \(a_{38}= -0.88135297 \pm 3.3 \cdot 10^{-2} \) | \(a_{39}= \pm0.93735303 \pm 6.9 \cdot 10^{-2} \) |
\(a_{40}= -0.27060274 \pm 7.4 \cdot 10^{-2} \) | \(a_{41}= +1.62610287 \pm 2.5 \cdot 10^{-1} \) | \(a_{42}= \pm0.24072749 \pm 4.3 \cdot 10^{-2} \) |
\(a_{43}= -0.29849590 \pm 1.7 \cdot 10^{-1} \) | \(a_{44}= +0.24696082 \pm 1.0 \cdot 10^{-1} \) | \(a_{45}= \pm0.08325971 \pm 4.4 \cdot 10^{-2} \) |
\(a_{46}= -0.57571588 \pm 7.8 \cdot 10^{-2} \) | \(a_{47}= +0.12131644 \pm 2.1 \cdot 10^{-1} \) | \(a_{48}= \pm0.24590931 \pm 8.3 \cdot 10^{-2} \) |
\(a_{49}= -0.70644275 \pm 1.8 \cdot 10^{-1} \) | \(a_{50}= +0.72154317 \pm 5.4 \cdot 10^{-2} \) | \(a_{51}= \pm0.24700582 \pm 5.2 \cdot 10^{-2} \) |
\(a_{52}= -0.66205559 \pm 1.0 \cdot 10^{-1} \) | \(a_{53}= +1.27836064 \pm 1.0 \cdot 10^{-1} \) | \(a_{54}= \pm0.14810101 \pm 1.8 \cdot 10^{-2} \) |
\(a_{55}= +0.15127026 \pm 8.6 \cdot 10^{-2} \) | \(a_{56}= -0.58697887 \pm 1.0 \cdot 10^{-1} \) | \(a_{57}= \pm0.66122510 \pm 4.2 \cdot 10^{-2} \) |
\(a_{58}= +0.97136827 \pm 1.0 \cdot 10^{-1} \) | \(a_{59}= -1.64265548 \pm 1.7 \cdot 10^{-1} \) | \(a_{60}= \pm0.05880661 \pm 7.2 \cdot 10^{-2} \) |
\(a_{61}= +0.43834360 \pm 1.4 \cdot 10^{-1} \) | \(a_{62}= +1.20460887 \pm 5.3 \cdot 10^{-2} \) | \(a_{63}= \pm0.18060308 \pm 3.6 \cdot 10^{-2} \) |
\(a_{64}= +1.00739843 \pm 1.3 \cdot 10^{-1} \) | \(a_{65}= -0.40552715 \pm 8.4 \cdot 10^{-2} \) | \(a_{66}= \pm0.26907708 \pm 3.5 \cdot 10^{-2} \) |
\(a_{67}= -0.85421362 \pm 3.0 \cdot 10^{-1} \) | \(a_{68}= -0.17446104 \pm 1.0 \cdot 10^{-1} \) | \(a_{69}= \pm0.43192434 \pm 1.5 \cdot 10^{-1} \) |
\(a_{70}= -0.10414596 \pm 3.8 \cdot 10^{-2} \) | \(a_{71}= +0.41882483 \pm 2.0 \cdot 10^{-1} \) | \(a_{72}= \pm0.36112272 \pm 3.9 \cdot 10^{-2} \) |
\(a_{73}= +0.47755725 \pm 8.6 \cdot 10^{-2} \) | \(a_{74}= -0.19092813 \pm 1.3 \cdot 10^{-1} \) | \(a_{75}= \pm0.54132961 \pm 6.4 \cdot 10^{-2} \) |
\(a_{76}= -0.46702551 \pm 6.6 \cdot 10^{-2} \) | \(a_{77}= +0.32812840 \pm 7.4 \cdot 10^{-2} \) | \(a_{78}= \pm0.72134512 \pm 2.4 \cdot 10^{-2} \) |
\(a_{79}= -1.58565172 \pm 1.5 \cdot 10^{-1} \) | \(a_{80}= +0.10638778 \pm 1.0 \cdot 10^{-1} \) | \(a_{81}= \pm0.11111111 \pm 1.0 \cdot 10^{-8} \) |
\(a_{82}= -1.25137630 \pm 8.3 \cdot 10^{-2} \) | \(a_{83}= +1.21300895 \pm 2.1 \cdot 10^{-1} \) | \(a_{84}= \pm0.12756056 \pm 4.2 \cdot 10^{-2} \) |
\(a_{85}= -0.10686216 \pm 7.2 \cdot 10^{-2} \) | \(a_{86}= +0.22970914 \pm 1.2 \cdot 10^{-1} \) | \(a_{87}= \pm0.72875807 \pm 1.4 \cdot 10^{-1} \) |
\(a_{88}= -0.65610521 \pm 7.7 \cdot 10^{-2} \) | \(a_{89}= +0.83435555 \pm 8.8 \cdot 10^{-2} \) | \(a_{90}= \pm0.06407296 \pm 2.5 \cdot 10^{-2} \) |
\(a_{91}= -0.87965063 \pm 4.5 \cdot 10^{-2} \) | \(a_{92}= -0.30506961 \pm 2.4 \cdot 10^{-1} \) | \(a_{93}= \pm0.90374419 \pm 6.5 \cdot 10^{-2} \) |
\(a_{94}= -0.09335973 \pm 8.6 \cdot 10^{-2} \) | \(a_{95}= -0.28606590 \pm 5.7 \cdot 10^{-2} \) | \(a_{96}= \pm0.43624205 \pm 9.2 \cdot 10^{-2} \) |
\(a_{97}= -1.83716426 \pm 2.0 \cdot 10^{-1} \) | \(a_{98}= +0.54364686 \pm 8.8 \cdot 10^{-2} \) | \(a_{99}= \pm0.20187204 \pm 4.0 \cdot 10^{-2} \) |
\(a_{100}= +0.38234292 \pm 9.1 \cdot 10^{-2} \) | \(a_{101}= -0.33390666 \pm 1.1 \cdot 10^{-1} \) | \(a_{102}= \pm0.19008467 \pm 6.3 \cdot 10^{-2} \) |
\(a_{103}= +0.83060504 \pm 1.4 \cdot 10^{-1} \) | \(a_{104}= +1.75889487 \pm 6.8 \cdot 10^{-2} \) | \(a_{105}= \pm0.07813433 \pm 2.8 \cdot 10^{-2} \) |
\(a_{106}= -0.98376938 \pm 6.7 \cdot 10^{-2} \) | \(a_{107}= -0.20622844 \pm 9.9 \cdot 10^{-2} \) | \(a_{108}= \pm0.07847815 \pm 3.4 \cdot 10^{-2} \) |
\(a_{109}= -1.31715924 \pm 1.9 \cdot 10^{-1} \) | \(a_{110}= -0.11641085 \pm 5.3 \cdot 10^{-2} \) | \(a_{111}= \pm0.14324167 \pm 7.9 \cdot 10^{-2} \) |
\(a_{112}= +0.23077141 \pm 4.0 \cdot 10^{-2} \) | \(a_{113}= -0.65768137 \pm 1.1 \cdot 10^{-1} \) | \(a_{114}= \pm0.50884937 \pm 1.9 \cdot 10^{-2} \) |
\(a_{115}= -0.18686348 \pm 1.8 \cdot 10^{-1} \) | \(a_{116}= +0.51472427 \pm 2.3 \cdot 10^{-1} \) | \(a_{117}= \pm0.54118102 \pm 3.9 \cdot 10^{-2} \) |
\(a_{118}= +1.26411445 \pm 1.1 \cdot 10^{-1} \) | \(a_{119}= -0.23180042 \pm 4.9 \cdot 10^{-2} \) | \(a_{120}= \pm0.15623257 \pm 4.2 \cdot 10^{-2} \) |
\(a_{121}= -0.63322912 \pm 1.2 \cdot 10^{-1} \) | \(a_{122}= -0.33732970 \pm 5.9 \cdot 10^{-2} \) | \(a_{123}= \pm0.93883093 \pm 1.4 \cdot 10^{-1} \) |
\(a_{124}= +0.63831756 \pm 1.0 \cdot 10^{-1} \) | \(a_{125}= +0.48397461 \pm 1.9 \cdot 10^{-1} \) | \(a_{126}= \pm0.13898408 \pm 2.5 \cdot 10^{-2} \) |
\(a_{127}= -1.56444447 \pm 2.2 \cdot 10^{-1} \) | \(a_{128}= -0.01965554 \pm 1.6 \cdot 10^{-1} \) | \(a_{129}= \pm0.17233669 \pm 9.9 \cdot 10^{-2} \) |
\(a_{130}= +0.31207563 \pm 3.2 \cdot 10^{-2} \) | \(a_{131}= +0.44464594 \pm 1.2 \cdot 10^{-1} \) | \(a_{132}= \pm0.14258290 \pm 6.2 \cdot 10^{-2} \) |
\(a_{133}= -0.62052083 \pm 2.0 \cdot 10^{-2} \) | \(a_{134}= +0.65736474 \pm 1.0 \cdot 10^{-1} \) | \(a_{135}= \pm0.04807001 \pm 2.5 \cdot 10^{-2} \) |
\(a_{136}= +0.46349374 \pm 4.6 \cdot 10^{-2} \) | \(a_{137}= -0.44120404 \pm 2.2 \cdot 10^{-1} \) | \(a_{138}= \pm0.33238972 \pm 4.5 \cdot 10^{-2} \) |
\(a_{139}= +0.85041449 \pm 1.4 \cdot 10^{-1} \) | \(a_{140}= -0.05518654 \pm 4.1 \cdot 10^{-2} \) | \(a_{141}= \pm0.07004208 \pm 1.2 \cdot 10^{-1} \) |
\(a_{142}= -0.32230892 \pm 9.0 \cdot 10^{-2} \) | \(a_{143}= -0.98324384 \pm 7.5 \cdot 10^{-2} \) | \(a_{144}= \pm0.14197581 \pm 4.7 \cdot 10^{-2} \) |
\(a_{145}= +0.31528269 \pm 1.7 \cdot 10^{-1} \) | \(a_{146}= -0.36750677 \pm 7.0 \cdot 10^{-2} \) | \(a_{147}= \pm0.40786491 \pm 1.0 \cdot 10^{-1} \) |
\(a_{148}= -0.10117208 \pm 1.4 \cdot 10^{-1} \) | \(a_{149}= -0.40711969 \pm 1.6 \cdot 10^{-1} \) | \(a_{150}= \pm0.41658315 \pm 3.1 \cdot 10^{-2} \) |
\(a_{151}= -0.58890623 \pm 2.5 \cdot 10^{-1} \) | \(a_{152}= +1.24075499 \pm 4.1 \cdot 10^{-2} \) | \(a_{153}= \pm0.14260888 \pm 3.0 \cdot 10^{-2} \) |
\(a_{154}= -0.25251300 \pm 5.0 \cdot 10^{-2} \) | \(a_{155}= +0.39098696 \pm 7.5 \cdot 10^{-2} \) | \(a_{156}= \pm0.38223797 \pm 6.3 \cdot 10^{-2} \) |
\(a_{157}= +0.41498909 \pm 2.6 \cdot 10^{-1} \) | \(a_{158}= +1.22024690 \pm 7.5 \cdot 10^{-2} \) | \(a_{159}= \pm0.73806186 \pm 6.2 \cdot 10^{-2} \) |
\(a_{160}= +0.18873145 \pm 1.1 \cdot 10^{-1} \) | \(a_{161}= -0.40533556 \pm 6.7 \cdot 10^{-2} \) | \(a_{162}= \pm0.08550616 \pm 1.0 \cdot 10^{-2} \) |
\(a_{163}= -0.48174923 \pm 3.3 \cdot 10^{-2} \) | \(a_{164}= -0.66309944 \pm 2.3 \cdot 10^{-1} \) | \(a_{165}= \pm0.08733592 \pm 4.9 \cdot 10^{-2} \) |
\(a_{166}= -0.93347763 \pm 8.3 \cdot 10^{-2} \) | \(a_{167}= -1.39027406 \pm 1.2 \cdot 10^{-1} \) | \(a_{168}= \pm0.33889241 \pm 6.1 \cdot 10^{-2} \) |
\(a_{169}= +1.63589211 \pm 1.2 \cdot 10^{-1} \) | \(a_{170}= +0.08223635 \pm 9.5 \cdot 10^{-2} \) | \(a_{171}= \pm0.38175849 \pm 2.4 \cdot 10^{-2} \) |
\(a_{172}= +0.12172198 \pm 1.4 \cdot 10^{-1} \) | \(a_{173}= +0.81269018 \pm 1.1 \cdot 10^{-1} \) | \(a_{174}= \pm0.56081973 \pm 6.1 \cdot 10^{-2} \) |
\(a_{175}= +0.50800597 \pm 9.1 \cdot 10^{-2} \) | \(a_{176}= +0.25794851 \pm 9.0 \cdot 10^{-2} \) | \(a_{177}= \pm0.94838758 \pm 9.9 \cdot 10^{-2} \) |
\(a_{178}= -0.64208284 \pm 6.7 \cdot 10^{-2} \) | \(a_{179}= -0.84462487 \pm 1.6 \cdot 10^{-1} \) | \(a_{180}= \pm0.03395201 \pm 4.1 \cdot 10^{-2} \) |
\(a_{181}= -1.17951765 \pm 2.0 \cdot 10^{-1} \) | \(a_{182}= +0.67693992 \pm 2.6 \cdot 10^{-2} \) | \(a_{183}= \pm0.25307779 \pm 8.1 \cdot 10^{-2} \) |
\(a_{184}= +0.81048386 \pm 1.4 \cdot 10^{-1} \) | \(a_{185}= -0.06197066 \pm 1.0 \cdot 10^{-1} \) | \(a_{186}= \pm0.69548126 \pm 3.0 \cdot 10^{-2} \) |
\(a_{187}= -0.25909870 \pm 5.1 \cdot 10^{-2} \) | \(a_{188}= -0.04947096 \pm 1.9 \cdot 10^{-1} \) | \(a_{189}= \pm0.10427124 \pm 2.1 \cdot 10^{-2} \) |
\(a_{190}= +0.22014357 \pm 3.5 \cdot 10^{-2} \) | \(a_{191}= -0.16973343 \pm 1.4 \cdot 10^{-1} \) | \(a_{192}= \pm0.58162175 \pm 7.6 \cdot 10^{-2} \) |
\(a_{193}= -0.54159178 \pm 2.3 \cdot 10^{-1} \) | \(a_{194}= +1.41379974 \pm 7.9 \cdot 10^{-2} \) | \(a_{195}= \pm0.23413121 \pm 4.9 \cdot 10^{-2} \) |
\(a_{196}= +0.28807636 \pm 1.6 \cdot 10^{-1} \) | \(a_{197}= -0.26695211 \pm 3.4 \cdot 10^{-1} \) | \(a_{198}= \pm0.15535172 \pm 2.0 \cdot 10^{-2} \) |
\(a_{199}= +0.64769637 \pm 1.3 \cdot 10^{-1} \) | \(a_{200}= -1.01577725 \pm 8.0 \cdot 10^{-2} \) | \(a_{201}= \pm0.49318047 \pm 1.7 \cdot 10^{-1} \) |
\(a_{202}= +0.25695968 \pm 8.3 \cdot 10^{-2} \) | \(a_{203}= +0.68389654 \pm 1.1 \cdot 10^{-1} \) | \(a_{204}= \pm0.10072513 \pm 5.9 \cdot 10^{-2} \) |
\(a_{205}= -0.40616654 \pm 1.7 \cdot 10^{-1} \) | \(a_{206}= -0.63919663 \pm 1.1 \cdot 10^{-1} \) | \(a_{207}= \pm0.24937163 \pm 8.9 \cdot 10^{-2} \) |
\(a_{208}= -0.69151152 \pm 9.0 \cdot 10^{-2} \) | \(a_{209}= -0.69359728 \pm 4.8 \cdot 10^{-2} \) | \(a_{210}= \pm0.06012870 \pm 2.2 \cdot 10^{-2} \) |
\(a_{211}= +0.01234581 \pm 7.7 \cdot 10^{-2} \) | \(a_{212}= -0.52129557 \pm 9.9 \cdot 10^{-2} \) | \(a_{213}= \pm0.24180863 \pm 1.1 \cdot 10^{-1} \) |
\(a_{214}= +0.15870422 \pm 6.6 \cdot 10^{-2} \) | \(a_{215}= +0.07455804 \pm 1.1 \cdot 10^{-1} \) | \(a_{216}= \pm0.20849430 \pm 2.3 \cdot 10^{-2} \) |
\(a_{217}= +0.84811072 \pm 7.2 \cdot 10^{-2} \) | \(a_{218}= +1.01362705 \pm 8.5 \cdot 10^{-2} \) | \(a_{219}= \pm0.27571780 \pm 4.9 \cdot 10^{-2} \) |
\(a_{220}= -0.06168566 \pm 7.6 \cdot 10^{-2} \) | \(a_{221}= +0.69459495 \pm 3.9 \cdot 10^{-2} \) | \(a_{222}= \pm0.11023241 \pm 7.9 \cdot 10^{-2} \) |
\(a_{223}= -0.17225358 \pm 6.9 \cdot 10^{-2} \) | \(a_{224}= +0.40938748 \pm 1.0 \cdot 10^{-1} \) | \(a_{225}= \pm0.31253680 \pm 3.7 \cdot 10^{-2} \) |
\(a_{226}= +0.50612228 \pm 9.2 \cdot 10^{-2} \) | \(a_{227}= -0.18765885 \pm 2.6 \cdot 10^{-1} \) | \(a_{228}= \pm0.26963730 \pm 3.8 \cdot 10^{-2} \) |
\(a_{229}= -0.70219657 \pm 1.1 \cdot 10^{-1} \) | \(a_{230}= +0.14380180 \pm 5.9 \cdot 10^{-2} \) | \(a_{231}= \pm0.18944502 \pm 4.3 \cdot 10^{-2} \) |
\(a_{232}= -1.36747712 \pm 1.4 \cdot 10^{-1} \) | \(a_{233}= -1.02595768 \pm 1.8 \cdot 10^{-1} \) | \(a_{234}= \pm0.41646880 \pm 1.4 \cdot 10^{-2} \) |
\(a_{235}= -0.03030231 \pm 1.5 \cdot 10^{-1} \) | \(a_{236}= +0.66984933 \pm 1.3 \cdot 10^{-1} \) | \(a_{237}= \pm0.91547645 \pm 8.7 \cdot 10^{-2} \) |
\(a_{238}= +0.17838327 \pm 5.7 \cdot 10^{-2} \) | \(a_{239}= -0.69714922 \pm 1.6 \cdot 10^{-1} \) | \(a_{240}= \pm0.06142301 \pm 6.1 \cdot 10^{-2} \) |
\(a_{241}= +1.13813088 \pm 1.6 \cdot 10^{-1} \) | \(a_{242}= +0.48730491 \pm 6.1 \cdot 10^{-2} \) | \(a_{243}= \pm0.06415003 \pm 1.0 \cdot 10^{-8} \) |
\(a_{244}= -0.17874969 \pm 1.2 \cdot 10^{-1} \) | \(a_{245}= +0.17645465 \pm 1.2 \cdot 10^{-1} \) | \(a_{246}= \pm0.72248245 \pm 4.8 \cdot 10^{-2} \) |
\(a_{247}= +1.85940407 \pm 5.4 \cdot 10^{-2} \) | \(a_{248}= -1.69582962 \pm 7.2 \cdot 10^{-2} \) | \(a_{249}= \pm0.70033104 \pm 1.2 \cdot 10^{-1} \) |
\(a_{250}= -0.37244529 \pm 9.3 \cdot 10^{-2} \) | \(a_{251}= -0.65307187 \pm 2.3 \cdot 10^{-1} \) | \(a_{252}= \pm0.07364712 \pm 2.4 \cdot 10^{-2} \) |
\(a_{253}= -0.45307043 \pm 1.6 \cdot 10^{-1} \) | \(a_{254}= +1.20392674 \pm 1.0 \cdot 10^{-1} \) | \(a_{255}= \pm0.06169689 \pm 4.1 \cdot 10^{-2} \) |
\(a_{256}= -0.99227240 \pm 9.7 \cdot 10^{-2} \) | \(a_{257}= +1.04223637 \pm 2.1 \cdot 10^{-1} \) | \(a_{258}= \pm0.13262263 \pm 7.4 \cdot 10^{-2} \) |
\(a_{259}= -0.13442388 \pm 7.1 \cdot 10^{-2} \) | \(a_{260}= +0.16536766 \pm 7.7 \cdot 10^{-2} \) | \(a_{261}= \pm0.42074867 \pm 8.5 \cdot 10^{-2} \) |
\(a_{262}= -0.34217970 \pm 7.2 \cdot 10^{-2} \) | \(a_{263}= -1.05526139 \pm 1.5 \cdot 10^{-1} \) | \(a_{264}= \pm0.37880252 \pm 4.4 \cdot 10^{-2} \) |
\(a_{265}= -0.31930779 \pm 7.5 \cdot 10^{-2} \) | \(a_{266}= +0.47752518 \pm 1.1 \cdot 10^{-2} \) | \(a_{267}= \pm0.48171540 \pm 5.1 \cdot 10^{-2} \) |
\(a_{268}= +0.34833502 \pm 2.8 \cdot 10^{-1} \) | \(a_{269}= +1.23809917 \pm 1.3 \cdot 10^{-1} \) | \(a_{270}= \pm0.03699254 \pm 1.4 \cdot 10^{-2} \) |
\(a_{271}= -0.44190708 \pm 1.8 \cdot 10^{-1} \) | \(a_{272}= -0.18222309 \pm 6.1 \cdot 10^{-2} \) | \(a_{273}= \pm0.50786653 \pm 2.6 \cdot 10^{-2} \) |
\(a_{274}= +0.33953096 \pm 1.1 \cdot 10^{-1} \) | \(a_{275}= +0.56783196 \pm 7.2 \cdot 10^{-2} \) | \(a_{276}= \pm0.17613202 \pm 1.4 \cdot 10^{-1} \) |
\(a_{277}= +1.50648715 \pm 9.8 \cdot 10^{-2} \) | \(a_{278}= -0.65444110 \pm 1.3 \cdot 10^{-1} \) | \(a_{279}= \pm0.52177695 \pm 3.7 \cdot 10^{-2} \) |
\(a_{280}= +0.14661506 \pm 3.8 \cdot 10^{-2} \) | \(a_{281}= -1.20380625 \pm 2.0 \cdot 10^{-1} \) | \(a_{282}= \pm0.05390126 \pm 5.0 \cdot 10^{-2} \) |
\(a_{283}= -1.08300768 \pm 2.8 \cdot 10^{-1} \) | \(a_{284}= -0.17079025 \pm 1.7 \cdot 10^{-1} \) | \(a_{285}= \pm0.16516022 \pm 3.2 \cdot 10^{-2} \) |
\(a_{286}= +0.75666064 \pm 2.7 \cdot 10^{-2} \) | \(a_{287}= -0.88103755 \pm 1.1 \cdot 10^{-1} \) | \(a_{288}= \pm0.25186447 \pm 5.3 \cdot 10^{-2} \) |
\(a_{289}= -0.81696438 \pm 1.8 \cdot 10^{-1} \) | \(a_{290}= -0.24262751 \pm 7.9 \cdot 10^{-2} \) | \(a_{291}= \pm1.06068728 \pm 1.1 \cdot 10^{-1} \) |
\(a_{292}= -0.19474041 \pm 8.7 \cdot 10^{-2} \) | \(a_{293}= +0.37220275 \pm 3.0 \cdot 10^{-1} \) | \(a_{294}= \pm0.31387466 \pm 5.1 \cdot 10^{-2} \) |
\(a_{295}= +0.41030103 \pm 9.4 \cdot 10^{-2} \) | \(a_{296}= +0.26878565 \pm 7.3 \cdot 10^{-2} \) | \(a_{297}= \pm0.11655088 \pm 2.3 \cdot 10^{-2} \) |
\(a_{298}= +0.31330117 \pm 8.7 \cdot 10^{-2} \) | \(a_{299}= +1.21459676 \pm 1.7 \cdot 10^{-1} \) | \(a_{300}= \pm0.22074579 \pm 5.3 \cdot 10^{-2} \) |
\(a_{301}= +0.16172783 \pm 1.6 \cdot 10^{-1} \) | \(a_{302}= +0.45319599 \pm 8.0 \cdot 10^{-2} \) | \(a_{303}= \pm0.19278110 \pm 6.5 \cdot 10^{-2} \) |
\(a_{304}= -0.48780423 \pm 5.7 \cdot 10^{-2} \) | \(a_{305}= -0.10948908 \pm 1.0 \cdot 10^{-1} \) | \(a_{306}= \pm0.10974543 \pm 3.6 \cdot 10^{-2} \) |
\(a_{307}= -0.17702226 \pm 8.9 \cdot 10^{-2} \) | \(a_{308}= -0.13380565 \pm 4.7 \cdot 10^{-2} \) | \(a_{309}= \pm0.47955005 \pm 8.4 \cdot 10^{-2} \) |
\(a_{310}= -0.30088614 \pm 3.8 \cdot 10^{-2} \) | \(a_{311}= +0.63922945 \pm 2.8 \cdot 10^{-1} \) | \(a_{312}= \pm1.01549843 \pm 3.9 \cdot 10^{-2} \) |
\(a_{313}= -0.75176243 \pm 1.2 \cdot 10^{-1} \) | \(a_{314}= -0.31935711 \pm 8.3 \cdot 10^{-2} \) | \(a_{315}= \pm0.04511088 \pm 1.6 \cdot 10^{-2} \) |
\(a_{316}= +0.64660409 \pm 1.3 \cdot 10^{-1} \) | \(a_{317}= -0.98678421 \pm 1.2 \cdot 10^{-1} \) | \(a_{318}= \pm0.56797951 \pm 3.8 \cdot 10^{-2} \) |
\(a_{319}= +0.76443651 \pm 1.5 \cdot 10^{-1} \) | \(a_{320}= -0.25162709 \pm 9.2 \cdot 10^{-2} \) | \(a_{321}= \pm0.11906605 \pm 5.7 \cdot 10^{-2} \) |
\(a_{322}= +0.31192818 \pm 2.3 \cdot 10^{-2} \) | \(a_{323}= +0.48997934 \pm 2.6 \cdot 10^{-2} \) | \(a_{324}= \pm0.04530938 \pm 1.9 \cdot 10^{-2} \) |
\(a_{325}= -1.52225086 \pm 6.2 \cdot 10^{-2} \) | \(a_{326}= +0.37073274 \pm 4.1 \cdot 10^{-2} \) | \(a_{327}= \pm0.76046224 \pm 1.1 \cdot 10^{-1} \) |
\(a_{328}= +1.76166808 \pm 1.4 \cdot 10^{-1} \) | \(a_{329}= -0.06573037 \pm 1.0 \cdot 10^{-1} \) | \(a_{330}= \pm0.06720983 \pm 3.0 \cdot 10^{-2} \) |
\(a_{331}= -1.10209764 \pm 1.1 \cdot 10^{-1} \) | \(a_{332}= -0.49464617 \pm 1.8 \cdot 10^{-1} \) | \(a_{333}= \pm0.08270062 \pm 4.5 \cdot 10^{-2} \) |
\(a_{334}= +1.06989296 \pm 9.9 \cdot 10^{-2} \) | \(a_{335}= +0.21336472 \pm 2.1 \cdot 10^{-1} \) | \(a_{336}= \pm0.13323594 \pm 2.3 \cdot 10^{-2} \) |
\(a_{337}= -0.84128514 \pm 2.2 \cdot 10^{-1} \) | \(a_{338}= -1.25890967 \pm 8.2 \cdot 10^{-2} \) | \(a_{339}= \pm0.37971252 \pm 6.5 \cdot 10^{-2} \) |
\(a_{340}= +0.04357672 \pm 8.5 \cdot 10^{-2} \) | \(a_{341}= +0.94798959 \pm 7.1 \cdot 10^{-2} \) | \(a_{342}= \pm0.29378432 \pm 1.1 \cdot 10^{-2} \) |
\(a_{343}= +0.92456644 \pm 9.3 \cdot 10^{-2} \) | \(a_{344}= -0.32338095 \pm 1.3 \cdot 10^{-1} \) | \(a_{345}= \pm0.10788568 \pm 1.0 \cdot 10^{-1} \) |
\(a_{346}= -0.62541014 \pm 7.5 \cdot 10^{-2} \) | \(a_{347}= -0.49202372 \pm 7.0 \cdot 10^{-2} \) | \(a_{348}= \pm0.29717619 \pm 1.3 \cdot 10^{-1} \) |
\(a_{349}= -0.97409709 \pm 3.0 \cdot 10^{-1} \) | \(a_{350}= -0.39093875 \pm 6.0 \cdot 10^{-2} \) | \(a_{351}= \pm0.31245101 \pm 2.3 \cdot 10^{-2} \) |
\(a_{352}= +0.45759954 \pm 9.9 \cdot 10^{-2} \) | \(a_{353}= +1.32229572 \pm 2.6 \cdot 10^{-1} \) | \(a_{354}= \pm0.72983682 \pm 6.5 \cdot 10^{-2} \) |
\(a_{355}= -0.10461370 \pm 1.3 \cdot 10^{-1} \) | \(a_{356}= -0.34023720 \pm 6.5 \cdot 10^{-2} \) | \(a_{357}= \pm0.13383003 \pm 2.8 \cdot 10^{-2} \) |
\(a_{358}= +0.64998566 \pm 1.0 \cdot 10^{-1} \) | \(a_{359}= +1.42689166 \pm 1.4 \cdot 10^{-1} \) | \(a_{360}= \pm0.09020091 \pm 2.4 \cdot 10^{-2} \) |
\(a_{361}= +0.31165592 \pm 1.7 \cdot 10^{-1} \) | \(a_{362}= +0.90770421 \pm 1.2 \cdot 10^{-1} \) | \(a_{363}= \pm0.36559501 \pm 6.9 \cdot 10^{-2} \) |
\(a_{364}= +0.35870783 \pm 3.3 \cdot 10^{-2} \) | \(a_{365}= -0.11928383 \pm 6.5 \cdot 10^{-2} \) | \(a_{366}= \pm0.19475739 \pm 3.4 \cdot 10^{-2} \) |
\(a_{367}= -1.62321960 \pm 1.3 \cdot 10^{-1} \) | \(a_{368}= -0.31864265 \pm 2.1 \cdot 10^{-1} \) | \(a_{369}= \pm0.54203429 \pm 8.6 \cdot 10^{-2} \) |
\(a_{370}= +0.04768986 \pm 1.1 \cdot 10^{-1} \) | \(a_{371}= -0.69262760 \pm 6.4 \cdot 10^{-2} \) | \(a_{372}= \pm0.36853281 \pm 5.8 \cdot 10^{-2} \) |
\(a_{373}= -0.78305646 \pm 1.1 \cdot 10^{-1} \) | \(a_{374}= +0.19939081 \pm 5.9 \cdot 10^{-2} \) | \(a_{375}= \pm0.27942287 \pm 1.1 \cdot 10^{-1} \) |
\(a_{376}= +0.13143037 \pm 1.2 \cdot 10^{-1} \) | \(a_{377}= -2.04931074 \pm 1.5 \cdot 10^{-1} \) | \(a_{378}= \pm0.08024250 \pm 1.4 \cdot 10^{-2} \) |
\(a_{379}= +1.17126943 \pm 4.7 \cdot 10^{-2} \) | \(a_{380}= +0.11665322 \pm 4.8 \cdot 10^{-2} \) | \(a_{381}= \pm0.90323243 \pm 1.2 \cdot 10^{-1} \) |
\(a_{382}= +0.13061928 \pm 1.3 \cdot 10^{-1} \) | \(a_{383}= -0.52137787 \pm 1.4 \cdot 10^{-1} \) | \(a_{384}= \pm0.01134813 \pm 9.6 \cdot 10^{-2} \) |
\(a_{385}= -0.08195962 \pm 3.2 \cdot 10^{-2} \) | \(a_{386}= +0.41678490 \pm 1.0 \cdot 10^{-1} \) | \(a_{387}= \pm0.09949863 \pm 5.7 \cdot 10^{-2} \) |
\(a_{388}= +0.74916699 \pm 1.7 \cdot 10^{-1} \) | \(a_{389}= +1.07319022 \pm 6.6 \cdot 10^{-2} \) | \(a_{390}= \pm0.18017695 \pm 1.8 \cdot 10^{-2} \) |
\(a_{391}= +0.32006347 \pm 7.9 \cdot 10^{-2} \) | \(a_{392}= -0.76533759 \pm 1.2 \cdot 10^{-1} \) | \(a_{393}= \pm0.25671645 \pm 7.4 \cdot 10^{-2} \) |
\(a_{394}= +0.20543445 \pm 9.9 \cdot 10^{-2} \) | \(a_{395}= +0.39606268 \pm 1.0 \cdot 10^{-1} \) | \(a_{396}= \pm0.08232027 \pm 3.6 \cdot 10^{-2} \) |
\(a_{397}= +0.24296239 \pm 2.3 \cdot 10^{-1} \) | \(a_{398}= -0.49843826 \pm 8.7 \cdot 10^{-2} \) | \(a_{399}= \pm0.35825787 \pm 1.1 \cdot 10^{-2} \) |
\(a_{400}= +0.39935398 \pm 7.5 \cdot 10^{-2} \) | \(a_{401}= +0.88711863 \pm 2.7 \cdot 10^{-1} \) | \(a_{402}= \pm0.37952971 \pm 5.8 \cdot 10^{-2} \) |
\(a_{403}= -2.54138208 \pm 6.8 \cdot 10^{-2} \) | \(a_{404}= +0.13616194 \pm 9.0 \cdot 10^{-2} \) | \(a_{405}= \pm0.02775324 \pm 1.4 \cdot 10^{-2} \) |
\(a_{406}= -0.52629630 \pm 7.2 \cdot 10^{-2} \) | \(a_{407}= -0.15025448 \pm 8.1 \cdot 10^{-2} \) | \(a_{408}= \pm0.26759824 \pm 2.6 \cdot 10^{-2} \) |
\(a_{409}= +0.52781907 \pm 2.7 \cdot 10^{-1} \) | \(a_{410}= +0.31256767 \pm 5.3 \cdot 10^{-2} \) | \(a_{411}= \pm0.25472927 \pm 1.2 \cdot 10^{-1} \) |
\(a_{412}= -0.33870781 \pm 1.3 \cdot 10^{-1} \) | \(a_{413}= +0.89000591 \pm 1.9 \cdot 10^{-1} \) | \(a_{414}= \pm0.19190529 \pm 2.6 \cdot 10^{-2} \) |
\(a_{415}= -0.30298430 \pm 1.3 \cdot 10^{-1} \) | \(a_{416}= -1.22673843 \pm 9.2 \cdot 10^{-2} \) | \(a_{417}= \pm0.49098704 \pm 8.6 \cdot 10^{-2} \) |
\(a_{418}= +0.53376156 \pm 2.6 \cdot 10^{-2} \) | \(a_{419}= +1.43531836 \pm 1.0 \cdot 10^{-1} \) | \(a_{420}= \pm0.03186196 \pm 2.3 \cdot 10^{-2} \) |
\(a_{421}= -0.56285535 \pm 2.9 \cdot 10^{-1} \) | \(a_{422}= -0.00950078 \pm 7.8 \cdot 10^{-2} \) | \(a_{423}= \pm0.04043881 \pm 7.1 \cdot 10^{-2} \) |
\(a_{424}= +1.38493521 \pm 6.6 \cdot 10^{-2} \) | \(a_{425}= -0.40113469 \pm 3.7 \cdot 10^{-2} \) | \(a_{426}= \pm0.18608514 \pm 5.2 \cdot 10^{-2} \) |
\(a_{427}= -0.23749861 \pm 3.7 \cdot 10^{-2} \) | \(a_{428}= +0.08409675 \pm 9.5 \cdot 10^{-2} \) | \(a_{429}= \pm0.56767610 \pm 4.3 \cdot 10^{-2} \) |
\(a_{430}= -0.05737655 \pm 1.0 \cdot 10^{-1} \) | \(a_{431}= -1.49172066 \pm 1.2 \cdot 10^{-1} \) | \(a_{432}= \pm0.08196977 \pm 2.7 \cdot 10^{-2} \) |
\(a_{433}= +1.88030895 \pm 2.4 \cdot 10^{-1} \) | \(a_{434}= -0.65266821 \pm 4.8 \cdot 10^{-2} \) | \(a_{435}= \pm0.18202855 \pm 1.0 \cdot 10^{-1} \) |
\(a_{436}= +0.53711703 \pm 1.8 \cdot 10^{-1} \) | \(a_{437}= +0.85679764 \pm 1.0 \cdot 10^{-1} \) | \(a_{438}= \pm0.21218013 \pm 4.0 \cdot 10^{-2} \) |
\(a_{439}= -1.21616198 \pm 1.8 \cdot 10^{-1} \) | \(a_{440}= +0.16388138 \pm 4.9 \cdot 10^{-2} \) | \(a_{441}= \pm0.23548092 \pm 6.2 \cdot 10^{-2} \) |
\(a_{442}= -0.53452932 \pm 3.2 \cdot 10^{-2} \) | \(a_{443}= -1.72138943 \pm 2.7 \cdot 10^{-1} \) | \(a_{444}= \pm0.05841173 \pm 8.3 \cdot 10^{-2} \) |
\(a_{445}= -0.20840459 \pm 5.3 \cdot 10^{-2} \) | \(a_{446}= +0.13255868 \pm 7.0 \cdot 10^{-2} \) | \(a_{447}= \pm0.23505066 \pm 9.5 \cdot 10^{-2} \) |
\(a_{448}= -0.54581777 \pm 8.7 \cdot 10^{-2} \) | \(a_{449}= +0.33375374 \pm 2.8 \cdot 10^{-1} \) | \(a_{450}= \pm0.24051439 \pm 1.8 \cdot 10^{-2} \) |
\(a_{451}= -0.98479410 \pm 1.6 \cdot 10^{-1} \) | \(a_{452}= +0.26819223 \pm 8.2 \cdot 10^{-2} \) | \(a_{453}= \pm0.34000517 \pm 1.4 \cdot 10^{-1} \) |
\(a_{454}= +0.14441389 \pm 1.2 \cdot 10^{-1} \) | \(a_{455}= +0.21971836 \pm 2.5 \cdot 10^{-2} \) | \(a_{456}= \pm0.71635023 \pm 2.3 \cdot 10^{-2} \) |
\(a_{457}= +1.10230212 \pm 1.7 \cdot 10^{-1} \) | \(a_{458}= +0.54037918 \pm 9.6 \cdot 10^{-2} \) | \(a_{459}= \pm0.08233527 \pm 1.7 \cdot 10^{-2} \) |
\(a_{460}= +0.07620002 \pm 1.7 \cdot 10^{-1} \) | \(a_{461}= +1.56590599 \pm 8.8 \cdot 10^{-2} \) | \(a_{462}= \pm0.14578845 \pm 2.9 \cdot 10^{-2} \) |
\(a_{463}= +0.18750851 \pm 2.1 \cdot 10^{-1} \) | \(a_{464}= +0.53762518 \pm 1.9 \cdot 10^{-1} \) | \(a_{465}= \pm0.22573643 \pm 4.3 \cdot 10^{-2} \) |
\(a_{466}= +0.78953131 \pm 8.8 \cdot 10^{-2} \) | \(a_{467}= -1.07469828 \pm 2.4 \cdot 10^{-1} \) | \(a_{468}= \pm0.22068520 \pm 3.6 \cdot 10^{-2} \) |
\(a_{469}= +0.46282083 \pm 1.0 \cdot 10^{-1} \) | \(a_{470}= +0.02331931 \pm 7.7 \cdot 10^{-2} \) | \(a_{471}= \pm0.23959406 \pm 1.5 \cdot 10^{-1} \) |
\(a_{472}= -1.77960065 \pm 1.4 \cdot 10^{-1} \) | \(a_{473}= +0.18077392 \pm 1.1 \cdot 10^{-1} \) | \(a_{474}= \pm0.70450987 \pm 4.3 \cdot 10^{-2} \) |
\(a_{475}= -1.07382219 \pm 3.7 \cdot 10^{-2} \) | \(a_{476}= +0.09452460 \pm 4.9 \cdot 10^{-2} \) | \(a_{477}= \pm0.42612021 \pm 3.5 \cdot 10^{-2} \) |
\(a_{478}= +0.53649497 \pm 6.7 \cdot 10^{-2} \) | \(a_{479}= -0.80020531 \pm 1.6 \cdot 10^{-1} \) | \(a_{480}= \pm0.10896415 \pm 6.4 \cdot 10^{-2} \) |
\(a_{481}= +0.40280405 \pm 7.0 \cdot 10^{-2} \) | \(a_{482}= -0.87585481 \pm 9.6 \cdot 10^{-2} \) | \(a_{483}= \pm0.23402059 \pm 3.8 \cdot 10^{-2} \) |
\(a_{484}= +0.25822098 \pm 1.1 \cdot 10^{-1} \) | \(a_{485}= +0.45888527 \pm 1.3 \cdot 10^{-1} \) | \(a_{486}= \pm0.04936700 \pm 6.2 \cdot 10^{-3} \) |
\(a_{487}= +0.33938227 \pm 1.1 \cdot 10^{-1} \) | \(a_{488}= +0.47488750 \pm 7.7 \cdot 10^{-2} \) | \(a_{489}= \pm0.27813805 \pm 1.9 \cdot 10^{-2} \) |
\(a_{490}= -0.13579163 \pm 6.5 \cdot 10^{-2} \) | \(a_{491}= +0.64465524 \pm 1.0 \cdot 10^{-1} \) | \(a_{492}= \pm0.38284064 \pm 1.3 \cdot 10^{-1} \) |
\(a_{493}= -0.54002244 \pm 1.0 \cdot 10^{-1} \) | \(a_{494}= -1.43091451 \pm 2.1 \cdot 10^{-2} \) | \(a_{495}= \pm0.05042342 \pm 2.8 \cdot 10^{-2} \) |
\(a_{496}= +0.66671734 \pm 8.1 \cdot 10^{-2} \) | \(a_{497}= -0.22692316 \pm 1.3 \cdot 10^{-1} \) | \(a_{498}= \pm0.53894356 \pm 4.7 \cdot 10^{-2} \) |
\(a_{499}= -0.16359093 \pm 3.0 \cdot 10^{-1} \) | \(a_{500}= -0.19735731 \pm 1.8 \cdot 10^{-1} \) | \(a_{501}= \pm0.80267510 \pm 7.2 \cdot 10^{-2} \) |
\(a_{502}= +0.50257500 \pm 7.9 \cdot 10^{-2} \) | \(a_{503}= +0.52040283 \pm 2.8 \cdot 10^{-1} \) | \(a_{504}= \pm0.19565962 \pm 3.5 \cdot 10^{-2} \) |
\(a_{505}= +0.08340291 \pm 8.2 \cdot 10^{-2} \) | \(a_{506}= +0.34866282 \pm 5.0 \cdot 10^{-2} \) | \(a_{507}= \pm0.94448275 \pm 7.4 \cdot 10^{-2} \) |
\(a_{508}= +0.63795610 \pm 1.8 \cdot 10^{-1} \) | \(a_{509}= -1.21747276 \pm 6.7 \cdot 10^{-2} \) | \(a_{510}= \pm0.04747918 \pm 5.4 \cdot 10^{-2} \) |
\(a_{511}= -0.25874493 \pm 3.0 \cdot 10^{-2} \) | \(a_{512}= +0.78326416 \pm 1.8 \cdot 10^{-1} \) | \(a_{513}= \pm0.22040837 \pm 1.4 \cdot 10^{-2} \) |
\(a_{514}= -0.80205866 \pm 8.7 \cdot 10^{-2} \) | \(a_{515}= -0.20746779 \pm 1.0 \cdot 10^{-1} \) | \(a_{516}= \pm0.07027622 \pm 8.4 \cdot 10^{-2} \) |
\(a_{517}= -0.07347119 \pm 1.3 \cdot 10^{-1} \) | \(a_{518}= +0.10344663 \pm 7.5 \cdot 10^{-2} \) | \(a_{519}= \pm0.46920689 \pm 6.4 \cdot 10^{-2} \) |
\(a_{520}= -0.43933521 \pm 4.8 \cdot 10^{-2} \) | \(a_{521}= +0.47779555 \pm 2.5 \cdot 10^{-1} \) | \(a_{522}= \pm0.32378942 \pm 3.5 \cdot 10^{-2} \) |
\(a_{523}= -0.16861856 \pm 1.0 \cdot 10^{-1} \) | \(a_{524}= -0.18131969 \pm 1.0 \cdot 10^{-1} \) | \(a_{525}= \pm0.29329738 \pm 5.2 \cdot 10^{-2} \) |
\(a_{526}= +0.81208214 \pm 1.1 \cdot 10^{-1} \) | \(a_{527}= -0.66969022 \pm 4.6 \cdot 10^{-2} \) | \(a_{528}= \pm0.14892664 \pm 5.2 \cdot 10^{-2} \) |
\(a_{529}= -0.44032410 \pm 2.4 \cdot 10^{-1} \) | \(a_{530}= +0.24572505 \pm 5.6 \cdot 10^{-2} \) | \(a_{531}= \pm0.54755183 \pm 5.7 \cdot 10^{-2} \) |
\(a_{532}= +0.25303873 \pm 1.8 \cdot 10^{-2} \) | \(a_{533}= +2.64004806 \pm 1.6 \cdot 10^{-1} \) | \(a_{534}= \pm0.37070670 \pm 3.8 \cdot 10^{-2} \) |
\(a_{535}= +0.05151156 \pm 7.1 \cdot 10^{-2} \) | \(a_{536}= -0.92542784 \pm 1.6 \cdot 10^{-1} \) | \(a_{537}= \pm0.48764440 \pm 9.7 \cdot 10^{-2} \) |
\(a_{538}= -0.95278595 \pm 5.7 \cdot 10^{-2} \) | \(a_{539}= +0.42783311 \pm 1.1 \cdot 10^{-1} \) | \(a_{540}= \pm0.01960220 \pm 2.4 \cdot 10^{-2} \) |
\(a_{541}= +0.45311230 \pm 8.4 \cdot 10^{-2} \) | \(a_{542}= +0.34007199 \pm 1.2 \cdot 10^{-1} \) | \(a_{543}= \pm0.68099483 \pm 1.1 \cdot 10^{-1} \) |
\(a_{544}= -0.32326297 \pm 1.0 \cdot 10^{-1} \) | \(a_{545}= +0.32899887 \pm 1.3 \cdot 10^{-1} \) | \(a_{546}= \pm0.39083145 \pm 1.5 \cdot 10^{-2} \) |
\(a_{547}= +0.37593458 \pm 1.3 \cdot 10^{-1} \) | \(a_{548}= +0.17991614 \pm 2.0 \cdot 10^{-1} \) | \(a_{549}= \pm0.14611453 \pm 4.7 \cdot 10^{-2} \) |
\(a_{550}= -0.43697817 \pm 3.9 \cdot 10^{-2} \) | \(a_{551}= -1.44561939 \pm 9.3 \cdot 10^{-2} \) | \(a_{552}= \pm0.46793307 \pm 8.2 \cdot 10^{-2} \) |
\(a_{553}= +0.85912074 \pm 1.0 \cdot 10^{-1} \) | \(a_{554}= -1.15932537 \pm 7.5 \cdot 10^{-2} \) | \(a_{555}= \pm0.03577878 \pm 6.0 \cdot 10^{-2} \) |
\(a_{556}= -0.34678579 \pm 1.3 \cdot 10^{-1} \) | \(a_{557}= -1.20580560 \pm 1.5 \cdot 10^{-1} \) | \(a_{558}= \pm0.40153629 \pm 1.7 \cdot 10^{-2} \) |
\(a_{559}= -0.48462095 \pm 8.5 \cdot 10^{-2} \) | \(a_{560}= -0.05764188 \pm 2.8 \cdot 10^{-2} \) | \(a_{561}= \pm0.14959070 \pm 2.9 \cdot 10^{-2} \) |
\(a_{562}= +0.92639564 \pm 6.9 \cdot 10^{-2} \) | \(a_{563}= -1.49264120 \pm 2.6 \cdot 10^{-1} \) | \(a_{564}= \pm0.02856207 \pm 1.1 \cdot 10^{-1} \) |
\(a_{565}= +0.16427507 \pm 7.0 \cdot 10^{-2} \) | \(a_{566}= +0.83343444 \pm 8.4 \cdot 10^{-2} \) | \(a_{567}= \pm0.06020103 \pm 1.2 \cdot 10^{-2} \) |
\(a_{568}= +0.45374149 \pm 1.3 \cdot 10^{-1} \) | \(a_{569}= +1.72778330 \pm 1.5 \cdot 10^{-1} \) | \(a_{570}= \pm0.12709995 \pm 2.0 \cdot 10^{-2} \) |
\(a_{571}= -0.24625138 \pm 1.7 \cdot 10^{-1} \) | \(a_{572}= +0.40095153 \pm 6.7 \cdot 10^{-2} \) | \(a_{573}= \pm0.09799564 \pm 8.0 \cdot 10^{-2} \) |
\(a_{574}= +0.67800724 \pm 6.9 \cdot 10^{-2} \) | \(a_{575}= -0.70144030 \pm 1.3 \cdot 10^{-1} \) | \(a_{576}= \pm0.33579948 \pm 4.4 \cdot 10^{-2} \) |
\(a_{577}= +0.53065360 \pm 1.9 \cdot 10^{-1} \) | \(a_{578}= +0.62869938 \pm 1.2 \cdot 10^{-1} \) | \(a_{579}= \pm0.31268816 \pm 1.3 \cdot 10^{-1} \) |
\(a_{580}= -0.12856737 \pm 1.6 \cdot 10^{-1} \) | \(a_{581}= -0.65721945 \pm 1.4 \cdot 10^{-1} \) | \(a_{582}= \pm0.81625766 \pm 4.5 \cdot 10^{-2} \) |
\(a_{583}= -0.77419580 \pm 6.7 \cdot 10^{-2} \) | \(a_{584}= +0.51737032 \pm 4.3 \cdot 10^{-2} \) | \(a_{585}= \pm0.13517572 \pm 2.8 \cdot 10^{-2} \) |
\(a_{586}= -0.28643065 \pm 8.7 \cdot 10^{-2} \) | \(a_{587}= +1.41036969 \pm 1.9 \cdot 10^{-1} \) | \(a_{588}= \pm0.16632096 \pm 9.5 \cdot 10^{-2} \) |
\(a_{589}= -1.79273505 \pm 4.0 \cdot 10^{-2} \) | \(a_{590}= -0.31574939 \pm 6.8 \cdot 10^{-2} \) | \(a_{591}= \pm0.15412487 \pm 1.9 \cdot 10^{-1} \) |
\(a_{592}= -0.10567339 \pm 9.7 \cdot 10^{-2} \) | \(a_{593}= -0.11956835 \pm 1.9 \cdot 10^{-1} \) | \(a_{594}= \pm0.08969236 \pm 1.1 \cdot 10^{-2} \) |
\(a_{595}= +0.05789890 \pm 3.3 \cdot 10^{-2} \) | \(a_{596}= +0.16601707 \pm 1.3 \cdot 10^{-1} \) | \(a_{597}= \pm0.37394767 \pm 7.6 \cdot 10^{-2} \) |
\(a_{598}= -0.93469954 \pm 4.8 \cdot 10^{-2} \) | \(a_{599}= +0.18814127 \pm 7.7 \cdot 10^{-2} \) | \(a_{600}= \pm0.58645927 \pm 4.6 \cdot 10^{-2} \) |
\(a_{601}= +1.40368098 \pm 1.1 \cdot 10^{-1} \) | \(a_{602}= -0.12445853 \pm 1.1 \cdot 10^{-1} \) | \(a_{603}= \pm0.28473787 \pm 1.0 \cdot 10^{-1} \) |
\(a_{604}= +0.24014679 \pm 2.3 \cdot 10^{-1} \) | \(a_{605}= +0.15816741 \pm 8.2 \cdot 10^{-2} \) | \(a_{606}= \pm0.14835574 \pm 4.7 \cdot 10^{-2} \) |
\(a_{607}= -0.26740921 \pm 2.9 \cdot 10^{-1} \) | \(a_{608}= -0.86536259 \pm 5.7 \cdot 10^{-2} \) | \(a_{609}= \pm0.39484785 \pm 6.4 \cdot 10^{-2} \) |
\(a_{610}= +0.08425791 \pm 6.7 \cdot 10^{-2} \) | \(a_{611}= +0.19696247 \pm 1.3 \cdot 10^{-1} \) | \(a_{612}= \pm0.05815368 \pm 3.4 \cdot 10^{-2} \) |
\(a_{613}= +0.53711534 \pm 1.6 \cdot 10^{-1} \) | \(a_{614}= +0.13622844 \pm 7.0 \cdot 10^{-2} \) | \(a_{615}= \pm0.23450036 \pm 1.0 \cdot 10^{-1} \) |
\(a_{616}= +0.35548386 \pm 7.2 \cdot 10^{-2} \) | \(a_{617}= -0.09268798 \pm 3.0 \cdot 10^{-1} \) | \(a_{618}= \pm0.36904034 \pm 6.4 \cdot 10^{-2} \) |
\(a_{619}= +0.89363123 \pm 1.2 \cdot 10^{-1} \) | \(a_{620}= -0.15943840 \pm 6.9 \cdot 10^{-2} \) | \(a_{621}= \pm0.14397478 \pm 5.1 \cdot 10^{-2} \) |
\(a_{622}= -0.49192250 \pm 1.1 \cdot 10^{-1} \) | \(a_{623}= -0.45206154 \pm 1.0 \cdot 10^{-1} \) | \(a_{624}= \pm0.39924436 \pm 5.2 \cdot 10^{-2} \) |
\(a_{625}= +0.81672364 \pm 7.4 \cdot 10^{-2} \) | \(a_{626}= +0.57852286 \pm 1.2 \cdot 10^{-1} \) | \(a_{627}= \pm0.40044858 \pm 2.8 \cdot 10^{-2} \) |
\(a_{628}= -0.16922609 \pm 2.4 \cdot 10^{-1} \) | \(a_{629}= +0.10614458 \pm 1.4 \cdot 10^{-1} \) | \(a_{630}= \pm0.03471532 \pm 1.2 \cdot 10^{-2} \) |
\(a_{631}= -0.51096871 \pm 1.7 \cdot 10^{-1} \) | \(a_{632}= -1.71784458 \pm 9.8 \cdot 10^{-2} \) | \(a_{633}= \pm0.00712785 \pm 4.4 \cdot 10^{-2} \) |
\(a_{634}= +0.75938515 \pm 5.1 \cdot 10^{-2} \) | \(a_{635}= +0.39076556 \pm 1.3 \cdot 10^{-1} \) | \(a_{636}= \pm0.30097014 \pm 5.7 \cdot 10^{-2} \) |
\(a_{637}= -1.14694024 \pm 1.1 \cdot 10^{-1} \) | \(a_{638}= -0.58827627 \pm 6.3 \cdot 10^{-2} \) | \(a_{639}= \pm0.13960828 \pm 6.7 \cdot 10^{-2} \) |
\(a_{640}= +0.00490954 \pm 1.2 \cdot 10^{-1} \) | \(a_{641}= -1.44286382 \pm 7.4 \cdot 10^{-2} \) | \(a_{642}= \pm0.09162792 \pm 3.8 \cdot 10^{-2} \) |
\(a_{643}= -1.56208739 \pm 1.8 \cdot 10^{-1} \) | \(a_{644}= +0.16528953 \pm 6.1 \cdot 10^{-2} \) | \(a_{645}= \pm0.04304611 \pm 6.4 \cdot 10^{-2} \) |
\(a_{646}= -0.37706627 \pm 2.7 \cdot 10^{-2} \) | \(a_{647}= +1.88709265 \pm 1.4 \cdot 10^{-1} \) | \(a_{648}= \pm0.12037424 \pm 1.3 \cdot 10^{-2} \) |
\(a_{649}= +0.99481862 \pm 1.1 \cdot 10^{-1} \) | \(a_{650}= +1.17145642 \pm 2.2 \cdot 10^{-2} \) | \(a_{651}= \pm0.48965695 \pm 4.1 \cdot 10^{-2} \) |
\(a_{652}= +0.19644984 \pm 3.6 \cdot 10^{-2} \) | \(a_{653}= +0.39205832 \pm 1.3 \cdot 10^{-1} \) | \(a_{654}= \pm0.58521785 \pm 4.9 \cdot 10^{-2} \) |
\(a_{655}= -0.11106327 \pm 7.7 \cdot 10^{-2} \) | \(a_{656}= -0.69260181 \pm 1.9 \cdot 10^{-1} \) | \(a_{657}= \pm0.15918575 \pm 2.8 \cdot 10^{-2} \) |
\(a_{658}= +0.05058316 \pm 6.6 \cdot 10^{-2} \) | \(a_{659}= +0.00881569 \pm 1.7 \cdot 10^{-1} \) | \(a_{660}= \pm0.03561423 \pm 4.4 \cdot 10^{-2} \) |
\(a_{661}= +1.07201878 \pm 1.9 \cdot 10^{-1} \) | \(a_{662}= +0.84812523 \pm 8.4 \cdot 10^{-2} \) | \(a_{663}= \pm0.40102458 \pm 2.2 \cdot 10^{-2} \) |
\(a_{664}= +1.31413527 \pm 1.4 \cdot 10^{-1} \) | \(a_{665}= +0.15499314 \pm 1.5 \cdot 10^{-2} \) | \(a_{666}= \pm0.06364271 \pm 4.5 \cdot 10^{-2} \) |
\(a_{667}= -0.94430503 \pm 3.7 \cdot 10^{-1} \) | \(a_{668}= +0.56693212 \pm 1.2 \cdot 10^{-1} \) | \(a_{669}= \pm0.09945065 \pm 4.0 \cdot 10^{-2} \) |
\(a_{670}= -0.16419598 \pm 7.5 \cdot 10^{-2} \) | \(a_{671}= -0.26546794 \pm 9.2 \cdot 10^{-2} \) | \(a_{672}= \pm0.23635997 \pm 5.9 \cdot 10^{-2} \) |
\(a_{673}= -1.21855510 \pm 1.4 \cdot 10^{-1} \) | \(a_{674}= +0.64741555 \pm 9.7 \cdot 10^{-2} \) | \(a_{675}= \pm0.18044320 \pm 2.1 \cdot 10^{-2} \) |
\(a_{676}= -0.66709134 \pm 1.1 \cdot 10^{-1} \) | \(a_{677}= -1.12928676 \pm 1.3 \cdot 10^{-1} \) | \(a_{678}= \pm0.29220983 \pm 5.3 \cdot 10^{-2} \) |
\(a_{679}= +0.99539256 \pm 1.3 \cdot 10^{-1} \) | \(a_{680}= -0.11577106 \pm 3.3 \cdot 10^{-2} \) | \(a_{681}= \pm0.10834489 \pm 1.5 \cdot 10^{-1} \) |
\(a_{682}= -0.72953054 \pm 3.4 \cdot 10^{-2} \) | \(a_{683}= -1.65927130 \pm 3.1 \cdot 10^{-1} \) | \(a_{684}= \pm0.15567517 \pm 2.2 \cdot 10^{-2} \) |
\(a_{685}= +0.11020355 \pm 1.5 \cdot 10^{-1} \) | \(a_{686}= -0.71150513 \pm 6.4 \cdot 10^{-2} \) | \(a_{687}= \pm0.40541338 \pm 6.7 \cdot 10^{-2} \) |
\(a_{688}= +0.12713759 \pm 1.0 \cdot 10^{-1} \) | \(a_{689}= +2.07547356 \pm 6.3 \cdot 10^{-2} \) | \(a_{690}= \pm0.08302401 \pm 3.4 \cdot 10^{-2} \) |
\(a_{691}= -0.35725566 \pm 2.4 \cdot 10^{-1} \) | \(a_{692}= -0.33140240 \pm 1.0 \cdot 10^{-1} \) | \(a_{693}= \pm0.10937613 \pm 2.4 \cdot 10^{-2} \) |
\(a_{694}= +0.37863952 \pm 7.7 \cdot 10^{-2} \) | \(a_{695}= -0.21241578 \pm 9.7 \cdot 10^{-2} \) | \(a_{696}= \pm0.78951329 \pm 8.3 \cdot 10^{-2} \) |
\(a_{697}= +0.69569010 \pm 7.5 \cdot 10^{-2} \) | \(a_{698}= +0.74962171 \pm 1.1 \cdot 10^{-1} \) | \(a_{699}= \pm0.59233694 \pm 1.0 \cdot 10^{-1} \) |
\(a_{700}= -0.20715693 \pm 5.3 \cdot 10^{-2} \) | \(a_{701}= -0.69161847 \pm 1.7 \cdot 10^{-1} \) | \(a_{702}= \pm0.24044837 \pm 8.1 \cdot 10^{-3} \) |
\(a_{703}= +0.28414497 \pm 4.5 \cdot 10^{-2} \) | \(a_{704}= -0.61009672 \pm 8.0 \cdot 10^{-2} \) | \(a_{705}= \pm0.01749505 \pm 8.7 \cdot 10^{-2} \) |
\(a_{706}= -1.01757986 \pm 1.3 \cdot 10^{-1} \) | \(a_{707}= +0.18091371 \pm 1.0 \cdot 10^{-1} \) | \(a_{708}= \pm0.38673769 \pm 7.5 \cdot 10^{-2} \) |
\(a_{709}= +1.54929361 \pm 8.5 \cdot 10^{-2} \) | \(a_{710}= +0.08050604 \pm 6.6 \cdot 10^{-2} \) | \(a_{711}= \pm0.52855057 \pm 5.0 \cdot 10^{-2} \) |
\(a_{712}= +0.90391423 \pm 7.8 \cdot 10^{-2} \) | \(a_{713}= -1.17104733 \pm 1.5 \cdot 10^{-1} \) | \(a_{714}= \pm0.10298963 \pm 3.3 \cdot 10^{-2} \) |
\(a_{715}= +0.24559378 \pm 5.4 \cdot 10^{-2} \) | \(a_{716}= +0.34442488 \pm 1.5 \cdot 10^{-1} \) | \(a_{717}= \pm0.40249929 \pm 9.4 \cdot 10^{-2} \) |
\(a_{718}= -1.09807223 \pm 1.1 \cdot 10^{-1} \) | \(a_{719}= +0.11212317 \pm 8.0 \cdot 10^{-2} \) | \(a_{720}= \pm0.03546259 \pm 3.5 \cdot 10^{-2} \) |
\(a_{721}= -0.45002948 \pm 8.6 \cdot 10^{-2} \) | \(a_{722}= -0.23983651 \pm 8.8 \cdot 10^{-2} \) | \(a_{723}= \pm0.65710017 \pm 9.3 \cdot 10^{-2} \) |
\(a_{724}= +0.48098893 \pm 1.8 \cdot 10^{-1} \) | \(a_{725}= +1.18349496 \pm 1.3 \cdot 10^{-1} \) | \(a_{726}= \pm0.28134562 \pm 3.5 \cdot 10^{-2} \) |
\(a_{727}= +0.37063780 \pm 8.1 \cdot 10^{-2} \) | \(a_{728}= -0.95298549 \pm 3.8 \cdot 10^{-2} \) | \(a_{729}= \pm0.03703704 \pm 1.0 \cdot 10^{-8} \) |
\(a_{730}= +0.09179552 \pm 6.1 \cdot 10^{-2} \) | \(a_{731}= -0.12770449 \pm 1.1 \cdot 10^{-1} \) | \(a_{732}= \pm0.10320118 \pm 7.3 \cdot 10^{-2} \) |
\(a_{733}= -1.88525536 \pm 3.4 \cdot 10^{-1} \) | \(a_{734}= +1.24915747 \pm 7.5 \cdot 10^{-2} \) | \(a_{735}= \pm0.10187614 \pm 7.2 \cdot 10^{-2} \) |
\(a_{736}= -0.56527068 \pm 2.0 \cdot 10^{-1} \) | \(a_{737}= +0.51732553 \pm 1.8 \cdot 10^{-1} \) | \(a_{738}= \pm0.41712543 \pm 2.7 \cdot 10^{-2} \) |
\(a_{739}= -0.54656775 \pm 2.0 \cdot 10^{-1} \) | \(a_{740}= +0.02527067 \pm 1.1 \cdot 10^{-1} \) | \(a_{741}= \pm1.07352744 \pm 3.1 \cdot 10^{-2} \) |
\(a_{742}= +0.53301533 \pm 4.7 \cdot 10^{-2} \) | \(a_{743}= +0.27035767 \pm 2.8 \cdot 10^{-1} \) | \(a_{744}= \pm0.97908769 \pm 4.1 \cdot 10^{-2} \) |
\(a_{745}= +0.10169000 \pm 9.6 \cdot 10^{-2} \) | \(a_{746}= +0.60260535 \pm 6.5 \cdot 10^{-2} \) | \(a_{747}= \pm0.40433632 \pm 7.1 \cdot 10^{-2} \) |
\(a_{748}= +0.10565642 \pm 5.6 \cdot 10^{-2} \) | \(a_{749}= +0.11173647 \pm 5.0 \cdot 10^{-2} \) | \(a_{750}= \pm0.21503139 \pm 5.3 \cdot 10^{-2} \) |
\(a_{751}= +0.44207710 \pm 1.6 \cdot 10^{-1} \) | \(a_{752}= -0.05167200 \pm 1.6 \cdot 10^{-1} \) | \(a_{753}= \pm0.37705122 \pm 1.3 \cdot 10^{-1} \) |
\(a_{754}= +1.57705822 \pm 4.9 \cdot 10^{-2} \) | \(a_{755}= +0.14709648 \pm 1.7 \cdot 10^{-1} \) | \(a_{756}= \pm0.04252019 \pm 1.4 \cdot 10^{-2} \) |
\(a_{757}= -1.42939200 \pm 5.4 \cdot 10^{-2} \) | \(a_{758}= -0.90135675 \pm 5.1 \cdot 10^{-2} \) | \(a_{759}= \pm0.26158034 \pm 9.6 \cdot 10^{-2} \) |
\(a_{760}= -0.30991468 \pm 3.4 \cdot 10^{-2} \) | \(a_{761}= +1.79492349 \pm 3.0 \cdot 10^{-1} \) | \(a_{762}= \pm0.69508743 \pm 6.2 \cdot 10^{-2} \) |
\(a_{763}= +0.71364904 \pm 7.6 \cdot 10^{-2} \) | \(a_{764}= +0.06921465 \pm 1.1 \cdot 10^{-1} \) | \(a_{765}= \pm0.03562072 \pm 2.4 \cdot 10^{-2} \) |
\(a_{766}= +0.40122917 \pm 6.0 \cdot 10^{-2} \) | \(a_{767}= -2.66692192 \pm 8.8 \cdot 10^{-2} \) | \(a_{768}= \pm0.57288874 \pm 5.6 \cdot 10^{-2} \) |
\(a_{769}= -1.24184467 \pm 1.6 \cdot 10^{-1} \) | \(a_{770}= +0.06307247 \pm 2.4 \cdot 10^{-2} \) | \(a_{771}= \pm0.60173545 \pm 1.2 \cdot 10^{-1} \) |
\(a_{772}= +0.22085270 \pm 2.2 \cdot 10^{-1} \) | \(a_{773}= -1.23965466 \pm 1.4 \cdot 10^{-1} \) | \(a_{774}= \pm0.07656971 \pm 4.3 \cdot 10^{-2} \) |
\(a_{775}= +1.46767048 \pm 6.7 \cdot 10^{-2} \) | \(a_{776}= -1.99032527 \pm 1.3 \cdot 10^{-1} \) | \(a_{777}= \pm0.07760966 \pm 4.1 \cdot 10^{-2} \) |
\(a_{778}= -0.82587936 \pm 5.1 \cdot 10^{-2} \) | \(a_{779}= +1.86233574 \pm 9.6 \cdot 10^{-2} \) | \(a_{780}= \pm0.09547506 \pm 4.4 \cdot 10^{-2} \) |
\(a_{781}= -0.25364707 \pm 1.2 \cdot 10^{-1} \) | \(a_{782}= -0.24630658 \pm 3.5 \cdot 10^{-2} \) | \(a_{783}= \pm0.24291936 \pm 4.9 \cdot 10^{-2} \) |
\(a_{784}= +0.30089334 \pm 1.3 \cdot 10^{-1} \) | \(a_{785}= -0.10365561 \pm 1.9 \cdot 10^{-1} \) | \(a_{786}= \pm0.19755754 \pm 4.2 \cdot 10^{-2} \) |
\(a_{787}= +1.07315938 \pm 2.9 \cdot 10^{-1} \) | \(a_{788}= +0.10885891 \pm 3.1 \cdot 10^{-1} \) | \(a_{789}= \pm0.60925545 \pm 8.8 \cdot 10^{-2} \) |
\(a_{790}= -0.30479219 \pm 6.2 \cdot 10^{-2} \) | \(a_{791}= +0.35633784 \pm 1.3 \cdot 10^{-1} \) | \(a_{792}= \pm0.21870174 \pm 2.5 \cdot 10^{-2} \) |
\(a_{793}= +0.71166971 \pm 9.0 \cdot 10^{-2} \) | \(a_{794}= -0.18697303 \pm 9.0 \cdot 10^{-2} \) | \(a_{795}= \pm0.18435244 \pm 4.3 \cdot 10^{-2} \) |
\(a_{796}= -0.26412050 \pm 1.3 \cdot 10^{-1} \) | \(a_{797}= +0.40640006 \pm 7.1 \cdot 10^{-2} \) | \(a_{798}= \pm0.27569929 \pm 6.5 \cdot 10^{-3} \) |
\(a_{799}= +0.05190241 \pm 6.7 \cdot 10^{-2} \) | \(a_{800}= +0.70845222 \pm 9.0 \cdot 10^{-2} \) | \(a_{801}= \pm0.27811852 \pm 2.9 \cdot 10^{-2} \) |
\(a_{802}= -0.68268697 \pm 8.1 \cdot 10^{-2} \) | \(a_{803}= -0.28921636 \pm 5.2 \cdot 10^{-2} \) | \(a_{804}= \pm0.20111132 \pm 1.6 \cdot 10^{-1} \) |
\(a_{805}= +0.10124436 \pm 4.6 \cdot 10^{-2} \) | \(a_{806}= +1.95573439 \pm 2.3 \cdot 10^{-2} \) | \(a_{807}= \pm0.71481689 \pm 7.6 \cdot 10^{-2} \) |
\(a_{808}= -0.36174384 \pm 8.7 \cdot 10^{-2} \) | \(a_{809}= -0.19593774 \pm 1.7 \cdot 10^{-1} \) | \(a_{810}= \pm0.02135765 \pm 8.6 \cdot 10^{-3} \) |
\(a_{811}= -1.46715256 \pm 7.5 \cdot 10^{-2} \) | \(a_{812}= -0.27888236 \pm 7.9 \cdot 10^{-2} \) | \(a_{813}= \pm0.25513517 \pm 1.0 \cdot 10^{-1} \) |
\(a_{814}= +0.11562915 \pm 7.6 \cdot 10^{-2} \) | \(a_{815}= +0.12033090 \pm 3.1 \cdot 10^{-2} \) | \(a_{816}= \pm0.10520655 \pm 3.5 \cdot 10^{-2} \) |
\(a_{817}= -0.34186003 \pm 5.3 \cdot 10^{-2} \) | \(a_{818}= -0.40618603 \pm 9.7 \cdot 10^{-2} \) | \(a_{819}= \pm0.29321688 \pm 1.5 \cdot 10^{-2} \) |
\(a_{820}= +0.16562839 \pm 1.6 \cdot 10^{-1} \) | \(a_{821}= -0.10154993 \pm 2.1 \cdot 10^{-1} \) | \(a_{822}= \pm0.19602829 \pm 6.8 \cdot 10^{-2} \) |
\(a_{823}= -0.81309987 \pm 9.3 \cdot 10^{-2} \) | \(a_{824}= +0.89985106 \pm 8.8 \cdot 10^{-2} \) | \(a_{825}= \pm0.32783794 \pm 4.1 \cdot 10^{-2} \) |
\(a_{826}= -0.68490888 \pm 1.3 \cdot 10^{-1} \) | \(a_{827}= -0.80849918 \pm 1.4 \cdot 10^{-1} \) | \(a_{828}= \pm0.10168987 \pm 8.3 \cdot 10^{-2} \) |
\(a_{829}= +1.49614177 \pm 2.1 \cdot 10^{-1} \) | \(a_{830}= +0.23316322 \pm 4.4 \cdot 10^{-2} \) | \(a_{831}= \pm0.86977076 \pm 5.6 \cdot 10^{-2} \) |
\(a_{832}= +1.63555474 \pm 7.1 \cdot 10^{-2} \) | \(a_{833}= -0.30223502 \pm 7.6 \cdot 10^{-2} \) | \(a_{834}= \pm0.37784174 \pm 7.9 \cdot 10^{-2} \) |
\(a_{835}= +0.34726143 \pm 9.1 \cdot 10^{-2} \) | \(a_{836}= +0.28283817 \pm 4.1 \cdot 10^{-2} \) | \(a_{837}= \pm0.30124806 \pm 2.1 \cdot 10^{-2} \) |
\(a_{838}= -1.10455705 \pm 4.6 \cdot 10^{-2} \) | \(a_{839}= -0.61114087 \pm 9.6 \cdot 10^{-2} \) | \(a_{840}= \pm0.08464825 \pm 2.2 \cdot 10^{-2} \) |
\(a_{841}= +0.59326495 \pm 1.5 \cdot 10^{-1} \) | \(a_{842}= +0.43314839 \pm 1.4 \cdot 10^{-1} \) | \(a_{843}= \pm0.69501786 \pm 1.1 \cdot 10^{-1} \) |
\(a_{844}= -0.00503443 \pm 8.0 \cdot 10^{-2} \) | \(a_{845}= -0.40861169 \pm 8.9 \cdot 10^{-2} \) | \(a_{846}= \pm0.03111991 \pm 2.8 \cdot 10^{-2} \) |
\(a_{847}= +0.34308939 \pm 6.1 \cdot 10^{-2} \) | \(a_{848}= -0.54448885 \pm 7.8 \cdot 10^{-2} \) | \(a_{849}= \pm0.62527477 \pm 1.6 \cdot 10^{-1} \) |
\(a_{850}= +0.30869538 \pm 3.0 \cdot 10^{-2} \) | \(a_{851}= +0.18560870 \pm 1.5 \cdot 10^{-1} \) | \(a_{852}= \pm0.09860579 \pm 1.0 \cdot 10^{-1} \) |
\(a_{853}= -0.96468948 \pm 2.3 \cdot 10^{-1} \) | \(a_{854}= +0.18276834 \pm 1.7 \cdot 10^{-2} \) | \(a_{855}= \pm0.09535530 \pm 1.9 \cdot 10^{-2} \) |
\(a_{856}= -0.22342133 \pm 5.8 \cdot 10^{-2} \) | \(a_{857}= +0.14128739 \pm 1.3 \cdot 10^{-1} \) | \(a_{858}= \pm0.43685823 \pm 1.5 \cdot 10^{-2} \) |
\(a_{859}= +0.70232603 \pm 1.5 \cdot 10^{-1} \) | \(a_{860}= -0.03040361 \pm 1.0 \cdot 10^{-1} \) | \(a_{861}= \pm0.50866727 \pm 6.7 \cdot 10^{-2} \) |
\(a_{862}= +1.14796174 \pm 9.0 \cdot 10^{-2} \) | \(a_{863}= -0.03035559 \pm 2.2 \cdot 10^{-1} \) | \(a_{864}= \pm0.14541402 \pm 3.0 \cdot 10^{-2} \) |
\(a_{865}= -0.20299303 \pm 8.3 \cdot 10^{-2} \) | \(a_{866}= -1.44700197 \pm 1.2 \cdot 10^{-1} \) | \(a_{867}= \pm0.47167460 \pm 1.0 \cdot 10^{-1} \) |
\(a_{868}= -0.34584635 \pm 4.5 \cdot 10^{-2} \) | \(a_{869}= +0.96029623 \pm 9.7 \cdot 10^{-2} \) | \(a_{870}= \pm0.14008106 \pm 4.5 \cdot 10^{-2} \) |
\(a_{871}= -1.38685261 \pm 1.9 \cdot 10^{-1} \) | \(a_{872}= -1.42696839 \pm 1.1 \cdot 10^{-1} \) | \(a_{873}= \pm0.61238809 \pm 6.8 \cdot 10^{-2} \) |
\(a_{874}= -0.65935328 \pm 3.2 \cdot 10^{-2} \) | \(a_{875}= -0.26222191 \pm 8.0 \cdot 10^{-2} \) | \(a_{876}= \pm0.11243343 \pm 5.0 \cdot 10^{-2} \) |
\(a_{877}= -0.56722696 \pm 1.1 \cdot 10^{-1} \) | \(a_{878}= +0.93590406 \pm 8.5 \cdot 10^{-2} \) | \(a_{879}= \pm0.21489136 \pm 1.7 \cdot 10^{-1} \) |
\(a_{880}= -0.06443015 \pm 7.1 \cdot 10^{-2} \) | \(a_{881}= -0.80844741 \pm 2.9 \cdot 10^{-1} \) | \(a_{882}= \pm0.18121562 \pm 2.9 \cdot 10^{-2} \) |
\(a_{883}= +0.16752132 \pm 4.8 \cdot 10^{-2} \) | \(a_{884}= -0.28324501 \pm 4.0 \cdot 10^{-2} \) | \(a_{885}= \pm0.23688741 \pm 5.4 \cdot 10^{-2} \) |
\(a_{886}= +1.32470459 \pm 1.5 \cdot 10^{-1} \) | \(a_{887}= +1.64469353 \pm 2.4 \cdot 10^{-1} \) | \(a_{888}= \pm0.15518347 \pm 4.2 \cdot 10^{-2} \) |
\(a_{889}= +0.84763046 \pm 1.9 \cdot 10^{-1} \) | \(a_{890}= +0.16037889 \pm 5.1 \cdot 10^{-2} \) | \(a_{891}= \pm0.06729068 \pm 1.3 \cdot 10^{-2} \) |
\(a_{892}= +0.07024233 \pm 7.1 \cdot 10^{-2} \) | \(a_{893}= +0.13894075 \pm 8.3 \cdot 10^{-2} \) | \(a_{894}= \pm0.18088451 \pm 5.0 \cdot 10^{-2} \) |
\(a_{895}= +0.21096965 \pm 1.1 \cdot 10^{-1} \) | \(a_{896}= +0.01064955 \pm 5.9 \cdot 10^{-2} \) | \(a_{897}= \pm0.70124777 \pm 1.0 \cdot 10^{-1} \) |
\(a_{898}= -0.25684201 \pm 1.2 \cdot 10^{-1} \) | \(a_{899}= +1.97583261 \pm 1.4 \cdot 10^{-1} \) | \(a_{900}= \pm0.12744764 \pm 3.0 \cdot 10^{-2} \) |
\(a_{901}= +0.54691672 \pm 6.3 \cdot 10^{-2} \) | \(a_{902}= +0.75785365 \pm 5.4 \cdot 10^{-2} \) | \(a_{903}= \pm0.09337361 \pm 9.3 \cdot 10^{-2} \) |
\(a_{904}= -0.71251106 \pm 1.0 \cdot 10^{-1} \) | \(a_{905}= +0.29461888 \pm 1.4 \cdot 10^{-1} \) | \(a_{906}= \pm0.26165283 \pm 4.6 \cdot 10^{-2} \) |
\(a_{907}= -0.39270338 \pm 3.4 \cdot 10^{-1} \) | \(a_{908}= +0.07652436 \pm 2.5 \cdot 10^{-1} \) | \(a_{909}= \pm0.11130222 \pm 3.7 \cdot 10^{-2} \) |
\(a_{910}= -0.16908546 \pm 1.4 \cdot 10^{-2} \) | \(a_{911}= -1.70700139 \pm 2.4 \cdot 10^{-1} \) | \(a_{912}= \pm0.28163391 \pm 3.3 \cdot 10^{-2} \) |
\(a_{913}= -0.73461776 \pm 1.3 \cdot 10^{-1} \) | \(a_{914}= -0.84828259 \pm 1.1 \cdot 10^{-1} \) | \(a_{915}= \pm0.06321355 \pm 6.2 \cdot 10^{-2} \) |
\(a_{916}= +0.28634483 \pm 9.1 \cdot 10^{-2} \) | \(a_{917}= -0.24091328 \pm 1.2 \cdot 10^{-1} \) | \(a_{918}= \pm0.06336156 \pm 2.1 \cdot 10^{-2} \) |
\(a_{919}= +0.09195780 \pm 1.3 \cdot 10^{-1} \) | \(a_{920}= -0.20244194 \pm 9.9 \cdot 10^{-2} \) | \(a_{921}= \pm0.10220385 \pm 5.1 \cdot 10^{-2} \) |
\(a_{922}= -1.20505146 \pm 4.6 \cdot 10^{-2} \) | \(a_{923}= +0.67998015 \pm 1.2 \cdot 10^{-1} \) | \(a_{924}= \pm0.07725273 \pm 2.7 \cdot 10^{-2} \) |
\(a_{925}= -0.23262288 \pm 6.4 \cdot 10^{-2} \) | \(a_{926}= -0.14429819 \pm 1.0 \cdot 10^{-1} \) | \(a_{927}= \pm0.27686835 \pm 4.8 \cdot 10^{-2} \) |
\(a_{928}= +0.95374474 \pm 1.9 \cdot 10^{-1} \) | \(a_{929}= -0.51265622 \pm 1.8 \cdot 10^{-1} \) | \(a_{930}= \pm0.17371669 \pm 2.2 \cdot 10^{-2} \) |
\(a_{931}= -0.80907156 \pm 6.8 \cdot 10^{-2} \) | \(a_{932}= +0.41836957 \pm 1.7 \cdot 10^{-1} \) | \(a_{933}= \pm0.36905930 \pm 1.6 \cdot 10^{-1} \) |
\(a_{934}= +0.82703990 \pm 1.1 \cdot 10^{-1} \) | \(a_{935}= +0.06471744 \pm 4.1 \cdot 10^{-2} \) | \(a_{936}= \pm0.58629829 \pm 2.2 \cdot 10^{-2} \) |
\(a_{937}= -0.08216866 \pm 1.3 \cdot 10^{-1} \) | \(a_{938}= -0.35616628 \pm 5.5 \cdot 10^{-2} \) | \(a_{939}= \pm0.43403024 \pm 7.0 \cdot 10^{-2} \) |
\(a_{940}= +0.01235681 \pm 1.3 \cdot 10^{-1} \) | \(a_{941}= -0.28324441 \pm 1.4 \cdot 10^{-1} \) | \(a_{942}= \pm0.18438091 \pm 4.8 \cdot 10^{-2} \) |
\(a_{943}= +1.21651178 \pm 3.8 \cdot 10^{-1} \) | \(a_{944}= +0.69965202 \pm 8.7 \cdot 10^{-2} \) | \(a_{945}= \pm0.02604478 \pm 9.4 \cdot 10^{-3} \) |
\(a_{946}= -0.13911556 \pm 8.3 \cdot 10^{-2} \) | \(a_{947}= -1.64674805 \pm 9.5 \cdot 10^{-2} \) | \(a_{948}= \pm0.37331704 \pm 7.5 \cdot 10^{-2} \) |
\(a_{949}= +0.77533476 \pm 5.1 \cdot 10^{-2} \) | \(a_{950}= +0.82636570 \pm 2.0 \cdot 10^{-2} \) | \(a_{951}= \pm0.56972013 \pm 7.1 \cdot 10^{-2} \) |
\(a_{952}= -0.25112519 \pm 3.7 \cdot 10^{-2} \) | \(a_{953}= -0.88095660 \pm 3.3 \cdot 10^{-1} \) | \(a_{954}= \pm0.32792313 \pm 2.2 \cdot 10^{-2} \) |
\(a_{955}= +0.04239587 \pm 8.0 \cdot 10^{-2} \) | \(a_{956}= +0.28428660 \pm 1.4 \cdot 10^{-1} \) | \(a_{957}= \pm0.44134763 \pm 9.0 \cdot 10^{-2} \) |
\(a_{958}= +0.61580235 \pm 9.7 \cdot 10^{-2} \) | \(a_{959}= +0.23904842 \pm 1.0 \cdot 10^{-1} \) | \(a_{960}= \pm0.14527697 \pm 5.3 \cdot 10^{-2} \) |
\(a_{961}= +1.45026070 \pm 1.3 \cdot 10^{-1} \) | \(a_{962}= -0.30998005 \pm 4.3 \cdot 10^{-2} \) | \(a_{963}= \pm0.06874281 \pm 3.3 \cdot 10^{-2} \) |
\(a_{964}= -0.46411206 \pm 1.3 \cdot 10^{-1} \) | \(a_{965}= +0.13527832 \pm 1.7 \cdot 10^{-1} \) | \(a_{966}= \pm0.18009182 \pm 1.3 \cdot 10^{-2} \) |
\(a_{967}= -1.36572731 \pm 3.4 \cdot 10^{-1} \) | \(a_{968}= -0.68602027 \pm 7.0 \cdot 10^{-2} \) | \(a_{969}= \pm0.28288971 \pm 1.5 \cdot 10^{-2} \) |
\(a_{970}= -0.35313765 \pm 4.3 \cdot 10^{-2} \) | \(a_{971}= +0.10694668 \pm 3.0 \cdot 10^{-1} \) | \(a_{972}= \pm0.02615938 \pm 1.1 \cdot 10^{-2} \) |
\(a_{973}= -0.46076243 \pm 1.5 \cdot 10^{-1} \) | \(a_{974}= -0.26117347 \pm 5.6 \cdot 10^{-2} \) | \(a_{975}= \pm0.87887194 \pm 3.6 \cdot 10^{-2} \) |
\(a_{976}= -0.18670256 \pm 1.1 \cdot 10^{-1} \) | \(a_{977}= +1.68851635 \pm 1.8 \cdot 10^{-1} \) | \(a_{978}= \pm0.21404265 \pm 2.4 \cdot 10^{-2} \) |
\(a_{979}= -0.50529916 \pm 6.0 \cdot 10^{-2} \) | \(a_{980}= -0.07195546 \pm 1.1 \cdot 10^{-1} \) | \(a_{981}= \pm0.43905308 \pm 6.6 \cdot 10^{-2} \) |
\(a_{982}= -0.49609795 \pm 6.0 \cdot 10^{-2} \) | \(a_{983}= -0.03180457 \pm 8.2 \cdot 10^{-2} \) | \(a_{984}= \pm1.01709954 \pm 8.6 \cdot 10^{-2} \) |
\(a_{985}= +0.06667906 \pm 2.4 \cdot 10^{-1} \) | \(a_{986}= +0.41557721 \pm 1.1 \cdot 10^{-1} \) | \(a_{987}= \pm0.03794945 \pm 6.1 \cdot 10^{-2} \) |
\(a_{988}= -0.75823603 \pm 4.7 \cdot 10^{-2} \) | \(a_{989}= -0.22330923 \pm 1.7 \cdot 10^{-1} \) | \(a_{990}= \pm0.03880362 \pm 1.7 \cdot 10^{-2} \) |
\(a_{991}= +0.49694657 \pm 2.2 \cdot 10^{-1} \) | \(a_{992}= +1.18275366 \pm 9.1 \cdot 10^{-2} \) | \(a_{993}= \pm0.63629637 \pm 6.6 \cdot 10^{-2} \) |
\(a_{994}= +0.17462995 \pm 8.6 \cdot 10^{-2} \) | \(a_{995}= -0.16178103 \pm 9.6 \cdot 10^{-2} \) | \(a_{996}= \pm0.28558410 \pm 1.0 \cdot 10^{-1} \) |
\(a_{997}= +0.17493685 \pm 2.7 \cdot 10^{-1} \) | \(a_{998}= +0.12589229 \pm 1.1 \cdot 10^{-1} \) | \(a_{999}= \pm0.04774722 \pm 2.6 \cdot 10^{-2} \) |
\(a_{1000}= +0.52432269 \pm 1.0 \cdot 10^{-1} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000