Maass form invariants
| Level: | \( 29 \) |
| Weight: | \( 0 \) |
| Character: | 29.1 |
| Symmetry: | even |
| Fricke sign: | $-1$ |
| Spectral parameter: | \(5.00712110787253002064988699277 \pm 8 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
| \(a_{1}= +1 \) | \(a_{2}= -1.07996937 \pm 6.3 \cdot 10^{-8} \) | \(a_{3}= -1.12953165 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{4}= +0.16633383 \pm 6.5 \cdot 10^{-8} \) | \(a_{5}= +1.05165831 \pm 5.4 \cdot 10^{-8} \) | \(a_{6}= +1.21985958 \pm 6.2 \cdot 10^{-8} \) |
| \(a_{7}= -0.55564583 \pm 5.1 \cdot 10^{-8} \) | \(a_{8}= +0.90033392 \pm 7.6 \cdot 10^{-8} \) | \(a_{9}= +0.27584175 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{10}= -1.13575876 \pm 6.0 \cdot 10^{-8} \) | \(a_{11}= +1.58503265 \pm 5.0 \cdot 10^{-8} \) | \(a_{12}= -0.18787933 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{13}= -0.43820979 \pm 5.4 \cdot 10^{-8} \) | \(a_{14}= +0.60008048 \pm 4.6 \cdot 10^{-8} \) | \(a_{15}= -1.18788135 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{16}= -1.13866689 \pm 8.1 \cdot 10^{-8} \) | \(a_{17}= +0.09162519 \pm 5.0 \cdot 10^{-8} \) | \(a_{18}= -0.29790064 \pm 7.0 \cdot 10^{-8} \) |
| \(a_{19}= -0.77149952 \pm 4.5 \cdot 10^{-8} \) | \(a_{20}= +0.17492636 \pm 6.0 \cdot 10^{-8} \) | \(a_{21}= +0.62761955 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{22}= -1.71178670 \pm 5.6 \cdot 10^{-8} \) | \(a_{23}= +0.84891636 \pm 5.2 \cdot 10^{-8} \) | \(a_{24}= -1.01695566 \pm 6.4 \cdot 10^{-8} \) |
| \(a_{25}= +0.10598521 \pm 5.4 \cdot 10^{-8} \) | \(a_{26}= +0.47325315 \pm 6.5 \cdot 10^{-8} \) | \(a_{27}= +0.81795966 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{28}= -0.09242270 \pm 4.4 \cdot 10^{-8} \) | \(a_{29}= +0.18569534 \pm 1.0 \cdot 10^{-8} \) | \(a_{30}= +1.28287547 \pm 6.0 \cdot 10^{-8} \) |
| \(a_{31}= -1.36305289 \pm 5.1 \cdot 10^{-8} \) | \(a_{32}= +0.32939144 \pm 8.6 \cdot 10^{-8} \) | \(a_{33}= -1.79034454 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{34}= -0.09895239 \pm 6.5 \cdot 10^{-8} \) | \(a_{35}= -0.58434956 \pm 5.8 \cdot 10^{-8} \) | \(a_{36}= +0.04588182 \pm 6.9 \cdot 10^{-8} \) |
| \(a_{37}= +0.94407005 \pm 5.3 \cdot 10^{-8} \) | \(a_{38}= +0.83319585 \pm 4.7 \cdot 10^{-8} \) | \(a_{39}= +0.49497183 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{40}= +0.94684365 \pm 7.1 \cdot 10^{-8} \) | \(a_{41}= -0.89912804 \pm 5.0 \cdot 10^{-8} \) | \(a_{42}= -0.67780989 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{43}= -1.15967784 \pm 5.1 \cdot 10^{-8} \) | \(a_{44}= +0.26364455 \pm 5.6 \cdot 10^{-8} \) | \(a_{45}= +0.29009127 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{46}= -0.91680366 \pm 5.2 \cdot 10^{-8} \) | \(a_{47}= +0.33710144 \pm 4.8 \cdot 10^{-8} \) | \(a_{48}= +1.28616029 \pm 6.7 \cdot 10^{-8} \) |
| \(a_{49}= -0.69125771 \pm 4.4 \cdot 10^{-8} \) | \(a_{50}= -0.11446078 \pm 5.7 \cdot 10^{-8} \) | \(a_{51}= -0.10349355 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{52}= -0.07288911 \pm 7.4 \cdot 10^{-8} \) | \(a_{53}= -1.96894033 \pm 5.5 \cdot 10^{-8} \) | \(a_{54}= -0.88337138 \pm 7.2 \cdot 10^{-8} \) |
| \(a_{55}= +1.66691276 \pm 5.0 \cdot 10^{-8} \) | \(a_{56}= -0.50026679 \pm 5.5 \cdot 10^{-8} \) | \(a_{57}= +0.87143313 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{58}= -0.20054528 \pm 7.3 \cdot 10^{-8} \) | \(a_{59}= +1.59382818 \pm 4.8 \cdot 10^{-8} \) | \(a_{60}= -0.19758486 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{61}= -0.84834382 \pm 5.0 \cdot 10^{-8} \) | \(a_{62}= +1.47205537 \pm 5.3 \cdot 10^{-8} \) | \(a_{63}= -0.15327032 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{64}= +0.78293423 \pm 9.7 \cdot 10^{-8} \) | \(a_{65}= -0.46084697 \pm 4.5 \cdot 10^{-8} \) | \(a_{66}= +1.93351726 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{67}= +0.62649905 \pm 4.3 \cdot 10^{-8} \) | \(a_{68}= +0.01524037 \pm 6.3 \cdot 10^{-8} \) | \(a_{69}= -0.95887789 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{70}= +0.63107962 \pm 5.3 \cdot 10^{-8} \) | \(a_{71}= -0.66000738 \pm 5.8 \cdot 10^{-8} \) | \(a_{72}= +0.24834969 \pm 6.9 \cdot 10^{-8} \) |
| \(a_{73}= -0.56979738 \pm 5.1 \cdot 10^{-8} \) | \(a_{74}= -1.01956673 \pm 6.0 \cdot 10^{-8} \) | \(a_{75}= -0.11971365 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{76}= -0.12832647 \pm 5.1 \cdot 10^{-8} \) | \(a_{77}= -0.88071678 \pm 4.8 \cdot 10^{-8} \) | \(a_{78}= -0.53455442 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{79}= -1.82451717 \pm 5.2 \cdot 10^{-8} \) | \(a_{80}= -1.19748850 \pm 8.0 \cdot 10^{-8} \) | \(a_{81}= -1.19975308 \pm 6.8 \cdot 10^{-8} \) |
| \(a_{82}= +0.97103074 \pm 6.2 \cdot 10^{-8} \) | \(a_{83}= +0.87842937 \pm 5.5 \cdot 10^{-8} \) | \(a_{84}= +0.10439437 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{85}= +0.09635839 \pm 4.3 \cdot 10^{-8} \) | \(a_{86}= +1.25241654 \pm 5.3 \cdot 10^{-8} \) | \(a_{87}= -0.20974876 \pm 6.6 \cdot 10^{-8} \) |
| \(a_{88}= +1.42705866 \pm 5.6 \cdot 10^{-8} \) | \(a_{89}= -0.54977988 \pm 4.5 \cdot 10^{-8} \) | \(a_{90}= -0.31328969 \pm 6.0 \cdot 10^{-8} \) |
| \(a_{91}= +0.24348945 \pm 4.8 \cdot 10^{-8} \) | \(a_{92}= +0.14120351 \pm 5.0 \cdot 10^{-8} \) | \(a_{93}= +1.53961138 \pm 6.2 \cdot 10^{-8} \) |
| \(a_{94}= -0.36405923 \pm 5.2 \cdot 10^{-8} \) | \(a_{95}= -0.81135389 \pm 4.4 \cdot 10^{-8} \) | \(a_{96}= -0.37205805 \pm 6.2 \cdot 10^{-8} \) |
| \(a_{97}= -0.05688433 \pm 5.0 \cdot 10^{-8} \) | \(a_{98}= +0.74653715 \pm 5.0 \cdot 10^{-8} \) | \(a_{99}= +0.43721818 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{100}= +0.01762893 \pm 5.3 \cdot 10^{-8} \) | \(a_{101}= -0.03532430 \pm 5.1 \cdot 10^{-8} \) | \(a_{102}= +0.11176986 \pm 6.5 \cdot 10^{-8} \) |
| \(a_{103}= +0.20054526 \pm 5.4 \cdot 10^{-8} \) | \(a_{104}= -0.39453514 \pm 7.3 \cdot 10^{-8} \) | \(a_{105}= +0.66004132 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{106}= +2.12639524 \pm 6.1 \cdot 10^{-8} \) | \(a_{107}= +0.43917348 \pm 5.0 \cdot 10^{-8} \) | \(a_{108}= +0.13605437 \pm 6.5 \cdot 10^{-8} \) |
| \(a_{109}= +0.65159205 \pm 5.0 \cdot 10^{-8} \) | \(a_{110}= -1.80021472 \pm 5.1 \cdot 10^{-8} \) | \(a_{111}= -1.06635700 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{112}= +0.63269551 \pm 5.4 \cdot 10^{-8} \) | \(a_{113}= -1.41325604 \pm 5.0 \cdot 10^{-8} \) | \(a_{114}= -0.94112109 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{115}= +0.89276994 \pm 4.2 \cdot 10^{-8} \) | \(a_{116}= +0.03088742 \pm 7.6 \cdot 10^{-8} \) | \(a_{117}= -0.12087656 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{118}= -1.72128561 \pm 6.8 \cdot 10^{-8} \) | \(a_{119}= -0.05091115 \pm 4.2 \cdot 10^{-8} \) | \(a_{120}= -1.06948988 \pm 6.7 \cdot 10^{-8} \) |
| \(a_{121}= +1.51232849 \pm 4.5 \cdot 10^{-8} \) | \(a_{122}= +0.91618533 \pm 6.2 \cdot 10^{-8} \) | \(a_{123}= +1.01559358 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{124}= -0.22672181 \pm 4.4 \cdot 10^{-8} \) | \(a_{125}= -0.94019809 \pm 4.1 \cdot 10^{-8} \) | \(a_{126}= +0.16552725 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{127}= -1.05438215 \pm 5.4 \cdot 10^{-8} \) | \(a_{128}= -1.17493642 \pm 1.0 \cdot 10^{-7} \) | \(a_{129}= +1.30989282 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{130}= +0.49770061 \pm 4.8 \cdot 10^{-8} \) | \(a_{131}= -0.46487196 \pm 4.9 \cdot 10^{-8} \) | \(a_{132}= -0.29779487 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{133}= +0.42868050 \pm 4.8 \cdot 10^{-8} \) | \(a_{134}= -0.67659978 \pm 5.0 \cdot 10^{-8} \) | \(a_{135}= +0.86021408 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{136}= +0.08249326 \pm 6.0 \cdot 10^{-8} \) | \(a_{137}= -0.87612626 \pm 4.5 \cdot 10^{-8} \) | \(a_{138}= +1.03555875 \pm 5.1 \cdot 10^{-8} \) |
| \(a_{139}= -0.05222018 \pm 5.0 \cdot 10^{-8} \) | \(a_{140}= -0.09719710 \pm 4.7 \cdot 10^{-8} \) | \(a_{141}= -0.38076675 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{142}= +0.71278775 \pm 7.0 \cdot 10^{-8} \) | \(a_{143}= -0.69457683 \pm 5.3 \cdot 10^{-8} \) | \(a_{144}= -0.31409187 \pm 7.5 \cdot 10^{-8} \) |
| \(a_{145}= +0.19528805 \pm 6.5 \cdot 10^{-8} \) | \(a_{146}= +0.61536371 \pm 5.3 \cdot 10^{-8} \) | \(a_{147}= +0.78079746 \pm 4.4 \cdot 10^{-8} \) |
| \(a_{148}= +0.15703079 \pm 6.0 \cdot 10^{-8} \) | \(a_{149}= -1.49068868 \pm 4.8 \cdot 10^{-8} \) | \(a_{150}= +0.12928707 \pm 6.0 \cdot 10^{-8} \) |
| \(a_{151}= -1.75795329 \pm 5.8 \cdot 10^{-8} \) | \(a_{152}= -0.69460719 \pm 5.6 \cdot 10^{-8} \) | \(a_{153}= +0.02527405 \pm 6.3 \cdot 10^{-8} \) |
| \(a_{154}= +0.95114715 \pm 3.9 \cdot 10^{-8} \) | \(a_{155}= -1.43346591 \pm 4.9 \cdot 10^{-8} \) | \(a_{156}= +0.08233056 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{157}= +1.32417293 \pm 5.7 \cdot 10^{-8} \) | \(a_{158}= +1.97042265 \pm 6.9 \cdot 10^{-8} \) | \(a_{159}= +2.22398042 \pm 6.3 \cdot 10^{-8} \) |
| \(a_{160}= +0.34640724 \pm 7.9 \cdot 10^{-8} \) | \(a_{161}= -0.47169684 \pm 5.0 \cdot 10^{-8} \) | \(a_{162}= +1.29569657 \pm 8.1 \cdot 10^{-8} \) |
| \(a_{163}= +0.90078099 \pm 5.0 \cdot 10^{-8} \) | \(a_{164}= -0.14955541 \pm 7.3 \cdot 10^{-8} \) | \(a_{165}= -1.88283072 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{166}= -0.94867682 \pm 5.9 \cdot 10^{-8} \) | \(a_{167}= +0.58959221 \pm 4.3 \cdot 10^{-8} \) | \(a_{168}= +0.56506718 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{169}= -0.80797218 \pm 5.2 \cdot 10^{-8} \) | \(a_{170}= -0.10406411 \pm 4.5 \cdot 10^{-8} \) | \(a_{171}= -0.21281178 \pm 4.4 \cdot 10^{-8} \) |
| \(a_{172}= -0.19289366 \pm 5.3 \cdot 10^{-8} \) | \(a_{173}= +1.02977666 \pm 5.1 \cdot 10^{-8} \) | \(a_{174}= +0.22652224 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{175}= -0.05889024 \pm 5.7 \cdot 10^{-8} \) | \(a_{176}= -1.80482419 \pm 5.6 \cdot 10^{-8} \) | \(a_{177}= -1.80027938 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{178}= +0.59374543 \pm 5.6 \cdot 10^{-8} \) | \(a_{179}= +1.53526881 \pm 6.0 \cdot 10^{-8} \) | \(a_{180}= +0.04825199 \pm 6.8 \cdot 10^{-8} \) |
| \(a_{181}= -1.90898485 \pm 4.5 \cdot 10^{-8} \) | \(a_{182}= -0.26296114 \pm 3.8 \cdot 10^{-8} \) | \(a_{183}= +0.95823119 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{184}= +0.76430819 \pm 5.8 \cdot 10^{-8} \) | \(a_{185}= +0.99283911 \pm 5.7 \cdot 10^{-8} \) | \(a_{186}= -1.66273313 \pm 6.9 \cdot 10^{-8} \) |
| \(a_{187}= +0.14522891 \pm 4.7 \cdot 10^{-8} \) | \(a_{188}= +0.05607137 \pm 4.3 \cdot 10^{-8} \) | \(a_{189}= -0.45449588 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{190}= +0.87623735 \pm 4.2 \cdot 10^{-8} \) | \(a_{191}= +1.59430118 \pm 4.7 \cdot 10^{-8} \) | \(a_{192}= -0.88434899 \pm 6.4 \cdot 10^{-8} \) |
| \(a_{193}= -0.83386659 \pm 5.1 \cdot 10^{-8} \) | \(a_{194}= +0.06143333 \pm 4.8 \cdot 10^{-8} \) | \(a_{195}= +0.52054124 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{196}= -0.11497954 \pm 5.5 \cdot 10^{-8} \) | \(a_{197}= +1.22004250 \pm 5.4 \cdot 10^{-8} \) | \(a_{198}= -0.47218224 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{199}= -0.46732900 \pm 4.4 \cdot 10^{-8} \) | \(a_{200}= +0.09542208 \pm 5.5 \cdot 10^{-8} \) | \(a_{201}= -0.70765050 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{202}= +0.03814916 \pm 6.2 \cdot 10^{-8} \) | \(a_{203}= -0.10318084 \pm 6.2 \cdot 10^{-8} \) | \(a_{204}= -0.01721448 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{205}= -0.94557548 \pm 5.3 \cdot 10^{-8} \) | \(a_{206}= -0.21658274 \pm 6.3 \cdot 10^{-8} \) | \(a_{207}= +0.23416657 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{208}= +0.49897498 \pm 6.4 \cdot 10^{-8} \) | \(a_{209}= -1.22285193 \pm 4.5 \cdot 10^{-8} \) | \(a_{210}= -0.71282441 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{211}= -1.13789082 \pm 5.8 \cdot 10^{-8} \) | \(a_{212}= -0.32750139 \pm 4.3 \cdot 10^{-8} \) | \(a_{213}= +0.74549922 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{214}= -0.47429390 \pm 6.0 \cdot 10^{-8} \) | \(a_{215}= -1.21958484 \pm 5.6 \cdot 10^{-8} \) | \(a_{216}= +0.73643683 \pm 6.7 \cdot 10^{-8} \) |
| \(a_{217}= +0.75737466 \pm 4.9 \cdot 10^{-8} \) | \(a_{218}= -0.70369945 \pm 5.8 \cdot 10^{-8} \) | \(a_{219}= +0.64360417 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{220}= +0.27726399 \pm 5.2 \cdot 10^{-8} \) | \(a_{221}= -0.04015105 \pm 6.0 \cdot 10^{-8} \) | \(a_{222}= +1.15163289 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{223}= +0.54803793 \pm 4.8 \cdot 10^{-8} \) | \(a_{224}= -0.18302498 \pm 5.0 \cdot 10^{-8} \) | \(a_{225}= +0.02923515 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{226}= +1.52627323 \pm 6.0 \cdot 10^{-8} \) | \(a_{227}= +0.62643690 \pm 4.8 \cdot 10^{-8} \) | \(a_{228}= +0.14494881 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{229}= -1.52789790 \pm 5.0 \cdot 10^{-8} \) | \(a_{230}= -0.96416419 \pm 4.9 \cdot 10^{-8} \) | \(a_{231}= +0.99479748 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{232}= +0.16718781 \pm 8.6 \cdot 10^{-8} \) | \(a_{233}= -0.27048722 \pm 5.3 \cdot 10^{-8} \) | \(a_{234}= +0.13054298 \pm 7.5 \cdot 10^{-8} \) |
| \(a_{235}= +0.35451553 \pm 5.1 \cdot 10^{-8} \) | \(a_{236}= +0.26510755 \pm 8.2 \cdot 10^{-8} \) | \(a_{237}= +2.06084989 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{238}= +0.05498248 \pm 4.3 \cdot 10^{-8} \) | \(a_{239}= +0.11293396 \pm 5.7 \cdot 10^{-8} \) | \(a_{240}= +1.35260116 \pm 6.7 \cdot 10^{-8} \) |
| \(a_{241}= +1.85845383 \pm 5.6 \cdot 10^{-8} \) | \(a_{242}= -1.63326844 \pm 5.2 \cdot 10^{-8} \) | \(a_{243}= +0.53719941 \pm 6.8 \cdot 10^{-8} \) |
| \(a_{244}= -0.14110828 \pm 6.3 \cdot 10^{-8} \) | \(a_{245}= -0.72696692 \pm 4.7 \cdot 10^{-8} \) | \(a_{246}= -1.09680996 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{247}= +0.33807865 \pm 4.9 \cdot 10^{-8} \) | \(a_{248}= -1.22720276 \pm 4.8 \cdot 10^{-8} \) | \(a_{249}= -0.99221378 \pm 6.2 \cdot 10^{-8} \) |
| \(a_{250}= +1.01538513 \pm 5.1 \cdot 10^{-8} \) | \(a_{251}= +0.50655523 \pm 4.7 \cdot 10^{-8} \) | \(a_{252}= -0.02549404 \pm 4.4 \cdot 10^{-8} \) |
| \(a_{253}= +1.34556014 \pm 5.1 \cdot 10^{-8} \) | \(a_{254}= +1.13870043 \pm 6.0 \cdot 10^{-8} \) | \(a_{255}= -0.10883985 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{256}= +0.48596111 \pm 1.1 \cdot 10^{-7} \) | \(a_{257}= -0.17915782 \pm 4.4 \cdot 10^{-8} \) | \(a_{258}= -1.41464412 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{259}= -0.52456859 \pm 4.7 \cdot 10^{-8} \) | \(a_{260}= -0.07665444 \pm 5.6 \cdot 10^{-8} \) | \(a_{261}= +0.05122253 \pm 6.5 \cdot 10^{-8} \) |
| \(a_{262}= +0.50204747 \pm 6.8 \cdot 10^{-8} \) | \(a_{263}= -0.56631152 \pm 4.5 \cdot 10^{-8} \) | \(a_{264}= -1.61190792 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{265}= -2.07065247 \pm 6.3 \cdot 10^{-8} \) | \(a_{266}= -0.46296180 \pm 3.7 \cdot 10^{-8} \) | \(a_{267}= +0.62099377 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{268}= +0.10420799 \pm 4.8 \cdot 10^{-8} \) | \(a_{269}= +0.06616512 \pm 5.5 \cdot 10^{-8} \) | \(a_{270}= -0.92900485 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{271}= -1.66745794 \pm 4.3 \cdot 10^{-8} \) | \(a_{272}= -0.10433056 \pm 5.3 \cdot 10^{-8} \) | \(a_{273}= -0.27502904 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{274}= +0.94618952 \pm 5.3 \cdot 10^{-8} \) | \(a_{275}= +0.16799002 \pm 5.2 \cdot 10^{-8} \) | \(a_{276}= -0.15949384 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{277}= -0.47406553 \pm 5.8 \cdot 10^{-8} \) | \(a_{278}= +0.05639620 \pm 6.6 \cdot 10^{-8} \) | \(a_{279}= -0.37598690 \pm 6.0 \cdot 10^{-8} \) |
| \(a_{280}= -0.52610973 \pm 5.9 \cdot 10^{-8} \) | \(a_{281}= -1.04234983 \pm 5.1 \cdot 10^{-8} \) | \(a_{282}= +0.41121642 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{283}= +0.41240703 \pm 5.8 \cdot 10^{-8} \) | \(a_{284}= -0.10978156 \pm 6.8 \cdot 10^{-8} \) | \(a_{285}= +0.91644990 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{286}= +0.75012170 \pm 6.1 \cdot 10^{-8} \) | \(a_{287}= +0.49959675 \pm 4.5 \cdot 10^{-8} \) | \(a_{288}= +0.09085991 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{289}= -0.99160483 \pm 5.0 \cdot 10^{-8} \) | \(a_{290}= -0.21090511 \pm 1.2 \cdot 10^{-7} \) | \(a_{291}= +0.06425265 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{292}= -0.09477658 \pm 5.2 \cdot 10^{-8} \) | \(a_{293}= -0.75905111 \pm 4.2 \cdot 10^{-8} \) | \(a_{294}= -0.84323734 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{295}= +1.67616266 \pm 5.1 \cdot 10^{-8} \) | \(a_{296}= +0.84997829 \pm 8.0 \cdot 10^{-8} \) | \(a_{297}= +1.29649277 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{298}= +1.60989811 \pm 4.7 \cdot 10^{-8} \) | \(a_{299}= -0.37200346 \pm 5.6 \cdot 10^{-8} \) | \(a_{300}= -0.01991243 \pm 5.2 \cdot 10^{-8} \) |
| \(a_{301}= +0.64437016 \pm 5.4 \cdot 10^{-8} \) | \(a_{302}= +1.89853570 \pm 5.7 \cdot 10^{-8} \) | \(a_{303}= +0.03989992 \pm 4.4 \cdot 10^{-8} \) |
| \(a_{304}= +0.87848096 \pm 5.4 \cdot 10^{-8} \) | \(a_{305}= -0.89216783 \pm 4.3 \cdot 10^{-8} \) | \(a_{306}= -0.02729520 \pm 8.5 \cdot 10^{-8} \) |
| \(a_{307}= -1.80883561 \pm 5.2 \cdot 10^{-8} \) | \(a_{308}= -0.14649300 \pm 4.1 \cdot 10^{-8} \) | \(a_{309}= -0.22652222 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{310}= +1.54809927 \pm 4.2 \cdot 10^{-8} \) | \(a_{311}= +1.43036866 \pm 5.6 \cdot 10^{-8} \) | \(a_{312}= +0.44563993 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{313}= -0.36759578 \pm 4.8 \cdot 10^{-8} \) | \(a_{314}= -1.43006620 \pm 6.5 \cdot 10^{-8} \) | \(a_{315}= -0.16118801 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{316}= -0.30347893 \pm 8.1 \cdot 10^{-8} \) | \(a_{317}= +1.21578117 \pm 4.7 \cdot 10^{-8} \) | \(a_{318}= -2.40183073 \pm 6.9 \cdot 10^{-8} \) |
| \(a_{319}= +0.29433317 \pm 6.1 \cdot 10^{-8} \) | \(a_{320}= +0.82337929 \pm 9.3 \cdot 10^{-8} \) | \(a_{321}= -0.49606035 \pm 5.1 \cdot 10^{-8} \) |
| \(a_{322}= +0.50941813 \pm 4.1 \cdot 10^{-8} \) | \(a_{323}= -0.07068879 \pm 4.1 \cdot 10^{-8} \) | \(a_{324}= -0.19955953 \pm 6.4 \cdot 10^{-8} \) |
| \(a_{325}= -0.04644376 \pm 5.5 \cdot 10^{-8} \) | \(a_{326}= -0.97281588 \pm 5.4 \cdot 10^{-8} \) | \(a_{327}= -0.73599385 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{328}= -0.80951548 \pm 9.2 \cdot 10^{-8} \) | \(a_{329}= -0.18730901 \pm 4.6 \cdot 10^{-8} \) | \(a_{330}= +2.03339950 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{331}= -0.88900792 \pm 5.9 \cdot 10^{-8} \) | \(a_{332}= +0.14611252 \pm 4.5 \cdot 10^{-8} \) | \(a_{333}= +0.26041393 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{334}= -0.63674153 \pm 4.1 \cdot 10^{-8} \) | \(a_{335}= +0.65886293 \pm 4.0 \cdot 10^{-8} \) | \(a_{336}= -0.71464961 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{337}= +0.79181938 \pm 5.3 \cdot 10^{-8} \) | \(a_{338}= +0.87258520 \pm 6.8 \cdot 10^{-8} \) | \(a_{339}= +1.59631742 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{340}= +0.01602766 \pm 3.5 \cdot 10^{-8} \) | \(a_{341}= -2.16048333 \pm 5.0 \cdot 10^{-8} \) | \(a_{342}= +0.22983020 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{343}= +0.93974030 \pm 4.6 \cdot 10^{-8} \) | \(a_{344}= -1.04409730 \pm 5.8 \cdot 10^{-8} \) | \(a_{345}= -1.00841191 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{346}= -1.11212725 \pm 6.0 \cdot 10^{-8} \) | \(a_{347}= +1.25428464 \pm 5.0 \cdot 10^{-8} \) | \(a_{348}= -0.03488832 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{349}= +0.35498918 \pm 5.8 \cdot 10^{-8} \) | \(a_{350}= +0.06359965 \pm 5.1 \cdot 10^{-8} \) | \(a_{351}= -0.35843793 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{352}= +0.52209618 \pm 6.1 \cdot 10^{-8} \) | \(a_{353}= +0.41734846 \pm 4.9 \cdot 10^{-8} \) | \(a_{354}= +1.94424658 \pm 6.4 \cdot 10^{-8} \) |
| \(a_{355}= -0.69410224 \pm 5.2 \cdot 10^{-8} \) | \(a_{356}= -0.09144699 \pm 6.0 \cdot 10^{-8} \) | \(a_{357}= +0.05750576 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{358}= -1.65804328 \pm 7.2 \cdot 10^{-8} \) | \(a_{359}= +0.22399138 \pm 6.3 \cdot 10^{-8} \) | \(a_{360}= +0.26117901 \pm 7.1 \cdot 10^{-8} \) |
| \(a_{361}= -0.40478848 \pm 3.6 \cdot 10^{-8} \) | \(a_{362}= +2.06164516 \pm 6.1 \cdot 10^{-8} \) | \(a_{363}= -1.70822290 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{364}= +0.04050053 \pm 4.4 \cdot 10^{-8} \) | \(a_{365}= -0.59923215 \pm 3.4 \cdot 10^{-8} \) | \(a_{366}= -1.03486033 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{367}= +1.02663542 \pm 6.2 \cdot 10^{-8} \) | \(a_{368}= -0.96663295 \pm 4.8 \cdot 10^{-8} \) | \(a_{369}= -0.24801705 \pm 4.2 \cdot 10^{-8} \) |
| \(a_{370}= -1.07223583 \pm 6.6 \cdot 10^{-8} \) | \(a_{371}= +1.09403349 \pm 5.7 \cdot 10^{-8} \) | \(a_{372}= +0.25608946 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{373}= -0.19180754 \pm 5.1 \cdot 10^{-8} \) | \(a_{374}= -0.15684277 \pm 6.1 \cdot 10^{-8} \) | \(a_{375}= +1.06198350 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{376}= +0.30350386 \pm 4.9 \cdot 10^{-8} \) | \(a_{377}= -0.08137352 \pm 6.5 \cdot 10^{-8} \) | \(a_{378}= +0.49084162 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{379}= -1.15001037 \pm 5.1 \cdot 10^{-8} \) | \(a_{380}= -0.13495560 \pm 4.5 \cdot 10^{-8} \) | \(a_{381}= +1.19095802 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{382}= -1.72179643 \pm 4.6 \cdot 10^{-8} \) | \(a_{383}= -1.89004775 \pm 5.0 \cdot 10^{-8} \) | \(a_{384}= +1.32712787 \pm 6.8 \cdot 10^{-8} \) |
| \(a_{385}= -0.92621313 \pm 5.4 \cdot 10^{-8} \) | \(a_{386}= +0.90055037 \pm 5.6 \cdot 10^{-8} \) | \(a_{387}= -0.31988757 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{388}= -0.00946179 \pm 4.7 \cdot 10^{-8} \) | \(a_{389}= +1.77685867 \pm 6.1 \cdot 10^{-8} \) | \(a_{390}= -0.56216860 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{391}= +0.07778212 \pm 3.9 \cdot 10^{-8} \) | \(a_{392}= -0.62236276 \pm 5.9 \cdot 10^{-8} \) | \(a_{393}= +0.52508759 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{394}= -1.31760852 \pm 6.1 \cdot 10^{-8} \) | \(a_{395}= -1.91876865 \pm 5.0 \cdot 10^{-8} \) | \(a_{396}= +0.07272418 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{397}= +0.69402068 \pm 4.8 \cdot 10^{-8} \) | \(a_{398}= +0.50470101 \pm 5.2 \cdot 10^{-8} \) | \(a_{399}= -0.48420819 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{400}= -0.12068185 \pm 5.3 \cdot 10^{-8} \) | \(a_{401}= -0.08629201 \pm 6.2 \cdot 10^{-8} \) | \(a_{402}= +0.76424086 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{403}= +0.59730313 \pm 4.8 \cdot 10^{-8} \) | \(a_{404}= -0.00587563 \pm 7.1 \cdot 10^{-8} \) | \(a_{405}= -1.26173030 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{406}= +0.11143215 \pm 1.2 \cdot 10^{-7} \) | \(a_{407}= +1.49638184 \pm 4.3 \cdot 10^{-8} \) | \(a_{408}= -0.09317875 \pm 4.4 \cdot 10^{-8} \) |
| \(a_{409}= +0.63475875 \pm 5.8 \cdot 10^{-8} \) | \(a_{410}= +1.02119255 \pm 6.7 \cdot 10^{-8} \) | \(a_{411}= +0.98961234 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{412}= +0.03335746 \pm 7.3 \cdot 10^{-8} \) | \(a_{413}= -0.88560399 \pm 4.4 \cdot 10^{-8} \) | \(a_{414}= -0.25289273 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{415}= +0.92380755 \pm 6.3 \cdot 10^{-8} \) | \(a_{416}= -0.14434255 \pm 6.2 \cdot 10^{-8} \) | \(a_{417}= +0.05898435 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{418}= +1.32064263 \pm 4.6 \cdot 10^{-8} \) | \(a_{419}= -0.18983481 \pm 4.4 \cdot 10^{-8} \) | \(a_{420}= +0.10978720 \pm 5.1 \cdot 10^{-8} \) |
| \(a_{421}= -0.30657619 \pm 5.3 \cdot 10^{-8} \) | \(a_{422}= +1.22888723 \pm 8.0 \cdot 10^{-8} \) | \(a_{423}= +0.09298665 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{424}= -1.77270377 \pm 5.8 \cdot 10^{-8} \) | \(a_{425}= +0.00971091 \pm 5.2 \cdot 10^{-8} \) | \(a_{426}= -0.80511632 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{427}= +0.47137871 \pm 3.8 \cdot 10^{-8} \) | \(a_{428}= +0.07304941 \pm 6.1 \cdot 10^{-8} \) | \(a_{429}= +0.78454651 \pm 5.1 \cdot 10^{-8} \) |
| \(a_{430}= +1.31711426 \pm 4.9 \cdot 10^{-8} \) | \(a_{431}= +0.65105037 \pm 5.4 \cdot 10^{-8} \) | \(a_{432}= -0.93138358 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{433}= +0.34288592 \pm 5.7 \cdot 10^{-8} \) | \(a_{434}= -0.81794143 \pm 4.0 \cdot 10^{-8} \) | \(a_{435}= -0.22058403 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{436}= +0.10838180 \pm 5.6 \cdot 10^{-8} \) | \(a_{437}= -0.65493857 \pm 4.5 \cdot 10^{-8} \) | \(a_{438}= -0.69507279 \pm 6.3 \cdot 10^{-8} \) |
| \(a_{439}= +0.42604198 \pm 5.1 \cdot 10^{-8} \) | \(a_{440}= +1.50077810 \pm 4.6 \cdot 10^{-8} \) | \(a_{441}= -0.19067774 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{442}= +0.04336191 \pm 8.6 \cdot 10^{-8} \) | \(a_{443}= -0.62792262 \pm 5.4 \cdot 10^{-8} \) | \(a_{444}= -0.17737125 \pm 4.2 \cdot 10^{-8} \) |
| \(a_{445}= -0.57818058 \pm 4.8 \cdot 10^{-8} \) | \(a_{446}= -0.59186417 \pm 6.0 \cdot 10^{-8} \) | \(a_{447}= +1.68378005 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{448}= -0.43503414 \pm 5.9 \cdot 10^{-8} \) | \(a_{449}= -0.43884605 \pm 5.1 \cdot 10^{-8} \) | \(a_{450}= -0.03157306 \pm 6.2 \cdot 10^{-8} \) |
| \(a_{451}= -1.42514730 \pm 4.4 \cdot 10^{-8} \) | \(a_{452}= -0.23507229 \pm 5.5 \cdot 10^{-8} \) | \(a_{453}= +1.98566389 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{454}= -0.67653266 \pm 6.4 \cdot 10^{-8} \) | \(a_{455}= +0.25606770 \pm 3.8 \cdot 10^{-8} \) | \(a_{456}= +0.78458081 \pm 5.2 \cdot 10^{-8} \) |
| \(a_{457}= +0.07826570 \pm 3.9 \cdot 10^{-8} \) | \(a_{458}= +1.65008293 \pm 6.1 \cdot 10^{-8} \) | \(a_{459}= +0.07494571 \pm 7.1 \cdot 10^{-8} \) |
| \(a_{460}= +0.14849785 \pm 4.2 \cdot 10^{-8} \) | \(a_{461}= +0.66136317 \pm 6.3 \cdot 10^{-8} \) | \(a_{462}= -1.07435081 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{463}= -0.57772670 \pm 5.0 \cdot 10^{-8} \) | \(a_{464}= -0.21144513 \pm 9.2 \cdot 10^{-8} \) | \(a_{465}= +1.61914511 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{466}= +0.29211791 \pm 6.6 \cdot 10^{-8} \) | \(a_{467}= -1.41437393 \pm 5.7 \cdot 10^{-8} \) | \(a_{468}= -0.02010586 \pm 8.0 \cdot 10^{-8} \) |
| \(a_{469}= -0.34811158 \pm 4.4 \cdot 10^{-8} \) | \(a_{470}= -0.38286592 \pm 5.8 \cdot 10^{-8} \) | \(a_{471}= -1.49569524 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{472}= +1.43497758 \pm 9.2 \cdot 10^{-8} \) | \(a_{473}= -1.83812723 \pm 4.7 \cdot 10^{-8} \) | \(a_{474}= -2.22565475 \pm 6.8 \cdot 10^{-8} \) |
| \(a_{475}= -0.08176754 \pm 4.5 \cdot 10^{-8} \) | \(a_{476}= -0.00846825 \pm 3.5 \cdot 10^{-8} \) | \(a_{477}= -0.54311595 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{478}= -0.12196521 \pm 6.3 \cdot 10^{-8} \) | \(a_{479}= +0.61560720 \pm 5.5 \cdot 10^{-8} \) | \(a_{480}= -0.39127794 \pm 5.1 \cdot 10^{-8} \) |
| \(a_{481}= -0.41370074 \pm 4.4 \cdot 10^{-8} \) | \(a_{482}= -2.00707320 \pm 7.1 \cdot 10^{-8} \) | \(a_{483}= +0.53279651 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{484}= +0.25155139 \pm 4.8 \cdot 10^{-8} \) | \(a_{485}= -0.05982287 \pm 4.0 \cdot 10^{-8} \) | \(a_{486}= -0.58015891 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{487}= +0.84203362 \pm 5.2 \cdot 10^{-8} \) | \(a_{488}= -0.76379272 \pm 6.0 \cdot 10^{-8} \) | \(a_{489}= -1.01746064 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{490}= +0.78510200 \pm 4.4 \cdot 10^{-8} \) | \(a_{491}= +0.14334046 \pm 5.3 \cdot 10^{-8} \) | \(a_{492}= +0.16892757 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{493}= +0.01701437 \pm 6.0 \cdot 10^{-8} \) | \(a_{494}= -0.36511458 \pm 5.4 \cdot 10^{-8} \) | \(a_{495}= +0.45980413 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{496}= +1.55206320 \pm 5.6 \cdot 10^{-8} \) | \(a_{497}= +0.36673035 \pm 5.2 \cdot 10^{-8} \) | \(a_{498}= +1.07156049 \pm 6.2 \cdot 10^{-8} \) |
| \(a_{499}= +1.71890014 \pm 5.0 \cdot 10^{-8} \) | \(a_{500}= -0.15638675 \pm 6.0 \cdot 10^{-8} \) | \(a_{501}= -0.66596307 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{502}= -0.54706413 \pm 5.3 \cdot 10^{-8} \) | \(a_{503}= +0.63575066 \pm 5.3 \cdot 10^{-8} \) | \(a_{504}= -0.13799447 \pm 5.2 \cdot 10^{-8} \) |
| \(a_{505}= -0.03714909 \pm 5.4 \cdot 10^{-8} \) | \(a_{506}= -1.45316373 \pm 5.0 \cdot 10^{-8} \) | \(a_{507}= +0.91263015 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{508}= -0.17537942 \pm 5.0 \cdot 10^{-8} \) | \(a_{509}= -1.85441321 \pm 5.5 \cdot 10^{-8} \) | \(a_{510}= +0.11754370 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{511}= +0.31660554 \pm 4.7 \cdot 10^{-8} \) | \(a_{512}= +0.65011331 \pm 1.2 \cdot 10^{-7} \) | \(a_{513}= -0.63105549 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{514}= +0.19348496 \pm 6.3 \cdot 10^{-8} \) | \(a_{515}= +0.21090509 \pm 5.8 \cdot 10^{-8} \) | \(a_{516}= +0.21787949 \pm 4.4 \cdot 10^{-8} \) |
| \(a_{517}= +0.53431679 \pm 4.8 \cdot 10^{-8} \) | \(a_{518}= +0.56651800 \pm 4.4 \cdot 10^{-8} \) | \(a_{519}= -1.16316533 \pm 5.1 \cdot 10^{-8} \) |
| \(a_{520}= -0.41491616 \pm 5.2 \cdot 10^{-8} \) | \(a_{521}= -0.13412780 \pm 5.4 \cdot 10^{-8} \) | \(a_{522}= -0.05531876 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{523}= -0.36950692 \pm 5.1 \cdot 10^{-8} \) | \(a_{524}= -0.07732393 \pm 8.3 \cdot 10^{-8} \) | \(a_{525}= +0.06651839 \pm 5.2 \cdot 10^{-8} \) |
| \(a_{526}= +0.61159910 \pm 6.0 \cdot 10^{-8} \) | \(a_{527}= -0.12488997 \pm 5.0 \cdot 10^{-8} \) | \(a_{528}= +2.03860605 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{529}= -0.27934102 \pm 5.4 \cdot 10^{-8} \) | \(a_{530}= +2.23624123 \pm 6.7 \cdot 10^{-8} \) | \(a_{531}= +0.43964436 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{532}= +0.07130407 \pm 4.4 \cdot 10^{-8} \) | \(a_{533}= +0.39400671 \pm 4.9 \cdot 10^{-8} \) | \(a_{534}= -0.67065425 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{535}= +0.46186044 \pm 5.5 \cdot 10^{-8} \) | \(a_{536}= +0.56405834 \pm 5.4 \cdot 10^{-8} \) | \(a_{537}= -1.73413471 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{538}= -0.07145630 \pm 5.9 \cdot 10^{-8} \) | \(a_{539}= -1.09566604 \pm 4.1 \cdot 10^{-8} \) | \(a_{540}= +0.14308270 \pm 6.0 \cdot 10^{-8} \) |
| \(a_{541}= -0.91060435 \pm 5.2 \cdot 10^{-8} \) | \(a_{542}= +1.80080349 \pm 5.0 \cdot 10^{-8} \) | \(a_{543}= +2.15625881 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{544}= +0.03018055 \pm 4.5 \cdot 10^{-8} \) | \(a_{545}= +0.68525220 \pm 4.8 \cdot 10^{-8} \) | \(a_{546}= +0.29702293 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{547}= +1.52863845 \pm 6.1 \cdot 10^{-8} \) | \(a_{548}= -0.14572944 \pm 5.9 \cdot 10^{-8} \) | \(a_{549}= -0.23400864 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{550}= -0.18142407 \pm 4.9 \cdot 10^{-8} \) | \(a_{551}= -0.14326387 \pm 5.6 \cdot 10^{-8} \) | \(a_{552}= -0.86331030 \pm 6.2 \cdot 10^{-8} \) |
| \(a_{553}= +1.01378536 \pm 4.2 \cdot 10^{-8} \) | \(a_{554}= +0.51197625 \pm 6.1 \cdot 10^{-8} \) | \(a_{555}= -1.12144320 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{556}= -0.00868598 \pm 6.9 \cdot 10^{-8} \) | \(a_{557}= +0.19097518 \pm 5.0 \cdot 10^{-8} \) | \(a_{558}= +0.40605433 \pm 7.3 \cdot 10^{-8} \) |
| \(a_{559}= +0.50818219 \pm 5.2 \cdot 10^{-8} \) | \(a_{560}= +0.66537949 \pm 6.1 \cdot 10^{-8} \) | \(a_{561}= -0.16404065 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{562}= +1.12570588 \pm 7.0 \cdot 10^{-8} \) | \(a_{563}= -1.21543174 \pm 5.1 \cdot 10^{-8} \) | \(a_{564}= -0.06333439 \pm 4.2 \cdot 10^{-8} \) |
| \(a_{565}= -1.48626246 \pm 5.0 \cdot 10^{-8} \) | \(a_{566}= -0.44538696 \pm 5.3 \cdot 10^{-8} \) | \(a_{567}= +0.66663780 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{568}= -0.59422703 \pm 7.0 \cdot 10^{-8} \) | \(a_{569}= -0.56610150 \pm 5.1 \cdot 10^{-8} \) | \(a_{570}= -0.98973782 \pm 4.4 \cdot 10^{-8} \) |
| \(a_{571}= +0.08825873 \pm 4.6 \cdot 10^{-8} \) | \(a_{572}= -0.11553163 \pm 6.9 \cdot 10^{-8} \) | \(a_{573}= -1.80081364 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{574}= -0.53954919 \pm 4.6 \cdot 10^{-8} \) | \(a_{575}= +0.08997258 \pm 4.9 \cdot 10^{-8} \) | \(a_{576}= +0.21596595 \pm 7.8 \cdot 10^{-8} \) |
| \(a_{577}= -1.70656021 \pm 5.7 \cdot 10^{-8} \) | \(a_{578}= +1.07090284 \pm 6.9 \cdot 10^{-8} \) | \(a_{579}= +0.94187871 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{580}= +0.03248301 \pm 1.3 \cdot 10^{-7} \) | \(a_{581}= -0.48809562 \pm 5.4 \cdot 10^{-8} \) | \(a_{582}= -0.06939089 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{583}= -3.12083470 \pm 4.2 \cdot 10^{-8} \) | \(a_{584}= -0.51300791 \pm 5.8 \cdot 10^{-8} \) | \(a_{585}= -0.12712084 \pm 4.4 \cdot 10^{-8} \) |
| \(a_{586}= +0.81975195 \pm 5.1 \cdot 10^{-8} \) | \(a_{587}= -0.03110263 \pm 4.6 \cdot 10^{-8} \) | \(a_{588}= +0.12987303 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{589}= +1.05159466 \pm 4.2 \cdot 10^{-8} \) | \(a_{590}= -1.81020432 \pm 6.4 \cdot 10^{-8} \) | \(a_{591}= -1.37807662 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{592}= -1.07498130 \pm 9.1 \cdot 10^{-8} \) | \(a_{593}= +1.62900199 \pm 4.8 \cdot 10^{-8} \) | \(a_{594}= -1.40017247 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{595}= -0.05354114 \pm 4.9 \cdot 10^{-8} \) | \(a_{596}= -0.24795196 \pm 3.9 \cdot 10^{-8} \) | \(a_{597}= +0.52786290 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{598}= +0.40175234 \pm 5.6 \cdot 10^{-8} \) | \(a_{599}= -0.45500133 \pm 4.6 \cdot 10^{-8} \) | \(a_{600}= -0.10778226 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{601}= +0.80959978 \pm 4.9 \cdot 10^{-8} \) | \(a_{602}= -0.69590003 \pm 4.5 \cdot 10^{-8} \) | \(a_{603}= +0.17281459 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{604}= -0.29240711 \pm 5.5 \cdot 10^{-8} \) | \(a_{605}= +1.59045283 \pm 4.8 \cdot 10^{-8} \) | \(a_{606}= -0.04309069 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{607}= +1.69457269 \pm 6.0 \cdot 10^{-8} \) | \(a_{608}= -0.25412534 \pm 5.7 \cdot 10^{-8} \) | \(a_{609}= +0.11654603 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{610}= +0.96351392 \pm 4.4 \cdot 10^{-8} \) | \(a_{611}= -0.14772115 \pm 3.8 \cdot 10^{-8} \) | \(a_{612}= +0.00420393 \pm 7.0 \cdot 10^{-8} \) |
| \(a_{613}= +0.85285192 \pm 5.3 \cdot 10^{-8} \) | \(a_{614}= +1.95348705 \pm 5.2 \cdot 10^{-8} \) | \(a_{615}= +1.06805744 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{616}= -0.79293920 \pm 4.6 \cdot 10^{-8} \) | \(a_{617}= +0.45250976 \pm 5.1 \cdot 10^{-8} \) | \(a_{618}= +0.24463706 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{619}= +0.15366577 \pm 4.5 \cdot 10^{-8} \) | \(a_{620}= -0.23843388 \pm 4.9 \cdot 10^{-8} \) | \(a_{621}= +0.69437934 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{622}= -1.54475433 \pm 5.5 \cdot 10^{-8} \) | \(a_{623}= +0.30548290 \pm 4.5 \cdot 10^{-8} \) | \(a_{624}= -0.56360804 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{625}= -1.09475234 \pm 4.2 \cdot 10^{-8} \) | \(a_{626}= +0.39699218 \pm 6.1 \cdot 10^{-8} \) | \(a_{627}= +1.38124996 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{628}= +0.22025476 \pm 7.0 \cdot 10^{-8} \) | \(a_{629}= +0.08650059 \pm 3.2 \cdot 10^{-8} \) | \(a_{630}= +0.17407811 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{631}= -0.49202755 \pm 4.7 \cdot 10^{-8} \) | \(a_{632}= -1.64267470 \pm 1.0 \cdot 10^{-7} \) | \(a_{633}= +1.28528370 \pm 6.2 \cdot 10^{-8} \) |
| \(a_{634}= -1.31300642 \pm 6.4 \cdot 10^{-8} \) | \(a_{635}= -1.10884976 \pm 6.0 \cdot 10^{-8} \) | \(a_{636}= +0.36992319 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{637}= +0.30291590 \pm 4.5 \cdot 10^{-8} \) | \(a_{638}= -0.31787081 \pm 1.2 \cdot 10^{-7} \) | \(a_{639}= -0.18205759 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{640}= -1.23563165 \pm 9.9 \cdot 10^{-8} \) | \(a_{641}= +1.27281363 \pm 4.8 \cdot 10^{-8} \) | \(a_{642}= +0.53572998 \pm 6.2 \cdot 10^{-8} \) |
| \(a_{643}= -1.33155218 \pm 4.5 \cdot 10^{-8} \) | \(a_{644}= -0.07845914 \pm 4.3 \cdot 10^{-8} \) | \(a_{645}= +1.37755968 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{646}= +0.07634172 \pm 5.2 \cdot 10^{-8} \) | \(a_{647}= -0.25816034 \pm 3.6 \cdot 10^{-8} \) | \(a_{648}= -1.08017840 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{649}= +2.52626970 \pm 4.7 \cdot 10^{-8} \) | \(a_{650}= +0.05015783 \pm 6.2 \cdot 10^{-8} \) | \(a_{651}= -0.85547865 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{652}= +0.14983035 \pm 4.8 \cdot 10^{-8} \) | \(a_{653}= -1.01955487 \pm 6.2 \cdot 10^{-8} \) | \(a_{654}= +0.79485081 \pm 7.1 \cdot 10^{-8} \) |
| \(a_{655}= -0.48888646 \pm 5.5 \cdot 10^{-8} \) | \(a_{656}= +1.02380733 \pm 1.0 \cdot 10^{-7} \) | \(a_{657}= -0.15717391 \pm 6.0 \cdot 10^{-8} \) |
| \(a_{658}= +0.20228799 \pm 4.3 \cdot 10^{-8} \) | \(a_{659}= -0.94026422 \pm 5.2 \cdot 10^{-8} \) | \(a_{660}= -0.31317845 \pm 4.2 \cdot 10^{-8} \) |
| \(a_{661}= +0.31660614 \pm 4.1 \cdot 10^{-8} \) | \(a_{662}= +0.96010132 \pm 6.8 \cdot 10^{-8} \) | \(a_{663}= +0.04535189 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{664}= +0.79087976 \pm 5.8 \cdot 10^{-8} \) | \(a_{665}= +0.45082541 \pm 5.2 \cdot 10^{-8} \) | \(a_{666}= -0.28123907 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{667}= +0.15763981 \pm 6.3 \cdot 10^{-8} \) | \(a_{668}= +0.09806913 \pm 3.7 \cdot 10^{-8} \) | \(a_{669}= -0.61902619 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{670}= -0.71155178 \pm 4.4 \cdot 10^{-8} \) | \(a_{671}= -1.34465264 \pm 4.8 \cdot 10^{-8} \) | \(a_{672}= +0.20673251 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{673}= +0.23304120 \pm 5.8 \cdot 10^{-8} \) | \(a_{674}= -0.85514067 \pm 6.2 \cdot 10^{-8} \) | \(a_{675}= +0.08669163 \pm 5.2 \cdot 10^{-8} \) |
| \(a_{676}= -0.13439311 \pm 7.8 \cdot 10^{-8} \) | \(a_{677}= +0.57296523 \pm 5.5 \cdot 10^{-8} \) | \(a_{678}= -1.72397392 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{679}= +0.03160754 \pm 4.5 \cdot 10^{-8} \) | \(a_{680}= +0.08675473 \pm 4.1 \cdot 10^{-8} \) | \(a_{681}= -0.70758031 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{682}= +2.33325582 \pm 5.0 \cdot 10^{-8} \) | \(a_{683}= +0.61665869 \pm 6.4 \cdot 10^{-8} \) | \(a_{684}= -0.03539780 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{685}= -0.92138546 \pm 4.3 \cdot 10^{-8} \) | \(a_{686}= -1.01489073 \pm 5.1 \cdot 10^{-8} \) | \(a_{687}= +1.72580904 \pm 5.1 \cdot 10^{-8} \) |
| \(a_{688}= +1.32048675 \pm 6.3 \cdot 10^{-8} \) | \(a_{689}= +0.86280894 \pm 4.7 \cdot 10^{-8} \) | \(a_{690}= +1.08905397 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{691}= +1.77620243 \pm 5.6 \cdot 10^{-8} \) | \(a_{692}= +0.17128670 \pm 5.2 \cdot 10^{-8} \) | \(a_{693}= -0.24293846 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{694}= -1.35458899 \pm 6.5 \cdot 10^{-8} \) | \(a_{695}= -0.05491779 \pm 4.3 \cdot 10^{-8} \) | \(a_{696}= -0.18884393 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{697}= -0.08238277 \pm 3.4 \cdot 10^{-8} \) | \(a_{698}= -0.38337744 \pm 6.8 \cdot 10^{-8} \) | \(a_{699}= +0.30552388 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{700}= -0.00979544 \pm 4.5 \cdot 10^{-8} \) | \(a_{701}= +0.16241044 \pm 6.2 \cdot 10^{-8} \) | \(a_{702}= +0.38710199 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{703}= -0.72834959 \pm 4.3 \cdot 10^{-8} \) | \(a_{704}= +1.24097631 \pm 6.3 \cdot 10^{-8} \) | \(a_{705}= -0.40043652 \pm 5.2 \cdot 10^{-8} \) |
| \(a_{706}= -0.45072355 \pm 5.7 \cdot 10^{-8} \) | \(a_{707}= +0.01962780 \pm 5.2 \cdot 10^{-8} \) | \(a_{708}= -0.29944737 \pm 7.1 \cdot 10^{-8} \) |
| \(a_{709}= +0.24168317 \pm 5.2 \cdot 10^{-8} \) | \(a_{710}= +0.74960916 \pm 6.0 \cdot 10^{-8} \) | \(a_{711}= -0.50327801 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{712}= -0.49498547 \pm 7.4 \cdot 10^{-8} \) | \(a_{713}= -1.15711790 \pm 4.0 \cdot 10^{-8} \) | \(a_{714}= -0.06210446 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{715}= -0.73045750 \pm 4.5 \cdot 10^{-8} \) | \(a_{716}= +0.25536714 \pm 7.9 \cdot 10^{-8} \) | \(a_{717}= -0.12756248 \pm 6.3 \cdot 10^{-8} \) |
| \(a_{718}= -0.24190382 \pm 8.0 \cdot 10^{-8} \) | \(a_{719}= +0.53078376 \pm 5.3 \cdot 10^{-8} \) | \(a_{720}= -0.33031732 \pm 7.2 \cdot 10^{-8} \) |
| \(a_{721}= -0.11143214 \pm 5.3 \cdot 10^{-8} \) | \(a_{722}= +0.43715916 \pm 3.9 \cdot 10^{-8} \) | \(a_{723}= -2.09918242 \pm 6.3 \cdot 10^{-8} \) |
| \(a_{724}= -0.31752877 \pm 7.2 \cdot 10^{-8} \) | \(a_{725}= +0.01968096 \pm 6.5 \cdot 10^{-8} \) | \(a_{726}= +1.84482840 \pm 4.4 \cdot 10^{-8} \) |
| \(a_{727}= +0.36084660 \pm 5.5 \cdot 10^{-8} \) | \(a_{728}= +0.21922181 \pm 4.7 \cdot 10^{-8} \) | \(a_{729}= +0.59296934 \pm 6.4 \cdot 10^{-8} \) |
| \(a_{730}= +0.64715237 \pm 3.9 \cdot 10^{-8} \) | \(a_{731}= -0.10625570 \pm 5.1 \cdot 10^{-8} \) | \(a_{732}= +0.15938627 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{733}= -1.41300513 \pm 5.2 \cdot 10^{-8} \) | \(a_{734}= -1.10873480 \pm 7.0 \cdot 10^{-8} \) | \(a_{735}= +0.82113214 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{736}= +0.27962578 \pm 5.5 \cdot 10^{-8} \) | \(a_{737}= +0.99302144 \pm 4.4 \cdot 10^{-8} \) | \(a_{738}= +0.26785082 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{739}= +0.90630704 \pm 5.5 \cdot 10^{-8} \) | \(a_{740}= +0.16514273 \pm 6.0 \cdot 10^{-8} \) | \(a_{741}= -0.38187053 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{742}= -1.18152265 \pm 5.5 \cdot 10^{-8} \) | \(a_{743}= -1.72272884 \pm 5.4 \cdot 10^{-8} \) | \(a_{744}= +1.38616436 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{745}= -1.56769515 \pm 3.9 \cdot 10^{-8} \) | \(a_{746}= +0.20714627 \pm 6.6 \cdot 10^{-8} \) | \(a_{747}= +0.24230750 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{748}= +0.02415648 \pm 6.1 \cdot 10^{-8} \) | \(a_{749}= -0.24402491 \pm 5.0 \cdot 10^{-8} \) | \(a_{750}= -1.14690965 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{751}= -0.15365487 \pm 4.8 \cdot 10^{-8} \) | \(a_{752}= -0.38384625 \pm 5.2 \cdot 10^{-8} \) | \(a_{753}= -0.57217017 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{754}= +0.08788090 \pm 1.2 \cdot 10^{-7} \) | \(a_{755}= -1.84876620 \pm 5.2 \cdot 10^{-8} \) | \(a_{756}= -0.07559804 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{757}= -0.37363971 \pm 5.4 \cdot 10^{-8} \) | \(a_{758}= +1.24197597 \pm 5.6 \cdot 10^{-8} \) | \(a_{759}= -1.51985277 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{760}= -0.73048943 \pm 5.0 \cdot 10^{-8} \) | \(a_{761}= -0.95979118 \pm 6.4 \cdot 10^{-8} \) | \(a_{762}= -1.28619817 \pm 6.4 \cdot 10^{-8} \) |
| \(a_{763}= -0.36205441 \pm 4.4 \cdot 10^{-8} \) | \(a_{764}= +0.26518623 \pm 5.0 \cdot 10^{-8} \) | \(a_{765}= +0.02657967 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{766}= +2.04119367 \pm 5.8 \cdot 10^{-8} \) | \(a_{767}= -0.69843112 \pm 5.0 \cdot 10^{-8} \) | \(a_{768}= -0.54890846 \pm 6.9 \cdot 10^{-8} \) |
| \(a_{769}= +0.18982893 \pm 4.9 \cdot 10^{-8} \) | \(a_{770}= +1.00028180 \pm 4.2 \cdot 10^{-8} \) | \(a_{771}= +0.20236443 \pm 5.2 \cdot 10^{-8} \) |
| \(a_{772}= -0.13870023 \pm 5.8 \cdot 10^{-8} \) | \(a_{773}= +1.42728602 \pm 4.5 \cdot 10^{-8} \) | \(a_{774}= +0.34546877 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{775}= -0.14446344 \pm 5.4 \cdot 10^{-8} \) | \(a_{776}= -0.05121489 \pm 4.5 \cdot 10^{-8} \) | \(a_{777}= +0.59251682 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{778}= -1.91895293 \pm 6.0 \cdot 10^{-8} \) | \(a_{779}= +0.69367686 \pm 4.2 \cdot 10^{-8} \) | \(a_{780}= +0.08658362 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{781}= -1.04613324 \pm 5.6 \cdot 10^{-8} \) | \(a_{782}= -0.08400231 \pm 5.1 \cdot 10^{-8} \) | \(a_{783}= +0.15189130 \pm 6.7 \cdot 10^{-8} \) |
| \(a_{784}= +0.78711226 \pm 6.5 \cdot 10^{-8} \) | \(a_{785}= +1.39257747 \pm 6.3 \cdot 10^{-8} \) | \(a_{786}= -0.56707851 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{787}= +0.64936542 \pm 5.4 \cdot 10^{-8} \) | \(a_{788}= +0.20293434 \pm 5.9 \cdot 10^{-8} \) | \(a_{789}= +0.63966679 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{790}= +2.07221136 \pm 6.9 \cdot 10^{-8} \) | \(a_{791}= +0.78526983 \pm 5.0 \cdot 10^{-8} \) | \(a_{792}= +0.39364236 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{793}= +0.37175257 \pm 5.8 \cdot 10^{-8} \) | \(a_{794}= -0.74952108 \pm 5.7 \cdot 10^{-8} \) | \(a_{795}= +2.33886750 \pm 6.6 \cdot 10^{-8} \) |
| \(a_{796}= -0.07773262 \pm 4.7 \cdot 10^{-8} \) | \(a_{797}= +0.46923220 \pm 6.0 \cdot 10^{-8} \) | \(a_{798}= +0.52293001 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{799}= +0.03088698 \pm 3.3 \cdot 10^{-8} \) | \(a_{800}= +0.03491062 \pm 4.1 \cdot 10^{-8} \) | \(a_{801}= -0.15165224 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{802}= +0.09319273 \pm 6.4 \cdot 10^{-8} \) | \(a_{803}= -0.90314745 \pm 5.0 \cdot 10^{-8} \) | \(a_{804}= -0.11770622 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{805}= -0.49606390 \pm 4.0 \cdot 10^{-8} \) | \(a_{806}= -0.64506908 \pm 4.7 \cdot 10^{-8} \) | \(a_{807}= -0.07473560 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{808}= -0.03180367 \pm 7.6 \cdot 10^{-8} \) | \(a_{809}= -0.52675665 \pm 5.0 \cdot 10^{-8} \) | \(a_{810}= +1.36263007 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{811}= -0.18701521 \pm 4.9 \cdot 10^{-8} \) | \(a_{812}= -0.01716246 \pm 1.2 \cdot 10^{-7} \) | \(a_{813}= +1.88344652 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{814}= -1.61604655 \pm 4.4 \cdot 10^{-8} \) | \(a_{815}= +0.94731382 \pm 4.3 \cdot 10^{-8} \) | \(a_{816}= +0.11784467 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{817}= +0.89469090 \pm 4.1 \cdot 10^{-8} \) | \(a_{818}= -0.68552001 \pm 7.1 \cdot 10^{-8} \) | \(a_{819}= +0.06716456 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{820}= -0.15728119 \pm 7.1 \cdot 10^{-8} \) | \(a_{821}= -0.17047453 \pm 6.2 \cdot 10^{-8} \) | \(a_{822}= -1.06875101 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{823}= -0.30472791 \pm 6.2 \cdot 10^{-8} \) | \(a_{824}= +0.18055770 \pm 9.0 \cdot 10^{-8} \) | \(a_{825}= -0.18975004 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{826}= +0.95642518 \pm 4.4 \cdot 10^{-8} \) | \(a_{827}= -1.38354760 \pm 4.3 \cdot 10^{-8} \) | \(a_{828}= +0.03894982 \pm 5.1 \cdot 10^{-8} \) |
| \(a_{829}= +0.87504912 \pm 5.6 \cdot 10^{-8} \) | \(a_{830}= -0.99768386 \pm 6.9 \cdot 10^{-8} \) | \(a_{831}= +0.53547202 \pm 7.0 \cdot 10^{-8} \) |
| \(a_{832}= -0.34308945 \pm 6.7 \cdot 10^{-8} \) | \(a_{833}= -0.06333662 \pm 4.4 \cdot 10^{-8} \) | \(a_{834}= -0.06370129 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{835}= +0.62004955 \pm 4.4 \cdot 10^{-8} \) | \(a_{836}= -0.20340165 \pm 4.8 \cdot 10^{-8} \) | \(a_{837}= -1.11492228 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{838}= +0.20501578 \pm 5.2 \cdot 10^{-8} \) | \(a_{839}= +1.03931502 \pm 5.5 \cdot 10^{-8} \) | \(a_{840}= +0.59425759 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{841}= +0.03448276 \pm 1.5 \cdot 10^{-6} \) | \(a_{842}= +0.33109290 \pm 6.4 \cdot 10^{-8} \) | \(a_{843}= +1.17736712 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{844}= -0.18926974 \pm 9.1 \cdot 10^{-8} \) | \(a_{845}= -0.84971066 \pm 5.0 \cdot 10^{-8} \) | \(a_{846}= -0.10042274 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{847}= -0.84031902 \pm 3.9 \cdot 10^{-8} \) | \(a_{848}= +2.24196716 \pm 6.0 \cdot 10^{-8} \) | \(a_{849}= -0.46582680 \pm 6.3 \cdot 10^{-8} \) |
| \(a_{850}= -0.01048749 \pm 6.2 \cdot 10^{-8} \) | \(a_{851}= +0.80143650 \pm 5.8 \cdot 10^{-8} \) | \(a_{852}= +0.12400174 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{853}= -0.76492013 \pm 4.9 \cdot 10^{-8} \) | \(a_{854}= -0.50907456 \pm 3.6 \cdot 10^{-8} \) | \(a_{855}= -0.22380528 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{856}= +0.39540278 \pm 7.5 \cdot 10^{-8} \) | \(a_{857}= +0.04355577 \pm 5.5 \cdot 10^{-8} \) | \(a_{858}= -0.84728620 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{859}= -0.77112376 \pm 5.4 \cdot 10^{-8} \) | \(a_{860}= -0.20285822 \pm 5.4 \cdot 10^{-8} \) | \(a_{861}= -0.56431034 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{862}= -0.70311446 \pm 5.7 \cdot 10^{-8} \) | \(a_{863}= -1.50081064 \pm 5.3 \cdot 10^{-8} \) | \(a_{864}= +0.26942891 \pm 9.1 \cdot 10^{-8} \) |
| \(a_{865}= +1.08297318 \pm 6.3 \cdot 10^{-8} \) | \(a_{866}= -0.37030629 \pm 6.4 \cdot 10^{-8} \) | \(a_{867}= +1.12004904 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{868}= +0.12597703 \pm 4.0 \cdot 10^{-8} \) | \(a_{869}= -2.89191928 \pm 4.7 \cdot 10^{-8} \) | \(a_{870}= +0.23822399 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{871}= -0.27453802 \pm 4.4 \cdot 10^{-8} \) | \(a_{872}= +0.58665043 \pm 6.6 \cdot 10^{-8} \) | \(a_{873}= -0.01569107 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{874}= +0.70731359 \pm 4.1 \cdot 10^{-8} \) | \(a_{875}= +0.52241715 \pm 3.8 \cdot 10^{-8} \) | \(a_{876}= +0.10705315 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{877}= -1.37998801 \pm 5.4 \cdot 10^{-8} \) | \(a_{878}= -0.46011229 \pm 5.0 \cdot 10^{-8} \) | \(a_{879}= +0.85737226 \pm 4.4 \cdot 10^{-8} \) |
| \(a_{880}= -1.89805837 \pm 5.6 \cdot 10^{-8} \) | \(a_{881}= +1.82650847 \pm 5.4 \cdot 10^{-8} \) | \(a_{882}= +0.20592611 \pm 6.0 \cdot 10^{-8} \) |
| \(a_{883}= +1.17384430 \pm 5.8 \cdot 10^{-8} \) | \(a_{884}= -0.00667848 \pm 9.5 \cdot 10^{-8} \) | \(a_{885}= -1.89327877 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{886}= +0.67813719 \pm 5.6 \cdot 10^{-8} \) | \(a_{887}= +0.02405769 \pm 6.0 \cdot 10^{-8} \) | \(a_{888}= -0.96007738 \pm 6.3 \cdot 10^{-8} \) |
| \(a_{889}= +0.58586305 \pm 5.2 \cdot 10^{-8} \) | \(a_{890}= +0.62441731 \pm 5.8 \cdot 10^{-8} \) | \(a_{891}= -1.90164780 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{892}= +0.09115725 \pm 5.7 \cdot 10^{-8} \) | \(a_{893}= -0.26007360 \pm 3.9 \cdot 10^{-8} \) | \(a_{894}= -1.81843087 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{895}= +1.61457821 \pm 7.0 \cdot 10^{-8} \) | \(a_{896}= +0.65284852 \pm 6.2 \cdot 10^{-8} \) | \(a_{897}= +0.42018968 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{898}= +0.47394029 \pm 6.7 \cdot 10^{-8} \) | \(a_{899}= -0.25311257 \pm 6.2 \cdot 10^{-8} \) | \(a_{900}= +0.00486279 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{901}= -0.18040452 \pm 5.0 \cdot 10^{-8} \) | \(a_{902}= +1.53911543 \pm 4.7 \cdot 10^{-8} \) | \(a_{903}= -0.72783649 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{904}= -1.27240235 \pm 5.9 \cdot 10^{-8} \) | \(a_{905}= -2.00759979 \pm 3.6 \cdot 10^{-8} \) | \(a_{906}= -2.14445617 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{907}= -1.15072651 \pm 6.1 \cdot 10^{-8} \) | \(a_{908}= +0.10419765 \pm 7.2 \cdot 10^{-8} \) | \(a_{909}= -0.00974392 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{910}= -0.27654527 \pm 3.6 \cdot 10^{-8} \) | \(a_{911}= +0.02905464 \pm 4.3 \cdot 10^{-8} \) | \(a_{912}= -0.99227205 \pm 5.1 \cdot 10^{-8} \) |
| \(a_{913}= +1.39233924 \pm 4.5 \cdot 10^{-8} \) | \(a_{914}= -0.08452456 \pm 4.7 \cdot 10^{-8} \) | \(a_{915}= +1.00773180 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{916}= -0.25414111 \pm 6.9 \cdot 10^{-8} \) | \(a_{917}= +0.25830417 \pm 4.8 \cdot 10^{-8} \) | \(a_{918}= -0.08093907 \pm 9.3 \cdot 10^{-8} \) |
| \(a_{919}= +1.33341487 \pm 4.8 \cdot 10^{-8} \) | \(a_{920}= +0.80379107 \pm 4.4 \cdot 10^{-8} \) | \(a_{921}= +2.04313707 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{922}= -0.71425196 \pm 6.5 \cdot 10^{-8} \) | \(a_{923}= +0.28922170 \pm 6.9 \cdot 10^{-8} \) | \(a_{924}= +0.16546848 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{925}= +0.10005746 \pm 5.1 \cdot 10^{-8} \) | \(a_{926}= +0.62392714 \pm 5.9 \cdot 10^{-8} \) | \(a_{927}= +0.05531876 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{928}= +0.06116645 \pm 9.7 \cdot 10^{-8} \) | \(a_{929}= +0.73679499 \pm 5.3 \cdot 10^{-8} \) | \(a_{930}= -1.74862712 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{931}= +0.53330499 \pm 3.8 \cdot 10^{-8} \) | \(a_{932}= -0.04499118 \pm 6.5 \cdot 10^{-8} \) | \(a_{933}= -1.61564667 \pm 6.9 \cdot 10^{-8} \) |
| \(a_{934}= +1.52748052 \pm 7.3 \cdot 10^{-8} \) | \(a_{935}= +0.15273119 \pm 4.1 \cdot 10^{-8} \) | \(a_{936}= -0.10882926 \pm 7.6 \cdot 10^{-8} \) |
| \(a_{937}= -0.13886496 \pm 5.1 \cdot 10^{-8} \) | \(a_{938}= +0.37594985 \pm 4.0 \cdot 10^{-8} \) | \(a_{939}= +0.41521106 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{940}= +0.05896793 \pm 4.5 \cdot 10^{-8} \) | \(a_{941}= +0.81703844 \pm 4.1 \cdot 10^{-8} \) | \(a_{942}= +1.61530504 \pm 6.6 \cdot 10^{-8} \) |
| \(a_{943}= -0.76328450 \pm 5.3 \cdot 10^{-8} \) | \(a_{944}= -1.81483938 \pm 9.9 \cdot 10^{-8} \) | \(a_{945}= -0.47797437 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{946}= +1.98512110 \pm 4.6 \cdot 10^{-8} \) | \(a_{947}= +0.69626955 \pm 5.4 \cdot 10^{-8} \) | \(a_{948}= +0.34278906 \pm 6.6 \cdot 10^{-8} \) |
| \(a_{949}= +0.24969079 \pm 5.8 \cdot 10^{-8} \) | \(a_{950}= +0.08830644 \pm 4.0 \cdot 10^{-8} \) | \(a_{951}= -1.37326331 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{952}= -0.04583704 \pm 4.6 \cdot 10^{-8} \) | \(a_{953}= +0.08295421 \pm 4.6 \cdot 10^{-8} \) | \(a_{954}= +0.58654859 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{955}= +1.67666009 \pm 4.2 \cdot 10^{-8} \) | \(a_{956}= +0.01878474 \pm 6.3 \cdot 10^{-8} \) | \(a_{957}= -0.33245864 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{958}= -0.66483692 \pm 6.3 \cdot 10^{-8} \) | \(a_{959}= +0.48681590 \pm 4.4 \cdot 10^{-8} \) | \(a_{960}= -0.93003297 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{961}= +0.85791319 \pm 5.5 \cdot 10^{-8} \) | \(a_{962}= +0.44678413 \pm 4.2 \cdot 10^{-8} \) | \(a_{963}= +0.12114238 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{964}= +0.30912375 \pm 7.9 \cdot 10^{-8} \) | \(a_{965}= -0.87694273 \pm 5.8 \cdot 10^{-8} \) | \(a_{966}= -0.57540390 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{967}= -0.63094139 \pm 5.1 \cdot 10^{-8} \) | \(a_{968}= +1.36160064 \pm 5.2 \cdot 10^{-8} \) | \(a_{969}= +0.07984522 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{970}= +0.06460687 \pm 3.7 \cdot 10^{-8} \) | \(a_{971}= +0.23587278 \pm 4.4 \cdot 10^{-8} \) | \(a_{972}= +0.08935444 \pm 6.9 \cdot 10^{-8} \) |
| \(a_{973}= +0.02901593 \pm 4.3 \cdot 10^{-8} \) | \(a_{974}= -0.90937052 \pm 6.8 \cdot 10^{-8} \) | \(a_{975}= +0.05245969 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{976}= +0.96598101 \pm 5.6 \cdot 10^{-8} \) | \(a_{977}= +0.13102664 \pm 3.9 \cdot 10^{-8} \) | \(a_{978}= +1.09882632 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{979}= -0.87141905 \pm 3.8 \cdot 10^{-8} \) | \(a_{980}= -0.12091919 \pm 4.9 \cdot 10^{-8} \) | \(a_{981}= +0.17973629 \pm 6.6 \cdot 10^{-8} \) |
| \(a_{982}= -0.15480331 \pm 5.7 \cdot 10^{-8} \) | \(a_{983}= -0.04566282 \pm 4.7 \cdot 10^{-8} \) | \(a_{984}= +0.91437336 \pm 7.3 \cdot 10^{-8} \) |
| \(a_{985}= +1.28306784 \pm 6.0 \cdot 10^{-8} \) | \(a_{986}= -0.01837500 \pm 1.2 \cdot 10^{-7} \) | \(a_{987}= +0.21157146 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{988}= +0.05623392 \pm 6.2 \cdot 10^{-8} \) | \(a_{989}= -0.98446948 \pm 4.3 \cdot 10^{-8} \) | \(a_{990}= -0.49657438 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{991}= -0.45798920 \pm 5.9 \cdot 10^{-8} \) | \(a_{992}= -0.44897795 \pm 4.6 \cdot 10^{-8} \) | \(a_{993}= +1.00416259 \pm 5.2 \cdot 10^{-8} \) |
| \(a_{994}= -0.39605754 \pm 4.9 \cdot 10^{-8} \) | \(a_{995}= -0.49147043 \pm 2.7 \cdot 10^{-8} \) | \(a_{996}= -0.16503872 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{997}= -0.51901726 \pm 5.5 \cdot 10^{-8} \) | \(a_{998}= -1.85635949 \pm 6.0 \cdot 10^{-8} \) | \(a_{999}= +0.77221122 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{1000}= -0.84649223 \pm 6.6 \cdot 10^{-8} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000