Properties

Label 3.75
Level $3$
Weight $0$
Character 3.1
Symmetry odd
\(R\) 23.46017
Fricke sign not computed rigorously

Related objects

Downloads

Learn more

Maass form invariants

Level: \( 3 \)
Weight: \( 0 \)
Character: 3.1
Symmetry: odd
Fricke sign: not computed rigorously
Spectral parameter: \(23.4601771306750716605188334342 \pm 9 \cdot 10^{-3}\)

Maass form coefficients

The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.

\(a_{1}= +1 \) \(a_{2}= +1.21377791 \pm 4.6 \) \(a_{3}= \pm0.57735027 \pm 1.0 \cdot 10^{-8} \)
\(a_{4}= +0.47325680 \pm 8.4 \) \(a_{5}= -0.29118148 \pm 6.4 \) \(a_{6}= \pm0.70077500 \pm 2.7 \)
\(a_{7}= +1.31533795 \pm 5.3 \) \(a_{8}= -0.63934925 \pm 5.7 \) \(a_{9}= \pm0.33333333 \pm 1.0 \cdot 10^{-8} \)
\(a_{10}= -0.35342964 \pm 3.7 \) \(a_{11}= -0.44931020 \pm 5.8 \) \(a_{12}= \pm0.27323494 \pm 4.8 \)
\(a_{13}= +0.88401245 \pm 5.7 \) \(a_{14}= +1.59652815 \pm 3.6 \) \(a_{15}= \pm0.16811370 \pm 3.7 \)
\(a_{16}= -1.24928480 \pm 6.8 \) \(a_{17}= -0.24707229 \pm 4.3 \) \(a_{18}= \pm0.40459264 \pm 1.5 \)
\(a_{19}= -1.50453042 \pm 3.4 \) \(a_{20}= -0.13780361 \pm 6.0 \) \(a_{21}= \pm0.75941072 \pm 3.0 \)
\(a_{22}= -0.54536279 \pm 2.9 \) \(a_{23}= -1.36822797 \pm 12. \) \(a_{24}= \pm0.36912846 \pm 3.3 \)
\(a_{25}= -0.91521335 \pm 5.3 \) \(a_{26}= +1.07299478 \pm 2.0 \) \(a_{27}= \pm0.19245009 \pm 1.0 \cdot 10^{-8} \)
\(a_{28}= +0.62249264 \pm 3.5 \) \(a_{29}= +1.15161638 \pm 12. \) \(a_{30}= \pm0.20405270 \pm 2.1 \)
\(a_{31}= -0.50497402 \pm 5.4 \) \(a_{32}= -0.87700504 \pm 7.6 \) \(a_{33}= \pm0.25940936 \pm 3.3 \)
\(a_{34}= -0.29989088 \pm 5.2 \) \(a_{35}= -0.38300205 \pm 2.3 \) \(a_{36}= \pm0.15775227 \pm 2.8 \)
\(a_{37}= -1.73350298 \pm 6.5 \) \(a_{38}= -1.82616578 \pm 1.5 \) \(a_{39}= \pm0.51038483 \pm 3.3 \)
\(a_{40}= +0.18616666 \pm 3.5 \) \(a_{41}= +0.77893192 \pm 12. \) \(a_{42}= \pm0.92175596 \pm 2.0 \)
\(a_{43}= -0.97729304 \pm 8.2 \) \(a_{44}= -0.21263911 \pm 5.1 \) \(a_{45}= \pm0.09706049 \pm 2.1 \)
\(a_{46}= -1.66072488 \pm 3.7 \) \(a_{47}= +0.27056581 \pm 10. \) \(a_{48}= \pm0.72127492 \pm 3.9 \)
\(a_{49}= +0.73011393 \pm 8.9 \) \(a_{50}= -1.11086574 \pm 2.6 \) \(a_{51}= \pm0.14264725 \pm 2.4 \)
\(a_{52}= +0.41836491 \pm 5.2 \) \(a_{53}= -0.83435900 \pm 5.1 \) \(a_{54}= \pm0.23359167 \pm 9.0 \cdot 10^{-1} \)
\(a_{55}= +0.13083081 \pm 4.1 \) \(a_{56}= -0.84096034 \pm 5.0 \) \(a_{57}= \pm0.86864104 \pm 2.0 \)
\(a_{58}= +1.39780651 \pm 5.0 \) \(a_{59}= -1.59086028 \pm 8.2 \) \(a_{60}= \pm0.07956095 \pm 3.4 \)

Displaying $a_n$ with $n$ up to: 60 180 1000