Maass form invariants
Level: | \( 3 \) |
Weight: | \( 0 \) |
Character: | 3.1 |
Symmetry: | odd |
Fricke sign: | not computed rigorously |
Spectral parameter: | \(22.3132655923334099233402763826 \pm 5 \cdot 10^{-3}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +0.97517230 \pm 1.4 \) | \(a_{3}= \pm0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= -0.04903898 \pm 2.5 \) | \(a_{5}= +0.79147542 \pm 1.9 \) | \(a_{6}= \pm0.56301599 \pm 8.1 \cdot 10^{-1} \) |
\(a_{7}= +1.68344869 \pm 1.5 \) | \(a_{8}= -1.02299376 \pm 1.7 \) | \(a_{9}= \pm0.33333333 \pm 1.0 \cdot 10^{-8} \) |
\(a_{10}= +0.77182491 \pm 1.1 \) | \(a_{11}= +0.21954090 \pm 1.7 \) | \(a_{12}= \pm0.02831267 \pm 1.4 \) |
\(a_{13}= -1.01551975 \pm 1.7 \) | \(a_{14}= +1.64165254 \pm 1.0 \) | \(a_{15}= \pm0.45695855 \pm 1.1 \) |
\(a_{16}= -0.94855620 \pm 2.0 \) | \(a_{17}= +1.33740961 \pm 1.2 \) | \(a_{18}= \pm0.32505743 \pm 4.6 \cdot 10^{-1} \) |
\(a_{19}= +1.24606861 \pm 1.0 \) | \(a_{20}= -0.03881315 \pm 1.8 \) | \(a_{21}= \pm0.97193955 \pm 9.1 \cdot 10^{-1} \) |
\(a_{22}= +0.21409020 \pm 8.9 \cdot 10^{-1} \) | \(a_{23}= -0.18461287 \pm 3.8 \) | \(a_{24}= \pm0.59062572 \pm 9.9 \cdot 10^{-1} \) |
\(a_{25}= -0.37356666 \pm 1.5 \) | \(a_{26}= -0.99030673 \pm 6.0 \cdot 10^{-1} \) | \(a_{27}= \pm0.19245009 \pm 1.0 \cdot 10^{-8} \) |
\(a_{28}= -0.08255460 \pm 1.0 \) | \(a_{29}= +0.51611436 \pm 3.6 \) | \(a_{30}= \pm0.44561332 \pm 6.4 \cdot 10^{-1} \) |
\(a_{31}= +0.81971856 \pm 1.6 \) | \(a_{32}= +0.09798802 \pm 2.2 \) | \(a_{33}= \pm0.12675200 \pm 1.0 \) |
\(a_{34}= +1.30420481 \pm 1.5 \) | \(a_{35}= +1.33240826 \pm 7.0 \cdot 10^{-1} \) | \(a_{36}= \pm0.01634633 \pm 8.4 \cdot 10^{-1} \) |
\(a_{37}= +0.69345325 \pm 1.9 \) | \(a_{38}= +1.21513160 \pm 4.7 \cdot 10^{-1} \) | \(a_{39}= \pm0.58631060 \pm 9.9 \cdot 10^{-1} \) |
\(a_{40}= -0.80967441 \pm 1.0 \) | \(a_{41}= +0.76755204 \pm 3.7 \) | \(a_{42}= \pm0.94780853 \pm 6.2 \cdot 10^{-1} \) |
\(a_{43}= +0.80698243 \pm 2.4 \) | \(a_{44}= -0.01076606 \pm 1.5 \) | \(a_{45}= \pm0.26382514 \pm 6.4 \cdot 10^{-1} \) |
\(a_{46}= -0.18002936 \pm 1.1 \) | \(a_{47}= -1.34516381 \pm 3.0 \) | \(a_{48}= \pm0.54764918 \pm 1.1 \) |
\(a_{49}= +1.83399949 \pm 2.6 \) | \(a_{50}= -0.36429186 \pm 7.8 \cdot 10^{-1} \) | \(a_{51}= \pm0.77215380 \pm 7.4 \cdot 10^{-1} \) |
\(a_{52}= +0.04980005 \pm 1.5 \) | \(a_{53}= -0.48172689 \pm 1.5 \) | \(a_{54}= \pm0.18767200 \pm 2.7 \cdot 10^{-1} \) |
\(a_{55}= +0.17376123 \pm 1.2 \) | \(a_{56}= -1.72215750 \pm 1.5 \) | \(a_{57}= \pm0.71941805 \pm 6.0 \cdot 10^{-1} \) |
\(a_{58}= +0.50330043 \pm 1.5 \) | \(a_{59}= +0.57783514 \pm 2.4 \) | \(a_{60}= \pm0.02240878 \pm 1.0 \) |
\(a_{61}= -1.68603900 \pm 2.0 \) | \(a_{62}= +0.79936684 \pm 7.6 \cdot 10^{-1} \) | \(a_{63}= \pm0.56114956 \pm 5.2 \cdot 10^{-1} \) |
\(a_{64}= +1.04411140 \pm 1.8 \) | \(a_{65}= -0.80375892 \pm 1.2 \) | \(a_{66}= \pm0.12360504 \pm 5.1 \cdot 10^{-1} \) |
\(a_{67}= -1.07298931 \pm 4.3 \) | \(a_{68}= -0.06558520 \pm 1.4 \) | \(a_{69}= \pm0.10658629 \pm 2.2 \) |
\(a_{70}= +1.29932763 \pm 5.5 \cdot 10^{-1} \) | \(a_{71}= -1.47212531 \pm 2.8 \) | \(a_{72}= \pm0.34099792 \pm 5.7 \cdot 10^{-1} \) |
\(a_{73}= +1.41771760 \pm 1.2 \) | \(a_{74}= +0.67623641 \pm 1.9 \) | \(a_{75}= \pm0.21567881 \pm 9.2 \cdot 10^{-1} \) |
\(a_{76}= -0.06110593 \pm 9.4 \cdot 10^{-1} \) | \(a_{77}= +0.36958584 \pm 1.0 \) | \(a_{78}= \pm0.57175386 \pm 3.4 \cdot 10^{-1} \) |
\(a_{79}= -0.70859633 \pm 2.1 \) | \(a_{80}= -0.75075892 \pm 1.5 \) | \(a_{81}= \pm0.11111111 \pm 1.0 \cdot 10^{-8} \) |
\(a_{82}= +0.74849550 \pm 1.1 \) | \(a_{83}= -0.72126138 \pm 3.0 \) | \(a_{84}= \pm0.04766292 \pm 6.0 \cdot 10^{-1} \) |
\(a_{85}= +1.05852684 \pm 1.0 \) | \(a_{86}= +0.78694691 \pm 1.8 \) | \(a_{87}= \pm0.29797876 \pm 2.1 \) |
\(a_{88}= -0.22458897 \pm 1.1 \) | \(a_{89}= -0.22571073 \pm 1.2 \) | \(a_{90}= \pm0.25727497 \pm 3.7 \cdot 10^{-1} \) |
\(a_{91}= -1.70957539 \pm 6.4 \cdot 10^{-1} \) | \(a_{92}= +0.00905323 \pm 3.5 \) | \(a_{93}= \pm0.47326473 \pm 9.4 \cdot 10^{-1} \) |
\(a_{94}= -1.31176649 \pm 1.2 \) | \(a_{95}= +0.98623268 \pm 8.1 \cdot 10^{-1} \) | \(a_{96}= \pm0.05657341 \pm 1.3 \) |
\(a_{97}= -0.27692906 \pm 2.9 \) | \(a_{98}= +1.78846551 \pm 1.2 \) | \(a_{99}= \pm0.07318030 \pm 5.8 \cdot 10^{-1} \) |
\(a_{100}= +0.01831933 \pm 1.3 \) | \(a_{101}= -1.54310406 \pm 1.6 \) | \(a_{102}= \pm0.75298300 \pm 9.0 \cdot 10^{-1} \) |
\(a_{103}= -1.22654913 \pm 2.0 \) | \(a_{104}= +1.03887036 \pm 9.7 \cdot 10^{-1} \) | \(a_{105}= \pm0.76926627 \pm 4.0 \cdot 10^{-1} \) |
\(a_{106}= -0.46976672 \pm 9.6 \cdot 10^{-1} \) | \(a_{107}= -0.33431914 \pm 1.4 \) | \(a_{108}= \pm0.00943756 \pm 4.8 \cdot 10^{-1} \) |
\(a_{109}= -0.64218274 \pm 2.8 \) | \(a_{110}= +0.16944713 \pm 7.6 \cdot 10^{-1} \) | \(a_{111}= \pm0.40036542 \pm 1.1 \) |
\(a_{112}= -1.59684569 \pm 5.7 \cdot 10^{-1} \) | \(a_{113}= +1.00515919 \pm 1.6 \) | \(a_{114}= \pm0.70155655 \pm 2.7 \cdot 10^{-1} \) |
\(a_{115}= -0.14611655 \pm 2.7 \) | \(a_{116}= -0.02530972 \pm 3.3 \) | \(a_{117}= \pm0.33850658 \pm 5.7 \cdot 10^{-1} \) |
\(a_{118}= +0.56348882 \pm 1.6 \) | \(a_{119}= +2.25146046 \pm 7.1 \cdot 10^{-1} \) | \(a_{120}= \pm0.46746574 \pm 6.1 \cdot 10^{-1} \) |
\(a_{121}= -0.95180179 \pm 1.7 \) | \(a_{122}= -1.64417853 \pm 8.5 \cdot 10^{-1} \) | \(a_{123}= \pm0.44314638 \pm 2.1 \) |
\(a_{124}= -0.04019816 \pm 1.4 \) | \(a_{125}= -1.08714425 \pm 2.8 \) | \(a_{126}= \pm0.54721751 \pm 3.6 \cdot 10^{-1} \) |
\(a_{127}= -0.83379299 \pm 3.1 \) | \(a_{128}= +0.92020050 \pm 2.3 \) | \(a_{129}= \pm0.46591152 \pm 1.4 \) |
\(a_{130}= -0.78380344 \pm 4.6 \cdot 10^{-1} \) | \(a_{131}= +1.07513642 \pm 1.8 \) | \(a_{132}= \pm0.00621579 \pm 8.9 \cdot 10^{-1} \) |
\(a_{133}= +2.09769257 \pm 2.9 \cdot 10^{-1} \) | \(a_{134}= -1.04634946 \pm 1.4 \) | \(a_{135}= \pm0.15231952 \pm 3.7 \cdot 10^{-1} \) |
\(a_{136}= -1.36816169 \pm 6.6 \cdot 10^{-1} \) | \(a_{137}= +0.43754455 \pm 3.1 \) | \(a_{138}= \pm0.10394000 \pm 6.4 \cdot 10^{-1} \) |
\(a_{139}= +0.57518785 \pm 2.1 \) | \(a_{140}= -0.06533994 \pm 5.9 \cdot 10^{-1} \) | \(a_{141}= \pm0.77663069 \pm 1.7 \) |
\(a_{142}= -1.43557583 \pm 1.2 \) | \(a_{143}= -0.22294812 \pm 1.0 \) | \(a_{144}= \pm0.31618540 \pm 6.8 \cdot 10^{-1} \) |
\(a_{145}= +0.40849183 \pm 2.5 \) | \(a_{146}= +1.38251894 \pm 1.0 \) | \(a_{147}= \pm1.05886010 \pm 1.5 \) |
\(a_{148}= -0.03400624 \pm 2.0 \) | \(a_{149}= +0.02356150 \pm 2.3 \) | \(a_{150}= \pm0.21032400 \pm 4.5 \cdot 10^{-1} \) |
\(a_{151}= +0.13528442 \pm 3.6 \) | \(a_{152}= -1.27472041 \pm 5.9 \cdot 10^{-1} \) | \(a_{153}= \pm0.44580320 \pm 4.3 \cdot 10^{-1} \) |
\(a_{154}= +0.36040987 \pm 7.2 \cdot 10^{-1} \) | \(a_{155}= +0.64878709 \pm 1.0 \) | \(a_{156}= \pm0.02875207 \pm 9.0 \cdot 10^{-1} \) |
\(a_{157}= -0.46502189 \pm 3.8 \) | \(a_{158}= -0.69100352 \pm 1.0 \) | \(a_{159}= \pm0.27812515 \pm 8.9 \cdot 10^{-1} \) |
\(a_{160}= +0.07755511 \pm 1.5 \) | \(a_{161}= -0.31078629 \pm 9.6 \cdot 10^{-1} \) | \(a_{162}= \pm0.10835248 \pm 1.5 \cdot 10^{-1} \) |
\(a_{163}= +0.81445519 \pm 4.8 \cdot 10^{-1} \) | \(a_{164}= -0.03763997 \pm 3.3 \) | \(a_{165}= \pm0.10032109 \pm 7.1 \cdot 10^{-1} \) |
\(a_{166}= -0.70335413 \pm 1.1 \) | \(a_{167}= -0.09249090 \pm 1.7 \) | \(a_{168}= \pm0.99428810 \pm 8.8 \cdot 10^{-1} \) |
\(a_{169}= +0.03128036 \pm 1.8 \) | \(a_{170}= +1.03224605 \pm 1.3 \) | \(a_{171}= \pm0.41535620 \pm 3.4 \cdot 10^{-1} \) |
\(a_{172}= -0.03957359 \pm 2.1 \) | \(a_{173}= +1.64765398 \pm 1.5 \) | \(a_{174}= \pm0.29058064 \pm 8.7 \cdot 10^{-1} \) |
\(a_{175}= -0.62888030 \pm 1.3 \) | \(a_{176}= -0.20824688 \pm 1.3 \) | \(a_{177}= \pm0.33361327 \pm 1.4 \) |
\(a_{178}= -0.22010686 \pm 9.6 \cdot 10^{-1} \) | \(a_{179}= -1.13991094 \pm 2.4 \) | \(a_{180}= \pm0.01293772 \pm 6.0 \cdot 10^{-1} \) |
\(a_{181}= +0.42503806 \pm 2.9 \) | \(a_{182}= -1.66713057 \pm 3.7 \cdot 10^{-1} \) | \(a_{183}= \pm0.97343507 \pm 1.1 \) |
\(a_{184}= +0.18885781 \pm 2.0 \) | \(a_{185}= +0.54885121 \pm 1.5 \) | \(a_{186}= \pm0.46151466 \pm 4.3 \cdot 10^{-1} \) |
\(a_{187}= +0.29361611 \pm 7.4 \cdot 10^{-1} \) | \(a_{188}= +0.06596546 \pm 2.7 \) | \(a_{189}= \pm0.32397985 \pm 3.0 \cdot 10^{-1} \) |
\(a_{190}= +0.96174679 \pm 5.0 \cdot 10^{-1} \) | \(a_{191}= +0.30401832 \pm 2.0 \) | \(a_{192}= \pm0.60281800 \pm 1.0 \) |
\(a_{193}= -0.18999074 \pm 3.3 \) | \(a_{194}= -0.27005354 \pm 1.1 \) | \(a_{195}= \pm0.46405043 \pm 7.0 \cdot 10^{-1} \) |
\(a_{196}= -0.08993746 \pm 2.3 \) | \(a_{197}= +0.46501673 \pm 4.9 \) | \(a_{198}= \pm0.07136340 \pm 2.9 \cdot 10^{-1} \) |
\(a_{199}= -0.98344442 \pm 1.8 \) | \(a_{200}= +0.38215636 \pm 1.1 \) | \(a_{201}= \pm0.61949067 \pm 2.5 \) |
\(a_{202}= -1.50479234 \pm 1.1 \) | \(a_{203}= +0.86885204 \pm 1.5 \) | \(a_{204}= \pm0.03786563 \pm 8.4 \cdot 10^{-1} \) |
\(a_{205}= +0.60749858 \pm 2.5 \) | \(a_{206}= -1.19609674 \pm 1.6 \) | \(a_{207}= \pm0.06153762 \pm 1.2 \) |
\(a_{208}= +0.96327755 \pm 1.3 \) | \(a_{209}= +0.27356302 \pm 6.9 \cdot 10^{-1} \) | \(a_{210}= \pm0.75016716 \pm 3.1 \cdot 10^{-1} \) |
\(a_{211}= +0.13973366 \pm 1.1 \) | \(a_{212}= +0.02362339 \pm 1.4 \) | \(a_{213}= \pm0.84993194 \pm 1.6 \) |
\(a_{214}= -0.32601876 \pm 9.5 \cdot 10^{-1} \) | \(a_{215}= +0.63870676 \pm 1.6 \) | \(a_{216}= \pm0.19687524 \pm 3.3 \cdot 10^{-1} \) |
\(a_{217}= +1.37995413 \pm 1.0 \) | \(a_{218}= -0.62623882 \pm 1.2 \) | \(a_{219}= \pm0.81851964 \pm 7.1 \cdot 10^{-1} \) |
\(a_{220}= -0.00852107 \pm 1.1 \) | \(a_{221}= -1.35816587 \pm 5.6 \cdot 10^{-1} \) | \(a_{222}= \pm0.39042527 \pm 1.1 \) |
\(a_{223}= -1.37165536 \pm 9.9 \cdot 10^{-1} \) | \(a_{224}= +0.16495780 \pm 1.4 \) | \(a_{225}= \pm0.12452222 \pm 5.3 \cdot 10^{-1} \) |
\(a_{226}= +0.98020340 \pm 1.3 \) | \(a_{227}= +0.36644653 \pm 3.7 \) | \(a_{228}= \pm0.03527953 \pm 5.4 \cdot 10^{-1} \) |
\(a_{229}= -0.97544547 \pm 1.6 \) | \(a_{230}= -0.14248881 \pm 8.5 \cdot 10^{-1} \) | \(a_{231}= \pm0.21338048 \pm 6.1 \cdot 10^{-1} \) |
\(a_{232}= -0.52798177 \pm 2.0 \) | \(a_{233}= +0.73613624 \pm 2.7 \) | \(a_{234}= \pm0.33010224 \pm 2.0 \cdot 10^{-1} \) |
\(a_{235}= -1.06466409 \pm 2.1 \) | \(a_{236}= -0.02833644 \pm 1.8 \) | \(a_{237}= \pm0.40910828 \pm 1.2 \) |
\(a_{238}= +2.19556189 \pm 8.2 \cdot 10^{-1} \) | \(a_{239}= +0.95645593 \pm 2.3 \) | \(a_{240}= \pm0.43345086 \pm 8.7 \cdot 10^{-1} \) |
\(a_{241}= +0.95457468 \pm 2.3 \) | \(a_{242}= -0.92817075 \pm 8.8 \cdot 10^{-1} \) | \(a_{243}= \pm0.06415003 \pm 1.0 \cdot 10^{-8} \) |
\(a_{244}= +0.08268163 \pm 1.8 \) | \(a_{245}= +1.45156551 \pm 1.7 \) | \(a_{246}= \pm0.43214408 \pm 6.9 \cdot 10^{-1} \) |
\(a_{247}= -1.26540728 \pm 7.8 \cdot 10^{-1} \) | \(a_{248}= -0.83856697 \pm 1.0 \) | \(a_{249}= \pm0.41642045 \pm 1.7 \) |
\(a_{250}= -1.06015296 \pm 1.3 \) | \(a_{251}= -0.38955517 \pm 3.3 \) | \(a_{252}= \pm0.02751820 \pm 3.4 \cdot 10^{-1} \) |
\(a_{253}= -0.04053008 \pm 2.3 \) | \(a_{254}= -0.81309183 \pm 1.5 \) | \(a_{255}= \pm0.61114075 \pm 6.0 \cdot 10^{-1} \) |
\(a_{256}= -0.14675736 \pm 1.3 \) | \(a_{257}= -0.10731937 \pm 3.0 \) | \(a_{258}= \pm0.45434401 \pm 1.0 \) |
\(a_{259}= +1.16739297 \pm 1.0 \) | \(a_{260}= +0.03941552 \pm 1.1 \) | \(a_{261}= \pm0.17203812 \pm 1.2 \) |
\(a_{262}= +1.04844326 \pm 1.0 \) | \(a_{263}= -0.55980097 \pm 2.1 \) | \(a_{264}= \pm0.12966650 \pm 6.4 \cdot 10^{-1} \) |
\(a_{265}= -0.38127499 \pm 1.0 \) | \(a_{266}= +2.04561169 \pm 1.6 \cdot 10^{-1} \) | \(a_{267}= \pm0.13031415 \pm 7.3 \cdot 10^{-1} \) |
\(a_{268}= +0.05261830 \pm 4.0 \) | \(a_{269}= -0.37363925 \pm 1.9 \) | \(a_{270}= \pm0.14853777 \pm 2.1 \cdot 10^{-1} \) |
\(a_{271}= -1.34298423 \pm 2.6 \) | \(a_{272}= -1.26860818 \pm 8.8 \cdot 10^{-1} \) | \(a_{273}= \pm0.98702381 \pm 3.7 \cdot 10^{-1} \) |
\(a_{274}= +0.42668133 \pm 1.7 \) | \(a_{275}= -0.08201316 \pm 1.0 \) | \(a_{276}= \pm0.00522688 \pm 2.0 \) |
\(a_{277}= +1.81790139 \pm 1.4 \) | \(a_{278}= +0.56090726 \pm 1.9 \) | \(a_{279}= \pm0.27323952 \pm 5.4 \cdot 10^{-1} \) |
\(a_{280}= -1.36304533 \pm 5.5 \cdot 10^{-1} \) | \(a_{281}= +0.42083725 \pm 2.9 \) | \(a_{282}= \pm0.75734874 \pm 7.1 \cdot 10^{-1} \) |
\(a_{283}= -1.37003638 \pm 4.1 \) | \(a_{284}= +0.07219152 \pm 2.5 \) | \(a_{285}= \pm0.56940170 \pm 4.7 \cdot 10^{-1} \) |
\(a_{286}= -0.21741283 \pm 3.9 \cdot 10^{-1} \) | \(a_{287}= +1.29213448 \pm 1.6 \) | \(a_{288}= \pm0.03266267 \pm 7.6 \cdot 10^{-1} \) |
\(a_{289}= +0.78866448 \pm 2.6 \) | \(a_{290}= +0.39834992 \pm 1.1 \) | \(a_{291}= \pm0.15988506 \pm 1.6 \) |
\(a_{292}= -0.06952342 \pm 1.2 \) | \(a_{293}= -1.38786309 \pm 4.4 \) | \(a_{294}= \pm1.03257104 \pm 7.3 \cdot 10^{-1} \) |
\(a_{295}= +0.45734231 \pm 1.3 \) | \(a_{296}= -0.70939835 \pm 1.0 \) | \(a_{297}= \pm0.04225067 \pm 3.3 \cdot 10^{-1} \) |
\(a_{298}= +0.02297653 \pm 1.2 \) | \(a_{299}= +0.18747801 \pm 2.5 \) | \(a_{300}= \pm0.01057667 \pm 7.6 \cdot 10^{-1} \) |
\(a_{301}= +1.35851351 \pm 2.3 \) | \(a_{302}= +0.13192562 \pm 1.1 \) | \(a_{303}= \pm0.89091154 \pm 9.3 \cdot 10^{-1} \) |
\(a_{304}= -1.18196611 \pm 8.2 \cdot 10^{-1} \) | \(a_{305}= -1.33445842 \pm 1.5 \) | \(a_{306}= \pm0.43473494 \pm 5.2 \cdot 10^{-1} \) |
\(a_{307}= +0.47376806 \pm 1.2 \) | \(a_{308}= -0.01812411 \pm 6.7 \cdot 10^{-1} \) | \(a_{309}= \pm0.70814847 \pm 1.2 \) |
\(a_{310}= +0.63267920 \pm 5.5 \cdot 10^{-1} \) | \(a_{311}= -0.18677802 \pm 4.1 \) | \(a_{312}= \pm0.59979208 \pm 5.6 \cdot 10^{-1} \) |
\(a_{313}= -1.28454137 \pm 1.7 \) | \(a_{314}= -0.45347647 \pm 1.1 \) | \(a_{315}= \pm0.44413609 \pm 2.3 \cdot 10^{-1} \) |
\(a_{316}= +0.03474884 \pm 1.8 \) | \(a_{317}= +1.41631014 \pm 1.7 \) | \(a_{318}= \pm0.27121994 \pm 5.5 \cdot 10^{-1} \) |
\(a_{319}= +0.11330821 \pm 2.2 \) | \(a_{320}= +0.82638851 \pm 1.3 \) | \(a_{321}= \pm0.19301924 \pm 8.2 \cdot 10^{-1} \) |
\(a_{322}= -0.30307018 \pm 3.3 \cdot 10^{-1} \) | \(a_{323}= +1.66650414 \pm 3.8 \cdot 10^{-1} \) | \(a_{324}= \pm0.00544878 \pm 2.8 \cdot 10^{-1} \) |
\(a_{325}= +0.37936432 \pm 9.0 \cdot 10^{-1} \) | \(a_{326}= +0.79423415 \pm 5.9 \cdot 10^{-1} \) | \(a_{327}= \pm0.37076438 \pm 1.6 \) |
\(a_{328}= -0.78520095 \pm 2.1 \) | \(a_{329}= -2.26451425 \pm 1.5 \) | \(a_{330}= \pm0.09783035 \pm 4.4 \cdot 10^{-1} \) |
\(a_{331}= +0.34884882 \pm 1.6 \) | \(a_{332}= +0.03536992 \pm 2.6 \) | \(a_{333}= \pm0.23115108 \pm 6.5 \cdot 10^{-1} \) |
\(a_{334}= -0.09019456 \pm 1.4 \) | \(a_{335}= -0.84924467 \pm 3.0 \) | \(a_{336}= \pm0.92193929 \pm 3.3 \cdot 10^{-1} \) |
\(a_{337}= -0.91303496 \pm 3.2 \) | \(a_{338}= +0.03050374 \pm 1.1 \) | \(a_{339}= \pm0.58032893 \pm 9.3 \cdot 10^{-1} \) |
\(a_{340}= -0.05190907 \pm 1.2 \) | \(a_{341}= +0.17996175 \pm 1.0 \) | \(a_{342}= \pm0.40504387 \pm 1.5 \cdot 10^{-1} \) |
\(a_{343}= +1.40399534 \pm 1.3 \) | \(a_{344}= -0.82553798 \pm 1.8 \) | \(a_{345}= \pm0.08436043 \pm 1.5 \) |
\(a_{346}= +1.60674653 \pm 1.0 \) | \(a_{347}= +1.21270709 \pm 1.0 \) | \(a_{348}= \pm0.01461257 \pm 1.9 \) |
\(a_{349}= +0.00927857 \pm 4.3 \) | \(a_{350}= -0.61326665 \pm 8.6 \cdot 10^{-1} \) | \(a_{351}= \pm0.19543687 \pm 3.3 \cdot 10^{-1} \) |
\(a_{352}= +0.02151238 \pm 1.4 \) | \(a_{353}= -0.75205916 \pm 3.8 \) | \(a_{354}= \pm0.32533042 \pm 9.3 \cdot 10^{-1} \) |
\(a_{355}= -1.16515100 \pm 1.9 \) | \(a_{356}= +0.01106862 \pm 9.4 \cdot 10^{-1} \) | \(a_{357}= \pm1.29988130 \pm 4.1 \cdot 10^{-1} \) |
\(a_{358}= -1.11160958 \pm 1.4 \) | \(a_{359}= +0.14849262 \pm 2.0 \) | \(a_{360}= \pm0.26989147 \pm 3.5 \cdot 10^{-1} \) |
\(a_{361}= +0.55268698 \pm 2.4 \) | \(a_{362}= +0.41448535 \pm 1.8 \) | \(a_{363}= \pm0.54952302 \pm 9.9 \cdot 10^{-1} \) |
\(a_{364}= +0.08383583 \pm 4.7 \cdot 10^{-1} \) | \(a_{365}= +1.12208863 \pm 9.3 \cdot 10^{-1} \) | \(a_{366}= \pm0.94926692 \pm 4.9 \cdot 10^{-1} \) |
\(a_{367}= -1.57764389 \pm 1.8 \) | \(a_{368}= +0.17511568 \pm 3.0 \) | \(a_{369}= \pm0.25585068 \pm 1.2 \) |
\(a_{370}= +0.53522449 \pm 1.7 \) | \(a_{371}= -0.81096250 \pm 9.2 \cdot 10^{-1} \) | \(a_{372}= \pm0.02320842 \pm 8.3 \cdot 10^{-1} \) |
\(a_{373}= +0.37606056 \pm 1.6 \) | \(a_{374}= +0.28632630 \pm 8.4 \cdot 10^{-1} \) | \(a_{375}= \pm0.62766302 \pm 1.6 \) |
\(a_{376}= +1.37609418 \pm 1.8 \) | \(a_{377}= -0.52412432 \pm 2.2 \) | \(a_{378}= \pm0.31593618 \pm 2.0 \cdot 10^{-1} \) |
\(a_{379}= -0.86841480 \pm 6.8 \cdot 10^{-1} \) | \(a_{380}= -0.04836384 \pm 7.0 \cdot 10^{-1} \) | \(a_{381}= \pm0.48139061 \pm 1.8 \) |
\(a_{382}= +0.29647025 \pm 1.9 \) | \(a_{383}= +1.49946506 \pm 2.1 \) | \(a_{384}= \pm0.53127801 \pm 1.3 \) |
\(a_{385}= +0.29251811 \pm 4.6 \cdot 10^{-1} \) | \(a_{386}= -0.18527370 \pm 1.4 \) | \(a_{387}= \pm0.26899414 \pm 8.2 \cdot 10^{-1} \) |
\(a_{388}= +0.01358032 \pm 2.5 \) | \(a_{389}= +1.17427085 \pm 9.5 \cdot 10^{-1} \) | \(a_{390}= \pm0.45252912 \pm 2.6 \cdot 10^{-1} \) |
\(a_{391}= -0.24690303 \pm 1.1 \) | \(a_{392}= -1.87617003 \pm 1.7 \) | \(a_{393}= \pm0.62073030 \pm 1.0 \) |
\(a_{394}= +0.45347143 \pm 1.4 \) | \(a_{395}= -0.56083658 \pm 1.4 \) | \(a_{396}= \pm0.00358869 \pm 5.1 \cdot 10^{-1} \) |
\(a_{397}= -1.46604387 \pm 3.3 \) | \(a_{398}= -0.95902776 \pm 1.2 \) | \(a_{399}= \pm1.21110337 \pm 1.6 \cdot 10^{-1} \) |
\(a_{400}= +0.35434897 \pm 1.0 \) | \(a_{401}= -0.37324127 \pm 3.8 \) | \(a_{402}= \pm0.60411014 \pm 8.3 \cdot 10^{-1} \) |
\(a_{403}= -0.83244038 \pm 9.7 \cdot 10^{-1} \) | \(a_{404}= +0.07567225 \pm 1.3 \) | \(a_{405}= \pm0.08794171 \pm 2.1 \cdot 10^{-1} \) |
\(a_{406}= +0.84728044 \pm 1.0 \) | \(a_{407}= +0.15224135 \pm 1.1 \) | \(a_{408}= \pm0.78990852 \pm 3.8 \cdot 10^{-1} \) |
\(a_{409}= +1.04908647 \pm 3.9 \) | \(a_{410}= +0.59241579 \pm 7.6 \cdot 10^{-1} \) | \(a_{411}= \pm0.25261646 \pm 1.8 \) |
\(a_{412}= +0.06014872 \pm 2.0 \) | \(a_{413}= +0.97275580 \pm 2.7 \) | \(a_{414}= \pm0.06000979 \pm 3.7 \cdot 10^{-1} \) |
\(a_{415}= -0.57086066 \pm 1.9 \) | \(a_{416}= -0.09950877 \pm 1.3 \) | \(a_{417}= \pm0.33208486 \pm 1.2 \) |
\(a_{418}= +0.26677108 \pm 3.8 \cdot 10^{-1} \) | \(a_{419}= +0.24809523 \pm 1.5 \) | \(a_{420}= \pm0.03772403 \pm 3.4 \cdot 10^{-1} \) |
\(a_{421}= +1.22470282 \pm 4.3 \) | \(a_{422}= +0.13626440 \pm 1.1 \) | \(a_{423}= \pm0.44838794 \pm 1.0 \) |
\(a_{424}= +0.49280360 \pm 9.5 \cdot 10^{-1} \) | \(a_{425}= -0.49961164 \pm 5.3 \cdot 10^{-1} \) | \(a_{426}= \pm0.82883009 \pm 7.4 \cdot 10^{-1} \) |
\(a_{427}= -2.83836014 \pm 5.4 \cdot 10^{-1} \) | \(a_{428}= +0.01639467 \pm 1.3 \) | \(a_{429}= \pm0.12871916 \pm 6.2 \cdot 10^{-1} \) |
\(a_{430}= +0.62284914 \pm 1.4 \) | \(a_{431}= -0.16388821 \pm 1.7 \) | \(a_{432}= \pm0.18254973 \pm 3.9 \cdot 10^{-1} \) |
\(a_{433}= -1.70648610 \pm 3.4 \) | \(a_{434}= +1.34569305 \pm 6.9 \cdot 10^{-1} \) | \(a_{435}= \pm0.23584287 \pm 1.4 \) |
\(a_{436}= +0.03149198 \pm 2.6 \) | \(a_{437}= -0.23004030 \pm 1.4 \) | \(a_{438}= \pm0.79819768 \pm 5.8 \cdot 10^{-1} \) |
\(a_{439}= +1.78332614 \pm 2.6 \) | \(a_{440}= -0.17775665 \pm 7.0 \cdot 10^{-1} \) | \(a_{441}= \pm0.61133316 \pm 8.9 \cdot 10^{-1} \) |
\(a_{442}= -1.32444574 \pm 4.6 \cdot 10^{-1} \) | \(a_{443}= +0.14179266 \pm 4.0 \) | \(a_{444}= \pm0.01963351 \pm 1.2 \) |
\(a_{445}= -0.17864450 \pm 7.6 \cdot 10^{-1} \) | \(a_{446}= -1.33760031 \pm 1.0 \) | \(a_{447}= \pm0.01360324 \pm 1.3 \) |
\(a_{448}= +1.75770798 \pm 1.2 \) | \(a_{449}= +0.98999365 \pm 4.0 \) | \(a_{450}= \pm0.12143062 \pm 2.6 \cdot 10^{-1} \) |
\(a_{451}= +0.16850907 \pm 2.3 \) | \(a_{452}= -0.04929198 \pm 1.1 \) | \(a_{453}= \pm0.07810650 \pm 2.1 \) |
\(a_{454}= +0.35734851 \pm 1.8 \) | \(a_{455}= -1.35308690 \pm 3.6 \cdot 10^{-1} \) | \(a_{456}= \pm0.73596017 \pm 3.4 \cdot 10^{-1} \) |
\(a_{457}= +0.35540027 \pm 2.4 \) | \(a_{458}= -0.95122740 \pm 1.3 \) | \(a_{459}= \pm0.25738460 \pm 2.4 \cdot 10^{-1} \) |
\(a_{460}= +0.00716541 \pm 2.4 \) | \(a_{461}= +1.09524206 \pm 1.2 \) | \(a_{462}= \pm0.20808274 \pm 4.1 \cdot 10^{-1} \) |
\(a_{463}= +0.03565147 \pm 3.0 \) | \(a_{464}= -0.48956347 \pm 2.7 \) | \(a_{465}= \pm0.37457740 \pm 6.2 \cdot 10^{-1} \) |
\(a_{466}= +0.71785967 \pm 1.2 \) | \(a_{467}= +0.67752557 \pm 3.4 \) | \(a_{468}= \pm0.01660002 \pm 5.2 \cdot 10^{-1} \) |
\(a_{469}= -1.80632245 \pm 1.4 \) | \(a_{470}= -1.03823094 \pm 1.1 \) | \(a_{471}= \pm0.26848051 \pm 2.2 \) |
\(a_{472}= -0.59112174 \pm 2.1 \) | \(a_{473}= +0.17716565 \pm 1.6 \) | \(a_{474}= \pm0.39895107 \pm 6.2 \cdot 10^{-1} \) |
\(a_{475}= -0.46548969 \pm 5.4 \cdot 10^{-1} \) | \(a_{476}= -0.11040932 \pm 7.1 \cdot 10^{-1} \) | \(a_{477}= \pm0.16057563 \pm 5.1 \cdot 10^{-1} \) |
\(a_{478}= +0.93270933 \pm 9.6 \cdot 10^{-1} \) | \(a_{479}= +1.65483817 \pm 2.3 \) | \(a_{480}= \pm0.04477646 \pm 9.2 \cdot 10^{-1} \) |
\(a_{481}= -0.70421547 \pm 1.0 \) | \(a_{482}= +0.93087479 \pm 1.3 \) | \(a_{483}= \pm0.17943255 \pm 5.5 \cdot 10^{-1} \) |
\(a_{484}= +0.04667539 \pm 1.5 \) | \(a_{485}= -0.21918254 \pm 1.9 \) | \(a_{486}= \pm0.06255733 \pm 9.0 \cdot 10^{-2} \) |
\(a_{487}= -0.84758842 \pm 1.6 \) | \(a_{488}= +1.72480737 \pm 1.1 \) | \(a_{489}= \pm0.47022593 \pm 2.7 \cdot 10^{-1} \) |
\(a_{490}= +1.41552649 \pm 9.4 \cdot 10^{-1} \) | \(a_{491}= +0.39107306 \pm 1.5 \) | \(a_{492}= \pm0.02173145 \pm 1.9 \) |
\(a_{493}= +0.69025630 \pm 1.4 \) | \(a_{494}= -1.23399013 \pm 3.0 \cdot 10^{-1} \) | \(a_{495}= \pm0.05792041 \pm 4.1 \cdot 10^{-1} \) |
\(a_{496}= -0.77754912 \pm 1.1 \) | \(a_{497}= -2.47824742 \pm 1.8 \) | \(a_{498}= \pm0.40608169 \pm 6.8 \cdot 10^{-1} \) |
\(a_{499}= +0.53277358 \pm 4.3 \) | \(a_{500}= +0.05331244 \pm 2.6 \) | \(a_{501}= \pm0.05339964 \pm 1.0 \) |
\(a_{502}= -0.37988341 \pm 1.1 \) | \(a_{503}= +1.18032050 \pm 4.0 \) | \(a_{504}= \pm0.57405250 \pm 5.0 \cdot 10^{-1} \) |
\(a_{505}= -1.22132893 \pm 1.1 \) | \(a_{506}= -0.03952381 \pm 7.3 \cdot 10^{-1} \) | \(a_{507}= \pm0.01805972 \pm 1.0 \) |
\(a_{508}= +0.04088836 \pm 2.6 \) | \(a_{509}= -1.19682349 \pm 9.6 \cdot 10^{-1} \) | \(a_{510}= \pm0.59596754 \pm 7.8 \cdot 10^{-1} \) |
\(a_{511}= +2.38665483 \pm 4.4 \cdot 10^{-1} \) | \(a_{512}= -1.06331422 \pm 2.6 \) | \(a_{513}= \pm0.23980602 \pm 2.0 \cdot 10^{-1} \) |
\(a_{514}= -0.10465488 \pm 1.2 \) | \(a_{515}= -0.97078349 \pm 1.5 \) | \(a_{516}= \pm0.02284782 \pm 1.2 \) |
\(a_{517}= -0.29531847 \pm 1.9 \) | \(a_{518}= +1.13840929 \pm 1.0 \) | \(a_{519}= \pm0.95127347 \pm 9.2 \cdot 10^{-1} \) |
\(a_{520}= +0.82224035 \pm 6.9 \cdot 10^{-1} \) | \(a_{521}= +1.20674790 \pm 3.6 \) | \(a_{522}= \pm0.16776681 \pm 5.0 \cdot 10^{-1} \) |
\(a_{523}= -0.40556348 \pm 1.4 \) | \(a_{524}= -0.05272359 \pm 1.4 \) | \(a_{525}= \pm0.36308421 \pm 7.5 \cdot 10^{-1} \) |
\(a_{526}= -0.54590240 \pm 1.6 \) | \(a_{527}= +1.09629948 \pm 6.6 \cdot 10^{-1} \) | \(a_{528}= \pm0.12023139 \pm 7.5 \cdot 10^{-1} \) |
\(a_{529}= -0.96591809 \pm 3.5 \) | \(a_{530}= -0.37180881 \pm 8.1 \cdot 10^{-1} \) | \(a_{531}= \pm0.19261171 \pm 8.2 \cdot 10^{-1} \) |
\(a_{532}= -0.10286870 \pm 2.6 \cdot 10^{-1} \) | \(a_{533}= -0.77946426 \pm 2.3 \) | \(a_{534}= \pm0.12707875 \pm 5.5 \cdot 10^{-1} \) |
\(a_{535}= -0.26460538 \pm 1.0 \) | \(a_{536}= +1.09766137 \pm 2.3 \) | \(a_{537}= \pm0.65812789 \pm 1.3 \) |
\(a_{538}= -0.36436265 \pm 8.2 \cdot 10^{-1} \) | \(a_{539}= +0.40263790 \pm 1.6 \) | \(a_{540}= \pm0.00746959 \pm 3.4 \cdot 10^{-1} \) |
\(a_{541}= +0.24615381 \pm 1.2 \) | \(a_{542}= -1.30964102 \pm 1.8 \) | \(a_{543}= \pm0.24539584 \pm 1.6 \) |
\(a_{544}= +0.13105012 \pm 1.5 \) | \(a_{545}= -0.50827185 \pm 1.9 \) | \(a_{546}= \pm0.96251828 \pm 2.1 \cdot 10^{-1} \) |
\(a_{547}= +1.62277663 \pm 1.9 \) | \(a_{548}= -0.02145674 \pm 2.9 \) | \(a_{549}= \pm0.56201300 \pm 6.7 \cdot 10^{-1} \) |
\(a_{550}= -0.07997696 \pm 5.7 \cdot 10^{-1} \) | \(a_{551}= +0.64311390 \pm 1.3 \) | \(a_{552}= \pm0.10903711 \pm 1.1 \) |
\(a_{553}= -1.19288556 \pm 1.4 \) | \(a_{554}= +1.77276709 \pm 1.0 \) | \(a_{555}= \pm0.31687939 \pm 8.7 \cdot 10^{-1} \) |
\(a_{556}= -0.02820662 \pm 1.9 \) | \(a_{557}= +0.73941781 \pm 2.2 \) | \(a_{558}= \pm0.26645561 \pm 2.5 \cdot 10^{-1} \) |
\(a_{559}= -0.81950659 \pm 1.2 \) | \(a_{560}= -1.26386412 \pm 4.0 \cdot 10^{-1} \) | \(a_{561}= \pm0.16951934 \pm 4.2 \cdot 10^{-1} \) |
\(a_{562}= +0.41038883 \pm 9.9 \cdot 10^{-1} \) | \(a_{563}= -0.20639871 \pm 3.8 \) | \(a_{564}= \pm0.03808517 \pm 1.5 \) |
\(a_{565}= +0.79555879 \pm 1.0 \) | \(a_{566}= -1.33602153 \pm 1.2 \) | \(a_{567}= \pm0.18704985 \pm 1.7 \cdot 10^{-1} \) |
\(a_{568}= +1.50597500 \pm 1.8 \) | \(a_{569}= +0.37526745 \pm 2.1 \) | \(a_{570}= \pm0.55526477 \pm 2.9 \cdot 10^{-1} \) |
\(a_{571}= -1.16573156 \pm 2.5 \) | \(a_{572}= +0.01093315 \pm 9.7 \cdot 10^{-1} \) | \(a_{573}= \pm0.17552506 \pm 1.1 \) |
\(a_{574}= +1.26005376 \pm 9.9 \cdot 10^{-1} \) | \(a_{575}= +0.06896521 \pm 2.0 \) | \(a_{576}= \pm0.34803713 \pm 6.3 \cdot 10^{-1} \) |
\(a_{577}= -1.75663807 \pm 2.7 \) | \(a_{578}= +0.76908375 \pm 1.7 \) | \(a_{579}= \pm0.10969120 \pm 1.9 \) |
\(a_{580}= -0.02003202 \pm 2.3 \) | \(a_{581}= -1.21420653 \pm 2.0 \) | \(a_{582}= \pm0.15591549 \pm 6.5 \cdot 10^{-1} \) |
\(a_{583}= -0.10575875 \pm 9.7 \cdot 10^{-1} \) | \(a_{584}= -1.45031625 \pm 6.2 \cdot 10^{-1} \) | \(a_{585}= \pm0.26791964 \pm 4.0 \cdot 10^{-1} \) |
\(a_{586}= -1.35340565 \pm 1.2 \) | \(a_{587}= +0.51768741 \pm 2.8 \) | \(a_{588}= \pm0.05192542 \pm 1.3 \) |
\(a_{589}= +1.02142556 \pm 5.7 \cdot 10^{-1} \) | \(a_{590}= +0.44598755 \pm 9.7 \cdot 10^{-1} \) | \(a_{591}= \pm0.26847753 \pm 2.8 \) |
\(a_{592}= -0.65777938 \pm 1.4 \) | \(a_{593}= -1.23777870 \pm 2.7 \) | \(a_{594}= \pm0.04120168 \pm 1.7 \cdot 10^{-1} \) |
\(a_{595}= +1.78197561 \pm 4.8 \cdot 10^{-1} \) | \(a_{596}= -0.00115543 \pm 1.8 \) | \(a_{597}= \pm0.56779190 \pm 1.0 \) |
\(a_{598}= +0.18282337 \pm 6.9 \cdot 10^{-1} \) | \(a_{599}= +1.75642197 \pm 1.1 \) | \(a_{600}= \pm0.22063808 \pm 6.6 \cdot 10^{-1} \) |
\(a_{601}= +1.12630328 \pm 1.7 \) | \(a_{602}= +1.32478475 \pm 1.6 \) | \(a_{603}= \pm0.35766310 \pm 1.4 \) |
\(a_{604}= -0.00663421 \pm 3.3 \) | \(a_{605}= -0.75332772 \pm 1.1 \) | \(a_{606}= \pm0.86879226 \pm 6.8 \cdot 10^{-1} \) |
\(a_{607}= +0.40774701 \pm 4.2 \) | \(a_{608}= +0.12209980 \pm 8.2 \cdot 10^{-1} \) | \(a_{609}= \pm0.50163196 \pm 9.1 \cdot 10^{-1} \) |
\(a_{610}= -1.30132690 \pm 9.7 \cdot 10^{-1} \) | \(a_{611}= +1.36604041 \pm 1.9 \) | \(a_{612}= \pm0.02186173 \pm 4.8 \cdot 10^{-1} \) |
\(a_{613}= -1.38047352 \pm 2.3 \) | \(a_{614}= +0.46200549 \pm 1.0 \) | \(a_{615}= \pm0.35073947 \pm 1.4 \) |
\(a_{616}= -0.37808401 \pm 1.0 \) | \(a_{617}= -1.05140484 \pm 4.3 \) | \(a_{618}= \pm0.69056677 \pm 9.2 \cdot 10^{-1} \) |
\(a_{619}= -0.43733069 \pm 1.8 \) | \(a_{620}= -0.03181586 \pm 1.0 \) | \(a_{621}= \pm0.03552876 \pm 7.4 \cdot 10^{-1} \) |
\(a_{622}= -0.18214076 \pm 1.6 \) | \(a_{623}= -0.37997244 \pm 1.4 \) | \(a_{624}= \pm0.55614855 \pm 7.5 \cdot 10^{-1} \) |
\(a_{625}= -0.48688129 \pm 1.0 \) | \(a_{626}= -1.25264917 \pm 1.7 \) | \(a_{627}= \pm0.15794169 \pm 4.0 \cdot 10^{-1} \) |
\(a_{628}= +0.02280420 \pm 3.5 \) | \(a_{629}= +0.92743105 \pm 2.0 \) | \(a_{630}= \pm0.43310921 \pm 1.8 \cdot 10^{-1} \) |
\(a_{631}= +0.94109197 \pm 2.5 \) | \(a_{632}= +0.72488962 \pm 1.4 \) | \(a_{633}= \pm0.08067527 \pm 6.4 \cdot 10^{-1} \) |
\(a_{634}= +1.38114642 \pm 7.3 \cdot 10^{-1} \) | \(a_{635}= -0.65992666 \pm 1.9 \) | \(a_{636}= \pm0.01363897 \pm 8.2 \cdot 10^{-1} \) |
\(a_{637}= -1.86246269 \pm 1.6 \) | \(a_{638}= +0.11049503 \pm 9.0 \cdot 10^{-1} \) | \(a_{639}= \pm0.49070844 \pm 9.6 \cdot 10^{-1} \) |
\(a_{640}= +0.72831608 \pm 1.7 \) | \(a_{641}= -0.52463058 \pm 1.0 \) | \(a_{642}= \pm0.18822702 \pm 5.4 \cdot 10^{-1} \) |
\(a_{643}= +0.95437897 \pm 2.7 \) | \(a_{644}= +0.01524064 \pm 8.7 \cdot 10^{-1} \) | \(a_{645}= \pm0.36875752 \pm 9.2 \cdot 10^{-1} \) |
\(a_{646}= +1.62512868 \pm 3.9 \cdot 10^{-1} \) | \(a_{647}= -0.77351029 \pm 2.1 \) | \(a_{648}= \pm0.11366597 \pm 1.9 \cdot 10^{-1} \) |
\(a_{649}= +0.12685845 \pm 1.6 \) | \(a_{650}= +0.36994558 \pm 3.2 \cdot 10^{-1} \) | \(a_{651}= \pm0.79671689 \pm 5.9 \cdot 10^{-1} \) |
\(a_{652}= -0.03994005 \pm 5.2 \cdot 10^{-1} \) | \(a_{653}= -1.37422347 \pm 1.9 \) | \(a_{654}= \pm0.36155915 \pm 7.0 \cdot 10^{-1} \) |
\(a_{655}= +0.85094405 \pm 1.1 \) | \(a_{656}= -0.72806625 \pm 2.8 \) | \(a_{657}= \pm0.47257253 \pm 4.1 \cdot 10^{-1} \) |
\(a_{658}= -2.20829158 \pm 9.5 \cdot 10^{-1} \) | \(a_{659}= +0.85636787 \pm 2.5 \) | \(a_{660}= \pm0.00491964 \pm 6.3 \cdot 10^{-1} \) |
\(a_{661}= -0.88821431 \pm 2.8 \) | \(a_{662}= +0.34018771 \pm 1.2 \) | \(a_{663}= \pm0.78413743 \pm 3.2 \cdot 10^{-1} \) |
\(a_{664}= +0.73784589 \pm 2.0 \) | \(a_{665}= +1.66027210 \pm 2.2 \cdot 10^{-1} \) | \(a_{666}= \pm0.22541214 \pm 6.5 \cdot 10^{-1} \) |
\(a_{667}= -0.09528135 \pm 5.3 \) | \(a_{668}= +0.00453566 \pm 1.7 \) | \(a_{669}= \pm0.79192559 \pm 5.7 \cdot 10^{-1} \) |
\(a_{670}= -0.82815988 \pm 1.0 \) | \(a_{671}= -0.37015452 \pm 1.3 \) | \(a_{672}= \pm0.09523843 \pm 8.5 \cdot 10^{-1} \) |
\(a_{673}= -0.17791004 \pm 2.1 \) | \(a_{674}= -0.89036641 \pm 1.4 \) | \(a_{675}= \pm0.07189294 \pm 3.0 \cdot 10^{-1} \) |
\(a_{676}= -0.00153396 \pm 1.6 \) | \(a_{677}= +1.20094493 \pm 1.9 \) | \(a_{678}= \pm0.56592070 \pm 7.6 \cdot 10^{-1} \) |
\(a_{679}= -0.46619585 \pm 1.9 \) | \(a_{680}= -1.08286634 \pm 4.7 \cdot 10^{-1} \) | \(a_{681}= \pm0.21156800 \pm 2.1 \) |
\(a_{682}= +0.17549371 \pm 4.9 \cdot 10^{-1} \) | \(a_{683}= +1.01379664 \pm 4.4 \) | \(a_{684}= \pm0.02036864 \pm 3.1 \cdot 10^{-1} \) |
\(a_{685}= +0.34630576 \pm 2.2 \) | \(a_{686}= +1.36913737 \pm 9.1 \cdot 10^{-1} \) | \(a_{687}= \pm0.56317370 \pm 9.6 \cdot 10^{-1} \) |
\(a_{688}= -0.76546819 \pm 1.5 \) | \(a_{689}= +0.48920317 \pm 9.1 \cdot 10^{-1} \) | \(a_{690}= \pm0.08226595 \pm 4.9 \cdot 10^{-1} \) |
\(a_{691}= -0.29215835 \pm 3.5 \) | \(a_{692}= -0.08079927 \pm 1.4 \) | \(a_{693}= \pm0.12319528 \pm 3.5 \cdot 10^{-1} \) |
\(a_{694}= +1.18259837 \pm 1.1 \) | \(a_{695}= +0.45524705 \pm 1.3 \) | \(a_{696}= \pm0.30483041 \pm 1.1 \) |
\(a_{697}= +1.02653148 \pm 1.0 \) | \(a_{698}= +0.00904820 \pm 1.6 \) | \(a_{699}= \pm0.42500846 \pm 1.5 \) |
\(a_{700}= +0.03083965 \pm 7.6 \cdot 10^{-1} \) | \(a_{701}= -1.11663185 \pm 2.5 \) | \(a_{702}= \pm0.19058462 \pm 1.1 \cdot 10^{-1} \) |
\(a_{703}= +0.86409033 \pm 6.4 \cdot 10^{-1} \) | \(a_{704}= +0.22922516 \pm 1.1 \) | \(a_{705}= \pm0.61468410 \pm 1.2 \) |
\(a_{706}= -0.73338727 \pm 1.8 \) | \(a_{707}= -2.59773650 \pm 1.4 \) | \(a_{708}= \pm0.01636005 \pm 1.0 \) |
\(a_{709}= -0.29046543 \pm 1.2 \) | \(a_{710}= -1.13622298 \pm 9.5 \cdot 10^{-1} \) | \(a_{711}= \pm0.23619878 \pm 7.2 \cdot 10^{-1} \) |
\(a_{712}= +0.23090067 \pm 1.1 \) | \(a_{713}= -0.15133059 \pm 2.2 \) | \(a_{714}= \pm1.26760825 \pm 4.7 \cdot 10^{-1} \) |
\(a_{715}= -0.17645796 \pm 7.8 \cdot 10^{-1} \) | \(a_{716}= +0.05590007 \pm 2.2 \) | \(a_{717}= \pm0.55221009 \pm 1.3 \) |
\(a_{718}= +0.14480589 \pm 1.6 \) | \(a_{719}= +0.47902594 \pm 1.1 \) | \(a_{720}= \pm0.25025297 \pm 5.0 \cdot 10^{-1} \) |
\(a_{721}= -2.06483252 \pm 1.2 \) | \(a_{722}= +0.53896503 \pm 1.2 \) | \(a_{723}= \pm0.55112395 \pm 1.3 \) |
\(a_{724}= -0.02084343 \pm 2.6 \) | \(a_{725}= -0.19280312 \pm 1.9 \) | \(a_{726}= \pm0.53587963 \pm 5.1 \cdot 10^{-1} \) |
\(a_{727}= +1.35280913 \pm 1.1 \) | \(a_{728}= +1.74888495 \pm 5.5 \cdot 10^{-1} \) | \(a_{729}= \pm0.03703704 \pm 1.0 \cdot 10^{-8} \) |
\(a_{730}= +1.09422976 \pm 8.7 \cdot 10^{-1} \) | \(a_{731}= +1.07926606 \pm 1.6 \) | \(a_{732}= \pm0.04773626 \pm 1.0 \) |
\(a_{733}= +0.71085636 \pm 4.9 \) | \(a_{734}= -1.53847463 \pm 1.0 \) | \(a_{735}= \pm0.83806174 \pm 1.0 \) |
\(a_{736}= -0.01808985 \pm 2.8 \) | \(a_{737}= -0.23556504 \pm 2.6 \) | \(a_{738}= \pm0.24949850 \pm 3.9 \cdot 10^{-1} \) |
\(a_{739}= -1.51461414 \pm 2.9 \) | \(a_{740}= -0.02691510 \pm 1.6 \) | \(a_{741}= \pm0.73058323 \pm 4.5 \cdot 10^{-1} \) |
\(a_{742}= -0.79082817 \pm 6.8 \cdot 10^{-1} \) | \(a_{743}= -0.04300290 \pm 4.0 \) | \(a_{744}= \pm0.48414686 \pm 6.0 \cdot 10^{-1} \) |
\(a_{745}= +0.01864835 \pm 1.3 \) | \(a_{746}= +0.36672384 \pm 9.4 \cdot 10^{-1} \) | \(a_{747}= \pm0.24042046 \pm 1.0 \) |
\(a_{748}= -0.01439863 \pm 8.1 \cdot 10^{-1} \) | \(a_{749}= -0.56280911 \pm 7.2 \cdot 10^{-1} \) | \(a_{750}= \pm0.61207960 \pm 7.7 \cdot 10^{-1} \) |
\(a_{751}= +1.27370970 \pm 2.3 \) | \(a_{752}= +1.27596347 \pm 2.3 \) | \(a_{753}= \pm0.22490978 \pm 1.9 \) |
\(a_{754}= -0.51111152 \pm 7.1 \cdot 10^{-1} \) | \(a_{755}= +0.10707430 \pm 2.5 \) | \(a_{756}= \pm0.01588764 \pm 2.0 \cdot 10^{-1} \) |
\(a_{757}= +0.21422820 \pm 7.8 \cdot 10^{-1} \) | \(a_{758}= -0.84685406 \pm 7.4 \cdot 10^{-1} \) | \(a_{759}= \pm0.02340005 \pm 1.3 \) |
\(a_{760}= -1.00890987 \pm 4.9 \cdot 10^{-1} \) | \(a_{761}= +1.24633950 \pm 4.4 \) | \(a_{762}= \pm0.46943879 \pm 8.9 \cdot 10^{-1} \) |
\(a_{763}= -1.08108169 \pm 1.1 \) | \(a_{764}= -0.01490875 \pm 1.6 \) | \(a_{765}= \pm0.35284228 \pm 3.4 \cdot 10^{-1} \) |
\(a_{766}= +1.46223680 \pm 8.6 \cdot 10^{-1} \) | \(a_{767}= -0.58680299 \pm 1.2 \) | \(a_{768}= \pm0.08473040 \pm 8.0 \cdot 10^{-1} \) |
\(a_{769}= +0.21053011 \pm 2.3 \) | \(a_{770}= +0.28525556 \pm 3.4 \cdot 10^{-1} \) | \(a_{771}= \pm0.06196087 \pm 1.7 \) |
\(a_{772}= +0.00931695 \pm 3.1 \) | \(a_{773}= -1.05432540 \pm 2.0 \) | \(a_{774}= \pm0.26231564 \pm 6.1 \cdot 10^{-1} \) |
\(a_{775}= -0.30621952 \pm 9.6 \cdot 10^{-1} \) | \(a_{776}= +0.28329669 \pm 1.9 \) | \(a_{777}= \pm0.67399465 \pm 5.9 \cdot 10^{-1} \) |
\(a_{778}= +1.14511641 \pm 7.3 \cdot 10^{-1} \) | \(a_{779}= +0.95642251 \pm 1.3 \) | \(a_{780}= \pm0.02275656 \pm 6.4 \cdot 10^{-1} \) |
\(a_{781}= -0.32319171 \pm 1.8 \) | \(a_{782}= -0.24077299 \pm 5.1 \cdot 10^{-1} \) | \(a_{783}= \pm0.09932625 \pm 7.0 \cdot 10^{-1} \) |
\(a_{784}= -1.73965159 \pm 1.9 \) | \(a_{785}= -0.36805340 \pm 2.7 \) | \(a_{786}= \pm0.60531900 \pm 6.0 \cdot 10^{-1} \) |
\(a_{787}= +1.33515748 \pm 4.2 \) | \(a_{788}= -0.02280394 \pm 4.5 \) | \(a_{789}= \pm0.32320124 \pm 1.2 \) |
\(a_{790}= -0.54691230 \pm 8.9 \cdot 10^{-1} \) | \(a_{791}= +1.69213392 \pm 1.8 \) | \(a_{792}= \pm0.07486299 \pm 3.7 \cdot 10^{-1} \) |
\(a_{793}= +1.71220590 \pm 1.2 \) | \(a_{794}= -1.42964538 \pm 1.2 \) | \(a_{795}= \pm0.22012922 \pm 6.2 \cdot 10^{-1} \) |
\(a_{796}= +0.04822711 \pm 1.8 \) | \(a_{797}= -1.58203501 \pm 1.0 \) | \(a_{798}= \pm1.18103446 \pm 9.4 \cdot 10^{-2} \) |
\(a_{799}= -1.79903501 \pm 9.6 \cdot 10^{-1} \) | \(a_{800}= -0.03660506 \pm 1.3 \) | \(a_{801}= \pm0.07523691 \pm 4.2 \cdot 10^{-1} \) |
\(a_{802}= -0.36397455 \pm 1.1 \) | \(a_{803}= +0.31124700 \pm 7.5 \cdot 10^{-1} \) | \(a_{804}= \pm0.03037919 \pm 2.3 \) |
\(a_{805}= -0.24597971 \pm 6.6 \cdot 10^{-1} \) | \(a_{806}= -0.81177281 \pm 3.3 \cdot 10^{-1} \) | \(a_{807}= \pm0.21572072 \pm 1.0 \) |
\(a_{808}= +1.57858582 \pm 1.2 \) | \(a_{809}= -1.58523380 \pm 2.4 \) | \(a_{810}= \pm0.08575832 \pm 1.2 \cdot 10^{-1} \) |
\(a_{811}= -0.23872342 \pm 1.0 \) | \(a_{812}= -0.04260762 \pm 1.1 \) | \(a_{813}= \pm0.77537230 \pm 1.5 \) |
\(a_{814}= +0.14846155 \pm 1.0 \) | \(a_{815}= +0.64462127 \pm 4.5 \cdot 10^{-1} \) | \(a_{816}= \pm0.73243128 \pm 5.1 \cdot 10^{-1} \) |
\(a_{817}= +1.00555547 \pm 7.7 \cdot 10^{-1} \) | \(a_{818}= +1.02304007 \pm 1.4 \) | \(a_{819}= \pm0.56985846 \pm 2.1 \cdot 10^{-1} \) |
\(a_{820}= -0.02979111 \pm 2.3 \) | \(a_{821}= +1.04983939 \pm 3.0 \) | \(a_{822}= \pm0.24634458 \pm 9.8 \cdot 10^{-1} \) |
\(a_{823}= -1.02511564 \pm 1.3 \) | \(a_{824}= +1.25475210 \pm 1.2 \) | \(a_{825}= \pm0.04735032 \pm 5.9 \cdot 10^{-1} \) |
\(a_{826}= +0.94860452 \pm 1.8 \) | \(a_{827}= -0.53867818 \pm 2.0 \) | \(a_{828}= \pm0.00301774 \pm 1.1 \) |
\(a_{829}= +0.09526804 \pm 3.0 \) | \(a_{830}= -0.55668750 \pm 6.4 \cdot 10^{-1} \) | \(a_{831}= \pm1.04956586 \pm 8.1 \cdot 10^{-1} \) |
\(a_{832}= -1.06031575 \pm 1.0 \) | \(a_{833}= +2.45280855 \pm 1.0 \) | \(a_{834}= \pm0.32383996 \pm 1.1 \) |
\(a_{835}= -0.07320427 \pm 1.3 \) | \(a_{836}= -0.01341525 \pm 5.9 \cdot 10^{-1} \) | \(a_{837}= \pm0.15775491 \pm 3.1 \cdot 10^{-1} \) |
\(a_{838}= +0.24193559 \pm 6.6 \cdot 10^{-1} \) | \(a_{839}= -1.80393966 \pm 1.3 \) | \(a_{840}= \pm0.78695459 \pm 3.2 \cdot 10^{-1} \) |
\(a_{841}= -0.73362597 \pm 2.2 \) | \(a_{842}= +1.19429627 \pm 2.0 \) | \(a_{843}= \pm0.24297050 \pm 1.7 \) |
\(a_{844}= -0.00685240 \pm 1.1 \) | \(a_{845}= +0.02475763 \pm 1.2 \) | \(a_{846}= \pm0.43725550 \pm 4.1 \cdot 10^{-1} \) |
\(a_{847}= -1.60230948 \pm 8.7 \cdot 10^{-1} \) | \(a_{848}= +0.45694503 \pm 1.1 \) | \(a_{849}= \pm0.79099087 \pm 2.3 \) |
\(a_{850}= -0.48720744 \pm 4.3 \cdot 10^{-1} \) | \(a_{851}= -0.12802039 \pm 2.1 \) | \(a_{852}= \pm0.04167979 \pm 1.4 \) |
\(a_{853}= -0.22671718 \pm 3.3 \) | \(a_{854}= -2.76789020 \pm 2.4 \cdot 10^{-1} \) | \(a_{855}= \pm0.32874423 \pm 2.7 \cdot 10^{-1} \) |
\(a_{856}= +0.34200639 \pm 8.3 \cdot 10^{-1} \) | \(a_{857}= +0.94492373 \pm 1.9 \) | \(a_{858}= \pm0.12552336 \pm 2.2 \cdot 10^{-1} \) |
\(a_{859}= +1.40930314 \pm 2.1 \) | \(a_{860}= -0.03132153 \pm 1.5 \) | \(a_{861}= \pm0.74601419 \pm 9.6 \cdot 10^{-1} \) |
\(a_{862}= -0.15981924 \pm 1.3 \) | \(a_{863}= +1.13248483 \pm 3.1 \) | \(a_{864}= \pm0.01885780 \pm 4.4 \cdot 10^{-1} \) |
\(a_{865}= +1.30407763 \pm 1.1 \) | \(a_{866}= -1.66411798 \pm 1.7 \) | \(a_{867}= \pm0.45533565 \pm 1.5 \) |
\(a_{868}= -0.06767154 \pm 6.4 \cdot 10^{-1} \) | \(a_{869}= -0.15556588 \pm 1.3 \) | \(a_{870}= \pm0.22998743 \pm 6.5 \cdot 10^{-1} \) |
\(a_{871}= +1.08964183 \pm 2.8 \) | \(a_{872}= +0.65694893 \pm 1.5 \) | \(a_{873}= \pm0.09230969 \pm 9.7 \cdot 10^{-1} \) |
\(a_{874}= -0.22432893 \pm 4.6 \cdot 10^{-1} \) | \(a_{875}= -1.83015156 \pm 1.1 \) | \(a_{876}= \pm0.04013937 \pm 7.2 \cdot 10^{-1} \) |
\(a_{877}= -0.21831517 \pm 1.7 \) | \(a_{878}= +1.73905026 \pm 1.2 \) | \(a_{879}= \pm0.80128313 \pm 2.5 \) |
\(a_{880}= -0.16482229 \pm 1.0 \) | \(a_{881}= -1.25942396 \pm 4.2 \) | \(a_{882}= \pm0.59615517 \pm 4.2 \cdot 10^{-1} \) |
\(a_{883}= +1.61815151 \pm 6.9 \cdot 10^{-1} \) | \(a_{884}= +0.06660307 \pm 5.7 \cdot 10^{-1} \) | \(a_{885}= \pm0.26404670 \pm 7.8 \cdot 10^{-1} \) |
\(a_{886}= +0.13827228 \pm 2.1 \) | \(a_{887}= +0.55630712 \pm 3.5 \) | \(a_{888}= \pm0.40957133 \pm 6.0 \cdot 10^{-1} \) |
\(a_{889}= -1.40364772 \pm 2.7 \) | \(a_{890}= -0.17420917 \pm 7.3 \cdot 10^{-1} \) | \(a_{891}= \pm0.02439343 \pm 1.9 \cdot 10^{-1} \) |
\(a_{892}= +0.06726458 \pm 1.0 \) | \(a_{893}= -1.67616640 \pm 1.2 \) | \(a_{894}= \pm0.01326550 \pm 7.2 \cdot 10^{-1} \) |
\(a_{895}= -0.90221149 \pm 1.7 \) | \(a_{896}= +1.54911033 \pm 8.5 \cdot 10^{-1} \) | \(a_{897}= \pm0.10824048 \pm 1.4 \) |
\(a_{898}= +0.96541439 \pm 1.8 \) | \(a_{899}= +0.42306852 \pm 2.1 \) | \(a_{900}= \pm0.00610644 \pm 4.3 \cdot 10^{-1} \) |
\(a_{901}= -0.64426617 \pm 9.1 \cdot 10^{-1} \) | \(a_{902}= +0.16432537 \pm 7.8 \cdot 10^{-1} \) | \(a_{903}= \pm0.78433814 \pm 1.3 \) |
\(a_{904}= -1.02827157 \pm 1.4 \) | \(a_{905}= +0.33640718 \pm 2.0 \) | \(a_{906}= \pm0.07616729 \pm 6.6 \cdot 10^{-1} \) |
\(a_{907}= +0.31517689 \pm 5.0 \) | \(a_{908}= -0.01797016 \pm 3.6 \) | \(a_{909}= \pm0.51436802 \pm 5.4 \cdot 10^{-1} \) |
\(a_{910}= -1.31949287 \pm 2.0 \cdot 10^{-1} \) | \(a_{911}= -1.19442454 \pm 3.5 \) | \(a_{912}= \pm0.68240845 \pm 4.7 \cdot 10^{-1} \) |
\(a_{913}= -0.15834637 \pm 1.9 \) | \(a_{914}= +0.34657650 \pm 1.5 \) | \(a_{915}= \pm0.77044993 \pm 8.9 \cdot 10^{-1} \) |
\(a_{916}= +0.04783485 \pm 1.3 \) | \(a_{917}= +1.80993699 \pm 1.8 \) | \(a_{918}= \pm0.25099433 \pm 3.0 \cdot 10^{-1} \) |
\(a_{919}= -0.85983795 \pm 1.9 \) | \(a_{920}= +0.14947632 \pm 1.4 \) | \(a_{921}= \pm0.27353011 \pm 7.3 \cdot 10^{-1} \) |
\(a_{922}= +1.06804973 \pm 6.7 \cdot 10^{-1} \) | \(a_{923}= +1.49497232 \pm 1.7 \) | \(a_{924}= \pm0.01046396 \pm 3.9 \cdot 10^{-1} \) |
\(a_{925}= -0.25905102 \pm 9.1 \cdot 10^{-1} \) | \(a_{926}= +0.03476633 \pm 1.5 \) | \(a_{927}= \pm0.40884971 \pm 6.9 \cdot 10^{-1} \) |
\(a_{928}= +0.05057302 \pm 2.8 \) | \(a_{929}= -1.12573227 \pm 2.6 \) | \(a_{930}= \pm0.36527751 \pm 3.1 \cdot 10^{-1} \) |
\(a_{931}= +2.28528919 \pm 9.7 \cdot 10^{-1} \) | \(a_{932}= -0.03609937 \pm 2.5 \) | \(a_{933}= \pm0.10783634 \pm 2.3 \) |
\(a_{934}= +0.66070417 \pm 1.5 \) | \(a_{935}= +0.23238993 \pm 5.9 \cdot 10^{-1} \) | \(a_{936}= \pm0.34629012 \pm 3.2 \cdot 10^{-1} \) |
\(a_{937}= +0.46899792 \pm 1.9 \) | \(a_{938}= -1.76147562 \pm 7.9 \cdot 10^{-1} \) | \(a_{939}= \pm0.74163031 \pm 1.0 \) |
\(a_{940}= +0.05221004 \pm 1.9 \) | \(a_{941}= +1.74420705 \pm 2.0 \) | \(a_{942}= \pm0.26181476 \pm 6.9 \cdot 10^{-1} \) |
\(a_{943}= -0.14169998 \pm 5.4 \) | \(a_{944}= -0.54810910 \pm 1.2 \) | \(a_{945}= \pm0.25642209 \pm 1.3 \cdot 10^{-1} \) |
\(a_{946}= +0.17276703 \pm 1.1 \) | \(a_{947}= -0.94502615 \pm 1.3 \) | \(a_{948}= \pm0.02006225 \pm 1.0 \) |
\(a_{949}= -1.43972021 \pm 7.4 \cdot 10^{-1} \) | \(a_{950}= -0.45393265 \pm 2.9 \cdot 10^{-1} \) | \(a_{951}= \pm0.81770704 \pm 1.0 \) |
\(a_{952}= -2.30323000 \pm 5.4 \cdot 10^{-1} \) | \(a_{953}= -0.85317573 \pm 4.8 \) | \(a_{954}= \pm0.15658891 \pm 3.2 \cdot 10^{-1} \) |
\(a_{955}= +0.24062303 \pm 1.1 \) | \(a_{956}= -0.04690362 \pm 2.0 \) | \(a_{957}= \pm0.06541853 \pm 1.3 \) |
\(a_{958}= +1.61375235 \pm 1.3 \) | \(a_{959}= +0.73658380 \pm 1.5 \) | \(a_{960}= \pm0.47711563 \pm 7.6 \cdot 10^{-1} \) |
\(a_{961}= -0.32806148 \pm 1.8 \) | \(a_{962}= -0.68673142 \pm 6.2 \cdot 10^{-1} \) | \(a_{963}= \pm0.11143971 \pm 4.7 \cdot 10^{-1} \) |
\(a_{964}= -0.04681137 \pm 1.9 \) | \(a_{965}= -0.15037300 \pm 2.4 \) | \(a_{966}= \pm0.17497765 \pm 1.9 \cdot 10^{-1} \) |
\(a_{967}= -0.70834110 \pm 4.8 \) | \(a_{968}= +0.97368729 \pm 1.0 \) | \(a_{969}= \pm0.96215661 \pm 2.2 \cdot 10^{-1} \) |
\(a_{970}= -0.21374074 \pm 6.2 \cdot 10^{-1} \) | \(a_{971}= -1.48630118 \pm 4.4 \) | \(a_{972}= \pm0.00314585 \pm 1.6 \cdot 10^{-1} \) |
\(a_{973}= +0.96829924 \pm 2.1 \) | \(a_{974}= -0.82654475 \pm 8.1 \cdot 10^{-1} \) | \(a_{975}= \pm0.21902609 \pm 5.2 \cdot 10^{-1} \) |
\(a_{976}= +1.59930275 \pm 1.6 \) | \(a_{977}= +1.37079776 \pm 2.6 \) | \(a_{978}= \pm0.45855130 \pm 3.4 \cdot 10^{-1} \) |
\(a_{979}= -0.04955274 \pm 8.7 \cdot 10^{-1} \) | \(a_{980}= -0.07118329 \pm 1.6 \) | \(a_{981}= \pm0.21406091 \pm 9.4 \cdot 10^{-1} \) |
\(a_{982}= +0.38136361 \pm 8.6 \cdot 10^{-1} \) | \(a_{983}= +1.59307545 \pm 1.1 \) | \(a_{984}= \pm0.45333598 \pm 1.2 \) |
\(a_{985}= +0.36804931 \pm 3.4 \) | \(a_{986}= +0.67311883 \pm 1.6 \) | \(a_{987}= \pm1.30741791 \pm 8.8 \cdot 10^{-1} \) |
\(a_{988}= +0.06205428 \pm 6.8 \cdot 10^{-1} \) | \(a_{989}= -0.14897934 \pm 2.5 \) | \(a_{990}= \pm0.05648238 \pm 2.5 \cdot 10^{-1} \) |
\(a_{991}= -1.51649762 \pm 3.2 \) | \(a_{992}= +0.08032260 \pm 1.3 \) | \(a_{993}= \pm0.20140796 \pm 9.5 \cdot 10^{-1} \) |
\(a_{994}= -2.41671824 \pm 1.2 \) | \(a_{995}= -0.77837209 \pm 1.3 \) | \(a_{996}= \pm0.02042083 \pm 1.5 \) |
\(a_{997}= +0.12479717 \pm 3.9 \) | \(a_{998}= +0.51954604 \pm 1.6 \) | \(a_{999}= \pm0.13345514 \pm 3.7 \cdot 10^{-1} \) |
\(a_{1000}= +1.11214178 \pm 1.5 \) |
Displaying $a_n$ with $n$ up to: 60 180 1000