Maass form invariants
Level: | \( 3 \) |
Weight: | \( 0 \) |
Character: | 3.1 |
Symmetry: | odd |
Fricke sign: | not computed rigorously |
Spectral parameter: | \(21.1086958873217964417746407169 \pm 2 \cdot 10^{-3}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +1.00192450 \pm 2.3 \cdot 10^{-1} \) | \(a_{3}= \pm0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= +0.00385271 \pm 4.3 \cdot 10^{-1} \) | \(a_{5}= +0.52988547 \pm 3.2 \cdot 10^{-1} \) | \(a_{6}= \pm0.57846138 \pm 1.3 \cdot 10^{-1} \) |
\(a_{7}= +0.46727889 \pm 2.6 \cdot 10^{-1} \) | \(a_{8}= -0.99806438 \pm 2.9 \cdot 10^{-1} \) | \(a_{9}= \pm0.33333333 \pm 1.0 \cdot 10^{-8} \) |
\(a_{10}= +0.53090524 \pm 1.8 \cdot 10^{-1} \) | \(a_{11}= +1.08438107 \pm 2.9 \cdot 10^{-1} \) | \(a_{12}= \pm0.00222436 \pm 2.4 \cdot 10^{-1} \) |
\(a_{13}= -0.76823709 \pm 2.9 \cdot 10^{-1} \) | \(a_{14}= +0.46817817 \pm 1.8 \cdot 10^{-1} \) | \(a_{15}= \pm0.30592952 \pm 1.8 \cdot 10^{-1} \) |
\(a_{16}= -1.00383787 \pm 3.4 \cdot 10^{-1} \) | \(a_{17}= -1.72161513 \pm 2.1 \cdot 10^{-1} \) | \(a_{18}= \pm0.33397483 \pm 7.9 \cdot 10^{-2} \) |
\(a_{19}= -0.41615581 \pm 1.7 \cdot 10^{-1} \) | \(a_{20}= +0.00204150 \pm 3.0 \cdot 10^{-1} \) | \(a_{21}= \pm0.26978360 \pm 1.5 \cdot 10^{-1} \) |
\(a_{22}= +1.08646797 \pm 1.5 \cdot 10^{-1} \) | \(a_{23}= +0.60292757 \pm 6.5 \cdot 10^{-1} \) | \(a_{24}= \pm0.57623274 \pm 1.6 \cdot 10^{-1} \) |
\(a_{25}= -0.71922139 \pm 2.7 \cdot 10^{-1} \) | \(a_{26}= -0.76971556 \pm 1.0 \cdot 10^{-1} \) | \(a_{27}= \pm0.19245009 \pm 1.0 \cdot 10^{-8} \) |
\(a_{28}= +0.00180029 \pm 1.7 \cdot 10^{-1} \) | \(a_{29}= -1.43049394 \pm 6.1 \cdot 10^{-1} \) | \(a_{30}= \pm0.30651828 \pm 1.0 \cdot 10^{-1} \) |
\(a_{31}= -0.99019983 \pm 2.7 \cdot 10^{-1} \) | \(a_{32}= -0.00770538 \pm 3.8 \cdot 10^{-1} \) | \(a_{33}= \pm0.62606770 \pm 1.7 \cdot 10^{-1} \) |
\(a_{34}= -1.72492838 \pm 2.6 \cdot 10^{-1} \) | \(a_{35}= +0.24760430 \pm 1.1 \cdot 10^{-1} \) | \(a_{36}= \pm0.00128424 \pm 1.4 \cdot 10^{-1} \) |
\(a_{37}= +0.14775703 \pm 3.3 \cdot 10^{-1} \) | \(a_{38}= -0.41695671 \pm 8.0 \cdot 10^{-2} \) | \(a_{39}= \pm0.44354189 \pm 1.6 \cdot 10^{-1} \) |
\(a_{40}= -0.52885981 \pm 1.7 \cdot 10^{-1} \) | \(a_{41}= -1.61442358 \pm 6.3 \cdot 10^{-1} \) | \(a_{42}= \pm0.27030279 \pm 1.0 \cdot 10^{-1} \) |
\(a_{43}= +1.53834739 \pm 4.1 \cdot 10^{-1} \) | \(a_{44}= +0.00417781 \pm 2.6 \cdot 10^{-1} \) | \(a_{45}= \pm0.17662849 \pm 1.0 \cdot 10^{-1} \) |
\(a_{46}= +0.60408791 \pm 1.9 \cdot 10^{-1} \) | \(a_{47}= -1.44990599 \pm 5.2 \cdot 10^{-1} \) | \(a_{48}= \pm0.57956606 \pm 2.0 \cdot 10^{-1} \) |
\(a_{49}= -0.78165044 \pm 4.5 \cdot 10^{-1} \) | \(a_{50}= -0.72060553 \pm 1.3 \cdot 10^{-1} \) | \(a_{51}= \pm0.99397496 \pm 1.2 \cdot 10^{-1} \) |
\(a_{52}= -0.00295980 \pm 2.6 \cdot 10^{-1} \) | \(a_{53}= +0.61794411 \pm 2.6 \cdot 10^{-1} \) | \(a_{54}= \pm0.19282046 \pm 4.5 \cdot 10^{-2} \) |
\(a_{55}= +0.57459778 \pm 2.0 \cdot 10^{-1} \) | \(a_{56}= -0.46637442 \pm 2.5 \cdot 10^{-1} \) | \(a_{57}= \pm0.24026767 \pm 1.0 \cdot 10^{-1} \) |
\(a_{58}= -1.43324693 \pm 2.5 \cdot 10^{-1} \) | \(a_{59}= +0.16682293 \pm 4.1 \cdot 10^{-1} \) | \(a_{60}= \pm0.00117866 \pm 1.7 \cdot 10^{-1} \) |
\(a_{61}= +1.23105109 \pm 3.4 \cdot 10^{-1} \) | \(a_{62}= -0.99210548 \pm 1.2 \cdot 10^{-1} \) | \(a_{63}= \pm0.15575963 \pm 8.9 \cdot 10^{-2} \) |
\(a_{64}= +0.99611766 \pm 3.2 \cdot 10^{-1} \) | \(a_{65}= -0.40707767 \pm 2.0 \cdot 10^{-1} \) | \(a_{66}= \pm0.62727257 \pm 8.7 \cdot 10^{-2} \) |
\(a_{67}= +0.68659771 \pm 7.3 \cdot 10^{-1} \) | \(a_{68}= -0.00663289 \pm 2.4 \cdot 10^{-1} \) | \(a_{69}= \pm0.34810040 \pm 3.7 \cdot 10^{-1} \) |
\(a_{70}= +0.24808081 \pm 9.3 \cdot 10^{-2} \) | \(a_{71}= -0.18621158 \pm 4.9 \cdot 10^{-1} \) | \(a_{72}= \pm0.33268813 \pm 9.6 \cdot 10^{-2} \) |
\(a_{73}= -0.66416563 \pm 2.0 \cdot 10^{-1} \) | \(a_{74}= +0.14804138 \pm 3.3 \cdot 10^{-1} \) | \(a_{75}= \pm0.41524266 \pm 1.5 \cdot 10^{-1} \) |
\(a_{76}= -0.00160333 \pm 1.6 \cdot 10^{-1} \) | \(a_{77}= +0.50670839 \pm 1.8 \cdot 10^{-1} \) | \(a_{78}= \pm0.44439549 \pm 5.9 \cdot 10^{-2} \) |
\(a_{79}= +1.00765528 \pm 3.6 \cdot 10^{-1} \) | \(a_{80}= -0.53191910 \pm 2.5 \cdot 10^{-1} \) | \(a_{81}= \pm0.11111111 \pm 1.0 \cdot 10^{-8} \) |
\(a_{82}= -1.61753055 \pm 2.0 \cdot 10^{-1} \) | \(a_{83}= -0.61265886 \pm 5.1 \cdot 10^{-1} \) | \(a_{84}= \pm0.00103940 \pm 1.0 \cdot 10^{-1} \) |
\(a_{85}= -0.91225884 \pm 1.7 \cdot 10^{-1} \) | \(a_{86}= +1.54130795 \pm 3.1 \cdot 10^{-1} \) | \(a_{87}= \pm0.82589606 \pm 3.5 \cdot 10^{-1} \) |
\(a_{88}= -1.08228212 \pm 1.8 \cdot 10^{-1} \) | \(a_{89}= +1.51978075 \pm 2.1 \cdot 10^{-1} \) | \(a_{90}= \pm0.17696841 \pm 6.2 \cdot 10^{-2} \) |
\(a_{91}= -0.35898098 \pm 1.0 \cdot 10^{-1} \) | \(a_{92}= +0.00232291 \pm 6.0 \cdot 10^{-1} \) | \(a_{93}= \pm0.57169214 \pm 1.5 \cdot 10^{-1} \) |
\(a_{94}= -1.45269634 \pm 2.1 \cdot 10^{-1} \) | \(a_{95}= -0.22051492 \pm 1.3 \cdot 10^{-1} \) | \(a_{96}= \pm0.00444870 \pm 2.2 \cdot 10^{-1} \) |
\(a_{97}= +0.17220805 \pm 4.9 \cdot 10^{-1} \) | \(a_{98}= -0.78315472 \pm 2.1 \cdot 10^{-1} \) | \(a_{99}= \pm0.36146036 \pm 9.9 \cdot 10^{-2} \) |
\(a_{100}= -0.00277095 \pm 2.2 \cdot 10^{-1} \) | \(a_{101}= +0.81878340 \pm 2.7 \cdot 10^{-1} \) | \(a_{102}= \pm0.99588787 \pm 1.5 \cdot 10^{-1} \) |
\(a_{103}= -1.81919261 \pm 3.5 \cdot 10^{-1} \) | \(a_{104}= +0.76675007 \pm 1.6 \cdot 10^{-1} \) | \(a_{105}= \pm0.14295441 \pm 6.8 \cdot 10^{-2} \) |
\(a_{106}= +0.61913335 \pm 1.6 \cdot 10^{-1} \) | \(a_{107}= +0.42268360 \pm 2.4 \cdot 10^{-1} \) | \(a_{108}= \pm0.00074145 \pm 8.2 \cdot 10^{-2} \) |
\(a_{109}= -1.31170337 \pm 4.8 \cdot 10^{-1} \) | \(a_{110}= +0.57570359 \pm 1.2 \cdot 10^{-1} \) | \(a_{111}= \pm0.08530756 \pm 1.9 \cdot 10^{-1} \) |
\(a_{112}= -0.46907225 \pm 9.7 \cdot 10^{-2} \) | \(a_{113}= -0.36275567 \pm 2.7 \cdot 10^{-1} \) | \(a_{114}= \pm0.24073007 \pm 4.6 \cdot 10^{-2} \) |
\(a_{115}= +0.31948256 \pm 4.5 \cdot 10^{-1} \) | \(a_{116}= -0.00551128 \pm 5.7 \cdot 10^{-1} \) | \(a_{117}= \pm0.25607903 \pm 9.7 \cdot 10^{-2} \) |
\(a_{118}= +0.16714398 \pm 2.7 \cdot 10^{-1} \) | \(a_{119}= -0.80447441 \pm 1.2 \cdot 10^{-1} \) | \(a_{120}= \pm0.30533736 \pm 1.0 \cdot 10^{-1} \) |
\(a_{121}= +0.17588231 \pm 2.9 \cdot 10^{-1} \) | \(a_{122}= +1.23342025 \pm 1.4 \cdot 10^{-1} \) | \(a_{123}= \pm0.93208789 \pm 3.6 \cdot 10^{-1} \) |
\(a_{124}= -0.00381495 \pm 2.4 \cdot 10^{-1} \) | \(a_{125}= -0.91099044 \pm 4.7 \cdot 10^{-1} \) | \(a_{126}= \pm0.15605939 \pm 6.1 \cdot 10^{-2} \) |
\(a_{127}= -1.00691305 \pm 5.3 \cdot 10^{-1} \) | \(a_{128}= +1.00574007 \pm 4.0 \cdot 10^{-1} \) | \(a_{129}= \pm0.88816528 \pm 2.4 \cdot 10^{-1} \) |
\(a_{130}= -0.40786109 \pm 7.8 \cdot 10^{-2} \) | \(a_{131}= -1.21743899 \pm 3.1 \cdot 10^{-1} \) | \(a_{132}= \pm0.00241206 \pm 1.5 \cdot 10^{-1} \) |
\(a_{133}= -0.19446083 \pm 4.9 \cdot 10^{-2} \) | \(a_{134}= +0.68791906 \pm 2.4 \cdot 10^{-1} \) | \(a_{135}= \pm0.10197651 \pm 6.2 \cdot 10^{-2} \) |
\(a_{136}= +1.71828273 \pm 1.1 \cdot 10^{-1} \) | \(a_{137}= +1.18282140 \pm 5.3 \cdot 10^{-1} \) | \(a_{138}= \pm0.34877032 \pm 1.0 \cdot 10^{-1} \) |
\(a_{139}= -0.62720288 \pm 3.6 \cdot 10^{-1} \) | \(a_{140}= +0.00095395 \pm 1.0 \cdot 10^{-1} \) | \(a_{141}= \pm0.83710362 \pm 3.0 \cdot 10^{-1} \) |
\(a_{142}= -0.18656995 \pm 2.1 \cdot 10^{-1} \) | \(a_{143}= -0.83306175 \pm 1.8 \cdot 10^{-1} \) | \(a_{144}= \pm0.33461262 \pm 1.1 \cdot 10^{-1} \) |
\(a_{145}= -0.75799796 \pm 4.2 \cdot 10^{-1} \) | \(a_{146}= -0.66544382 \pm 1.7 \cdot 10^{-1} \) | \(a_{147}= \pm0.45128609 \pm 2.6 \cdot 10^{-1} \) |
\(a_{148}= +0.00056927 \pm 3.5 \cdot 10^{-1} \) | \(a_{149}= -0.17184554 \pm 4.0 \cdot 10^{-1} \) | \(a_{150}= \pm0.41604180 \pm 7.6 \cdot 10^{-2} \) |
\(a_{151}= +0.52845730 \pm 6.1 \cdot 10^{-1} \) | \(a_{152}= +0.41535029 \pm 1.0 \cdot 10^{-1} \) | \(a_{153}= \pm0.57387171 \pm 7.3 \cdot 10^{-2} \) |
\(a_{154}= +0.50768355 \pm 1.2 \cdot 10^{-1} \) | \(a_{155}= -0.52469251 \pm 1.8 \cdot 10^{-1} \) | \(a_{156}= \pm0.00170884 \pm 1.5 \cdot 10^{-1} \) |
\(a_{157}= -0.05643133 \pm 6.5 \cdot 10^{-1} \) | \(a_{158}= +1.00959452 \pm 1.8 \cdot 10^{-1} \) | \(a_{159}= \pm0.35677020 \pm 1.5 \cdot 10^{-1} \) |
\(a_{160}= -0.00408297 \pm 2.7 \cdot 10^{-1} \) | \(a_{161}= +0.28173533 \pm 1.6 \cdot 10^{-1} \) | \(a_{162}= \pm0.11132494 \pm 2.6 \cdot 10^{-2} \) |
\(a_{163}= -0.18613756 \pm 8.1 \cdot 10^{-2} \) | \(a_{164}= -0.00621991 \pm 5.6 \cdot 10^{-1} \) | \(a_{165}= \pm0.33174418 \pm 1.2 \cdot 10^{-1} \) |
\(a_{166}= -0.61383792 \pm 2.0 \cdot 10^{-1} \) | \(a_{167}= +0.27509077 \pm 3.0 \cdot 10^{-1} \) | \(a_{168}= \pm0.26926140 \pm 1.4 \cdot 10^{-1} \) |
\(a_{169}= -0.40981178 \pm 3.1 \cdot 10^{-1} \) | \(a_{170}= -0.91401449 \pm 2.3 \cdot 10^{-1} \) | \(a_{171}= \pm0.13871860 \pm 5.9 \cdot 10^{-2} \) |
\(a_{172}= +0.00592681 \pm 3.5 \cdot 10^{-1} \) | \(a_{173}= +0.83185682 \pm 2.6 \cdot 10^{-1} \) | \(a_{174}= \pm0.82748550 \pm 1.4 \cdot 10^{-1} \) |
\(a_{175}= -0.33607697 \pm 2.2 \cdot 10^{-1} \) | \(a_{176}= -1.08854278 \pm 2.2 \cdot 10^{-1} \) | \(a_{177}= \pm0.09631527 \pm 2.4 \cdot 10^{-1} \) |
\(a_{178}= +1.52270557 \pm 1.6 \cdot 10^{-1} \) | \(a_{179}= +0.19231080 \pm 4.0 \cdot 10^{-1} \) | \(a_{180}= \pm0.00068050 \pm 1.0 \cdot 10^{-1} \) |
\(a_{181}= +1.62899779 \pm 4.9 \cdot 10^{-1} \) | \(a_{182}= -0.35967184 \pm 6.4 \cdot 10^{-2} \) | \(a_{183}= \pm0.71074768 \pm 1.9 \cdot 10^{-1} \) |
\(a_{184}= -0.60176053 \pm 3.4 \cdot 10^{-1} \) | \(a_{185}= +0.07829430 \pm 2.5 \cdot 10^{-1} \) | \(a_{186}= \pm0.57279236 \pm 7.4 \cdot 10^{-2} \) |
\(a_{187}= -1.86688686 \pm 1.2 \cdot 10^{-1} \) | \(a_{188}= -0.00558607 \pm 4.6 \cdot 10^{-1} \) | \(a_{189}= \pm0.08992787 \pm 5.1 \cdot 10^{-2} \) |
\(a_{190}= -0.22093930 \pm 8.5 \cdot 10^{-2} \) | \(a_{191}= +0.10897827 \pm 3.4 \cdot 10^{-1} \) | \(a_{192}= \pm0.57510880 \pm 1.8 \cdot 10^{-1} \) |
\(a_{193}= -0.10938636 \pm 5.7 \cdot 10^{-1} \) | \(a_{194}= +0.17253947 \pm 1.9 \cdot 10^{-1} \) | \(a_{195}= \pm0.23502640 \pm 1.1 \cdot 10^{-1} \) |
\(a_{196}= -0.00301147 \pm 4.0 \cdot 10^{-1} \) | \(a_{197}= +1.46756151 \pm 8.3 \cdot 10^{-1} \) | \(a_{198}= \pm0.36215599 \pm 5.0 \cdot 10^{-2} \) |
\(a_{199}= +0.39153591 \pm 3.2 \cdot 10^{-1} \) | \(a_{200}= +0.71782925 \pm 1.9 \cdot 10^{-1} \) | \(a_{201}= \pm0.39640737 \pm 4.2 \cdot 10^{-1} \) |
\(a_{202}= +0.82035915 \pm 2.0 \cdot 10^{-1} \) | \(a_{203}= -0.66843963 \pm 2.6 \cdot 10^{-1} \) | \(a_{204}= \pm0.00382950 \pm 1.4 \cdot 10^{-1} \) |
\(a_{205}= -0.85545960 \pm 4.2 \cdot 10^{-1} \) | \(a_{206}= -1.82269366 \pm 2.7 \cdot 10^{-1} \) | \(a_{207}= \pm0.20097586 \pm 2.1 \cdot 10^{-1} \) |
\(a_{208}= +0.77118548 \pm 2.2 \cdot 10^{-1} \) | \(a_{209}= -0.45127149 \pm 1.1 \cdot 10^{-1} \) | \(a_{210}= \pm0.14322952 \pm 5.3 \cdot 10^{-2} \) |
\(a_{211}= -0.14455814 \pm 1.8 \cdot 10^{-1} \) | \(a_{212}= +0.00238076 \pm 2.4 \cdot 10^{-1} \) | \(a_{213}= \pm0.10750931 \pm 2.8 \cdot 10^{-1} \) |
\(a_{214}= +0.42349706 \pm 1.6 \cdot 10^{-1} \) | \(a_{215}= +0.81514793 \pm 2.7 \cdot 10^{-1} \) | \(a_{216}= \pm0.19207758 \pm 5.5 \cdot 10^{-2} \) |
\(a_{217}= -0.46269948 \pm 1.7 \cdot 10^{-1} \) | \(a_{218}= -1.31422775 \pm 2.0 \cdot 10^{-1} \) | \(a_{219}= \pm0.38345620 \pm 1.2 \cdot 10^{-1} \) |
\(a_{220}= +0.00221376 \pm 1.8 \cdot 10^{-1} \) | \(a_{221}= +1.32260859 \pm 9.5 \cdot 10^{-2} \) | \(a_{222}= \pm0.08547173 \pm 1.9 \cdot 10^{-1} \) |
\(a_{223}= -0.13752731 \pm 1.6 \cdot 10^{-1} \) | \(a_{224}= -0.00360056 \pm 2.5 \cdot 10^{-1} \) | \(a_{225}= \pm0.23974046 \pm 9.0 \cdot 10^{-2} \) |
\(a_{226}= -0.36345379 \pm 2.2 \cdot 10^{-1} \) | \(a_{227}= +1.19003564 \pm 6.4 \cdot 10^{-1} \) | \(a_{228}= \pm0.00092568 \pm 9.2 \cdot 10^{-2} \) |
\(a_{229}= -0.60187396 \pm 2.8 \cdot 10^{-1} \) | \(a_{230}= +0.32009741 \pm 1.4 \cdot 10^{-1} \) | \(a_{231}= \pm0.29254822 \pm 1.0 \cdot 10^{-1} \) |
\(a_{232}= +1.42772504 \pm 3.5 \cdot 10^{-1} \) | \(a_{233}= -0.81166640 \pm 4.6 \cdot 10^{-1} \) | \(a_{234}= \pm0.25657185 \pm 3.4 \cdot 10^{-2} \) |
\(a_{235}= -0.76828412 \pm 3.6 \cdot 10^{-1} \) | \(a_{236}= +0.00064272 \pm 3.1 \cdot 10^{-1} \) | \(a_{237}= \pm0.58177005 \pm 2.1 \cdot 10^{-1} \) |
\(a_{238}= -0.80602263 \pm 1.4 \cdot 10^{-1} \) | \(a_{239}= -0.96044577 \pm 3.9 \cdot 10^{-1} \) | \(a_{240}= \pm0.30710364 \pm 1.4 \cdot 10^{-1} \) |
\(a_{241}= +1.34907851 \pm 3.9 \cdot 10^{-1} \) | \(a_{242}= +0.17622079 \pm 1.4 \cdot 10^{-1} \) | \(a_{243}= \pm0.06415003 \pm 1.0 \cdot 10^{-8} \) |
\(a_{244}= +0.00474288 \pm 3.0 \cdot 10^{-1} \) | \(a_{245}= -0.41418521 \pm 3.0 \cdot 10^{-1} \) | \(a_{246}= \pm0.93388170 \pm 1.1 \cdot 10^{-1} \) |
\(a_{247}= +0.31970633 \pm 1.3 \cdot 10^{-1} \) | \(a_{248}= +0.98828318 \pm 1.7 \cdot 10^{-1} \) | \(a_{249}= \pm0.35371876 \pm 2.9 \cdot 10^{-1} \) |
\(a_{250}= -0.91274364 \pm 2.2 \cdot 10^{-1} \) | \(a_{251}= +0.61167548 \pm 5.6 \cdot 10^{-1} \) | \(a_{252}= \pm0.00060010 \pm 5.9 \cdot 10^{-2} \) |
\(a_{253}= +0.65380325 \pm 4.0 \cdot 10^{-1} \) | \(a_{254}= -1.00885086 \pm 2.6 \cdot 10^{-1} \) | \(a_{255}= \pm0.52669289 \pm 1.0 \cdot 10^{-1} \) |
\(a_{256}= +0.01155796 \pm 2.3 \cdot 10^{-1} \) | \(a_{257}= -1.01113279 \pm 5.2 \cdot 10^{-1} \) | \(a_{258}= \pm0.88987456 \pm 1.8 \cdot 10^{-1} \) |
\(a_{259}= +0.06904374 \pm 1.7 \cdot 10^{-1} \) | \(a_{260}= -0.00156835 \pm 1.8 \cdot 10^{-1} \) | \(a_{261}= \pm0.47683131 \pm 2.0 \cdot 10^{-1} \) |
\(a_{262}= -1.21978195 \pm 1.7 \cdot 10^{-1} \) | \(a_{263}= +0.56719616 \pm 3.7 \cdot 10^{-1} \) | \(a_{264}= \pm0.62485587 \pm 1.0 \cdot 10^{-1} \) |
\(a_{265}= +0.32743961 \pm 1.8 \cdot 10^{-1} \) | \(a_{266}= -0.19483507 \pm 2.7 \cdot 10^{-2} \) | \(a_{267}= \pm0.87744583 \pm 1.2 \cdot 10^{-1} \) |
\(a_{268}= +0.00264526 \pm 6.8 \cdot 10^{-1} \) | \(a_{269}= +0.72939796 \pm 3.2 \cdot 10^{-1} \) | \(a_{270}= \pm0.10217276 \pm 3.6 \cdot 10^{-2} \) |
\(a_{271}= +0.63197978 \pm 4.4 \cdot 10^{-1} \) | \(a_{272}= +1.72822246 \pm 1.5 \cdot 10^{-1} \) | \(a_{273}= \pm0.20725776 \pm 6.3 \cdot 10^{-2} \) |
\(a_{274}= +1.18509774 \pm 2.8 \cdot 10^{-1} \) | \(a_{275}= -0.77991006 \pm 1.7 \cdot 10^{-1} \) | \(a_{276}= \pm0.00134113 \pm 3.4 \cdot 10^{-1} \) |
\(a_{277}= -1.09277131 \pm 2.3 \cdot 10^{-1} \) | \(a_{278}= -0.62840994 \pm 3.3 \cdot 10^{-1} \) | \(a_{279}= \pm0.33006661 \pm 9.2 \cdot 10^{-2} \) |
\(a_{280}= -0.24712503 \pm 9.3 \cdot 10^{-2} \) | \(a_{281}= +0.56117905 \pm 5.0 \cdot 10^{-1} \) | \(a_{282}= \pm0.83871463 \pm 1.2 \cdot 10^{-1} \) |
\(a_{283}= -1.04664148 \pm 6.9 \cdot 10^{-1} \) | \(a_{284}= -0.00071742 \pm 4.2 \cdot 10^{-1} \) | \(a_{285}= \pm0.12731435 \pm 7.9 \cdot 10^{-2} \) |
\(a_{286}= -0.83466498 \pm 6.7 \cdot 10^{-2} \) | \(a_{287}= -0.75438607 \pm 2.8 \cdot 10^{-1} \) | \(a_{288}= \pm0.00256846 \pm 1.2 \cdot 10^{-1} \) |
\(a_{289}= +1.96395865 \pm 4.5 \cdot 10^{-1} \) | \(a_{290}= -0.75945673 \pm 1.9 \cdot 10^{-1} \) | \(a_{291}= \pm0.09942437 \pm 2.8 \cdot 10^{-1} \) |
\(a_{292}= -0.00255884 \pm 2.1 \cdot 10^{-1} \) | \(a_{293}= -0.15867836 \pm 7.5 \cdot 10^{-1} \) | \(a_{294}= \pm0.45215459 \pm 1.2 \cdot 10^{-1} \) |
\(a_{295}= +0.08839705 \pm 2.2 \cdot 10^{-1} \) | \(a_{296}= -0.14747102 \pm 1.7 \cdot 10^{-1} \) | \(a_{297}= \pm0.20868923 \pm 5.7 \cdot 10^{-2} \) |
\(a_{298}= -0.17217626 \pm 2.1 \cdot 10^{-1} \) | \(a_{299}= -0.46319132 \pm 4.2 \cdot 10^{-1} \) | \(a_{300}= \pm0.00159981 \pm 1.2 \cdot 10^{-1} \) |
\(a_{301}= +0.71883727 \pm 3.9 \cdot 10^{-1} \) | \(a_{302}= +0.52947432 \pm 1.9 \cdot 10^{-1} \) | \(a_{303}= \pm0.47272482 \pm 1.5 \cdot 10^{-1} \) |
\(a_{304}= +0.41775297 \pm 1.3 \cdot 10^{-1} \) | \(a_{305}= +0.65231609 \pm 2.6 \cdot 10^{-1} \) | \(a_{306}= \pm0.57497613 \pm 8.8 \cdot 10^{-2} \) |
\(a_{307}= +0.40802736 \pm 2.1 \cdot 10^{-1} \) | \(a_{308}= +0.00195220 \pm 1.1 \cdot 10^{-1} \) | \(a_{309}= \pm1.05031134 \pm 2.0 \cdot 10^{-1} \) |
\(a_{310}= -0.52570228 \pm 9.3 \cdot 10^{-2} \) | \(a_{311}= +1.35190882 \pm 6.9 \cdot 10^{-1} \) | \(a_{312}= \pm0.44268336 \pm 9.5 \cdot 10^{-2} \) |
\(a_{313}= -1.67008300 \pm 2.9 \cdot 10^{-1} \) | \(a_{314}= -0.05653993 \pm 2.0 \cdot 10^{-1} \) | \(a_{315}= \pm0.08253477 \pm 3.9 \cdot 10^{-2} \) |
\(a_{316}= +0.00388220 \pm 3.1 \cdot 10^{-1} \) | \(a_{317}= -1.26728183 \pm 2.9 \cdot 10^{-1} \) | \(a_{318}= \pm0.35745681 \pm 9.4 \cdot 10^{-2} \) |
\(a_{319}= -1.55120055 \pm 3.8 \cdot 10^{-1} \) | \(a_{320}= +0.52782828 \pm 2.2 \cdot 10^{-1} \) | \(a_{321}= \pm0.24403649 \pm 1.3 \cdot 10^{-1} \) |
\(a_{322}= +0.28227753 \pm 5.6 \cdot 10^{-2} \) | \(a_{323}= +0.71646015 \pm 6.4 \cdot 10^{-2} \) | \(a_{324}= \pm0.00042808 \pm 4.7 \cdot 10^{-2} \) |
\(a_{325}= +0.55253254 \pm 1.5 \cdot 10^{-1} \) | \(a_{326}= -0.18649578 \pm 1.0 \cdot 10^{-1} \) | \(a_{327}= \pm0.75731230 \pm 2.7 \cdot 10^{-1} \) |
\(a_{328}= +1.61129867 \pm 3.6 \cdot 10^{-1} \) | \(a_{329}= -0.67751047 \pm 2.6 \cdot 10^{-1} \) | \(a_{330}= \pm0.33238262 \pm 7.4 \cdot 10^{-2} \) |
\(a_{331}= +0.50745554 \pm 2.8 \cdot 10^{-1} \) | \(a_{332}= -0.00236040 \pm 4.5 \cdot 10^{-1} \) | \(a_{333}= \pm0.04925234 \pm 1.1 \cdot 10^{-1} \) |
\(a_{334}= +0.27562018 \pm 2.4 \cdot 10^{-1} \) | \(a_{335}= +0.36381815 \pm 5.1 \cdot 10^{-1} \) | \(a_{336}= \pm0.27081899 \pm 5.6 \cdot 10^{-2} \) |
\(a_{337}= -0.05044323 \pm 5.4 \cdot 10^{-1} \) | \(a_{338}= -0.41060046 \pm 2.0 \cdot 10^{-1} \) | \(a_{339}= \pm0.20943708 \pm 1.5 \cdot 10^{-1} \) |
\(a_{340}= -0.00351467 \pm 2.0 \cdot 10^{-1} \) | \(a_{341}= -1.07375396 \pm 1.7 \cdot 10^{-1} \) | \(a_{342}= \pm0.13898557 \pm 2.6 \cdot 10^{-2} \) |
\(a_{343}= -0.83252764 \pm 2.2 \cdot 10^{-1} \) | \(a_{344}= -1.53536973 \pm 3.1 \cdot 10^{-1} \) | \(a_{345}= \pm0.18445334 \pm 2.6 \cdot 10^{-1} \) |
\(a_{346}= +0.83345774 \pm 1.8 \cdot 10^{-1} \) | \(a_{347}= +1.42585467 \pm 1.7 \cdot 10^{-1} \) | \(a_{348}= \pm0.00318194 \pm 3.2 \cdot 10^{-1} \) |
\(a_{349}= -1.32173761 \pm 7.4 \cdot 10^{-1} \) | \(a_{350}= -0.33672376 \pm 1.4 \cdot 10^{-1} \) | \(a_{351}= \pm0.14784730 \pm 5.6 \cdot 10^{-2} \) |
\(a_{352}= -0.00835557 \pm 2.4 \cdot 10^{-1} \) | \(a_{353}= +1.20981409 \pm 6.5 \cdot 10^{-1} \) | \(a_{354}= \pm0.09650062 \pm 1.5 \cdot 10^{-1} \) |
\(a_{355}= -0.09867081 \pm 3.2 \cdot 10^{-1} \) | \(a_{356}= +0.00585528 \pm 1.5 \cdot 10^{-1} \) | \(a_{357}= \pm0.46446352 \pm 6.9 \cdot 10^{-2} \) |
\(a_{358}= +0.19268090 \pm 2.4 \cdot 10^{-1} \) | \(a_{359}= +0.42966039 \pm 3.4 \cdot 10^{-1} \) | \(a_{360}= \pm0.17628660 \pm 5.9 \cdot 10^{-2} \) |
\(a_{361}= -0.82681434 \pm 4.1 \cdot 10^{-1} \) | \(a_{362}= +1.63213280 \pm 3.1 \cdot 10^{-1} \) | \(a_{363}= \pm0.10154570 \pm 1.6 \cdot 10^{-1} \) |
\(a_{364}= -0.00138305 \pm 8.1 \cdot 10^{-2} \) | \(a_{365}= -0.35193172 \pm 1.5 \cdot 10^{-1} \) | \(a_{366}= \pm0.71211551 \pm 8.3 \cdot 10^{-2} \) |
\(a_{367}= +1.47971047 \pm 3.1 \cdot 10^{-1} \) | \(a_{368}= -0.60524153 \pm 5.1 \cdot 10^{-1} \) | \(a_{369}= \pm0.53814119 \pm 2.1 \cdot 10^{-1} \) |
\(a_{370}= +0.07844498 \pm 2.9 \cdot 10^{-1} \) | \(a_{371}= +0.28875224 \pm 1.5 \cdot 10^{-1} \) | \(a_{372}= \pm0.00220256 \pm 1.4 \cdot 10^{-1} \) |
\(a_{373}= -0.91864778 \pm 2.8 \cdot 10^{-1} \) | \(a_{374}= -1.87047969 \pm 1.4 \cdot 10^{-1} \) | \(a_{375}= \pm0.52596057 \pm 2.7 \cdot 10^{-1} \) |
\(a_{376}= +1.44709953 \pm 3.1 \cdot 10^{-1} \) | \(a_{377}= +1.09895849 \pm 3.8 \cdot 10^{-1} \) | \(a_{378}= \pm0.09010093 \pm 3.5 \cdot 10^{-2} \) |
\(a_{379}= -1.33486538 \pm 1.1 \cdot 10^{-1} \) | \(a_{380}= -0.00084958 \pm 1.1 \cdot 10^{-1} \) | \(a_{381}= \pm0.58134152 \pm 3.0 \cdot 10^{-1} \) |
\(a_{382}= +0.10918800 \pm 3.3 \cdot 10^{-1} \) | \(a_{383}= -1.04115214 \pm 3.5 \cdot 10^{-1} \) | \(a_{384}= \pm0.58066430 \pm 2.3 \cdot 10^{-1} \) |
\(a_{385}= +0.26849741 \pm 7.7 \cdot 10^{-2} \) | \(a_{386}= -0.10959688 \pm 2.4 \cdot 10^{-1} \) | \(a_{387}= \pm0.51278246 \pm 1.3 \cdot 10^{-1} \) |
\(a_{388}= +0.00066347 \pm 4.3 \cdot 10^{-1} \) | \(a_{389}= -0.83322294 \pm 1.6 \cdot 10^{-1} \) | \(a_{390}= \pm0.23547871 \pm 4.5 \cdot 10^{-2} \) |
\(a_{391}= -1.03800923 \pm 1.9 \cdot 10^{-1} \) | \(a_{392}= +0.78013746 \pm 2.9 \cdot 10^{-1} \) | \(a_{393}= \pm0.70288873 \pm 1.8 \cdot 10^{-1} \) |
\(a_{394}= +1.47038584 \pm 2.4 \cdot 10^{-1} \) | \(a_{395}= +0.53394189 \pm 2.4 \cdot 10^{-1} \) | \(a_{396}= \pm0.00139260 \pm 8.7 \cdot 10^{-2} \) |
\(a_{397}= -0.57363558 \pm 5.7 \cdot 10^{-1} \) | \(a_{398}= +0.39228942 \pm 2.1 \cdot 10^{-1} \) | \(a_{399}= \pm0.11227201 \pm 2.8 \cdot 10^{-2} \) |
\(a_{400}= +0.72198166 \pm 1.8 \cdot 10^{-1} \) | \(a_{401}= -0.17144500 \pm 6.5 \cdot 10^{-1} \) | \(a_{402}= \pm0.39717026 \pm 1.4 \cdot 10^{-1} \) |
\(a_{403}= +0.76070823 \pm 1.6 \cdot 10^{-1} \) | \(a_{404}= +0.00315454 \pm 2.2 \cdot 10^{-1} \) | \(a_{405}= \pm0.05887616 \pm 3.6 \cdot 10^{-2} \) |
\(a_{406}= -0.66972604 \pm 1.7 \cdot 10^{-1} \) | \(a_{407}= +0.16022492 \pm 1.9 \cdot 10^{-1} \) | \(a_{408}= \pm0.99205100 \pm 6.4 \cdot 10^{-2} \) |
\(a_{409}= -1.19442676 \pm 6.7 \cdot 10^{-1} \) | \(a_{410}= -0.85710594 \pm 1.3 \cdot 10^{-1} \) | \(a_{411}= \pm0.68290225 \pm 3.1 \cdot 10^{-1} \) |
\(a_{412}= -0.00700882 \pm 3.3 \cdot 10^{-1} \) | \(a_{413}= +0.07795284 \pm 4.6 \cdot 10^{-1} \) | \(a_{414}= \pm0.20136264 \pm 6.3 \cdot 10^{-2} \) |
\(a_{415}= -0.32463903 \pm 3.3 \cdot 10^{-1} \) | \(a_{416}= +0.00591956 \pm 2.2 \cdot 10^{-1} \) | \(a_{417}= \pm0.36211575 \pm 2.1 \cdot 10^{-1} \) |
\(a_{418}= -0.45213996 \pm 6.5 \cdot 10^{-2} \) | \(a_{419}= +1.02197617 \pm 2.5 \cdot 10^{-1} \) | \(a_{420}= \pm0.00055076 \pm 5.8 \cdot 10^{-2} \) |
\(a_{421}= +1.69875725 \pm 7.2 \cdot 10^{-1} \) | \(a_{422}= -0.14483634 \pm 1.9 \cdot 10^{-1} \) | \(a_{423}= \pm0.48330200 \pm 1.7 \cdot 10^{-1} \) |
\(a_{424}= -0.61674801 \pm 1.6 \cdot 10^{-1} \) | \(a_{425}= +1.23822242 \pm 9.1 \cdot 10^{-2} \) | \(a_{426}= \pm0.10771621 \pm 1.2 \cdot 10^{-1} \) |
\(a_{427}= +0.57524419 \pm 9.1 \cdot 10^{-2} \) | \(a_{428}= +0.00162848 \pm 2.3 \cdot 10^{-1} \) | \(a_{429}= \pm0.48096843 \pm 1.0 \cdot 10^{-1} \) |
\(a_{430}= +0.81671669 \pm 2.5 \cdot 10^{-1} \) | \(a_{431}= -0.11579801 \pm 3.0 \cdot 10^{-1} \) | \(a_{432}= \pm0.19318869 \pm 6.7 \cdot 10^{-2} \) |
\(a_{433}= -1.96432702 \pm 5.8 \cdot 10^{-1} \) | \(a_{434}= -0.46358995 \pm 1.1 \cdot 10^{-1} \) | \(a_{435}= \pm0.43763032 \pm 2.4 \cdot 10^{-1} \) |
\(a_{436}= -0.00505361 \pm 4.4 \cdot 10^{-1} \) | \(a_{437}= -0.25091181 \pm 2.5 \cdot 10^{-1} \) | \(a_{438}= \pm0.38419417 \pm 9.8 \cdot 10^{-2} \) |
\(a_{439}= -0.95889296 \pm 4.5 \cdot 10^{-1} \) | \(a_{440}= -0.57348557 \pm 1.1 \cdot 10^{-1} \) | \(a_{441}= \pm0.26055015 \pm 1.5 \cdot 10^{-1} \) |
\(a_{442}= +1.32515395 \pm 7.9 \cdot 10^{-2} \) | \(a_{443}= -1.16865713 \pm 6.7 \cdot 10^{-1} \) | \(a_{444}= \pm0.00032867 \pm 2.0 \cdot 10^{-1} \) |
\(a_{445}= +0.80530974 \pm 1.2 \cdot 10^{-1} \) | \(a_{446}= -0.13779199 \pm 1.7 \cdot 10^{-1} \) | \(a_{447}= \pm0.09921507 \pm 2.3 \cdot 10^{-1} \) |
\(a_{448}= +0.46546476 \pm 2.1 \cdot 10^{-1} \) | \(a_{449}= -0.01311288 \pm 6.7 \cdot 10^{-1} \) | \(a_{450}= \pm0.24020184 \pm 4.4 \cdot 10^{-2} \) |
\(a_{451}= -1.75065038 \pm 3.9 \cdot 10^{-1} \) | \(a_{452}= -0.00139759 \pm 2.0 \cdot 10^{-1} \) | \(a_{453}= \pm0.30510496 \pm 3.5 \cdot 10^{-1} \) |
\(a_{454}= +1.19232586 \pm 3.1 \cdot 10^{-1} \) | \(a_{455}= -0.19021880 \pm 6.2 \cdot 10^{-2} \) | \(a_{456}= \pm0.23980260 \pm 5.8 \cdot 10^{-2} \) |
\(a_{457}= +1.60322706 \pm 4.2 \cdot 10^{-1} \) | \(a_{458}= -0.60303227 \pm 2.3 \cdot 10^{-1} \) | \(a_{459}= \pm0.33132499 \pm 4.2 \cdot 10^{-2} \) |
\(a_{460}= +0.00123087 \pm 4.2 \cdot 10^{-1} \) | \(a_{461}= +1.00942901 \pm 2.1 \cdot 10^{-1} \) | \(a_{462}= \pm0.29311123 \pm 7.0 \cdot 10^{-2} \) |
\(a_{463}= -1.48657078 \pm 5.1 \cdot 10^{-1} \) | \(a_{464}= +1.43598398 \pm 4.6 \cdot 10^{-1} \) | \(a_{465}= \pm0.30293136 \pm 1.0 \cdot 10^{-1} \) |
\(a_{466}= -0.81322845 \pm 2.1 \cdot 10^{-1} \) | \(a_{467}= +0.43205903 \pm 5.9 \cdot 10^{-1} \) | \(a_{468}= \pm0.00098660 \pm 8.8 \cdot 10^{-2} \) |
\(a_{469}= +0.32083262 \pm 2.4 \cdot 10^{-1} \) | \(a_{470}= -0.76976269 \pm 1.8 \cdot 10^{-1} \) | \(a_{471}= \pm0.03258064 \pm 3.7 \cdot 10^{-1} \) |
\(a_{472}= -0.16650003 \pm 3.5 \cdot 10^{-1} \) | \(a_{473}= +1.66815479 \pm 2.7 \cdot 10^{-1} \) | \(a_{474}= \pm0.58288967 \pm 1.0 \cdot 10^{-1} \) |
\(a_{475}= +0.29930816 \pm 9.2 \cdot 10^{-2} \) | \(a_{476}= -0.00309941 \pm 1.2 \cdot 10^{-1} \) | \(a_{477}= \pm0.20598137 \pm 8.7 \cdot 10^{-2} \) |
\(a_{478}= -0.96229415 \pm 1.6 \cdot 10^{-1} \) | \(a_{479}= -1.62230897 \pm 3.9 \cdot 10^{-1} \) | \(a_{480}= \pm0.00235730 \pm 1.5 \cdot 10^{-1} \) |
\(a_{481}= -0.11351243 \pm 1.7 \cdot 10^{-1} \) | \(a_{482}= +1.35167482 \pm 2.3 \cdot 10^{-1} \) | \(a_{483}= \pm0.16265997 \pm 9.4 \cdot 10^{-2} \) |
\(a_{484}= +0.00067762 \pm 2.7 \cdot 10^{-1} \) | \(a_{485}= +0.09125055 \pm 3.2 \cdot 10^{-1} \) | \(a_{486}= \pm0.06427349 \pm 1.5 \cdot 10^{-2} \) |
\(a_{487}= -1.13675498 \pm 2.8 \cdot 10^{-1} \) | \(a_{488}= -1.22866824 \pm 1.8 \cdot 10^{-1} \) | \(a_{489}= \pm0.10746657 \pm 4.7 \cdot 10^{-2} \) |
\(a_{490}= -0.41498231 \pm 1.5 \cdot 10^{-1} \) | \(a_{491}= -1.08145360 \pm 2.6 \cdot 10^{-1} \) | \(a_{492}= \pm0.00359107 \pm 3.2 \cdot 10^{-1} \) |
\(a_{493}= +2.46276001 \pm 2.5 \cdot 10^{-1} \) | \(a_{494}= +0.32032161 \pm 5.1 \cdot 10^{-2} \) | \(a_{495}= \pm0.19153259 \pm 6.9 \cdot 10^{-2} \) |
\(a_{496}= +0.99400009 \pm 1.9 \cdot 10^{-1} \) | \(a_{497}= -0.08701274 \pm 3.1 \cdot 10^{-1} \) | \(a_{498}= \pm0.35439949 \pm 1.1 \cdot 10^{-1} \) |
\(a_{499}= -0.06525085 \pm 7.2 \cdot 10^{-1} \) | \(a_{500}= -0.00350978 \pm 4.4 \cdot 10^{-1} \) | \(a_{501}= \pm0.15882373 \pm 1.7 \cdot 10^{-1} \) |
\(a_{502}= +0.61285265 \pm 1.9 \cdot 10^{-1} \) | \(a_{503}= +0.19800121 \pm 6.9 \cdot 10^{-1} \) | \(a_{504}= \pm0.15545814 \pm 8.6 \cdot 10^{-2} \) |
\(a_{505}= +0.43386143 \pm 1.9 \cdot 10^{-1} \) | \(a_{506}= +0.65506149 \pm 1.2 \cdot 10^{-1} \) | \(a_{507}= \pm0.23660494 \pm 1.8 \cdot 10^{-1} \) |
\(a_{508}= -0.00387934 \pm 4.4 \cdot 10^{-1} \) | \(a_{509}= -0.34553273 \pm 1.6 \cdot 10^{-1} \) | \(a_{510}= \pm0.52770651 \pm 1.3 \cdot 10^{-1} \) |
\(a_{511}= -0.31035058 \pm 7.5 \cdot 10^{-2} \) | \(a_{512}= -0.99415987 \pm 4.4 \cdot 10^{-1} \) | \(a_{513}= \pm0.08008922 \pm 3.4 \cdot 10^{-2} \) |
\(a_{514}= -1.01307872 \pm 2.1 \cdot 10^{-1} \) | \(a_{515}= -0.96396374 \pm 2.6 \cdot 10^{-1} \) | \(a_{516}= \pm0.00342184 \pm 2.0 \cdot 10^{-1} \) |
\(a_{517}= -1.57225062 \pm 3.3 \cdot 10^{-1} \) | \(a_{518}= +0.06917661 \pm 1.8 \cdot 10^{-1} \) | \(a_{519}= \pm0.48027276 \pm 1.5 \cdot 10^{-1} \) |
\(a_{520}= +0.40628972 \pm 1.1 \cdot 10^{-1} \) | \(a_{521}= +0.70513505 \pm 6.2 \cdot 10^{-1} \) | \(a_{522}= \pm0.47774898 \pm 8.5 \cdot 10^{-2} \) |
\(a_{523}= -0.53063651 \pm 2.5 \cdot 10^{-1} \) | \(a_{524}= -0.00469044 \pm 2.4 \cdot 10^{-1} \) | \(a_{525}= \pm0.19403413 \pm 1.2 \cdot 10^{-1} \) |
\(a_{526}= +0.56828773 \pm 2.8 \cdot 10^{-1} \) | \(a_{527}= +1.70474301 \pm 1.1 \cdot 10^{-1} \) | \(a_{528}= \pm0.62847047 \pm 1.2 \cdot 10^{-1} \) |
\(a_{529}= -0.63647834 \pm 5.9 \cdot 10^{-1} \) | \(a_{530}= +0.32806977 \pm 1.3 \cdot 10^{-1} \) | \(a_{531}= \pm0.05560764 \pm 1.3 \cdot 10^{-1} \) |
\(a_{532}= -0.00074920 \pm 4.4 \cdot 10^{-2} \) | \(a_{533}= +1.24026007 \pm 3.9 \cdot 10^{-1} \) | \(a_{534}= \pm0.87913447 \pm 9.4 \cdot 10^{-2} \) |
\(a_{535}= +0.22397390 \pm 1.7 \cdot 10^{-1} \) | \(a_{536}= -0.68526871 \pm 4.0 \cdot 10^{-1} \) | \(a_{537}= \pm0.11103069 \pm 2.3 \cdot 10^{-1} \) |
\(a_{538}= +0.73080169 \pm 1.4 \cdot 10^{-1} \) | \(a_{539}= -0.84760694 \pm 2.8 \cdot 10^{-1} \) | \(a_{540}= \pm0.00039289 \pm 5.8 \cdot 10^{-2} \) |
\(a_{541}= +1.17144739 \pm 2.0 \cdot 10^{-1} \) | \(a_{542}= +0.63319603 \pm 3.1 \cdot 10^{-1} \) | \(a_{543}= \pm0.94050231 \pm 2.8 \cdot 10^{-1} \) |
\(a_{544}= +0.01326570 \pm 2.6 \cdot 10^{-1} \) | \(a_{545}= -0.69505256 \pm 3.3 \cdot 10^{-1} \) | \(a_{546}= \pm0.20765663 \pm 3.7 \cdot 10^{-2} \) |
\(a_{547}= -0.29980053 \pm 3.3 \cdot 10^{-1} \) | \(a_{548}= +0.00455707 \pm 5.0 \cdot 10^{-1} \) | \(a_{549}= \pm0.41035036 \pm 1.1 \cdot 10^{-1} \) |
\(a_{550}= -0.78141100 \pm 9.6 \cdot 10^{-2} \) | \(a_{551}= +0.59530837 \pm 2.2 \cdot 10^{-1} \) | \(a_{552}= \pm0.34742660 \pm 1.9 \cdot 10^{-1} \) |
\(a_{553}= +0.47085604 \pm 2.4 \cdot 10^{-1} \) | \(a_{554}= -1.09487435 \pm 1.8 \cdot 10^{-1} \) | \(a_{555}= \pm0.04520324 \pm 1.4 \cdot 10^{-1} \) |
\(a_{556}= -0.00241643 \pm 3.2 \cdot 10^{-1} \) | \(a_{557}= +0.57515808 \pm 3.7 \cdot 10^{-1} \) | \(a_{558}= \pm0.33070183 \pm 4.2 \cdot 10^{-2} \) |
\(a_{559}= -1.18181552 \pm 2.0 \cdot 10^{-1} \) | \(a_{560}= -0.24855457 \pm 6.8 \cdot 10^{-2} \) | \(a_{561}= \pm1.07784763 \pm 7.2 \cdot 10^{-2} \) |
\(a_{562}= +0.56225904 \pm 1.6 \cdot 10^{-1} \) | \(a_{563}= -1.14697493 \pm 6.5 \cdot 10^{-1} \) | \(a_{564}= \pm0.00322512 \pm 2.6 \cdot 10^{-1} \) |
\(a_{565}= -0.19221896 \pm 1.7 \cdot 10^{-1} \) | \(a_{566}= -1.04865575 \pm 2.0 \cdot 10^{-1} \) | \(a_{567}= \pm0.05191988 \pm 2.9 \cdot 10^{-2} \) |
\(a_{568}= +0.18585115 \pm 3.1 \cdot 10^{-1} \) | \(a_{569}= +0.61763947 \pm 3.6 \cdot 10^{-1} \) | \(a_{570}= \pm0.12755937 \pm 4.9 \cdot 10^{-2} \) |
\(a_{571}= +0.46345199 \pm 4.2 \cdot 10^{-1} \) | \(a_{572}= -0.00320955 \pm 1.6 \cdot 10^{-1} \) | \(a_{573}= \pm0.06291863 \pm 1.9 \cdot 10^{-1} \) |
\(a_{574}= -0.75583788 \pm 1.6 \cdot 10^{-1} \) | \(a_{575}= -0.43363840 \pm 3.3 \cdot 10^{-1} \) | \(a_{576}= \pm0.33203922 \pm 1.0 \cdot 10^{-1} \) |
\(a_{577}= +0.73092620 \pm 4.6 \cdot 10^{-1} \) | \(a_{578}= +1.96773830 \pm 2.9 \cdot 10^{-1} \) | \(a_{579}= \pm0.06315425 \pm 3.3 \cdot 10^{-1} \) |
\(a_{580}= -0.00292035 \pm 4.0 \cdot 10^{-1} \) | \(a_{581}= -0.28628255 \pm 3.4 \cdot 10^{-1} \) | \(a_{582}= \pm0.09961571 \pm 1.1 \cdot 10^{-1} \) |
\(a_{583}= +0.67008690 \pm 1.6 \cdot 10^{-1} \) | \(a_{584}= +0.66288005 \pm 1.0 \cdot 10^{-1} \) | \(a_{585}= \pm0.13569256 \pm 6.8 \cdot 10^{-2} \) |
\(a_{586}= -0.15898374 \pm 2.1 \cdot 10^{-1} \) | \(a_{587}= -1.14534970 \pm 4.7 \cdot 10^{-1} \) | \(a_{588}= \pm0.00173867 \pm 2.3 \cdot 10^{-1} \) |
\(a_{589}= +0.41207742 \pm 9.7 \cdot 10^{-2} \) | \(a_{590}= +0.08856717 \pm 1.6 \cdot 10^{-1} \) | \(a_{591}= \pm0.84729704 \pm 4.8 \cdot 10^{-1} \) |
\(a_{592}= -0.14832410 \pm 2.3 \cdot 10^{-1} \) | \(a_{593}= +1.01207017 \pm 4.7 \cdot 10^{-1} \) | \(a_{594}= \pm0.20909086 \pm 2.9 \cdot 10^{-2} \) |
\(a_{595}= -0.42627930 \pm 8.2 \cdot 10^{-2} \) | \(a_{596}= -0.00066207 \pm 3.2 \cdot 10^{-1} \) | \(a_{597}= \pm0.22605336 \pm 1.8 \cdot 10^{-1} \) |
\(a_{598}= -0.46408273 \pm 1.1 \cdot 10^{-1} \) | \(a_{599}= -1.59038697 \pm 1.8 \cdot 10^{-1} \) | \(a_{600}= \pm0.41443891 \pm 1.1 \cdot 10^{-1} \) |
\(a_{601}= -0.62367901 \pm 2.8 \cdot 10^{-1} \) | \(a_{602}= +0.72022067 \pm 2.8 \cdot 10^{-1} \) | \(a_{603}= \pm0.22886590 \pm 2.4 \cdot 10^{-1} \) |
\(a_{604}= +0.00203599 \pm 5.6 \cdot 10^{-1} \) | \(a_{605}= +0.09319748 \pm 2.0 \cdot 10^{-1} \) | \(a_{606}= \pm0.47363458 \pm 1.1 \cdot 10^{-1} \) |
\(a_{607}= -0.35491898 \pm 7.1 \cdot 10^{-1} \) | \(a_{608}= +0.00320664 \pm 1.4 \cdot 10^{-1} \) | \(a_{609}= \pm0.38592380 \pm 1.5 \cdot 10^{-1} \) |
\(a_{610}= +0.65357147 \pm 1.6 \cdot 10^{-1} \) | \(a_{611}= +1.11387156 \pm 3.2 \cdot 10^{-1} \) | \(a_{612}= \pm0.00221096 \pm 8.2 \cdot 10^{-2} \) |
\(a_{613}= -0.76745821 \pm 4.0 \cdot 10^{-1} \) | \(a_{614}= +0.40881261 \pm 1.7 \cdot 10^{-1} \) | \(a_{615}= \pm0.49389983 \pm 2.4 \cdot 10^{-1} \) |
\(a_{616}= -0.50572759 \pm 1.7 \cdot 10^{-1} \) | \(a_{617}= +0.30289618 \pm 7.3 \cdot 10^{-1} \) | \(a_{618}= \pm1.05233267 \pm 1.5 \cdot 10^{-1} \) |
\(a_{619}= +0.57611942 \pm 3.0 \cdot 10^{-1} \) | \(a_{620}= -0.00202149 \pm 1.6 \cdot 10^{-1} \) | \(a_{621}= \pm0.11603347 \pm 1.2 \cdot 10^{-1} \) |
\(a_{622}= +1.35451057 \pm 2.8 \cdot 10^{-1} \) | \(a_{623}= +0.71016147 \pm 2.4 \cdot 10^{-1} \) | \(a_{624}= \pm0.44524414 \pm 1.2 \cdot 10^{-1} \) |
\(a_{625}= +0.23650079 \pm 1.8 \cdot 10^{-1} \) | \(a_{626}= -1.67329708 \pm 3.0 \cdot 10^{-1} \) | \(a_{627}= \pm0.26054172 \pm 6.7 \cdot 10^{-2} \) |
\(a_{628}= -0.00021741 \pm 5.9 \cdot 10^{-1} \) | \(a_{629}= -0.25438073 \pm 3.4 \cdot 10^{-1} \) | \(a_{630}= \pm0.08269360 \pm 3.1 \cdot 10^{-2} \) |
\(a_{631}= -0.39918616 \pm 4.3 \cdot 10^{-1} \) | \(a_{632}= -1.00570484 \pm 2.4 \cdot 10^{-1} \) | \(a_{633}= \pm0.08346068 \pm 1.0 \cdot 10^{-1} \) |
\(a_{634}= -1.26972071 \pm 1.2 \cdot 10^{-1} \) | \(a_{635}= -0.53354860 \pm 3.2 \cdot 10^{-1} \) | \(a_{636}= \pm0.00137453 \pm 1.3 \cdot 10^{-1} \) |
\(a_{637}= +0.60049285 \pm 2.7 \cdot 10^{-1} \) | \(a_{638}= -1.55418584 \pm 1.5 \cdot 10^{-1} \) | \(a_{639}= \pm0.06207053 \pm 1.6 \cdot 10^{-1} \) |
\(a_{640}= +0.53292705 \pm 2.9 \cdot 10^{-1} \) | \(a_{641}= +1.71416162 \pm 1.8 \cdot 10^{-1} \) | \(a_{642}= \pm0.24450614 \pm 9.2 \cdot 10^{-2} \) |
\(a_{643}= +0.58010720 \pm 4.5 \cdot 10^{-1} \) | \(a_{644}= +0.00108544 \pm 1.4 \cdot 10^{-1} \) | \(a_{645}= \pm0.47062588 \pm 1.5 \cdot 10^{-1} \) |
\(a_{646}= +0.71783898 \pm 6.6 \cdot 10^{-2} \) | \(a_{647}= -1.15875190 \pm 3.6 \cdot 10^{-1} \) | \(a_{648}= \pm0.11089604 \pm 3.2 \cdot 10^{-2} \) |
\(a_{649}= +0.18089963 \pm 2.7 \cdot 10^{-1} \) | \(a_{650}= +0.55359589 \pm 5.4 \cdot 10^{-2} \) | \(a_{651}= \pm0.26713967 \pm 1.0 \cdot 10^{-1} \) |
\(a_{652}= -0.00071713 \pm 8.8 \cdot 10^{-2} \) | \(a_{653}= -1.09491793 \pm 3.3 \cdot 10^{-1} \) | \(a_{654}= \pm0.75876975 \pm 1.1 \cdot 10^{-1} \) |
\(a_{655}= -0.64510323 \pm 1.8 \cdot 10^{-1} \) | \(a_{656}= +1.62061953 \pm 4.7 \cdot 10^{-1} \) | \(a_{657}= \pm0.22138854 \pm 6.9 \cdot 10^{-2} \) |
\(a_{658}= -0.67881434 \pm 1.6 \cdot 10^{-1} \) | \(a_{659}= +1.26498940 \pm 4.2 \cdot 10^{-1} \) | \(a_{660}= \pm0.00127811 \pm 1.0 \cdot 10^{-1} \) |
\(a_{661}= -0.87392998 \pm 4.7 \cdot 10^{-1} \) | \(a_{662}= +0.50843214 \pm 2.0 \cdot 10^{-1} \) | \(a_{663}= \pm0.76360842 \pm 5.5 \cdot 10^{-2} \) |
\(a_{664}= +0.61147298 \pm 3.4 \cdot 10^{-1} \) | \(a_{665}= -0.10304197 \pm 3.8 \cdot 10^{-2} \) | \(a_{666}= \pm0.04934713 \pm 1.1 \cdot 10^{-1} \) |
\(a_{667}= -0.86248424 \pm 8.9 \cdot 10^{-1} \) | \(a_{668}= +0.00105985 \pm 2.9 \cdot 10^{-1} \) | \(a_{669}= \pm0.07940143 \pm 9.7 \cdot 10^{-2} \) |
\(a_{670}= +0.36451832 \pm 1.8 \cdot 10^{-1} \) | \(a_{671}= +1.33492850 \pm 2.2 \cdot 10^{-1} \) | \(a_{672}= \pm0.00207878 \pm 1.4 \cdot 10^{-1} \) |
\(a_{673}= +0.36705504 \pm 3.5 \cdot 10^{-1} \) | \(a_{674}= -0.05054031 \pm 2.3 \cdot 10^{-1} \) | \(a_{675}= \pm0.13841422 \pm 5.2 \cdot 10^{-2} \) |
\(a_{676}= -0.00157889 \pm 2.7 \cdot 10^{-1} \) | \(a_{677}= -0.92281276 \pm 3.3 \cdot 10^{-1} \) | \(a_{678}= \pm0.20984015 \pm 1.2 \cdot 10^{-1} \) |
\(a_{679}= +0.08046919 \pm 3.2 \cdot 10^{-1} \) | \(a_{680}= +0.91049306 \pm 8.0 \cdot 10^{-2} \) | \(a_{681}= \pm0.68706739 \pm 3.7 \cdot 10^{-1} \) |
\(a_{682}= -1.07582040 \pm 8.3 \cdot 10^{-2} \) | \(a_{683}= -0.39799584 \pm 7.5 \cdot 10^{-1} \) | \(a_{684}= \pm0.00053444 \pm 5.3 \cdot 10^{-2} \) |
\(a_{685}= +0.62675987 \pm 3.7 \cdot 10^{-1} \) | \(a_{686}= -0.83412985 \pm 1.5 \cdot 10^{-1} \) | \(a_{687}= \pm0.34749209 \pm 1.6 \cdot 10^{-1} \) |
\(a_{688}= -1.54425136 \pm 2.6 \cdot 10^{-1} \) | \(a_{689}= -0.47472758 \pm 1.5 \cdot 10^{-1} \) | \(a_{690}= \pm0.18480832 \pm 8.3 \cdot 10^{-2} \) |
\(a_{691}= -0.99161936 \pm 6.0 \cdot 10^{-1} \) | \(a_{692}= +0.00320490 \pm 2.5 \cdot 10^{-1} \) | \(a_{693}= \pm0.16890280 \pm 6.0 \cdot 10^{-2} \) |
\(a_{694}= +1.42859873 \pm 1.8 \cdot 10^{-1} \) | \(a_{695}= -0.33234569 \pm 2.3 \cdot 10^{-1} \) | \(a_{696}= \pm0.82429744 \pm 2.0 \cdot 10^{-1} \) |
\(a_{697}= +2.77941607 \pm 1.8 \cdot 10^{-1} \) | \(a_{698}= -1.32428130 \pm 2.7 \cdot 10^{-1} \) | \(a_{699}= \pm0.46861581 \pm 2.6 \cdot 10^{-1} \) |
\(a_{700}= -0.00129481 \pm 1.2 \cdot 10^{-1} \) | \(a_{701}= -0.15762258 \pm 4.3 \cdot 10^{-1} \) | \(a_{702}= \pm0.14813183 \pm 1.9 \cdot 10^{-2} \) |
\(a_{703}= -0.06148995 \pm 1.0 \cdot 10^{-1} \) | \(a_{704}= +1.08017113 \pm 1.9 \cdot 10^{-1} \) | \(a_{705}= \pm0.44356904 \pm 2.1 \cdot 10^{-1} \) |
\(a_{706}= +1.21214238 \pm 3.1 \cdot 10^{-1} \) | \(a_{707}= +0.38260020 \pm 2.5 \cdot 10^{-1} \) | \(a_{708}= \pm0.00037107 \pm 1.8 \cdot 10^{-1} \) |
\(a_{709}= +0.38123436 \pm 2.0 \cdot 10^{-1} \) | \(a_{710}= -0.09886070 \pm 1.6 \cdot 10^{-1} \) | \(a_{711}= \pm0.33588509 \pm 1.2 \cdot 10^{-1} \) |
\(a_{712}= -1.51683903 \pm 1.9 \cdot 10^{-1} \) | \(a_{713}= -0.59701878 \pm 3.7 \cdot 10^{-1} \) | \(a_{714}= \pm0.46535738 \pm 8.1 \cdot 10^{-2} \) |
\(a_{715}= -0.44142732 \pm 1.3 \cdot 10^{-1} \) | \(a_{716}= +0.00074092 \pm 3.8 \cdot 10^{-1} \) | \(a_{717}= \pm0.55451363 \pm 2.2 \cdot 10^{-1} \) |
\(a_{718}= +0.43048727 \pm 2.8 \cdot 10^{-1} \) | \(a_{719}= +0.48859638 \pm 1.9 \cdot 10^{-1} \) | \(a_{720}= \pm0.17730637 \pm 8.5 \cdot 10^{-2} \) |
\(a_{721}= -0.85007031 \pm 2.0 \cdot 10^{-1} \) | \(a_{722}= -0.82840554 \pm 2.1 \cdot 10^{-1} \) | \(a_{723}= \pm0.77889084 \pm 2.2 \cdot 10^{-1} \) |
\(a_{724}= +0.00627606 \pm 4.5 \cdot 10^{-1} \) | \(a_{725}= +1.02884183 \pm 3.3 \cdot 10^{-1} \) | \(a_{726}= \pm0.10174112 \pm 8.6 \cdot 10^{-2} \) |
\(a_{727}= -1.28861935 \pm 1.9 \cdot 10^{-1} \) | \(a_{728}= +0.35828612 \pm 9.4 \cdot 10^{-2} \) | \(a_{729}= \pm0.03703704 \pm 1.0 \cdot 10^{-8} \) |
\(a_{730}= -0.35260901 \pm 1.4 \cdot 10^{-1} \) | \(a_{731}= -2.64844214 \pm 2.7 \cdot 10^{-1} \) | \(a_{732}= \pm0.00273831 \pm 1.7 \cdot 10^{-1} \) |
\(a_{733}= -0.56491245 \pm 8.3 \cdot 10^{-1} \) | \(a_{734}= +1.48255818 \pm 1.8 \cdot 10^{-1} \) | \(a_{735}= \pm0.23912994 \pm 1.7 \cdot 10^{-1} \) |
\(a_{736}= -0.00464579 \pm 4.8 \cdot 10^{-1} \) | \(a_{737}= +0.74453356 \pm 4.5 \cdot 10^{-1} \) | \(a_{738}= \pm0.53917685 \pm 6.7 \cdot 10^{-2} \) |
\(a_{739}= +1.68551717 \pm 4.9 \cdot 10^{-1} \) | \(a_{740}= +0.00030165 \pm 2.8 \cdot 10^{-1} \) | \(a_{741}= \pm0.18458254 \pm 7.6 \cdot 10^{-2} \) |
\(a_{742}= +0.28930795 \pm 1.1 \cdot 10^{-1} \) | \(a_{743}= +1.55592558 \pm 6.8 \cdot 10^{-1} \) | \(a_{744}= \pm0.57058556 \pm 1.0 \cdot 10^{-1} \) |
\(a_{745}= -0.09105846 \pm 2.3 \cdot 10^{-1} \) | \(a_{746}= -0.92041572 \pm 1.5 \cdot 10^{-1} \) | \(a_{747}= \pm0.20421962 \pm 1.7 \cdot 10^{-1} \) |
\(a_{748}= -0.00719258 \pm 1.3 \cdot 10^{-1} \) | \(a_{749}= +0.19751113 \pm 1.2 \cdot 10^{-1} \) | \(a_{750}= \pm0.52697279 \pm 1.3 \cdot 10^{-1} \) |
\(a_{751}= -0.27632561 \pm 3.9 \cdot 10^{-1} \) | \(a_{752}= +1.45547054 \pm 3.9 \cdot 10^{-1} \) | \(a_{753}= \pm0.35315100 \pm 3.2 \cdot 10^{-1} \) |
\(a_{754}= +1.10107344 \pm 1.2 \cdot 10^{-1} \) | \(a_{755}= +0.28002185 \pm 4.2 \cdot 10^{-1} \) | \(a_{756}= \pm0.00034647 \pm 3.4 \cdot 10^{-2} \) |
\(a_{757}= +0.02916342 \pm 1.3 \cdot 10^{-1} \) | \(a_{758}= -1.33743433 \pm 1.2 \cdot 10^{-1} \) | \(a_{759}= \pm0.37747348 \pm 2.3 \cdot 10^{-1} \) |
\(a_{760}= +0.22008809 \pm 8.3 \cdot 10^{-2} \) | \(a_{761}= -0.34978367 \pm 7.5 \cdot 10^{-1} \) | \(a_{762}= \pm0.58246032 \pm 1.5 \cdot 10^{-1} \) |
\(a_{763}= -0.61293130 \pm 1.8 \cdot 10^{-1} \) | \(a_{764}= +0.00041986 \pm 2.8 \cdot 10^{-1} \) | \(a_{765}= \pm0.30408628 \pm 5.8 \cdot 10^{-2} \) |
\(a_{766}= -1.04315584 \pm 1.4 \cdot 10^{-1} \) | \(a_{767}= -0.12815956 \pm 2.1 \cdot 10^{-1} \) | \(a_{768}= \pm0.00667299 \pm 1.3 \cdot 10^{-1} \) |
\(a_{769}= +0.20810106 \pm 4.0 \cdot 10^{-1} \) | \(a_{770}= +0.26901414 \pm 5.8 \cdot 10^{-2} \) | \(a_{771}= \pm0.58377779 \pm 3.0 \cdot 10^{-1} \) |
\(a_{772}= -0.00042143 \pm 5.3 \cdot 10^{-1} \) | \(a_{773}= -1.23169796 \pm 3.5 \cdot 10^{-1} \) | \(a_{774}= \pm0.51376932 \pm 1.0 \cdot 10^{-1} \) |
\(a_{775}= +0.71217290 \pm 1.6 \cdot 10^{-1} \) | \(a_{776}= -0.17187472 \pm 3.2 \cdot 10^{-1} \) | \(a_{777}= \pm0.03986242 \pm 1.0 \cdot 10^{-1} \) |
\(a_{778}= -0.83482648 \pm 1.2 \cdot 10^{-1} \) | \(a_{779}= +0.67185176 \pm 2.3 \cdot 10^{-1} \) | \(a_{780}= \pm0.00090549 \pm 1.0 \cdot 10^{-1} \) |
\(a_{781}= -0.20192431 \pm 3.1 \cdot 10^{-1} \) | \(a_{782}= -1.04000688 \pm 8.6 \cdot 10^{-2} \) | \(a_{783}= \pm0.27529869 \pm 1.1 \cdot 10^{-1} \) |
\(a_{784}= +0.78465031 \pm 3.2 \cdot 10^{-1} \) | \(a_{785}= -0.02990214 \pm 4.6 \cdot 10^{-1} \) | \(a_{786}= \pm0.70424144 \pm 1.0 \cdot 10^{-1} \) |
\(a_{787}= -0.78224762 \pm 7.2 \cdot 10^{-1} \) | \(a_{788}= +0.00565409 \pm 7.7 \cdot 10^{-1} \) | \(a_{789}= \pm0.32747085 \pm 2.1 \cdot 10^{-1} \) |
\(a_{790}= +0.53496947 \pm 1.5 \cdot 10^{-1} \) | \(a_{791}= -0.16950807 \pm 3.2 \cdot 10^{-1} \) | \(a_{792}= \pm0.36076071 \pm 6.2 \cdot 10^{-2} \) |
\(a_{793}= -0.94573910 \pm 2.1 \cdot 10^{-1} \) | \(a_{794}= -0.57473954 \pm 2.1 \cdot 10^{-1} \) | \(a_{795}= \pm0.18904735 \pm 1.0 \cdot 10^{-1} \) |
\(a_{796}= +0.00150847 \pm 3.1 \cdot 10^{-1} \) | \(a_{797}= +0.96738865 \pm 1.7 \cdot 10^{-1} \) | \(a_{798}= \pm0.11248808 \pm 1.5 \cdot 10^{-2} \) |
\(a_{799}= +2.49618010 \pm 1.6 \cdot 10^{-1} \) | \(a_{800}= +0.00554187 \pm 2.2 \cdot 10^{-1} \) | \(a_{801}= \pm0.50659358 \pm 7.1 \cdot 10^{-2} \) |
\(a_{802}= -0.17177495 \pm 1.9 \cdot 10^{-1} \) | \(a_{803}= -0.72020863 \pm 1.2 \cdot 10^{-1} \) | \(a_{804}= \pm0.00152724 \pm 3.9 \cdot 10^{-1} \) |
\(a_{805}= +0.14928746 \pm 1.1 \cdot 10^{-1} \) | \(a_{806}= +0.76217222 \pm 5.6 \cdot 10^{-2} \) | \(a_{807}= \pm0.42111811 \pm 1.8 \cdot 10^{-1} \) |
\(a_{808}= -0.81719855 \pm 2.1 \cdot 10^{-1} \) | \(a_{809}= +1.54719508 \pm 4.2 \cdot 10^{-1} \) | \(a_{810}= \pm0.05898947 \pm 2.0 \cdot 10^{-2} \) |
\(a_{811}= +1.34484022 \pm 1.8 \cdot 10^{-1} \) | \(a_{812}= -0.00257530 \pm 1.9 \cdot 10^{-1} \) | \(a_{813}= \pm0.36487370 \pm 2.5 \cdot 10^{-1} \) |
\(a_{814}= +0.16053327 \pm 1.8 \cdot 10^{-1} \) | \(a_{815}= -0.09863159 \pm 7.6 \cdot 10^{-2} \) | \(a_{816}= \pm0.99778970 \pm 8.6 \cdot 10^{-2} \) |
\(a_{817}= -0.64019221 \pm 1.3 \cdot 10^{-1} \) | \(a_{818}= -1.19672544 \pm 2.3 \cdot 10^{-1} \) | \(a_{819}= \pm0.11966033 \pm 3.6 \cdot 10^{-2} \) |
\(a_{820}= -0.00329584 \pm 3.9 \cdot 10^{-1} \) | \(a_{821}= -0.83054036 \pm 5.2 \cdot 10^{-1} \) | \(a_{822}= \pm0.68421650 \pm 1.6 \cdot 10^{-1} \) |
\(a_{823}= -1.67639127 \pm 2.2 \cdot 10^{-1} \) | \(a_{824}= +1.81567134 \pm 2.1 \cdot 10^{-1} \) | \(a_{825}= \pm0.45028128 \pm 1.0 \cdot 10^{-1} \) |
\(a_{826}= +0.07810286 \pm 3.1 \cdot 10^{-1} \) | \(a_{827}= -0.52497860 \pm 3.4 \cdot 10^{-1} \) | \(a_{828}= \pm0.00077430 \pm 2.0 \cdot 10^{-1} \) |
\(a_{829}= -1.87377158 \pm 5.2 \cdot 10^{-1} \) | \(a_{830}= -0.32526380 \pm 1.0 \cdot 10^{-1} \) | \(a_{831}= \pm0.63091181 \pm 1.3 \cdot 10^{-1} \) |
\(a_{832}= -0.76525453 \pm 1.7 \cdot 10^{-1} \) | \(a_{833}= +1.34570121 \pm 1.8 \cdot 10^{-1} \) | \(a_{834}= \pm0.36281265 \pm 1.9 \cdot 10^{-1} \) |
\(a_{835}= +0.14576660 \pm 2.2 \cdot 10^{-1} \) | \(a_{836}= -0.00173862 \pm 1.0 \cdot 10^{-1} \) | \(a_{837}= \pm0.19056405 \pm 5.3 \cdot 10^{-2} \) |
\(a_{838}= +1.02394297 \pm 1.1 \cdot 10^{-1} \) | \(a_{839}= -0.51167853 \pm 2.3 \cdot 10^{-1} \) | \(a_{840}= \pm0.14267770 \pm 5.4 \cdot 10^{-2} \) |
\(a_{841}= +1.04631291 \pm 3.8 \cdot 10^{-1} \) | \(a_{842}= +1.70202651 \pm 3.4 \cdot 10^{-1} \) | \(a_{843}= \pm0.32399687 \pm 2.9 \cdot 10^{-1} \) |
\(a_{844}= -0.00055694 \pm 1.9 \cdot 10^{-1} \) | \(a_{845}= -0.21715331 \pm 2.1 \cdot 10^{-1} \) | \(a_{846}= \pm0.48423211 \pm 7.0 \cdot 10^{-2} \) |
\(a_{847}= +0.08218609 \pm 1.4 \cdot 10^{-1} \) | \(a_{848}= -0.62031570 \pm 1.8 \cdot 10^{-1} \) | \(a_{849}= \pm0.60427874 \pm 4.0 \cdot 10^{-1} \) |
\(a_{850}= +1.24060538 \pm 7.3 \cdot 10^{-2} \) | \(a_{851}= +0.08908678 \pm 3.6 \cdot 10^{-1} \) | \(a_{852}= \pm0.00041420 \pm 2.4 \cdot 10^{-1} \) |
\(a_{853}= -0.28719921 \pm 5.7 \cdot 10^{-1} \) | \(a_{854}= +0.57635125 \pm 4.1 \cdot 10^{-2} \) | \(a_{855}= \pm0.07350497 \pm 4.6 \cdot 10^{-2} \) |
\(a_{856}= -0.42186544 \pm 1.4 \cdot 10^{-1} \) | \(a_{857}= -1.59425811 \pm 3.2 \cdot 10^{-1} \) | \(a_{858}= \pm0.48189405 \pm 3.8 \cdot 10^{-2} \) |
\(a_{859}= +0.51103478 \pm 3.6 \cdot 10^{-1} \) | \(a_{860}= +0.00314053 \pm 2.5 \cdot 10^{-1} \) | \(a_{861}= \pm0.43554500 \pm 1.6 \cdot 10^{-1} \) |
\(a_{862}= -0.11602087 \pm 2.2 \cdot 10^{-1} \) | \(a_{863}= -1.54869645 \pm 5.3 \cdot 10^{-1} \) | \(a_{864}= \pm0.00148290 \pm 7.4 \cdot 10^{-2} \) |
\(a_{865}= +0.44078885 \pm 2.0 \cdot 10^{-1} \) | \(a_{866}= -1.96810737 \pm 2.9 \cdot 10^{-1} \) | \(a_{867}= \pm1.13389206 \pm 2.6 \cdot 10^{-1} \) |
\(a_{868}= -0.00178265 \pm 1.0 \cdot 10^{-1} \) | \(a_{869}= +1.09268231 \pm 2.3 \cdot 10^{-1} \) | \(a_{870}= \pm0.43847254 \pm 1.1 \cdot 10^{-1} \) |
\(a_{871}= -0.52746982 \pm 4.7 \cdot 10^{-1} \) | \(a_{872}= +1.30916441 \pm 2.6 \cdot 10^{-1} \) | \(a_{873}= \pm0.05740268 \pm 1.6 \cdot 10^{-1} \) |
\(a_{874}= -0.25139470 \pm 7.8 \cdot 10^{-2} \) | \(a_{875}= -0.42568660 \pm 1.9 \cdot 10^{-1} \) | \(a_{876}= \pm0.00147735 \pm 1.2 \cdot 10^{-1} \) |
\(a_{877}= +1.51332799 \pm 2.8 \cdot 10^{-1} \) | \(a_{878}= -0.96073836 \pm 2.0 \cdot 10^{-1} \) | \(a_{879}= \pm0.09161300 \pm 4.3 \cdot 10^{-1} \) |
\(a_{880}= -0.57680301 \pm 1.7 \cdot 10^{-1} \) | \(a_{881}= -0.75737530 \pm 7.1 \cdot 10^{-1} \) | \(a_{882}= \pm0.26105157 \pm 7.1 \cdot 10^{-2} \) |
\(a_{883}= +0.71310894 \pm 1.1 \cdot 10^{-1} \) | \(a_{884}= +0.00509563 \pm 9.7 \cdot 10^{-2} \) | \(a_{885}= \pm0.05103606 \pm 1.3 \cdot 10^{-1} \) |
\(a_{886}= -1.17090622 \pm 3.6 \cdot 10^{-1} \) | \(a_{887}= +1.37825039 \pm 5.9 \cdot 10^{-1} \) | \(a_{888}= \pm0.08514244 \pm 1.0 \cdot 10^{-1} \) |
\(a_{889}= -0.47050922 \pm 4.6 \cdot 10^{-1} \) | \(a_{890}= +0.80685956 \pm 1.2 \cdot 10^{-1} \) | \(a_{891}= \pm0.12048679 \pm 3.3 \cdot 10^{-2} \) |
\(a_{892}= -0.00052985 \pm 1.7 \cdot 10^{-1} \) | \(a_{893}= +0.60338681 \pm 2.0 \cdot 10^{-1} \) | \(a_{894}= \pm0.09940601 \pm 1.2 \cdot 10^{-1} \) |
\(a_{895}= +0.10190270 \pm 2.8 \cdot 10^{-1} \) | \(a_{896}= +0.46996111 \pm 1.4 \cdot 10^{-1} \) | \(a_{897}= \pm0.26742363 \pm 2.4 \cdot 10^{-1} \) |
\(a_{898}= -0.01313812 \pm 3.1 \cdot 10^{-1} \) | \(a_{899}= +1.41647486 \pm 3.5 \cdot 10^{-1} \) | \(a_{900}= \pm0.00092365 \pm 7.4 \cdot 10^{-2} \) |
\(a_{901}= -1.06386193 \pm 1.5 \cdot 10^{-1} \) | \(a_{902}= -1.75401951 \pm 1.3 \cdot 10^{-1} \) | \(a_{903}= \pm0.41502089 \pm 2.2 \cdot 10^{-1} \) |
\(a_{904}= +0.36205351 \pm 2.4 \cdot 10^{-1} \) | \(a_{905}= +0.86318226 \pm 3.5 \cdot 10^{-1} \) | \(a_{906}= \pm0.30569214 \pm 1.1 \cdot 10^{-1} \) |
\(a_{907}= +0.30533023 \pm 8.4 \cdot 10^{-1} \) | \(a_{908}= +0.00458486 \pm 6.1 \cdot 10^{-1} \) | \(a_{909}= \pm0.27292780 \pm 9.1 \cdot 10^{-2} \) |
\(a_{910}= -0.19058488 \pm 3.5 \cdot 10^{-2} \) | \(a_{911}= +0.22936501 \pm 5.9 \cdot 10^{-1} \) | \(a_{912}= \pm0.24118979 \pm 8.0 \cdot 10^{-2} \) |
\(a_{913}= -0.66435567 \pm 3.2 \cdot 10^{-1} \) | \(a_{914}= +1.60631248 \pm 2.6 \cdot 10^{-1} \) | \(a_{915}= \pm0.37661487 \pm 1.5 \cdot 10^{-1} \) |
\(a_{916}= -0.00231885 \pm 2.2 \cdot 10^{-1} \) | \(a_{917}= -0.56888354 \pm 3.0 \cdot 10^{-1} \) | \(a_{918}= \pm0.33196262 \pm 5.0 \cdot 10^{-2} \) |
\(a_{919}= -0.38823391 \pm 3.2 \cdot 10^{-1} \) | \(a_{920}= -0.31886416 \pm 2.4 \cdot 10^{-1} \) | \(a_{921}= \pm0.23557471 \pm 1.2 \cdot 10^{-1} \) |
\(a_{922}= +1.01137166 \pm 1.1 \cdot 10^{-1} \) | \(a_{923}= +0.14305464 \pm 2.9 \cdot 10^{-1} \) | \(a_{924}= \pm0.00112710 \pm 6.6 \cdot 10^{-2} \) |
\(a_{925}= -0.10627001 \pm 1.5 \cdot 10^{-1} \) | \(a_{926}= -1.48943169 \pm 2.5 \cdot 10^{-1} \) | \(a_{927}= \pm0.60639754 \pm 1.1 \cdot 10^{-1} \) |
\(a_{928}= +0.01102250 \pm 4.8 \cdot 10^{-1} \) | \(a_{929}= -0.94944766 \pm 4.4 \cdot 10^{-1} \) | \(a_{930}= \pm0.30351435 \pm 5.3 \cdot 10^{-2} \) |
\(a_{931}= +0.32528837 \pm 1.6 \cdot 10^{-1} \) | \(a_{932}= -0.00312712 \pm 4.3 \cdot 10^{-1} \) | \(a_{933}= \pm0.78052492 \pm 4.0 \cdot 10^{-1} \) |
\(a_{934}= +0.43289052 \pm 2.6 \cdot 10^{-1} \) | \(a_{935}= -0.98923622 \pm 1.0 \cdot 10^{-1} \) | \(a_{936}= \pm0.25558336 \pm 5.5 \cdot 10^{-2} \) |
\(a_{937}= -0.03226776 \pm 3.2 \cdot 10^{-1} \) | \(a_{938}= +0.32145006 \pm 1.3 \cdot 10^{-1} \) | \(a_{939}= \pm0.96422287 \pm 1.7 \cdot 10^{-1} \) |
\(a_{940}= -0.00295998 \pm 3.2 \cdot 10^{-1} \) | \(a_{941}= +0.02179479 \pm 3.5 \cdot 10^{-1} \) | \(a_{942}= \pm0.03264334 \pm 1.1 \cdot 10^{-1} \) |
\(a_{943}= -0.97338049 \pm 9.2 \cdot 10^{-1} \) | \(a_{944}= -0.16746318 \pm 2.1 \cdot 10^{-1} \) | \(a_{945}= \pm0.04765147 \pm 2.2 \cdot 10^{-2} \) |
\(a_{946}= +1.67136516 \pm 2.0 \cdot 10^{-1} \) | \(a_{947}= +0.57888626 \pm 2.3 \cdot 10^{-1} \) | \(a_{948}= \pm0.00224139 \pm 1.8 \cdot 10^{-1} \) |
\(a_{949}= +0.51023667 \pm 1.2 \cdot 10^{-1} \) | \(a_{950}= +0.29988418 \pm 4.9 \cdot 10^{-2} \) | \(a_{951}= \pm0.73166550 \pm 1.7 \cdot 10^{-1} \) |
\(a_{952}= +0.80291725 \pm 9.1 \cdot 10^{-2} \) | \(a_{953}= +0.04609661 \pm 8.1 \cdot 10^{-1} \) | \(a_{954}= \pm0.20637778 \pm 5.4 \cdot 10^{-2} \) |
\(a_{955}= +0.05774600 \pm 1.9 \cdot 10^{-1} \) | \(a_{956}= -0.00370032 \pm 3.4 \cdot 10^{-1} \) | \(a_{957}= \pm0.89558605 \pm 2.2 \cdot 10^{-1} \) |
\(a_{958}= -1.62543111 \pm 2.3 \cdot 10^{-1} \) | \(a_{959}= +0.55270747 \pm 2.6 \cdot 10^{-1} \) | \(a_{960}= \pm0.30474180 \pm 1.3 \cdot 10^{-1} \) |
\(a_{961}= -0.01950429 \pm 3.1 \cdot 10^{-1} \) | \(a_{962}= -0.11373088 \pm 1.0 \cdot 10^{-1} \) | \(a_{963}= \pm0.14089453 \pm 8.0 \cdot 10^{-2} \) |
\(a_{964}= +0.00519761 \pm 3.2 \cdot 10^{-1} \) | \(a_{965}= -0.05796224 \pm 4.1 \cdot 10^{-1} \) | \(a_{966}= \pm0.16297301 \pm 3.2 \cdot 10^{-2} \) |
\(a_{967}= -0.78448826 \pm 8.2 \cdot 10^{-1} \) | \(a_{968}= -0.17554187 \pm 1.7 \cdot 10^{-1} \) | \(a_{969}= \pm0.41364846 \pm 3.7 \cdot 10^{-2} \) |
\(a_{970}= +0.09142616 \pm 1.0 \cdot 10^{-1} \) | \(a_{971}= -0.74303491 \pm 7.5 \cdot 10^{-1} \) | \(a_{972}= \pm0.00024715 \pm 2.7 \cdot 10^{-2} \) |
\(a_{973}= -0.29307867 \pm 3.6 \cdot 10^{-1} \) | \(a_{974}= -1.13894267 \pm 1.3 \cdot 10^{-1} \) | \(a_{975}= \pm0.31900481 \pm 8.8 \cdot 10^{-2} \) |
\(a_{976}= -1.23577570 \pm 2.8 \cdot 10^{-1} \) | \(a_{977}= -0.50018639 \pm 4.5 \cdot 10^{-1} \) | \(a_{978}= \pm0.10767339 \pm 5.8 \cdot 10^{-2} \) |
\(a_{979}= +1.64802148 \pm 1.4 \cdot 10^{-1} \) | \(a_{980}= -0.00159574 \pm 2.7 \cdot 10^{-1} \) | \(a_{981}= \pm0.43723446 \pm 1.6 \cdot 10^{-1} \) |
\(a_{982}= -1.08353486 \pm 1.4 \cdot 10^{-1} \) | \(a_{983}= +0.22486282 \pm 2.0 \cdot 10^{-1} \) | \(a_{984}= \pm0.93028372 \pm 2.1 \cdot 10^{-1} \) |
\(a_{985}= +0.77763953 \pm 5.8 \cdot 10^{-1} \) | \(a_{986}= +2.46749960 \pm 2.7 \cdot 10^{-1} \) | \(a_{987}= \pm0.39116085 \pm 1.5 \cdot 10^{-1} \) |
\(a_{988}= +0.00123174 \pm 1.1 \cdot 10^{-1} \) | \(a_{989}= +0.92751206 \pm 4.3 \cdot 10^{-1} \) | \(a_{990}= \pm0.19190120 \pm 4.3 \cdot 10^{-2} \) |
\(a_{991}= +0.07318818 \pm 5.5 \cdot 10^{-1} \) | \(a_{992}= +0.00762987 \pm 2.2 \cdot 10^{-1} \) | \(a_{993}= \pm0.29297959 \pm 1.6 \cdot 10^{-1} \) |
\(a_{994}= -0.08718020 \pm 2.0 \cdot 10^{-1} \) | \(a_{995}= +0.20746919 \pm 2.3 \cdot 10^{-1} \) | \(a_{996}= \pm0.00136278 \pm 2.6 \cdot 10^{-1} \) |
\(a_{997}= +0.02433310 \pm 6.7 \cdot 10^{-1} \) | \(a_{998}= -0.06537643 \pm 2.8 \cdot 10^{-1} \) | \(a_{999}= \pm0.02843585 \pm 6.4 \cdot 10^{-2} \) |
\(a_{1000}= +0.90922710 \pm 2.6 \cdot 10^{-1} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000