Maass form invariants
Level: | \( 3 \) |
Weight: | \( 0 \) |
Character: | 3.1 |
Symmetry: | odd |
Fricke sign: | not computed rigorously |
Spectral parameter: | \(22.6711177685244672920555186727 \pm 6 \cdot 10^{-3}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +0.06470954 \pm 8.4 \cdot 10^{-1} \) | \(a_{3}= \pm0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= -0.99581268 \pm 1.5 \) | \(a_{5}= +1.71719791 \pm 1.1 \) | \(a_{6}= \pm0.03736007 \pm 4.8 \cdot 10^{-1} \) |
\(a_{7}= -1.39368354 \pm 9.5 \cdot 10^{-1} \) | \(a_{8}= -0.12914812 \pm 1.0 \) | \(a_{9}= \pm0.33333333 \pm 1.0 \cdot 10^{-8} \) |
\(a_{10}= +0.11111909 \pm 6.6 \cdot 10^{-1} \) | \(a_{11}= +0.59609143 \pm 1.0 \) | \(a_{12}= \pm0.57493272 \pm 8.8 \cdot 10^{-1} \) |
\(a_{13}= +0.67598258 \pm 1.0 \) | \(a_{14}= -0.09018462 \pm 6.5 \cdot 10^{-1} \) | \(a_{15}= \pm0.99142468 \pm 6.6 \cdot 10^{-1} \) |
\(a_{16}= +0.98745556 \pm 1.2 \) | \(a_{17}= +0.34828965 \pm 7.7 \cdot 10^{-1} \) | \(a_{18}= \pm0.02156985 \pm 2.8 \cdot 10^{-1} \) |
\(a_{19}= +0.27396279 \pm 6.2 \cdot 10^{-1} \) | \(a_{20}= -1.71000745 \pm 1.0 \) | \(a_{21}= \pm0.80464357 \pm 5.5 \cdot 10^{-1} \) |
\(a_{22}= +0.03857280 \pm 5.3 \cdot 10^{-1} \) | \(a_{23}= -1.19018916 \pm 2.3 \) | \(a_{24}= \pm0.07456370 \pm 5.9 \cdot 10^{-1} \) |
\(a_{25}= +1.94876867 \pm 9.5 \cdot 10^{-1} \) | \(a_{26}= +0.04374252 \pm 3.6 \cdot 10^{-1} \) | \(a_{27}= \pm0.19245009 \pm 1.0 \cdot 10^{-8} \) |
\(a_{28}= +1.38784774 \pm 6.3 \cdot 10^{-1} \) | \(a_{29}= -0.94503907 \pm 2.1 \) | \(a_{30}= \pm0.06415463 \pm 3.8 \cdot 10^{-1} \) |
\(a_{31}= -1.11058425 \pm 9.7 \cdot 10^{-1} \) | \(a_{32}= +0.19304591 \pm 1.3 \) | \(a_{33}= \pm0.34415355 \pm 6.1 \cdot 10^{-1} \) |
\(a_{34}= +0.02253766 \pm 9.3 \cdot 10^{-1} \) | \(a_{35}= -2.39323047 \pm 4.2 \cdot 10^{-1} \) | \(a_{36}= \pm0.33193756 \pm 5.0 \cdot 10^{-1} \) |
\(a_{37}= -0.83646081 \pm 1.1 \) | \(a_{38}= +0.01772801 \pm 2.8 \cdot 10^{-1} \) | \(a_{39}= \pm0.39027873 \pm 5.9 \cdot 10^{-1} \) |
\(a_{40}= -0.22177288 \pm 6.3 \cdot 10^{-1} \) | \(a_{41}= -0.21089030 \pm 2.2 \) | \(a_{42}= \pm0.05206811 \pm 3.7 \cdot 10^{-1} \) |
\(a_{43}= -1.29372433 \pm 1.4 \) | \(a_{44}= -0.59359541 \pm 9.3 \cdot 10^{-1} \) | \(a_{45}= \pm0.57239930 \pm 3.8 \cdot 10^{-1} \) |
\(a_{46}= -0.07701659 \pm 6.7 \cdot 10^{-1} \) | \(a_{47}= +0.03521353 \pm 1.8 \) | \(a_{48}= \pm0.57010773 \pm 7.1 \cdot 10^{-1} \) |
\(a_{49}= +0.94235382 \pm 1.6 \) | \(a_{50}= +0.12610392 \pm 4.7 \cdot 10^{-1} \) | \(a_{51}= \pm0.20108512 \pm 4.4 \cdot 10^{-1} \) |
\(a_{52}= -0.67315202 \pm 9.4 \cdot 10^{-1} \) | \(a_{53}= -0.90582113 \pm 9.2 \cdot 10^{-1} \) | \(a_{54}= \pm0.01245336 \pm 1.6 \cdot 10^{-1} \) |
\(a_{55}= +1.02360697 \pm 7.4 \cdot 10^{-1} \) | \(a_{56}= +0.17999161 \pm 9.1 \cdot 10^{-1} \) | \(a_{57}= \pm0.15817249 \pm 3.6 \cdot 10^{-1} \) |
\(a_{58}= -0.06115304 \pm 9.1 \cdot 10^{-1} \) | \(a_{59}= +0.11306681 \pm 1.4 \) | \(a_{60}= \pm0.98727326 \pm 6.2 \cdot 10^{-1} \) |
\(a_{61}= -1.02877593 \pm 1.2 \) | \(a_{62}= -0.07186540 \pm 4.5 \cdot 10^{-1} \) | \(a_{63}= \pm0.46456118 \pm 3.1 \cdot 10^{-1} \) |
\(a_{64}= -0.97496365 \pm 1.1 \) | \(a_{65}= +1.16079588 \pm 7.3 \cdot 10^{-1} \) | \(a_{66}= \pm0.02227002 \pm 3.0 \cdot 10^{-1} \) |
\(a_{67}= +0.61047595 \pm 2.6 \) | \(a_{68}= -0.34683125 \pm 8.8 \cdot 10^{-1} \) | \(a_{69}= \pm0.68715603 \pm 1.3 \) |
\(a_{70}= -0.15486484 \pm 3.3 \cdot 10^{-1} \) | \(a_{71}= -0.77312810 \pm 1.7 \) | \(a_{72}= \pm0.04304937 \pm 3.4 \cdot 10^{-1} \) |
\(a_{73}= +1.04562963 \pm 7.4 \cdot 10^{-1} \) | \(a_{74}= -0.05412699 \pm 1.1 \) | \(a_{75}= \pm1.12512212 \pm 5.5 \cdot 10^{-1} \) |
\(a_{76}= -0.27281561 \pm 5.6 \cdot 10^{-1} \) | \(a_{77}= -0.83076282 \pm 6.4 \cdot 10^{-1} \) | \(a_{78}= \pm0.02525476 \pm 2.0 \cdot 10^{-1} \) |
\(a_{79}= +1.21144530 \pm 1.2 \) | \(a_{80}= +1.69565663 \pm 9.0 \cdot 10^{-1} \) | \(a_{81}= \pm0.11111111 \pm 1.0 \cdot 10^{-8} \) |
\(a_{82}= -0.01364661 \pm 7.2 \cdot 10^{-1} \) | \(a_{83}= -1.47516964 \pm 1.8 \) | \(a_{84}= \pm0.80127426 \pm 3.6 \cdot 10^{-1} \) |
\(a_{85}= +0.59808227 \pm 6.2 \cdot 10^{-1} \) | \(a_{86}= -0.08371631 \pm 1.1 \) | \(a_{87}= \pm0.54561856 \pm 1.2 \) |
\(a_{88}= -0.07698409 \pm 6.6 \cdot 10^{-1} \) | \(a_{89}= -0.73906924 \pm 7.6 \cdot 10^{-1} \) | \(a_{90}= \pm0.03703970 \pm 2.2 \cdot 10^{-1} \) |
\(a_{91}= -0.94210580 \pm 3.8 \cdot 10^{-1} \) | \(a_{92}= +1.18520546 \pm 2.1 \) | \(a_{93}= \pm0.64119612 \pm 5.6 \cdot 10^{-1} \) |
\(a_{94}= +0.00227865 \pm 7.4 \cdot 10^{-1} \) | \(a_{95}= +0.47044832 \pm 4.9 \cdot 10^{-1} \) | \(a_{96}= \pm0.11145511 \pm 7.9 \cdot 10^{-1} \) |
\(a_{97}= -0.19681735 \pm 1.7 \) | \(a_{98}= +0.06097928 \pm 7.6 \cdot 10^{-1} \) | \(a_{99}= \pm0.19869714 \pm 3.5 \cdot 10^{-1} \) |
\(a_{100}= -1.94060855 \pm 7.9 \cdot 10^{-1} \) | \(a_{101}= +1.16068323 \pm 9.7 \cdot 10^{-1} \) | \(a_{102}= \pm0.01301213 \pm 5.4 \cdot 10^{-1} \) |
\(a_{103}= -1.29308641 \pm 1.2 \) | \(a_{104}= -0.08730188 \pm 5.8 \cdot 10^{-1} \) | \(a_{105}= \pm1.38173226 \pm 2.4 \cdot 10^{-1} \) |
\(a_{106}= -0.05861527 \pm 5.7 \cdot 10^{-1} \) | \(a_{107}= -0.23325907 \pm 8.5 \cdot 10^{-1} \) | \(a_{108}= \pm0.19164424 \pm 2.9 \cdot 10^{-1} \) |
\(a_{109}= +0.82566412 \pm 1.7 \) | \(a_{110}= +0.06623714 \pm 4.5 \cdot 10^{-1} \) | \(a_{111}= \pm0.48293087 \pm 6.8 \cdot 10^{-1} \) |
\(a_{112}= -1.37620056 \pm 3.4 \cdot 10^{-1} \) | \(a_{113}= +0.92386474 \pm 9.6 \cdot 10^{-1} \) | \(a_{114}= \pm0.01023527 \pm 1.6 \cdot 10^{-1} \) |
\(a_{115}= -2.04379035 \pm 1.6 \) | \(a_{116}= +0.94108189 \pm 2.0 \) | \(a_{117}= \pm0.22532753 \pm 3.4 \cdot 10^{-1} \) |
\(a_{118}= +0.00731650 \pm 9.7 \cdot 10^{-1} \) | \(a_{119}= -0.48540556 \pm 4.2 \cdot 10^{-1} \) | \(a_{120}= \pm0.12804063 \pm 3.6 \cdot 10^{-1} \) |
\(a_{121}= -0.64467500 \pm 1.0 \) | \(a_{122}= -0.06657162 \pm 5.1 \cdot 10^{-1} \) | \(a_{123}= \pm0.12175757 \pm 1.2 \) |
\(a_{124}= +1.10593387 \pm 8.6 \cdot 10^{-1} \) | \(a_{125}= +1.62922359 \pm 1.6 \) | \(a_{126}= \pm0.03006154 \pm 2.1 \cdot 10^{-1} \) |
\(a_{127}= -1.48355033 \pm 1.9 \) | \(a_{128}= -0.25613536 \pm 1.4 \) | \(a_{129}= \pm0.74693209 \pm 8.5 \cdot 10^{-1} \) |
\(a_{130}= +0.07511457 \pm 2.7 \cdot 10^{-1} \) | \(a_{131}= -0.88028950 \pm 1.1 \) | \(a_{132}= \pm0.34271247 \pm 5.3 \cdot 10^{-1} \) |
\(a_{133}= -0.38181743 \pm 1.7 \cdot 10^{-1} \) | \(a_{134}= +0.03950362 \pm 8.7 \cdot 10^{-1} \) | \(a_{135}= \pm0.33047489 \pm 2.2 \cdot 10^{-1} \) |
\(a_{136}= -0.04498095 \pm 3.9 \cdot 10^{-1} \) | \(a_{137}= -1.49696433 \pm 1.9 \) | \(a_{138}= \pm0.04446555 \pm 3.8 \cdot 10^{-1} \) |
\(a_{139}= +0.45942294 \pm 1.2 \) | \(a_{140}= +2.38320924 \pm 3.5 \cdot 10^{-1} \) | \(a_{141}= \pm0.02033054 \pm 1.0 \) |
\(a_{142}= -0.05002876 \pm 7.7 \cdot 10^{-1} \) | \(a_{143}= +0.40294743 \pm 6.4 \cdot 10^{-1} \) | \(a_{144}= \pm0.32915185 \pm 4.1 \cdot 10^{-1} \) |
\(a_{145}= -1.62281912 \pm 1.5 \) | \(a_{146}= +0.06766221 \pm 6.0 \cdot 10^{-1} \) | \(a_{147}= \pm0.54406823 \pm 9.3 \cdot 10^{-1} \) |
\(a_{148}= +0.83295827 \pm 1.2 \) | \(a_{149}= -0.00936796 \pm 1.4 \) | \(a_{150}= \pm0.07280613 \pm 2.7 \cdot 10^{-1} \) |
\(a_{151}= -0.04653458 \pm 2.1 \) | \(a_{152}= -0.03538178 \pm 3.5 \cdot 10^{-1} \) | \(a_{153}= \pm0.11609655 \pm 2.5 \cdot 10^{-1} \) |
\(a_{154}= -0.05375828 \pm 4.3 \cdot 10^{-1} \) | \(a_{155}= -1.90709296 \pm 6.5 \cdot 10^{-1} \) | \(a_{156}= \pm0.38864450 \pm 5.4 \cdot 10^{-1} \) |
\(a_{157}= -0.09885918 \pm 2.3 \) | \(a_{158}= +0.07839207 \pm 6.5 \cdot 10^{-1} \) | \(a_{159}= \pm0.52297607 \pm 5.3 \cdot 10^{-1} \) |
\(a_{160}= +0.33149804 \pm 9.5 \cdot 10^{-1} \) | \(a_{161}= +1.65874705 \pm 5.7 \cdot 10^{-1} \) | \(a_{162}= \pm0.00718995 \pm 9.3 \cdot 10^{-2} \) |
\(a_{163}= +0.30554441 \pm 2.8 \cdot 10^{-1} \) | \(a_{164}= +0.21000724 \pm 2.0 \) | \(a_{165}= \pm0.59097976 \pm 4.2 \cdot 10^{-1} \) |
\(a_{166}= -0.09545755 \pm 7.1 \cdot 10^{-1} \) | \(a_{167}= -1.20597356 \pm 1.0 \) | \(a_{168}= \pm0.10391820 \pm 5.2 \cdot 10^{-1} \) |
\(a_{169}= -0.54304755 \pm 1.1 \) | \(a_{170}= +0.03870163 \pm 8.1 \cdot 10^{-1} \) | \(a_{171}= \pm0.09132093 \pm 2.0 \cdot 10^{-1} \) |
\(a_{172}= +1.28830708 \pm 1.2 \) | \(a_{173}= +0.21902261 \pm 9.5 \cdot 10^{-1} \) | \(a_{174}= \pm0.03530673 \pm 5.2 \cdot 10^{-1} \) |
\(a_{175}= -2.71596683 \pm 7.8 \cdot 10^{-1} \) | \(a_{176}= +0.58861380 \pm 7.8 \cdot 10^{-1} \) | \(a_{177}= \pm0.06527915 \pm 8.5 \cdot 10^{-1} \) |
\(a_{178}= -0.04782483 \pm 5.7 \cdot 10^{-1} \) | \(a_{179}= +0.97493967 \pm 1.4 \) | \(a_{180}= \pm0.57000248 \pm 3.6 \cdot 10^{-1} \) |
\(a_{181}= +1.95350886 \pm 1.7 \) | \(a_{182}= -0.06096323 \pm 2.2 \cdot 10^{-1} \) | \(a_{183}= \pm0.59396406 \pm 7.0 \cdot 10^{-1} \) |
\(a_{184}= +0.15371069 \pm 1.2 \) | \(a_{185}= -1.43636875 \pm 9.0 \cdot 10^{-1} \) | \(a_{186}= \pm0.04149151 \pm 2.6 \cdot 10^{-1} \) |
\(a_{187}= +0.20761248 \pm 4.4 \cdot 10^{-1} \) | \(a_{188}= -0.03506608 \pm 1.6 \) | \(a_{189}= \pm0.26821452 \pm 1.8 \cdot 10^{-1} \) |
\(a_{190}= +0.03044249 \pm 3.0 \cdot 10^{-1} \) | \(a_{191}= -0.72680524 \pm 1.2 \) | \(a_{192}= \pm0.56289552 \pm 6.5 \cdot 10^{-1} \) |
\(a_{193}= -1.02927100 \pm 2.0 \) | \(a_{194}= -0.01273596 \pm 6.8 \cdot 10^{-1} \) | \(a_{195}= \pm0.67018581 \pm 4.2 \cdot 10^{-1} \) |
\(a_{196}= -0.93840787 \pm 1.4 \) | \(a_{197}= +0.64605668 \pm 2.9 \) | \(a_{198}= \pm0.01285760 \pm 1.7 \cdot 10^{-1} \) |
\(a_{199}= +1.57875492 \pm 1.1 \) | \(a_{200}= -0.25167981 \pm 6.9 \cdot 10^{-1} \) | \(a_{201}= \pm0.35245846 \pm 1.5 \) |
\(a_{202}= +0.07510728 \pm 7.1 \cdot 10^{-1} \) | \(a_{203}= +1.31708540 \pm 9.5 \cdot 10^{-1} \) | \(a_{204}= \pm0.20024312 \pm 5.0 \cdot 10^{-1} \) |
\(a_{205}= -0.36214039 \pm 1.5 \) | \(a_{206}= -0.08367503 \pm 9.6 \cdot 10^{-1} \) | \(a_{207}= \pm0.39672972 \pm 7.7 \cdot 10^{-1} \) |
\(a_{208}= +0.66750276 \pm 7.8 \cdot 10^{-1} \) | \(a_{209}= +0.16330687 \pm 4.1 \cdot 10^{-1} \) | \(a_{210}= \pm0.08941126 \pm 1.9 \cdot 10^{-1} \) |
\(a_{211}= -1.83478086 \pm 6.6 \cdot 10^{-1} \) | \(a_{212}= +0.90202816 \pm 8.5 \cdot 10^{-1} \) | \(a_{213}= \pm0.44636572 \pm 1.0 \) |
\(a_{214}= -0.01509409 \pm 5.7 \cdot 10^{-1} \) | \(a_{215}= -2.22158071 \pm 9.6 \cdot 10^{-1} \) | \(a_{216}= \pm0.02485457 \pm 1.9 \cdot 10^{-1} \) |
\(a_{217}= +1.54780299 \pm 6.2 \cdot 10^{-1} \) | \(a_{218}= +0.05342835 \pm 7.3 \cdot 10^{-1} \) | \(a_{219}= \pm0.60369455 \pm 4.2 \cdot 10^{-1} \) |
\(a_{220}= -1.01932079 \pm 6.6 \cdot 10^{-1} \) | \(a_{221}= +0.23543774 \pm 3.4 \cdot 10^{-1} \) | \(a_{222}= \pm0.03125023 \pm 6.8 \cdot 10^{-1} \) |
\(a_{223}= +0.97891909 \pm 5.9 \cdot 10^{-1} \) | \(a_{224}= -0.26904491 \pm 8.9 \cdot 10^{-1} \) | \(a_{225}= \pm0.64958956 \pm 3.1 \cdot 10^{-1} \) |
\(a_{226}= +0.05978286 \pm 7.9 \cdot 10^{-1} \) | \(a_{227}= +0.27891096 \pm 2.2 \) | \(a_{228}= \pm0.15751017 \pm 3.2 \cdot 10^{-1} \) |
\(a_{229}= -0.13124413 \pm 9.9 \cdot 10^{-1} \) | \(a_{230}= -0.13225273 \pm 5.1 \cdot 10^{-1} \) | \(a_{231}= \pm0.47964114 \pm 3.7 \cdot 10^{-1} \) |
\(a_{232}= +0.12205002 \pm 1.2 \) | \(a_{233}= +0.15773237 \pm 1.6 \) | \(a_{234}= \pm0.01458084 \pm 1.2 \cdot 10^{-1} \) |
\(a_{235}= +0.06046860 \pm 1.3 \) | \(a_{236}= -0.11259336 \pm 1.1 \) | \(a_{237}= \pm0.69942827 \pm 7.4 \cdot 10^{-1} \) |
\(a_{238}= -0.03141037 \pm 4.9 \cdot 10^{-1} \) | \(a_{239}= +0.06860589 \pm 1.4 \) | \(a_{240}= \pm0.97898781 \pm 5.2 \cdot 10^{-1} \) |
\(a_{241}= -1.96408445 \pm 1.3 \) | \(a_{242}= -0.04171662 \pm 5.3 \cdot 10^{-1} \) | \(a_{243}= \pm0.06415003 \pm 1.0 \cdot 10^{-8} \) |
\(a_{244}= +1.02446811 \pm 1.0 \) | \(a_{245}= +1.61820801 \pm 1.0 \) | \(a_{246}= \pm0.00787888 \pm 4.1 \cdot 10^{-1} \) |
\(a_{247}= +0.18519407 \pm 4.7 \cdot 10^{-1} \) | \(a_{248}= +0.14342987 \pm 6.2 \cdot 10^{-1} \) | \(a_{249}= \pm0.85168959 \pm 1.0 \) |
\(a_{250}= +0.10542631 \pm 8.0 \cdot 10^{-1} \) | \(a_{251}= -1.62930989 \pm 1.9 \) | \(a_{252}= \pm0.46261591 \pm 2.1 \cdot 10^{-1} \) |
\(a_{253}= -0.70946157 \pm 1.4 \) | \(a_{254}= -0.09599986 \pm 9.2 \cdot 10^{-1} \) | \(a_{255}= \pm0.34530296 \pm 3.6 \cdot 10^{-1} \) |
\(a_{256}= +0.95838925 \pm 8.3 \cdot 10^{-1} \) | \(a_{257}= +1.58397588 \pm 1.8 \) | \(a_{258}= \pm0.04833363 \pm 6.4 \cdot 10^{-1} \) |
\(a_{259}= +1.16576166 \pm 6.1 \cdot 10^{-1} \) | \(a_{260}= -1.15593525 \pm 6.6 \cdot 10^{-1} \) | \(a_{261}= \pm0.31501302 \pm 7.3 \cdot 10^{-1} \) |
\(a_{262}= -0.05696313 \pm 6.2 \cdot 10^{-1} \) | \(a_{263}= -1.16728685 \pm 1.3 \) | \(a_{264}= \pm0.04444678 \pm 3.8 \cdot 10^{-1} \) |
\(a_{265}= -1.55547415 \pm 6.5 \cdot 10^{-1} \) | \(a_{266}= -0.02470723 \pm 9.8 \cdot 10^{-2} \) | \(a_{267}= \pm0.42670183 \pm 4.4 \cdot 10^{-1} \) |
\(a_{268}= -0.60791969 \pm 2.4 \) | \(a_{269}= -0.28120698 \pm 1.1 \) | \(a_{270}= \pm0.02138488 \pm 1.2 \cdot 10^{-1} \) |
\(a_{271}= +0.99632517 \pm 1.5 \) | \(a_{272}= +0.34392055 \pm 5.3 \cdot 10^{-1} \) | \(a_{273}= \pm0.54392504 \pm 2.2 \cdot 10^{-1} \) |
\(a_{274}= -0.09686787 \pm 1.0 \) | \(a_{275}= +1.16164431 \pm 6.2 \cdot 10^{-1} \) | \(a_{276}= \pm0.68427869 \pm 1.2 \) |
\(a_{277}= +0.26250616 \pm 8.4 \cdot 10^{-1} \) | \(a_{278}= +0.02972905 \pm 1.1 \) | \(a_{279}= \pm0.37019475 \pm 3.2 \cdot 10^{-1} \) |
\(a_{280}= +0.30908122 \pm 3.3 \cdot 10^{-1} \) | \(a_{281}= -0.11905777 \pm 1.7 \) | \(a_{282}= \pm0.00131558 \pm 4.3 \cdot 10^{-1} \) |
\(a_{283}= -0.04234754 \pm 2.4 \) | \(a_{284}= +0.76989076 \pm 1.5 \) | \(a_{285}= \pm0.27161347 \pm 2.8 \cdot 10^{-1} \) |
\(a_{286}= +0.02607454 \pm 2.3 \cdot 10^{-1} \) | \(a_{287}= +0.29391434 \pm 1.0 \) | \(a_{288}= \pm0.06434864 \pm 4.5 \cdot 10^{-1} \) |
\(a_{289}= -0.87869432 \pm 1.6 \) | \(a_{290}= -0.10501188 \pm 6.8 \cdot 10^{-1} \) | \(a_{291}= \pm0.11363255 \pm 1.0 \) |
\(a_{292}= -1.04125124 \pm 7.5 \cdot 10^{-1} \) | \(a_{293}= -0.64514348 \pm 2.6 \) | \(a_{294}= \pm0.03520640 \pm 4.3 \cdot 10^{-1} \) |
\(a_{295}= +0.19415808 \pm 8.1 \cdot 10^{-1} \) | \(a_{296}= +0.10802734 \pm 6.3 \cdot 10^{-1} \) | \(a_{297}= \pm0.11471785 \pm 2.0 \cdot 10^{-1} \) |
\(a_{298}= -0.00060620 \pm 7.5 \cdot 10^{-1} \) | \(a_{299}= -0.80454715 \pm 1.5 \) | \(a_{300}= \pm1.12041087 \pm 4.5 \cdot 10^{-1} \) |
\(a_{301}= +1.80304230 \pm 1.3 \) | \(a_{302}= -0.00301123 \pm 6.9 \cdot 10^{-1} \) | \(a_{303}= \pm0.67012078 \pm 5.6 \cdot 10^{-1} \) |
\(a_{304}= +0.27052608 \pm 4.9 \cdot 10^{-1} \) | \(a_{305}= -1.76661188 \pm 9.3 \cdot 10^{-1} \) | \(a_{306}= \pm0.00751255 \pm 3.1 \cdot 10^{-1} \) |
\(a_{307}= +0.51811147 \pm 7.6 \cdot 10^{-1} \) | \(a_{308}= +0.82728415 \pm 4.0 \cdot 10^{-1} \) | \(a_{309}= \pm0.74656379 \pm 7.2 \cdot 10^{-1} \) |
\(a_{310}= -0.12340711 \pm 3.3 \cdot 10^{-1} \) | \(a_{311}= +1.54001940 \pm 2.4 \) | \(a_{312}= \pm0.05040376 \pm 3.3 \cdot 10^{-1} \) |
\(a_{313}= -0.46290991 \pm 1.0 \) | \(a_{314}= -0.00639713 \pm 7.1 \cdot 10^{-1} \) | \(a_{315}= \pm0.79774349 \pm 1.4 \cdot 10^{-1} \) |
\(a_{316}= -1.20637259 \pm 1.1 \) | \(a_{317}= +0.61680885 \pm 1.0 \) | \(a_{318}= \pm0.03384154 \pm 3.3 \cdot 10^{-1} \) |
\(a_{319}= -0.56332970 \pm 1.3 \) | \(a_{320}= -1.67420554 \pm 7.9 \cdot 10^{-1} \) | \(a_{321}= \pm0.13467219 \pm 4.9 \cdot 10^{-1} \) |
\(a_{322}= +0.10733676 \pm 2.0 \cdot 10^{-1} \) | \(a_{323}= +0.09541840 \pm 2.2 \cdot 10^{-1} \) | \(a_{324}= \pm0.11064585 \pm 1.6 \cdot 10^{-1} \) |
\(a_{325}= +1.31733368 \pm 5.4 \cdot 10^{-1} \) | \(a_{326}= +0.01977164 \pm 3.6 \cdot 10^{-1} \) | \(a_{327}= \pm0.47669740 \pm 9.8 \cdot 10^{-1} \) |
\(a_{328}= +0.02723609 \pm 1.2 \) | \(a_{329}= -0.04907651 \pm 9.2 \cdot 10^{-1} \) | \(a_{330}= \pm0.03824203 \pm 2.6 \cdot 10^{-1} \) |
\(a_{331}= -1.02977852 \pm 9.9 \cdot 10^{-1} \) | \(a_{332}= +1.46899263 \pm 1.5 \) | \(a_{333}= \pm0.27882027 \pm 3.9 \cdot 10^{-1} \) |
\(a_{334}= -0.07803799 \pm 8.5 \cdot 10^{-1} \) | \(a_{335}= +1.04830803 \pm 1.8 \) | \(a_{336}= \pm0.79454977 \pm 1.9 \cdot 10^{-1} \) |
\(a_{337}= +0.71847680 \pm 1.9 \) | \(a_{338}= -0.03514036 \pm 7.1 \cdot 10^{-1} \) | \(a_{339}= \pm0.53339356 \pm 5.6 \cdot 10^{-1} \) |
\(a_{340}= -0.59557790 \pm 7.3 \cdot 10^{-1} \) | \(a_{341}= -0.66200976 \pm 6.1 \cdot 10^{-1} \) | \(a_{342}= \pm0.00590934 \pm 9.5 \cdot 10^{-2} \) |
\(a_{343}= +0.08034054 \pm 8.0 \cdot 10^{-1} \) | \(a_{344}= +0.16708206 \pm 1.1 \) | \(a_{345}= \pm1.17998291 \pm 9.3 \cdot 10^{-1} \) |
\(a_{346}= +0.01417285 \pm 6.4 \cdot 10^{-1} \) | \(a_{347}= -1.97177565 \pm 6.0 \cdot 10^{-1} \) | \(a_{348}= \pm0.54333388 \pm 1.1 \) |
\(a_{349}= +1.60221551 \pm 2.6 \) | \(a_{350}= -0.17574896 \pm 5.2 \cdot 10^{-1} \) | \(a_{351}= \pm0.13009291 \pm 1.9 \cdot 10^{-1} \) |
\(a_{352}= +0.11507302 \pm 8.5 \cdot 10^{-1} \) | \(a_{353}= -1.56289784 \pm 2.3 \) | \(a_{354}= \pm0.00422418 \pm 5.6 \cdot 10^{-1} \) |
\(a_{355}= -1.32761397 \pm 1.1 \) | \(a_{356}= +0.73597452 \pm 5.6 \cdot 10^{-1} \) | \(a_{357}= \pm0.28024903 \pm 2.4 \cdot 10^{-1} \) |
\(a_{358}= +0.06308790 \pm 8.6 \cdot 10^{-1} \) | \(a_{359}= +0.66772650 \pm 1.2 \) | \(a_{360}= \pm0.07392429 \pm 2.1 \cdot 10^{-1} \) |
\(a_{361}= -0.92494439 \pm 1.4 \) | \(a_{362}= +0.12641066 \pm 1.1 \) | \(a_{363}= \pm0.37220329 \pm 5.9 \cdot 10^{-1} \) |
\(a_{364}= +0.93816090 \pm 2.8 \cdot 10^{-1} \) | \(a_{365}= +1.79555301 \pm 5.6 \cdot 10^{-1} \) | \(a_{366}= \pm0.03843514 \pm 2.9 \cdot 10^{-1} \) |
\(a_{367}= +0.70467901 \pm 1.1 \) | \(a_{368}= -1.17525891 \pm 1.8 \) | \(a_{369}= \pm0.07029677 \pm 7.4 \cdot 10^{-1} \) |
\(a_{370}= -0.09294676 \pm 1.0 \) | \(a_{371}= +1.26242799 \pm 5.5 \cdot 10^{-1} \) | \(a_{372}= \pm0.63851122 \pm 5.0 \cdot 10^{-1} \) |
\(a_{373}= -0.84553475 \pm 1.0 \) | \(a_{374}= +0.01343451 \pm 5.0 \cdot 10^{-1} \) | \(a_{375}= \pm0.94063268 \pm 9.8 \cdot 10^{-1} \) |
\(a_{376}= -0.00454776 \pm 1.1 \) | \(a_{377}= -0.63882995 \pm 1.3 \) | \(a_{378}= \pm0.01735604 \pm 1.2 \cdot 10^{-1} \) |
\(a_{379}= +0.55293061 \pm 4.1 \cdot 10^{-1} \) | \(a_{380}= -0.46847840 \pm 4.2 \cdot 10^{-1} \) | \(a_{381}= \pm0.85652818 \pm 1.0 \) |
\(a_{382}= -0.04703123 \pm 1.1 \) | \(a_{383}= +1.15291252 \pm 1.2 \) | \(a_{384}= \pm0.14787982 \pm 8.2 \cdot 10^{-1} \) |
\(a_{385}= -1.42658418 \pm 2.7 \cdot 10^{-1} \) | \(a_{386}= -0.06660365 \pm 8.7 \cdot 10^{-1} \) | \(a_{387}= \pm0.43124144 \pm 4.9 \cdot 10^{-1} \) |
\(a_{388}= +0.19599322 \pm 1.5 \) | \(a_{389}= -1.77618175 \pm 5.7 \cdot 10^{-1} \) | \(a_{390}= \pm0.04336742 \pm 1.5 \cdot 10^{-1} \) |
\(a_{391}= -0.41453057 \pm 6.8 \cdot 10^{-1} \) | \(a_{392}= -0.12170322 \pm 1.0 \) | \(a_{393}= \pm0.50823538 \pm 6.3 \cdot 10^{-1} \) |
\(a_{394}= +0.04180603 \pm 8.6 \cdot 10^{-1} \) | \(a_{395}= +2.08029135 \pm 8.8 \cdot 10^{-1} \) | \(a_{396}= \pm0.19786514 \pm 3.1 \cdot 10^{-1} \) |
\(a_{397}= +1.18949911 \pm 2.0 \) | \(a_{398}= +0.10216050 \pm 7.5 \cdot 10^{-1} \) | \(a_{399}= \pm0.22044239 \pm 1.0 \cdot 10^{-1} \) |
\(a_{400}= +1.92432246 \pm 6.4 \cdot 10^{-1} \) | \(a_{401}= -0.88211579 \pm 2.3 \) | \(a_{402}= \pm0.02280742 \pm 5.0 \cdot 10^{-1} \) |
\(a_{403}= -0.75073561 \pm 5.8 \cdot 10^{-1} \) | \(a_{404}= -1.15582308 \pm 7.8 \cdot 10^{-1} \) | \(a_{405}= \pm0.19079977 \pm 1.2 \cdot 10^{-1} \) |
\(a_{406}= +0.08522799 \pm 6.2 \cdot 10^{-1} \) | \(a_{407}= -0.49860712 \pm 7.0 \cdot 10^{-1} \) | \(a_{408}= \pm0.02596977 \pm 2.2 \cdot 10^{-1} \) |
\(a_{409}= -0.67465851 \pm 2.3 \) | \(a_{410}= -0.02343394 \pm 4.6 \cdot 10^{-1} \) | \(a_{411}= \pm0.86427276 \pm 1.1 \) |
\(a_{412}= +1.28767184 \pm 1.2 \) | \(a_{413}= -0.15757935 \pm 1.6 \) | \(a_{414}= \pm0.02567220 \pm 2.2 \cdot 10^{-1} \) |
\(a_{415}= -2.53315823 \pm 1.1 \) | \(a_{416}= +0.13049568 \pm 7.9 \cdot 10^{-1} \) | \(a_{417}= \pm0.26524796 \pm 7.4 \cdot 10^{-1} \) |
\(a_{418}= +0.01056751 \pm 2.3 \cdot 10^{-1} \) | \(a_{419}= +1.16434367 \pm 9.1 \cdot 10^{-1} \) | \(a_{420}= \pm1.37594649 \pm 2.0 \cdot 10^{-1} \) |
\(a_{421}= -0.40288337 \pm 2.5 \) | \(a_{422}= -0.11872782 \pm 6.7 \cdot 10^{-1} \) | \(a_{423}= \pm0.01173784 \pm 6.1 \cdot 10^{-1} \) |
\(a_{424}= +0.11698510 \pm 5.7 \cdot 10^{-1} \) | \(a_{425}= +0.67873597 \pm 3.2 \cdot 10^{-1} \) | \(a_{426}= \pm0.02888412 \pm 4.4 \cdot 10^{-1} \) |
\(a_{427}= +1.43378808 \pm 3.2 \cdot 10^{-1} \) | \(a_{428}= +0.23228234 \pm 8.2 \cdot 10^{-1} \) | \(a_{429}= \pm0.23264181 \pm 3.7 \cdot 10^{-1} \) |
\(a_{430}= -0.14375747 \pm 8.8 \cdot 10^{-1} \) | \(a_{431}= +0.32433872 \pm 1.0 \) | \(a_{432}= \pm0.19003591 \pm 2.3 \cdot 10^{-1} \) |
\(a_{433}= +0.55469126 \pm 2.0 \) | \(a_{434}= +0.10015762 \pm 4.1 \cdot 10^{-1} \) | \(a_{435}= \pm0.93693506 \pm 8.7 \cdot 10^{-1} \) |
\(a_{436}= -0.82220679 \pm 1.5 \) | \(a_{437}= -0.32606754 \pm 8.9 \cdot 10^{-1} \) | \(a_{438}= \pm0.03906480 \pm 3.4 \cdot 10^{-1} \) |
\(a_{439}= -0.15936204 \pm 1.6 \) | \(a_{440}= -0.13219692 \pm 4.2 \cdot 10^{-1} \) | \(a_{441}= \pm0.31411794 \pm 5.3 \cdot 10^{-1} \) |
\(a_{442}= +0.01523507 \pm 2.8 \cdot 10^{-1} \) | \(a_{443}= +0.73482493 \pm 2.4 \) | \(a_{444}= \pm0.48090868 \pm 7.2 \cdot 10^{-1} \) |
\(a_{445}= -1.26912816 \pm 4.6 \cdot 10^{-1} \) | \(a_{446}= +0.06334540 \pm 6.0 \cdot 10^{-1} \) | \(a_{447}= \pm0.00540860 \pm 8.2 \cdot 10^{-1} \) |
\(a_{448}= +1.35879079 \pm 7.5 \cdot 10^{-1} \) | \(a_{449}= -0.82122508 \pm 2.4 \) | \(a_{450}= \pm0.04203464 \pm 1.5 \cdot 10^{-1} \) |
\(a_{451}= -0.12570990 \pm 1.3 \) | \(a_{452}= -0.91999622 \pm 7.1 \cdot 10^{-1} \) | \(a_{453}= \pm0.02686675 \pm 1.2 \) |
\(a_{454}= +0.01804820 \pm 1.1 \) | \(a_{455}= -1.61778212 \pm 2.2 \cdot 10^{-1} \) | \(a_{456}= \pm0.02042768 \pm 2.0 \cdot 10^{-1} \) |
\(a_{457}= -0.64967383 \pm 1.4 \) | \(a_{458}= -0.00849275 \pm 8.3 \cdot 10^{-1} \) | \(a_{459}= \pm0.06702837 \pm 1.4 \cdot 10^{-1} \) |
\(a_{460}= +2.03523234 \pm 1.4 \) | \(a_{461}= +1.31278230 \pm 7.5 \cdot 10^{-1} \) | \(a_{462}= \pm0.03103736 \pm 2.5 \cdot 10^{-1} \) |
\(a_{463}= -0.26918420 \pm 1.8 \) | \(a_{464}= -0.93318409 \pm 1.6 \) | \(a_{465}= \pm1.10106063 \pm 3.7 \cdot 10^{-1} \) |
\(a_{466}= +0.01020679 \pm 7.6 \cdot 10^{-1} \) | \(a_{467}= +1.66674104 \pm 2.0 \) | \(a_{468}= \pm0.22438401 \pm 3.1 \cdot 10^{-1} \) |
\(a_{469}= -0.85081029 \pm 8.6 \cdot 10^{-1} \) | \(a_{470}= +0.00391289 \pm 6.6 \cdot 10^{-1} \) | \(a_{471}= \pm0.05707637 \pm 1.3 \) |
\(a_{472}= -0.01460237 \pm 1.2 \) | \(a_{473}= -0.77117799 \pm 9.6 \cdot 10^{-1} \) | \(a_{474}= \pm0.04525968 \pm 3.7 \cdot 10^{-1} \) |
\(a_{475}= +0.53389010 \pm 3.2 \cdot 10^{-1} \) | \(a_{476}= +0.48337301 \pm 4.2 \cdot 10^{-1} \) | \(a_{477}= \pm0.30194038 \pm 3.0 \cdot 10^{-1} \) |
\(a_{478}= +0.00443946 \pm 5.8 \cdot 10^{-1} \) | \(a_{479}= +0.49940251 \pm 1.3 \) | \(a_{480}= \pm0.19139048 \pm 5.5 \cdot 10^{-1} \) |
\(a_{481}= -0.56543294 \pm 6.0 \cdot 10^{-1} \) | \(a_{482}= -0.12709500 \pm 8.2 \cdot 10^{-1} \) | \(a_{483}= \pm0.95767806 \pm 3.3 \cdot 10^{-1} \) |
\(a_{484}= +0.64197554 \pm 9.5 \cdot 10^{-1} \) | \(a_{485}= -0.33797435 \pm 1.1 \) | \(a_{486}= \pm0.00415112 \pm 5.4 \cdot 10^{-2} \) |
\(a_{487}= -1.46205893 \pm 9.9 \cdot 10^{-1} \) | \(a_{488}= +0.13286448 \pm 6.6 \cdot 10^{-1} \) | \(a_{489}= \pm0.17640615 \pm 1.6 \cdot 10^{-1} \) |
\(a_{490}= +0.10471350 \pm 5.6 \cdot 10^{-1} \) | \(a_{491}= +1.11902898 \pm 9.2 \cdot 10^{-1} \) | \(a_{492}= \pm0.12124773 \pm 1.1 \) |
\(a_{493}= -0.32914733 \pm 8.9 \cdot 10^{-1} \) | \(a_{494}= +0.01198382 \pm 1.8 \cdot 10^{-1} \) | \(a_{495}= \pm0.34120232 \pm 2.4 \cdot 10^{-1} \) |
\(a_{496}= -1.09665259 \pm 7.0 \cdot 10^{-1} \) | \(a_{497}= +1.07749591 \pm 1.1 \) | \(a_{498}= \pm0.05511244 \pm 4.1 \cdot 10^{-1} \) |
\(a_{499}= +0.88409172 \pm 2.5 \) | \(a_{500}= -1.62240150 \pm 1.5 \) | \(a_{501}= \pm0.69626916 \pm 6.2 \cdot 10^{-1} \) |
\(a_{502}= -0.10543189 \pm 6.8 \cdot 10^{-1} \) | \(a_{503}= -1.15496812 \pm 2.4 \) | \(a_{504}= \pm0.05999720 \pm 3.0 \cdot 10^{-1} \) |
\(a_{505}= +1.99312283 \pm 7.0 \cdot 10^{-1} \) | \(a_{506}= -0.04590893 \pm 4.3 \cdot 10^{-1} \) | \(a_{507}= \pm0.31352865 \pm 6.4 \cdot 10^{-1} \) |
\(a_{508}= +1.47733822 \pm 1.5 \) | \(a_{509}= +1.74807620 \pm 5.7 \cdot 10^{-1} \) | \(a_{510}= \pm0.02234440 \pm 4.7 \cdot 10^{-1} \) |
\(a_{511}= -1.45727680 \pm 2.6 \cdot 10^{-1} \) | \(a_{512}= +0.31815229 \pm 1.5 \) | \(a_{513}= \pm0.05272416 \pm 1.2 \cdot 10^{-1} \) |
\(a_{514}= +0.10249835 \pm 7.5 \cdot 10^{-1} \) | \(a_{515}= -2.22048528 \pm 9.2 \cdot 10^{-1} \) | \(a_{516}= \pm0.74380444 \pm 7.2 \cdot 10^{-1} \) |
\(a_{517}= +0.02099048 \pm 1.1 \) | \(a_{518}= +0.07543590 \pm 6.4 \cdot 10^{-1} \) | \(a_{519}= \pm0.12645277 \pm 5.5 \cdot 10^{-1} \) |
\(a_{520}= -0.14991461 \pm 4.1 \cdot 10^{-1} \) | \(a_{521}= -0.77782694 \pm 2.2 \) | \(a_{522}= \pm0.02038435 \pm 3.0 \cdot 10^{-1} \) |
\(a_{523}= -1.24735974 \pm 8.9 \cdot 10^{-1} \) | \(a_{524}= +0.87660344 \pm 8.7 \cdot 10^{-1} \) | \(a_{525}= \pm1.56806418 \pm 4.5 \cdot 10^{-1} \) |
\(a_{526}= -0.07553460 \pm 1.0 \) | \(a_{527}= -0.38680500 \pm 3.9 \cdot 10^{-1} \) | \(a_{528}= \pm0.33983634 \pm 4.5 \cdot 10^{-1} \) |
\(a_{529}= +0.41655025 \pm 2.1 \) | \(a_{530}= -0.10065402 \pm 4.8 \cdot 10^{-1} \) | \(a_{531}= \pm0.03768894 \pm 4.9 \cdot 10^{-1} \) |
\(a_{532}= +0.38021863 \pm 1.5 \cdot 10^{-1} \) | \(a_{533}= -0.14255817 \pm 1.4 \) | \(a_{534}= \pm0.02761168 \pm 3.3 \cdot 10^{-1} \) |
\(a_{535}= -0.40055199 \pm 6.1 \cdot 10^{-1} \) | \(a_{536}= -0.07884182 \pm 1.4 \) | \(a_{537}= \pm0.56288168 \pm 8.3 \cdot 10^{-1} \) |
\(a_{538}= -0.01819677 \pm 4.9 \cdot 10^{-1} \) | \(a_{539}= +0.56172904 \pm 1.0 \) | \(a_{540}= \pm0.32909109 \pm 2.0 \cdot 10^{-1} \) |
\(a_{541}= +0.66494500 \pm 7.2 \cdot 10^{-1} \) | \(a_{542}= +0.06447174 \pm 1.1 \) | \(a_{543}= \pm1.12785886 \pm 1.0 \) |
\(a_{544}= +0.06723589 \pm 9.2 \cdot 10^{-1} \) | \(a_{545}= +1.41782870 \pm 1.1 \) | \(a_{546}= \pm0.03519714 \pm 1.3 \cdot 10^{-1} \) |
\(a_{547}= +0.70537490 \pm 1.1 \) | \(a_{548}= +1.49069606 \pm 1.7 \) | \(a_{549}= \pm0.34292531 \pm 4.0 \cdot 10^{-1} \) |
\(a_{550}= +0.07516947 \pm 3.4 \cdot 10^{-1} \) | \(a_{551}= -0.25890554 \pm 8.0 \cdot 10^{-1} \) | \(a_{552}= \pm0.08874491 \pm 7.0 \cdot 10^{-1} \) |
\(a_{553}= -1.68837138 \pm 8.7 \cdot 10^{-1} \) | \(a_{554}= +0.01698665 \pm 6.5 \cdot 10^{-1} \) | \(a_{555}= \pm0.82928788 \pm 5.2 \cdot 10^{-1} \) |
\(a_{556}= -0.45749919 \pm 1.1 \) | \(a_{557}= +0.05327716 \pm 1.3 \) | \(a_{558}= \pm0.02395513 \pm 1.5 \cdot 10^{-1} \) |
\(a_{559}= -0.87453511 \pm 7.3 \cdot 10^{-1} \) | \(a_{560}= -2.36320873 \pm 2.4 \cdot 10^{-1} \) | \(a_{561}= \pm0.11986512 \pm 2.5 \cdot 10^{-1} \) |
\(a_{562}= -0.00770417 \pm 5.9 \cdot 10^{-1} \) | \(a_{563}= +0.67315742 \pm 2.3 \) | \(a_{564}= \pm0.02024541 \pm 9.4 \cdot 10^{-1} \) |
\(a_{565}= +1.58645861 \pm 6.0 \cdot 10^{-1} \) | \(a_{566}= -0.00274029 \pm 7.2 \cdot 10^{-1} \) | \(a_{567}= \pm0.15485373 \pm 1.0 \cdot 10^{-1} \) |
\(a_{568}= +0.09984804 \pm 1.1 \) | \(a_{569}= +0.29641978 \pm 1.2 \) | \(a_{570}= \pm0.01757598 \pm 1.7 \cdot 10^{-1} \) |
\(a_{571}= -0.61915515 \pm 1.5 \) | \(a_{572}= -0.40126016 \pm 5.8 \cdot 10^{-1} \) | \(a_{573}= \pm0.41962120 \pm 6.9 \cdot 10^{-1} \) |
\(a_{574}= +0.01901906 \pm 5.9 \cdot 10^{-1} \) | \(a_{575}= -2.31940336 \pm 1.2 \) | \(a_{576}= \pm0.32498788 \pm 3.7 \cdot 10^{-1} \) |
\(a_{577}= +0.88109211 \pm 1.6 \) | \(a_{578}= -0.05685990 \pm 1.0 \) | \(a_{579}= \pm0.59424989 \pm 1.1 \) |
\(a_{580}= +1.61602385 \pm 1.4 \) | \(a_{581}= +2.05591965 \pm 1.2 \) | \(a_{582}= \pm0.00735311 \pm 3.9 \cdot 10^{-1} \) |
\(a_{583}= -0.53995221 \pm 5.8 \cdot 10^{-1} \) | \(a_{584}= -0.13504110 \pm 3.7 \cdot 10^{-1} \) | \(a_{585}= \pm0.38693196 \pm 2.4 \cdot 10^{-1} \) |
\(a_{586}= -0.04174694 \pm 7.5 \cdot 10^{-1} \) | \(a_{587}= +0.19158174 \pm 1.6 \) | \(a_{588}= \pm0.54179004 \pm 8.2 \cdot 10^{-1} \) |
\(a_{589}= -0.30425876 \pm 3.4 \cdot 10^{-1} \) | \(a_{590}= +0.01256388 \pm 5.8 \cdot 10^{-1} \) | \(a_{591}= \pm0.37300100 \pm 1.7 \) |
\(a_{592}= -0.82596787 \pm 8.4 \cdot 10^{-1} \) | \(a_{593}= -0.29111867 \pm 1.6 \) | \(a_{594}= \pm0.00742334 \pm 1.0 \cdot 10^{-1} \) |
\(a_{595}= -0.83353741 \pm 2.9 \cdot 10^{-1} \) | \(a_{596}= +0.00932874 \pm 1.1 \) | \(a_{597}= \pm0.91149458 \pm 6.5 \cdot 10^{-1} \) |
\(a_{598}= -0.05206188 \pm 4.1 \cdot 10^{-1} \) | \(a_{599}= +0.08506522 \pm 6.6 \cdot 10^{-1} \) | \(a_{600}= \pm0.14530741 \pm 4.0 \cdot 10^{-1} \) |
\(a_{601}= +1.66343913 \pm 1.0 \) | \(a_{602}= +0.11667404 \pm 9.9 \cdot 10^{-1} \) | \(a_{603}= \pm0.20349198 \pm 8.7 \cdot 10^{-1} \) |
\(a_{604}= +0.04633973 \pm 1.9 \) | \(a_{605}= -1.10703457 \pm 7.1 \cdot 10^{-1} \) | \(a_{606}= \pm0.04336321 \pm 4.1 \cdot 10^{-1} \) |
\(a_{607}= -0.79439107 \pm 2.5 \) | \(a_{608}= +0.05288740 \pm 4.9 \cdot 10^{-1} \) | \(a_{609}= \pm0.76041961 \pm 5.5 \cdot 10^{-1} \) |
\(a_{610}= -0.11431664 \pm 5.8 \cdot 10^{-1} \) | \(a_{611}= +0.02380373 \pm 1.1 \) | \(a_{612}= \pm0.11561042 \pm 2.9 \cdot 10^{-1} \) |
\(a_{613}= -0.20452208 \pm 1.4 \) | \(a_{614}= +0.03352675 \pm 6.0 \cdot 10^{-1} \) | \(a_{615}= \pm0.20908185 \pm 8.7 \cdot 10^{-1} \) |
\(a_{616}= +0.10729146 \pm 6.2 \cdot 10^{-1} \) | \(a_{617}= +1.07932748 \pm 2.6 \) | \(a_{618}= \pm0.04830980 \pm 5.5 \cdot 10^{-1} \) |
\(a_{619}= -1.49137948 \pm 1.0 \) | \(a_{620}= +1.89910734 \pm 6.0 \cdot 10^{-1} \) | \(a_{621}= \pm0.22905201 \pm 4.4 \cdot 10^{-1} \) |
\(a_{622}= +0.09965395 \pm 1.0 \) | \(a_{623}= +1.03002864 \pm 8.8 \cdot 10^{-1} \) | \(a_{624}= \pm0.38538290 \pm 4.5 \cdot 10^{-1} \) |
\(a_{625}= +0.84893067 \pm 6.4 \cdot 10^{-1} \) | \(a_{626}= -0.02995469 \pm 1.0 \) | \(a_{627}= \pm0.09428527 \pm 2.4 \cdot 10^{-1} \) |
\(a_{628}= +0.09844522 \pm 2.1 \) | \(a_{629}= -0.29133064 \pm 1.2 \) | \(a_{630}= \pm0.05162161 \pm 1.1 \cdot 10^{-1} \) |
\(a_{631}= +0.51027838 \pm 1.5 \) | \(a_{632}= -0.15645588 \pm 8.5 \cdot 10^{-1} \) | \(a_{633}= \pm1.05931122 \pm 3.8 \cdot 10^{-1} \) |
\(a_{634}= +0.03991342 \pm 4.3 \cdot 10^{-1} \) | \(a_{635}= -2.54754953 \pm 1.1 \) | \(a_{636}= \pm0.52078620 \pm 4.9 \cdot 10^{-1} \) |
\(a_{637}= +0.63701477 \pm 9.7 \cdot 10^{-1} \) | \(a_{638}= -0.03645281 \pm 5.4 \cdot 10^{-1} \) | \(a_{639}= \pm0.25770937 \pm 5.7 \cdot 10^{-1} \) |
\(a_{640}= -0.43983511 \pm 1.0 \) | \(a_{641}= -0.33141816 \pm 6.4 \cdot 10^{-1} \) | \(a_{642}= \pm0.00871458 \pm 3.2 \cdot 10^{-1} \) |
\(a_{643}= +0.42833158 \pm 1.6 \) | \(a_{644}= -1.65180134 \pm 5.2 \cdot 10^{-1} \) | \(a_{645}= \pm1.28263022 \pm 5.5 \cdot 10^{-1} \) |
\(a_{646}= +0.00617448 \pm 2.3 \cdot 10^{-1} \) | \(a_{647}= +0.01069092 \pm 1.2 \) | \(a_{648}= \pm0.01434979 \pm 1.1 \cdot 10^{-1} \) |
\(a_{649}= +0.06739815 \pm 9.7 \cdot 10^{-1} \) | \(a_{650}= +0.08524406 \pm 1.9 \cdot 10^{-1} \) | \(a_{651}= \pm0.89362447 \pm 3.5 \cdot 10^{-1} \) |
\(a_{652}= -0.30426499 \pm 3.1 \cdot 10^{-1} \) | \(a_{653}= +1.69073521 \pm 1.1 \) | \(a_{654}= \pm0.03084687 \pm 4.2 \cdot 10^{-1} \) |
\(a_{655}= -1.51163129 \pm 6.6 \cdot 10^{-1} \) | \(a_{656}= -0.20824480 \pm 1.6 \) | \(a_{657}= \pm0.34854321 \pm 2.4 \cdot 10^{-1} \) |
\(a_{658}= -0.00317572 \pm 5.7 \cdot 10^{-1} \) | \(a_{659}= +0.09854711 \pm 1.5 \) | \(a_{660}= \pm0.58850513 \pm 3.8 \cdot 10^{-1} \) |
\(a_{661}= +0.89059743 \pm 1.6 \) | \(a_{662}= -0.06663649 \pm 7.3 \cdot 10^{-1} \) | \(a_{663}= \pm0.13593004 \pm 1.9 \cdot 10^{-1} \) |
\(a_{664}= +0.19051539 \pm 1.2 \) | \(a_{665}= -0.65565609 \pm 1.3 \cdot 10^{-1} \) | \(a_{666}= \pm0.01804233 \pm 3.9 \cdot 10^{-1} \) |
\(a_{667}= +1.12477526 \pm 3.1 \) | \(a_{668}= +1.20092376 \pm 1.0 \) | \(a_{669}= \pm0.56517920 \pm 3.4 \cdot 10^{-1} \) |
\(a_{670}= +0.06783553 \pm 6.5 \cdot 10^{-1} \) | \(a_{671}= -0.61324452 \pm 7.9 \cdot 10^{-1} \) | \(a_{672}= \pm0.15533315 \pm 5.1 \cdot 10^{-1} \) |
\(a_{673}= -0.36927077 \pm 1.2 \) | \(a_{674}= +0.04649230 \pm 8.4 \cdot 10^{-1} \) | \(a_{675}= \pm0.37504071 \pm 1.8 \cdot 10^{-1} \) |
\(a_{676}= +0.54077363 \pm 9.8 \cdot 10^{-1} \) | \(a_{677}= +1.26235314 \pm 1.1 \) | \(a_{678}= \pm0.03451565 \pm 4.5 \cdot 10^{-1} \) |
\(a_{679}= +0.27430111 \pm 1.1 \) | \(a_{680}= -0.07724120 \pm 2.8 \cdot 10^{-1} \) | \(a_{681}= \pm0.16102932 \pm 1.3 \) |
\(a_{682}= -0.04283835 \pm 2.9 \cdot 10^{-1} \) | \(a_{683}= +0.25732112 \pm 2.6 \) | \(a_{684}= \pm0.09093854 \pm 1.8 \cdot 10^{-1} \) |
\(a_{685}= -2.57058403 \pm 1.3 \) | \(a_{686}= +0.00519880 \pm 5.5 \cdot 10^{-1} \) | \(a_{687}= \pm0.07577384 \pm 5.7 \cdot 10^{-1} \) |
\(a_{688}= -1.27749528 \pm 9.2 \cdot 10^{-1} \) | \(a_{689}= -0.61231930 \pm 5.4 \cdot 10^{-1} \) | \(a_{690}= \pm0.07635615 \pm 2.9 \cdot 10^{-1} \) |
\(a_{691}= +0.13969033 \pm 2.1 \) | \(a_{692}= -0.21810550 \pm 8.9 \cdot 10^{-1} \) | \(a_{693}= \pm0.27692094 \pm 2.1 \cdot 10^{-1} \) |
\(a_{694}= -0.12759269 \pm 6.6 \cdot 10^{-1} \) | \(a_{695}= +0.78892012 \pm 8.3 \cdot 10^{-1} \) | \(a_{696}= \pm0.07046561 \pm 7.1 \cdot 10^{-1} \) |
\(a_{697}= -0.07345091 \pm 6.4 \cdot 10^{-1} \) | \(a_{698}= +0.10367863 \pm 9.6 \cdot 10^{-1} \) | \(a_{699}= \pm0.09106682 \pm 9.4 \cdot 10^{-1} \) |
\(a_{700}= +2.70459419 \pm 4.5 \cdot 10^{-1} \) | \(a_{701}= +0.90113922 \pm 1.5 \) | \(a_{702}= \pm0.00841825 \pm 6.9 \cdot 10^{-2} \) |
\(a_{703}= -0.22915913 \pm 3.8 \cdot 10^{-1} \) | \(a_{704}= -0.58116748 \pm 6.9 \cdot 10^{-1} \) | \(a_{705}= \pm0.03491156 \pm 7.5 \cdot 10^{-1} \) |
\(a_{706}= -0.10113440 \pm 1.1 \) | \(a_{707}= -1.61762512 \pm 8.9 \cdot 10^{-1} \) | \(a_{708}= \pm0.06500581 \pm 6.5 \cdot 10^{-1} \) |
\(a_{709}= -0.00938636 \pm 7.3 \cdot 10^{-1} \) | \(a_{710}= -0.08590929 \pm 5.7 \cdot 10^{-1} \) | \(a_{711}= \pm0.40381510 \pm 4.3 \cdot 10^{-1} \) |
\(a_{712}= +0.09544940 \pm 6.7 \cdot 10^{-1} \) | \(a_{713}= +1.32180534 \pm 1.3 \) | \(a_{714}= \pm0.01813479 \pm 2.8 \cdot 10^{-1} \) |
\(a_{715}= +0.69194048 \pm 4.7 \cdot 10^{-1} \) | \(a_{716}= -0.97085728 \pm 1.3 \) | \(a_{717}= \pm0.03960963 \pm 8.1 \cdot 10^{-1} \) |
\(a_{718}= +0.04320827 \pm 1.0 \) | \(a_{719}= +0.39858815 \pm 6.8 \cdot 10^{-1} \) | \(a_{720}= \pm0.56521888 \pm 3.0 \cdot 10^{-1} \) |
\(a_{721}= +1.80215325 \pm 7.4 \cdot 10^{-1} \) | \(a_{722}= -0.05985273 \pm 7.6 \cdot 10^{-1} \) | \(a_{723}= \pm1.13396469 \pm 8.0 \cdot 10^{-1} \) |
\(a_{724}= -1.94532888 \pm 1.5 \) | \(a_{725}= -1.84166254 \pm 1.1 \) | \(a_{726}= \pm0.02408510 \pm 3.0 \cdot 10^{-1} \) |
\(a_{727}= -0.70811912 \pm 7.0 \cdot 10^{-1} \) | \(a_{728}= +0.12167119 \pm 3.3 \cdot 10^{-1} \) | \(a_{729}= \pm0.03703704 \pm 1.0 \cdot 10^{-8} \) |
\(a_{730}= +0.11618941 \pm 5.2 \cdot 10^{-1} \) | \(a_{731}= -0.45059080 \pm 9.7 \cdot 10^{-1} \) | \(a_{732}= \pm0.59147694 \pm 6.2 \cdot 10^{-1} \) |
\(a_{733}= -0.55242713 \pm 2.9 \) | \(a_{734}= +0.04559945 \pm 6.4 \cdot 10^{-1} \) | \(a_{735}= \pm0.93427283 \pm 6.2 \cdot 10^{-1} \) |
\(a_{736}= -0.22976116 \pm 1.7 \) | \(a_{737}= +0.36389949 \pm 1.6 \) | \(a_{738}= \pm0.00454887 \pm 2.4 \cdot 10^{-1} \) |
\(a_{739}= +0.60027922 \pm 1.7 \) | \(a_{740}= +1.43035421 \pm 1.0 \) | \(a_{741}= \pm0.10692185 \pm 2.7 \cdot 10^{-1} \) |
\(a_{742}= +0.08169113 \pm 4.0 \cdot 10^{-1} \) | \(a_{743}= -0.43895083 \pm 2.4 \) | \(a_{744}= \pm0.08280927 \pm 3.6 \cdot 10^{-1} \) |
\(a_{745}= -0.01608664 \pm 8.3 \cdot 10^{-1} \) | \(a_{746}= -0.05471416 \pm 5.6 \cdot 10^{-1} \) | \(a_{747}= \pm0.49172321 \pm 6.1 \cdot 10^{-1} \) |
\(a_{748}= -0.20674314 \pm 4.8 \cdot 10^{-1} \) | \(a_{749}= +0.32508933 \pm 4.3 \cdot 10^{-1} \) | \(a_{750}= \pm0.06086791 \pm 4.6 \cdot 10^{-1} \) |
\(a_{751}= +0.72207213 \pm 1.3 \) | \(a_{752}= +0.03477179 \pm 1.4 \) | \(a_{753}= \pm0.94068250 \pm 1.1 \) |
\(a_{754}= -0.04133839 \pm 4.2 \cdot 10^{-1} \) | \(a_{755}= -0.07990909 \pm 1.5 \) | \(a_{756}= \pm0.26709142 \pm 1.2 \cdot 10^{-1} \) |
\(a_{757}= -0.08931700 \pm 4.7 \cdot 10^{-1} \) | \(a_{758}= +0.03577989 \pm 4.4 \cdot 10^{-1} \) | \(a_{759}= \pm0.40960783 \pm 8.2 \cdot 10^{-1} \) |
\(a_{760}= -0.06075752 \pm 2.9 \cdot 10^{-1} \) | \(a_{761}= +1.72309177 \pm 2.6 \) | \(a_{762}= \pm0.05542554 \pm 5.3 \cdot 10^{-1} \) |
\(a_{763}= -1.15071449 \pm 6.6 \cdot 10^{-1} \) | \(a_{764}= +0.72376187 \pm 1.0 \) | \(a_{765}= \pm0.19936076 \pm 2.0 \cdot 10^{-1} \) |
\(a_{766}= +0.07460444 \pm 5.1 \cdot 10^{-1} \) | \(a_{767}= +0.07643119 \pm 7.5 \cdot 10^{-1} \) | \(a_{768}= \pm0.55332629 \pm 4.8 \cdot 10^{-1} \) |
\(a_{769}= +0.69319486 \pm 1.4 \) | \(a_{770}= -0.09231361 \pm 2.0 \cdot 10^{-1} \) | \(a_{771}= \pm0.91450890 \pm 1.0 \) |
\(a_{772}= +1.02496111 \pm 1.8 \) | \(a_{773}= -1.40358500 \pm 1.2 \) | \(a_{774}= \pm0.02790544 \pm 3.7 \cdot 10^{-1} \) |
\(a_{775}= -2.16427180 \pm 5.8 \cdot 10^{-1} \) | \(a_{776}= +0.02541859 \pm 1.1 \) | \(a_{777}= \pm0.67305281 \pm 3.5 \cdot 10^{-1} \) |
\(a_{778}= -0.11493590 \pm 4.4 \cdot 10^{-1} \) | \(a_{779}= -0.05777609 \pm 8.3 \cdot 10^{-1} \) | \(a_{780}= \pm0.66737953 \pm 3.8 \cdot 10^{-1} \) |
\(a_{781}= -0.46085504 \pm 1.1 \) | \(a_{782}= -0.02682408 \pm 3.0 \cdot 10^{-1} \) | \(a_{783}= \pm0.18187285 \pm 4.2 \cdot 10^{-1} \) |
\(a_{784}= +0.93053251 \pm 1.1 \) | \(a_{785}= -0.16976077 \pm 1.6 \) | \(a_{786}= \pm0.03288768 \pm 3.6 \cdot 10^{-1} \) |
\(a_{787}= +1.82045995 \pm 2.5 \) | \(a_{788}= -0.64335143 \pm 2.7 \) | \(a_{789}= \pm0.67393338 \pm 7.5 \cdot 10^{-1} \) |
\(a_{790}= +0.13461470 \pm 5.3 \cdot 10^{-1} \) | \(a_{791}= -1.28757509 \pm 1.1 \) | \(a_{792}= \pm0.02566136 \pm 2.2 \cdot 10^{-1} \) |
\(a_{793}= -0.69543461 \pm 7.7 \cdot 10^{-1} \) | \(a_{794}= +0.07697194 \pm 7.7 \cdot 10^{-1} \) | \(a_{795}= \pm0.89805342 \pm 3.7 \cdot 10^{-1} \) |
\(a_{796}= -1.57214416 \pm 1.1 \) | \(a_{797}= -0.36697821 \pm 6.1 \cdot 10^{-1} \) | \(a_{798}= \pm0.01426473 \pm 5.6 \cdot 10^{-2} \) |
\(a_{799}= +0.01226451 \pm 5.7 \cdot 10^{-1} \) | \(a_{800}= +0.37620183 \pm 7.8 \cdot 10^{-1} \) | \(a_{801}= \pm0.24635641 \pm 2.5 \cdot 10^{-1} \) |
\(a_{802}= -0.05708131 \pm 6.9 \cdot 10^{-1} \) | \(a_{803}= +0.62329086 \pm 4.5 \cdot 10^{-1} \) | \(a_{804}= \pm0.35098260 \pm 1.3 \) |
\(a_{805}= +2.84839697 \pm 3.9 \cdot 10^{-1} \) | \(a_{806}= -0.04857976 \pm 1.9 \cdot 10^{-1} \) | \(a_{807}= \pm0.16235493 \pm 6.6 \cdot 10^{-1} \) |
\(a_{808}= -0.14990006 \pm 7.5 \cdot 10^{-1} \) | \(a_{809}= +1.35086183 \pm 1.4 \) | \(a_{810}= \pm0.01234657 \pm 7.4 \cdot 10^{-2} \) |
\(a_{811}= +0.15361536 \pm 6.5 \cdot 10^{-1} \) | \(a_{812}= -1.31157034 \pm 6.8 \cdot 10^{-1} \) | \(a_{813}= \pm0.57522860 \pm 9.0 \cdot 10^{-1} \) |
\(a_{814}= -0.03226464 \pm 6.5 \cdot 10^{-1} \) | \(a_{815}= +0.52468022 \pm 2.7 \cdot 10^{-1} \) | \(a_{816}= \pm0.19856262 \pm 3.0 \cdot 10^{-1} \) |
\(a_{817}= -0.35443232 \pm 4.6 \cdot 10^{-1} \) | \(a_{818}= -0.04365684 \pm 8.4 \cdot 10^{-1} \) | \(a_{819}= \pm0.31403527 \pm 1.2 \cdot 10^{-1} \) |
\(a_{820}= +0.36062399 \pm 1.3 \) | \(a_{821}= -1.57315797 \pm 1.8 \) | \(a_{822}= \pm0.05592669 \pm 5.9 \cdot 10^{-1} \) |
\(a_{823}= -1.46486373 \pm 8.0 \cdot 10^{-1} \) | \(a_{824}= +0.16699968 \pm 7.6 \cdot 10^{-1} \) | \(a_{825}= \pm0.67067566 \pm 3.5 \cdot 10^{-1} \) |
\(a_{826}= -0.01019689 \pm 1.1 \) | \(a_{827}= +1.43052003 \pm 1.2 \) | \(a_{828}= \pm0.39506849 \pm 7.1 \cdot 10^{-1} \) |
\(a_{829}= +0.15073476 \pm 1.8 \) | \(a_{830}= -0.16391950 \pm 3.8 \cdot 10^{-1} \) | \(a_{831}= \pm0.15155800 \pm 4.8 \cdot 10^{-1} \) |
\(a_{832}= -0.65905845 \pm 6.1 \cdot 10^{-1} \) | \(a_{833}= +0.32821208 \pm 6.5 \cdot 10^{-1} \) | \(a_{834}= \pm0.01716407 \pm 6.8 \cdot 10^{-1} \) |
\(a_{835}= -2.07089529 \pm 7.8 \cdot 10^{-1} \) | \(a_{836}= -0.16262305 \pm 3.5 \cdot 10^{-1} \) | \(a_{837}= \pm0.21373204 \pm 1.8 \cdot 10^{-1} \) |
\(a_{838}= +0.07534414 \pm 3.9 \cdot 10^{-1} \) | \(a_{839}= +1.94912677 \pm 8.3 \cdot 10^{-1} \) | \(a_{840}= \pm0.17844812 \pm 1.9 \cdot 10^{-1} \) |
\(a_{841}= -0.10690115 \pm 1.3 \) | \(a_{842}= -0.02607040 \pm 1.2 \) | \(a_{843}= \pm0.06873804 \pm 1.0 \) |
\(a_{844}= +1.82709804 \pm 6.9 \cdot 10^{-1} \) | \(a_{845}= -0.93252012 \pm 7.6 \cdot 10^{-1} \) | \(a_{846}= \pm0.00075955 \pm 2.4 \cdot 10^{-1} \) |
\(a_{847}= +0.89847294 \pm 5.2 \cdot 10^{-1} \) | \(a_{848}= -0.89445811 \pm 6.7 \cdot 10^{-1} \) | \(a_{849}= \pm0.02444936 \pm 1.4 \) |
\(a_{850}= +0.04392069 \pm 2.6 \cdot 10^{-1} \) | \(a_{851}= +0.99554659 \pm 1.3 \) | \(a_{852}= \pm0.44449664 \pm 8.7 \cdot 10^{-1} \) |
\(a_{853}= -0.05163443 \pm 2.0 \) | \(a_{854}= +0.09277977 \pm 1.4 \cdot 10^{-1} \) | \(a_{855}= \pm0.15681611 \pm 1.6 \cdot 10^{-1} \) |
\(a_{856}= +0.03012497 \pm 4.9 \cdot 10^{-1} \) | \(a_{857}= -0.83927491 \pm 1.1 \) | \(a_{858}= \pm0.01505414 \pm 1.3 \cdot 10^{-1} \) |
\(a_{859}= +0.23858344 \pm 1.3 \) | \(a_{860}= +2.21227823 \pm 9.1 \cdot 10^{-1} \) | \(a_{861}= \pm0.16969153 \pm 5.8 \cdot 10^{-1} \) |
\(a_{862}= +0.02098781 \pm 7.8 \cdot 10^{-1} \) | \(a_{863}= -1.34840945 \pm 1.9 \) | \(a_{864}= \pm0.03715170 \pm 2.6 \cdot 10^{-1} \) |
\(a_{865}= +0.37610518 \pm 7.1 \cdot 10^{-1} \) | \(a_{866}= +0.03589382 \pm 1.0 \) | \(a_{867}= \pm0.50731440 \pm 9.3 \cdot 10^{-1} \) |
\(a_{868}= -1.54132184 \pm 3.8 \cdot 10^{-1} \) | \(a_{869}= +0.72213217 \pm 8.3 \cdot 10^{-1} \) | \(a_{870}= \pm0.06062864 \pm 3.9 \cdot 10^{-1} \) |
\(a_{871}= +0.41267111 \pm 1.6 \) | \(a_{872}= -0.10663297 \pm 9.4 \cdot 10^{-1} \) | \(a_{873}= \pm0.06560578 \pm 5.8 \cdot 10^{-1} \) |
\(a_{874}= -0.02109968 \pm 2.7 \cdot 10^{-1} \) | \(a_{875}= -2.27062210 \pm 6.8 \cdot 10^{-1} \) | \(a_{876}= \pm0.60116668 \pm 4.3 \cdot 10^{-1} \) |
\(a_{877}= -0.84246229 \pm 1.0 \) | \(a_{878}= -0.01031224 \pm 7.3 \cdot 10^{-1} \) | \(a_{879}= \pm0.37247376 \pm 1.5 \) |
\(a_{880}= +1.01076639 \pm 6.1 \cdot 10^{-1} \) | \(a_{881}= -1.56954985 \pm 2.5 \) | \(a_{882}= \pm0.02032643 \pm 2.5 \cdot 10^{-1} \) |
\(a_{883}= -0.83542353 \pm 4.1 \cdot 10^{-1} \) | \(a_{884}= -0.23445189 \pm 3.4 \cdot 10^{-1} \) | \(a_{885}= \pm0.11209722 \pm 4.6 \cdot 10^{-1} \) |
\(a_{886}= +0.04755018 \pm 1.3 \) | \(a_{887}= -0.12728118 \pm 2.1 \) | \(a_{888}= \pm0.06236961 \pm 3.6 \cdot 10^{-1} \) |
\(a_{889}= +2.06759968 \pm 1.6 \) | \(a_{890}= -0.08212470 \pm 4.4 \cdot 10^{-1} \) | \(a_{891}= \pm0.06623238 \pm 1.1 \cdot 10^{-1} \) |
\(a_{892}= -0.97482004 \pm 6.1 \cdot 10^{-1} \) | \(a_{893}= +0.00964720 \pm 7.2 \cdot 10^{-1} \) | \(a_{894}= \pm0.00034999 \pm 4.3 \cdot 10^{-1} \) |
\(a_{895}= +1.67416437 \pm 1.0 \) | \(a_{896}= +0.35697164 \pm 5.1 \cdot 10^{-1} \) | \(a_{897}= \pm0.46450551 \pm 8.6 \cdot 10^{-1} \) |
\(a_{898}= -0.05314110 \pm 1.1 \) | \(a_{899}= +1.04954551 \pm 1.2 \) | \(a_{900}= \pm0.64686952 \pm 2.6 \cdot 10^{-1} \) |
\(a_{901}= -0.31548813 \pm 5.4 \cdot 10^{-1} \) | \(a_{902}= -0.00813463 \pm 4.7 \cdot 10^{-1} \) | \(a_{903}= \pm1.04098696 \pm 8.0 \cdot 10^{-1} \) |
\(a_{904}= -0.11931539 \pm 8.6 \cdot 10^{-1} \) | \(a_{905}= +3.35456133 \pm 1.2 \) | \(a_{906}= \pm0.00173854 \pm 4.0 \cdot 10^{-1} \) |
\(a_{907}= -1.61115878 \pm 3.0 \) | \(a_{908}= -0.27774307 \pm 2.1 \) | \(a_{909}= \pm0.38689441 \pm 3.2 \cdot 10^{-1} \) |
\(a_{910}= -0.10468594 \pm 1.2 \cdot 10^{-1} \) | \(a_{911}= -1.59380487 \pm 2.1 \) | \(a_{912}= \pm0.15618830 \pm 2.8 \cdot 10^{-1} \) |
\(a_{913}= -0.87933599 \pm 1.1 \) | \(a_{914}= -0.04204009 \pm 9.5 \cdot 10^{-1} \) | \(a_{915}= \pm1.01995384 \pm 5.3 \cdot 10^{-1} \) |
\(a_{916}= +0.13069457 \pm 7.9 \cdot 10^{-1} \) | \(a_{917}= +1.22684498 \pm 1.0 \) | \(a_{918}= \pm0.00433738 \pm 1.8 \cdot 10^{-1} \) |
\(a_{919}= +1.58682264 \pm 1.1 \) | \(a_{920}= +0.26395168 \pm 8.5 \cdot 10^{-1} \) | \(a_{921}= \pm0.29913180 \pm 4.4 \cdot 10^{-1} \) |
\(a_{922}= +0.08494954 \pm 4.0 \cdot 10^{-1} \) | \(a_{923}= -0.52262113 \pm 1.0 \) | \(a_{924}= \pm0.47763273 \pm 2.3 \cdot 10^{-1} \) |
\(a_{925}= -1.63006861 \pm 5.5 \cdot 10^{-1} \) | \(a_{926}= -0.01741879 \pm 9.2 \cdot 10^{-1} \) | \(a_{927}= \pm0.43102880 \pm 4.1 \cdot 10^{-1} \) |
\(a_{928}= -0.18243593 \pm 1.7 \) | \(a_{929}= -1.61836620 \pm 1.5 \) | \(a_{930}= \pm0.07124913 \pm 1.9 \cdot 10^{-1} \) |
\(a_{931}= +0.25816988 \pm 5.8 \cdot 10^{-1} \) | \(a_{932}= -0.15707189 \pm 1.5 \) | \(a_{933}= \pm0.88913062 \pm 1.4 \) |
\(a_{934}= +0.10785405 \pm 9.4 \cdot 10^{-1} \) | \(a_{935}= +0.35651172 \pm 3.5 \cdot 10^{-1} \) | \(a_{936}= \pm0.02910063 \pm 1.9 \cdot 10^{-1} \) |
\(a_{937}= +0.16901024 \pm 1.1 \) | \(a_{938}= -0.05505554 \pm 4.7 \cdot 10^{-1} \) | \(a_{939}= \pm0.26726116 \pm 6.0 \cdot 10^{-1} \) |
\(a_{940}= -0.06021539 \pm 1.1 \) | \(a_{941}= +1.61965434 \pm 1.2 \) | \(a_{942}= \pm0.00369339 \pm 4.1 \cdot 10^{-1} \) |
\(a_{943}= +0.25099935 \pm 3.2 \) | \(a_{944}= +0.11164845 \pm 7.5 \cdot 10^{-1} \) | \(a_{945}= \pm0.46057742 \pm 8.1 \cdot 10^{-2} \) |
\(a_{946}= -0.04990257 \pm 7.1 \cdot 10^{-1} \) | \(a_{947}= -0.73822187 \pm 8.2 \cdot 10^{-1} \) | \(a_{948}= \pm0.69649954 \pm 6.4 \cdot 10^{-1} \) |
\(a_{949}= +0.70682742 \pm 4.4 \cdot 10^{-1} \) | \(a_{950}= +0.03454778 \pm 1.7 \cdot 10^{-1} \) | \(a_{951}= \pm0.35611475 \pm 6.1 \cdot 10^{-1} \) |
\(a_{952}= +0.06268922 \pm 3.2 \cdot 10^{-1} \) | \(a_{953}= -1.01587919 \pm 2.9 \) | \(a_{954}= \pm0.01953842 \pm 1.9 \cdot 10^{-1} \) |
\(a_{955}= -1.24806844 \pm 6.9 \cdot 10^{-1} \) | \(a_{956}= -0.06831861 \pm 1.2 \) | \(a_{957}= \pm0.32523855 \pm 7.8 \cdot 10^{-1} \) |
\(a_{958}= +0.03231611 \pm 8.4 \cdot 10^{-1} \) | \(a_{959}= +2.08629456 \pm 9.2 \cdot 10^{-1} \) | \(a_{960}= \pm0.96660302 \pm 4.6 \cdot 10^{-1} \) |
\(a_{961}= +0.23339738 \pm 1.1 \) | \(a_{962}= -0.03658891 \pm 3.7 \cdot 10^{-1} \) | \(a_{963}= \pm0.07775302 \pm 2.8 \cdot 10^{-1} \) |
\(a_{964}= +1.95586019 \pm 1.1 \) | \(a_{965}= -1.76746202 \pm 1.4 \) | \(a_{966}= \pm0.06197091 \pm 1.1 \cdot 10^{-1} \) |
\(a_{967}= +0.78864286 \pm 2.9 \) | \(a_{968}= +0.08325856 \pm 6.0 \cdot 10^{-1} \) | \(a_{969}= \pm0.05508984 \pm 1.3 \cdot 10^{-1} \) |
\(a_{970}= -0.02187016 \pm 3.7 \cdot 10^{-1} \) | \(a_{971}= -1.51908821 \pm 2.6 \) | \(a_{972}= \pm0.06388141 \pm 9.7 \cdot 10^{-2} \) |
\(a_{973}= -0.64029019 \pm 1.3 \) | \(a_{974}= -0.09460916 \pm 4.8 \cdot 10^{-1} \) | \(a_{975}= \pm0.76056296 \pm 3.1 \cdot 10^{-1} \) |
\(a_{976}= -1.01587051 \pm 9.9 \cdot 10^{-1} \) | \(a_{977}= +0.74329482 \pm 1.6 \) | \(a_{978}= \pm0.01141516 \pm 2.0 \cdot 10^{-1} \) |
\(a_{979}= -0.44055284 \pm 5.2 \cdot 10^{-1} \) | \(a_{980}= -1.61143204 \pm 9.9 \cdot 10^{-1} \) | \(a_{981}= \pm0.27522137 \pm 5.6 \cdot 10^{-1} \) |
\(a_{982}= +0.07241185 \pm 5.1 \cdot 10^{-1} \) | \(a_{983}= -0.85701374 \pm 7.1 \cdot 10^{-1} \) | \(a_{984}= \pm0.01572476 \pm 7.4 \cdot 10^{-1} \) |
\(a_{985}= +1.10940719 \pm 2.0 \) | \(a_{986}= -0.02129897 \pm 9.8 \cdot 10^{-1} \) | \(a_{987}= \pm0.02833434 \pm 5.3 \cdot 10^{-1} \) |
\(a_{988}= -0.18441860 \pm 4.0 \cdot 10^{-1} \) | \(a_{989}= +1.53977667 \pm 1.5 \) | \(a_{990}= \pm0.02207905 \pm 1.5 \cdot 10^{-1} \) |
\(a_{991}= -0.82843049 \pm 1.9 \) | \(a_{992}= -0.21439375 \pm 7.8 \cdot 10^{-1} \) | \(a_{993}= \pm0.59454290 \pm 5.7 \cdot 10^{-1} \) |
\(a_{994}= +0.06972426 \pm 7.4 \cdot 10^{-1} \) | \(a_{995}= +2.71103466 \pm 8.3 \cdot 10^{-1} \) | \(a_{996}= \pm0.84812329 \pm 9.2 \cdot 10^{-1} \) |
\(a_{997}= -1.20964651 \pm 2.3 \) | \(a_{998}= +0.05720917 \pm 1.0 \) | \(a_{999}= \pm0.16097696 \pm 2.2 \cdot 10^{-1} \) |
\(a_{1000}= -0.21041116 \pm 9.4 \cdot 10^{-1} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000