Maass form invariants
| Level: | \( 29 \) |
| Weight: | \( 0 \) |
| Character: | 29.1 |
| Symmetry: | odd |
| Fricke sign: | $-1$ |
| Spectral parameter: | \(4.97257972342255902425338092781 \pm 8 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
| \(a_{1}= +1 \) | \(a_{2}= +0.71292486 \pm 3.4 \cdot 10^{-6} \) | \(a_{3}= -1.31100812 \pm 3.2 \cdot 10^{-6} \) |
| \(a_{4}= -0.49173814 \pm 3.4 \cdot 10^{-6} \) | \(a_{5}= -0.55940195 \pm 3.0 \cdot 10^{-6} \) | \(a_{6}= -0.93465028 \pm 3.9 \cdot 10^{-6} \) |
| \(a_{7}= +0.94471222 \pm 2.8 \cdot 10^{-6} \) | \(a_{8}= -1.06349721 \pm 2.8 \cdot 10^{-6} \) | \(a_{9}= +0.71874229 \pm 3.0 \cdot 10^{-6} \) |
| \(a_{10}= -0.39881156 \pm 3.7 \cdot 10^{-6} \) | \(a_{11}= +0.29455363 \pm 2.8 \cdot 10^{-6} \) | \(a_{12}= +0.64467270 \pm 4.0 \cdot 10^{-6} \) |
| \(a_{13}= +1.73246649 \pm 2.6 \cdot 10^{-6} \) | \(a_{14}= +0.67350882 \pm 3.7 \cdot 10^{-6} \) | \(a_{15}= +0.73338050 \pm 3.4 \cdot 10^{-6} \) |
| \(a_{16}= -0.26645545 \pm 2.9 \cdot 10^{-6} \) | \(a_{17}= +0.50592909 \pm 3.0 \cdot 10^{-6} \) | \(a_{18}= +0.51240924 \pm 3.9 \cdot 10^{-6} \) |
| \(a_{19}= -1.67939020 \pm 2.4 \cdot 10^{-6} \) | \(a_{20}= +0.27507928 \pm 3.6 \cdot 10^{-6} \) | \(a_{21}= -1.23852538 \pm 3.0 \cdot 10^{-6} \) |
| \(a_{22}= +0.20999461 \pm 3.5 \cdot 10^{-6} \) | \(a_{23}= +0.67195812 \pm 2.9 \cdot 10^{-6} \) | \(a_{24}= +1.39425347 \pm 3.1 \cdot 10^{-6} \) |
| \(a_{25}= -0.68706946 \pm 2.8 \cdot 10^{-6} \) | \(a_{26}= +1.23511843 \pm 2.8 \cdot 10^{-6} \) | \(a_{27}= +0.36873114 \pm 2.8 \cdot 10^{-6} \) |
| \(a_{28}= -0.46455103 \pm 3.7 \cdot 10^{-6} \) | \(a_{29}= +0.18569534 \pm 1.0 \cdot 10^{-8} \) | \(a_{30}= +0.52284519 \pm 3.7 \cdot 10^{-6} \) |
| \(a_{31}= +0.35487615 \pm 2.7 \cdot 10^{-6} \) | \(a_{32}= +0.87353449 \pm 3.0 \cdot 10^{-6} \) | \(a_{33}= -0.38616220 \pm 3.2 \cdot 10^{-6} \) |
| \(a_{34}= +0.36068943 \pm 2.9 \cdot 10^{-6} \) | \(a_{35}= -0.52847385 \pm 3.0 \cdot 10^{-6} \) | \(a_{36}= -0.35343300 \pm 3.9 \cdot 10^{-6} \) |
| \(a_{37}= +1.00884185 \pm 2.6 \cdot 10^{-6} \) | \(a_{38}= -1.19727902 \pm 2.6 \cdot 10^{-6} \) | \(a_{39}= -2.27127764 \pm 2.9 \cdot 10^{-6} \) |
| \(a_{40}= +0.59492241 \pm 3.1 \cdot 10^{-6} \) | \(a_{41}= -0.01190022 \pm 2.7 \cdot 10^{-6} \) | \(a_{42}= -0.88297554 \pm 4.0 \cdot 10^{-6} \) |
| \(a_{43}= +1.34783997 \pm 2.5 \cdot 10^{-6} \) | \(a_{44}= -0.14484326 \pm 3.2 \cdot 10^{-6} \) | \(a_{45}= -0.40206584 \pm 3.1 \cdot 10^{-6} \) |
| \(a_{46}= +0.47905565 \pm 3.8 \cdot 10^{-6} \) | \(a_{47}= +1.25977340 \pm 2.4 \cdot 10^{-6} \) | \(a_{48}= +0.34932526 \pm 3.1 \cdot 10^{-6} \) |
| \(a_{49}= -0.10751883 \pm 2.6 \cdot 10^{-6} \) | \(a_{50}= -0.48982890 \pm 3.2 \cdot 10^{-6} \) | \(a_{51}= -0.66327715 \pm 3.0 \cdot 10^{-6} \) |
| \(a_{52}= -0.85191986 \pm 3.3 \cdot 10^{-6} \) | \(a_{53}= +0.03221596 \pm 2.7 \cdot 10^{-6} \) | \(a_{54}= +0.26287760 \pm 3.5 \cdot 10^{-6} \) |
| \(a_{55}= -0.16477388 \pm 2.9 \cdot 10^{-6} \) | \(a_{56}= -1.00469880 \pm 3.3 \cdot 10^{-6} \) | \(a_{57}= +2.20169418 \pm 2.7 \cdot 10^{-6} \) |
| \(a_{58}= +0.13238682 \pm 3.4 \cdot 10^{-6} \) | \(a_{59}= +1.20317293 \pm 2.6 \cdot 10^{-6} \) | \(a_{60}= -0.36063116 \pm 3.8 \cdot 10^{-6} \) |
| \(a_{61}= -0.24061602 \pm 2.8 \cdot 10^{-6} \) | \(a_{62}= +0.25300003 \pm 3.1 \cdot 10^{-6} \) | \(a_{63}= +0.67900462 \pm 2.9 \cdot 10^{-6} \) |
| \(a_{64}= +0.88921991 \pm 3.1 \cdot 10^{-6} \) | \(a_{65}= -0.96914513 \pm 2.9 \cdot 10^{-6} \) | \(a_{66}= -0.27530464 \pm 4.1 \cdot 10^{-6} \) |
| \(a_{67}= +0.33585580 \pm 2.4 \cdot 10^{-6} \) | \(a_{68}= -0.24878463 \pm 2.9 \cdot 10^{-6} \) | \(a_{69}= -0.88094255 \pm 3.2 \cdot 10^{-6} \) |
| \(a_{70}= -0.37676215 \pm 4.0 \cdot 10^{-6} \) | \(a_{71}= -0.74058954 \pm 2.4 \cdot 10^{-6} \) | \(a_{72}= -0.76438042 \pm 2.9 \cdot 10^{-6} \) |
| \(a_{73}= +0.93802894 \pm 2.7 \cdot 10^{-6} \) | \(a_{74}= +0.71922844 \pm 3.6 \cdot 10^{-6} \) | \(a_{75}= +0.90075364 \pm 3.3 \cdot 10^{-6} \) |
| \(a_{76}= +0.82582022 \pm 2.5 \cdot 10^{-6} \) | \(a_{77}= +0.27826842 \pm 2.4 \cdot 10^{-6} \) | \(a_{78}= -1.61925029 \pm 2.8 \cdot 10^{-6} \) |
| \(a_{79}= -1.41359915 \pm 2.5 \cdot 10^{-6} \) | \(a_{80}= +0.14905570 \pm 3.1 \cdot 10^{-6} \) | \(a_{81}= -1.20215181 \pm 2.2 \cdot 10^{-6} \) |
| \(a_{82}= -0.00848396 \pm 3.2 \cdot 10^{-6} \) | \(a_{83}= -1.09929869 \pm 2.3 \cdot 10^{-6} \) | \(a_{84}= +0.60903017 \pm 4.2 \cdot 10^{-6} \) |
| \(a_{85}= -0.28301772 \pm 3.1 \cdot 10^{-6} \) | \(a_{86}= +0.96090862 \pm 2.9 \cdot 10^{-6} \) | \(a_{87}= -0.24344810 \pm 3.2 \cdot 10^{-6} \) |
| \(a_{88}= -0.31325697 \pm 2.1 \cdot 10^{-6} \) | \(a_{89}= +1.21993601 \pm 2.7 \cdot 10^{-6} \) | \(a_{90}= -0.28664273 \pm 3.7 \cdot 10^{-6} \) |
| \(a_{91}= +1.63668226 \pm 2.8 \cdot 10^{-6} \) | \(a_{92}= -0.33042744 \pm 3.4 \cdot 10^{-6} \) | \(a_{93}= -0.46524552 \pm 3.0 \cdot 10^{-6} \) |
| \(a_{94}= +0.89812377 \pm 2.7 \cdot 10^{-6} \) | \(a_{95}= +0.93945415 \pm 2.6 \cdot 10^{-6} \) | \(a_{96}= -1.14521081 \pm 3.3 \cdot 10^{-6} \) |
| \(a_{97}= +0.13107594 \pm 2.7 \cdot 10^{-6} \) | \(a_{98}= -0.07665285 \pm 3.7 \cdot 10^{-6} \) | \(a_{99}= +0.21170815 \pm 3.2 \cdot 10^{-6} \) |
| \(a_{100}= +0.33785826 \pm 3.3 \cdot 10^{-6} \) | \(a_{101}= +1.13329469 \pm 2.8 \cdot 10^{-6} \) | \(a_{102}= -0.47286677 \pm 2.9 \cdot 10^{-6} \) |
| \(a_{103}= -0.92684262 \pm 2.4 \cdot 10^{-6} \) | \(a_{104}= -1.84247328 \pm 3.2 \cdot 10^{-6} \) | \(a_{105}= +0.69283351 \pm 2.9 \cdot 10^{-6} \) |
| \(a_{106}= +0.02296756 \pm 3.3 \cdot 10^{-6} \) | \(a_{107}= +0.00021022 \pm 2.8 \cdot 10^{-6} \) | \(a_{108}= -0.18131917 \pm 3.5 \cdot 10^{-6} \) |
| \(a_{109}= +1.21797206 \pm 2.7 \cdot 10^{-6} \) | \(a_{110}= -0.11747139 \pm 3.9 \cdot 10^{-6} \) | \(a_{111}= -1.32259986 \pm 3.4 \cdot 10^{-6} \) |
| \(a_{112}= -0.25172372 \pm 3.1 \cdot 10^{-6} \) | \(a_{113}= +0.54547265 \pm 2.4 \cdot 10^{-6} \) | \(a_{114}= +1.56964252 \pm 3.1 \cdot 10^{-6} \) |
| \(a_{115}= -0.37589468 \pm 3.3 \cdot 10^{-6} \) | \(a_{116}= -0.09131348 \pm 3.4 \cdot 10^{-6} \) | \(a_{117}= +1.24519693 \pm 2.3 \cdot 10^{-6} \) |
| \(a_{118}= +0.85777189 \pm 3.1 \cdot 10^{-6} \) | \(a_{119}= +0.47795739 \pm 3.0 \cdot 10^{-6} \) | \(a_{120}= -0.77994811 \pm 3.3 \cdot 10^{-6} \) |
| \(a_{121}= -0.91323816 \pm 2.6 \cdot 10^{-6} \) | \(a_{122}= -0.17154114 \pm 3.5 \cdot 10^{-6} \) | \(a_{123}= +0.01560129 \pm 2.5 \cdot 10^{-6} \) |
| \(a_{124}= -0.17450614 \pm 2.9 \cdot 10^{-6} \) | \(a_{125}= +0.94374994 \pm 2.5 \cdot 10^{-6} \) | \(a_{126}= +0.48407927 \pm 4.1 \cdot 10^{-6} \) |
| \(a_{127}= +1.13146073 \pm 2.4 \cdot 10^{-6} \) | \(a_{128}= -0.23958751 \pm 3.0 \cdot 10^{-6} \) | \(a_{129}= -1.76702914 \pm 2.7 \cdot 10^{-6} \) |
| \(a_{130}= -0.69092766 \pm 3.1 \cdot 10^{-6} \) | \(a_{131}= -1.81145084 \pm 2.4 \cdot 10^{-6} \) | \(a_{132}= +0.18989069 \pm 3.7 \cdot 10^{-6} \) |
| \(a_{133}= -1.58654043 \pm 2.4 \cdot 10^{-6} \) | \(a_{134}= +0.23943995 \pm 3.2 \cdot 10^{-6} \) | \(a_{135}= -0.20626892 \pm 3.1 \cdot 10^{-6} \) |
| \(a_{136}= -0.53805418 \pm 2.2 \cdot 10^{-6} \) | \(a_{137}= +1.49793823 \pm 2.9 \cdot 10^{-6} \) | \(a_{138}= -0.62804584 \pm 4.3 \cdot 10^{-6} \) |
| \(a_{139}= -0.43886175 \pm 2.8 \cdot 10^{-6} \) | \(a_{140}= +0.25987075 \pm 3.9 \cdot 10^{-6} \) | \(a_{141}= -1.65157315 \pm 2.7 \cdot 10^{-6} \) |
| \(a_{142}= -0.52798470 \pm 2.7 \cdot 10^{-6} \) | \(a_{143}= +0.51030430 \pm 2.1 \cdot 10^{-6} \) | \(a_{144}= -0.19151280 \pm 2.4 \cdot 10^{-6} \) |
| \(a_{145}= -0.10387833 \pm 3.0 \cdot 10^{-6} \) | \(a_{146}= +0.66874415 \pm 3.3 \cdot 10^{-6} \) | \(a_{147}= +0.14095806 \pm 2.9 \cdot 10^{-6} \) |
| \(a_{148}= -0.49608602 \pm 3.7 \cdot 10^{-6} \) | \(a_{149}= +1.90342109 \pm 3.3 \cdot 10^{-6} \) | \(a_{150}= +0.64216966 \pm 3.4 \cdot 10^{-6} \) |
| \(a_{151}= -0.23477033 \pm 3.0 \cdot 10^{-6} \) | \(a_{152}= +1.78602678 \pm 2.4 \cdot 10^{-6} \) | \(a_{153}= +0.36363263 \pm 2.2 \cdot 10^{-6} \) |
| \(a_{154}= +0.19838447 \pm 2.9 \cdot 10^{-6} \) | \(a_{155}= -0.19851841 \pm 2.6 \cdot 10^{-6} \) | \(a_{156}= +1.11687385 \pm 3.5 \cdot 10^{-6} \) |
| \(a_{157}= +0.70446892 \pm 2.7 \cdot 10^{-6} \) | \(a_{158}= -1.00778997 \pm 2.8 \cdot 10^{-6} \) | \(a_{159}= -0.04223539 \pm 2.8 \cdot 10^{-6} \) |
| \(a_{160}= -0.48865690 \pm 3.0 \cdot 10^{-6} \) | \(a_{161}= +0.63480704 \pm 2.5 \cdot 10^{-6} \) | \(a_{162}= -0.85704391 \pm 2.3 \cdot 10^{-6} \) |
| \(a_{163}= +0.95371635 \pm 2.3 \cdot 10^{-6} \) | \(a_{164}= +0.00585179 \pm 2.9 \cdot 10^{-6} \) | \(a_{165}= +0.21601989 \pm 3.0 \cdot 10^{-6} \) |
| \(a_{166}= -0.78371737 \pm 2.4 \cdot 10^{-6} \) | \(a_{167}= +0.66941219 \pm 2.8 \cdot 10^{-6} \) | \(a_{168}= +1.31716829 \pm 3.5 \cdot 10^{-6} \) |
| \(a_{169}= +2.00144014 \pm 2.6 \cdot 10^{-6} \) | \(a_{170}= -0.20177037 \pm 3.2 \cdot 10^{-6} \) | \(a_{171}= -1.20704875 \pm 2.5 \cdot 10^{-6} \) |
| \(a_{172}= -0.66278433 \pm 3.0 \cdot 10^{-6} \) | \(a_{173}= -1.00937861 \pm 2.2 \cdot 10^{-6} \) | \(a_{174}= -0.17356020 \pm 6.7 \cdot 10^{-6} \) |
| \(a_{175}= -0.64908291 \pm 2.5 \cdot 10^{-6} \) | \(a_{176}= -0.07848542 \pm 2.3 \cdot 10^{-6} \) | \(a_{177}= -1.57736948 \pm 3.2 \cdot 10^{-6} \) |
| \(a_{178}= +0.86972271 \pm 3.1 \cdot 10^{-6} \) | \(a_{179}= +0.54372479 \pm 2.8 \cdot 10^{-6} \) | \(a_{180}= +0.19771111 \pm 4.1 \cdot 10^{-6} \) |
| \(a_{181}= -1.39640449 \pm 3.0 \cdot 10^{-6} \) | \(a_{182}= +1.16683147 \pm 3.5 \cdot 10^{-6} \) | \(a_{183}= +0.31544955 \pm 3.0 \cdot 10^{-6} \) |
| \(a_{184}= -0.71462558 \pm 2.8 \cdot 10^{-6} \) | \(a_{185}= -0.56434810 \pm 2.3 \cdot 10^{-6} \) | \(a_{186}= -0.33168510 \pm 3.7 \cdot 10^{-6} \) |
| \(a_{187}= +0.14902325 \pm 2.5 \cdot 10^{-6} \) | \(a_{188}= -0.61947863 \pm 2.5 \cdot 10^{-6} \) | \(a_{189}= +0.34834482 \pm 2.6 \cdot 10^{-6} \) |
| \(a_{190}= +0.66976022 \pm 3.0 \cdot 10^{-6} \) | \(a_{191}= -1.77576768 \pm 2.7 \cdot 10^{-6} \) | \(a_{192}= -1.16577452 \pm 3.5 \cdot 10^{-6} \) |
| \(a_{193}= -1.16016805 \pm 2.5 \cdot 10^{-6} \) | \(a_{194}= +0.09344730 \pm 3.3 \cdot 10^{-6} \) | \(a_{195}= +1.27055714 \pm 3.2 \cdot 10^{-6} \) |
| \(a_{196}= +0.05287111 \pm 3.8 \cdot 10^{-6} \) | \(a_{197}= +1.59043739 \pm 3.3 \cdot 10^{-6} \) | \(a_{198}= +0.15093200 \pm 4.3 \cdot 10^{-6} \) |
| \(a_{199}= -1.62444237 \pm 2.9 \cdot 10^{-6} \) | \(a_{200}= +0.73069645 \pm 2.7 \cdot 10^{-6} \) | \(a_{201}= -0.44030968 \pm 2.4 \cdot 10^{-6} \) |
| \(a_{202}= +0.80795396 \pm 3.0 \cdot 10^{-6} \) | \(a_{203}= +0.17542865 \pm 2.8 \cdot 10^{-6} \) | \(a_{204}= +0.32615867 \pm 3.2 \cdot 10^{-6} \) |
| \(a_{205}= +0.00665701 \pm 2.9 \cdot 10^{-6} \) | \(a_{206}= -0.66076915 \pm 2.9 \cdot 10^{-6} \) | \(a_{207}= +0.48296471 \pm 3.1 \cdot 10^{-6} \) |
| \(a_{208}= -0.46162515 \pm 3.3 \cdot 10^{-6} \) | \(a_{209}= -0.49467048 \pm 2.3 \cdot 10^{-6} \) | \(a_{210}= +0.49393824 \pm 3.1 \cdot 10^{-6} \) |
| \(a_{211}= +1.37815182 \pm 2.8 \cdot 10^{-6} \) | \(a_{212}= -0.01584182 \pm 2.9 \cdot 10^{-6} \) | \(a_{213}= +0.97091890 \pm 2.7 \cdot 10^{-6} \) |
| \(a_{214}= +0.00014987 \pm 3.7 \cdot 10^{-6} \) | \(a_{215}= -0.75398431 \pm 3.0 \cdot 10^{-6} \) | \(a_{216}= -0.39214454 \pm 2.8 \cdot 10^{-6} \) |
| \(a_{217}= +0.33525584 \pm 2.5 \cdot 10^{-6} \) | \(a_{218}= +0.86832256 \pm 3.1 \cdot 10^{-6} \) | \(a_{219}= -1.22976355 \pm 3.1 \cdot 10^{-6} \) |
| \(a_{220}= +0.08102560 \pm 3.5 \cdot 10^{-6} \) | \(a_{221}= +0.87650520 \pm 2.9 \cdot 10^{-6} \) | \(a_{222}= -0.94291432 \pm 4.8 \cdot 10^{-6} \) |
| \(a_{223}= -0.97646300 \pm 2.6 \cdot 10^{-6} \) | \(a_{224}= +0.82523870 \pm 2.9 \cdot 10^{-6} \) | \(a_{225}= -0.49382588 \pm 3.3 \cdot 10^{-6} \) |
| \(a_{226}= +0.38888101 \pm 2.6 \cdot 10^{-6} \) | \(a_{227}= +0.05816895 \pm 3.3 \cdot 10^{-6} \) | \(a_{228}= -1.08265701 \pm 3.1 \cdot 10^{-6} \) |
| \(a_{229}= +0.95013531 \pm 2.9 \cdot 10^{-6} \) | \(a_{230}= -0.26798466 \pm 4.5 \cdot 10^{-6} \) | \(a_{231}= -0.36481215 \pm 2.4 \cdot 10^{-6} \) |
| \(a_{232}= -0.19748647 \pm 2.8 \cdot 10^{-6} \) | \(a_{233}= +0.97134153 \pm 2.3 \cdot 10^{-6} \) | \(a_{234}= +0.88773185 \pm 2.6 \cdot 10^{-6} \) |
| \(a_{235}= -0.70471969 \pm 2.4 \cdot 10^{-6} \) | \(a_{236}= -0.59164602 \pm 3.0 \cdot 10^{-6} \) | \(a_{237}= +1.85323996 \pm 2.9 \cdot 10^{-6} \) |
| \(a_{238}= +0.34074771 \pm 3.6 \cdot 10^{-6} \) | \(a_{239}= -0.03505129 \pm 2.5 \cdot 10^{-6} \) | \(a_{240}= -0.19541323 \pm 3.3 \cdot 10^{-6} \) |
| \(a_{241}= +0.99064892 \pm 2.7 \cdot 10^{-6} \) | \(a_{242}= -0.65107019 \pm 3.3 \cdot 10^{-6} \) | \(a_{243}= +1.20729964 \pm 2.1 \cdot 10^{-6} \) |
| \(a_{244}= +0.11832007 \pm 3.7 \cdot 10^{-6} \) | \(a_{245}= +0.06014624 \pm 2.6 \cdot 10^{-6} \) | \(a_{246}= +0.01112254 \pm 2.8 \cdot 10^{-6} \) |
| \(a_{247}= -2.90948724 \pm 2.1 \cdot 10^{-6} \) | \(a_{248}= -0.37740980 \pm 2.5 \cdot 10^{-6} \) | \(a_{249}= +1.44118951 \pm 2.3 \cdot 10^{-6} \) |
| \(a_{250}= +0.67282280 \pm 2.5 \cdot 10^{-6} \) | \(a_{251}= -0.03150918 \pm 2.9 \cdot 10^{-6} \) | \(a_{252}= -0.33389247 \pm 4.3 \cdot 10^{-6} \) |
| \(a_{253}= +0.19792770 \pm 3.2 \cdot 10^{-6} \) | \(a_{254}= +0.80664648 \pm 2.6 \cdot 10^{-6} \) | \(a_{255}= +0.37103853 \pm 3.3 \cdot 10^{-6} \) |
| \(a_{256}= -1.06002780 \pm 3.0 \cdot 10^{-6} \) | \(a_{257}= +0.67644638 \pm 3.2 \cdot 10^{-6} \) | \(a_{258}= -1.25975900 \pm 2.8 \cdot 10^{-6} \) |
| \(a_{259}= +0.95306522 \pm 2.7 \cdot 10^{-6} \) | \(a_{260}= +0.47656563 \pm 3.3 \cdot 10^{-6} \) | \(a_{261}= +0.13346709 \pm 3.0 \cdot 10^{-6} \) |
| \(a_{262}= -1.29142834 \pm 2.8 \cdot 10^{-6} \) | \(a_{263}= +0.58445548 \pm 2.5 \cdot 10^{-6} \) | \(a_{264}= +0.41068243 \pm 2.2 \cdot 10^{-6} \) |
| \(a_{265}= -0.01802167 \pm 2.8 \cdot 10^{-6} \) | \(a_{266}= -1.13108412 \pm 2.6 \cdot 10^{-6} \) | \(a_{267}= -1.59934602 \pm 3.3 \cdot 10^{-6} \) |
| \(a_{268}= -0.16515311 \pm 3.2 \cdot 10^{-6} \) | \(a_{269}= -1.07553024 \pm 2.9 \cdot 10^{-6} \) | \(a_{270}= -0.14705424 \pm 3.6 \cdot 10^{-6} \) |
| \(a_{271}= +0.65473179 \pm 2.7 \cdot 10^{-6} \) | \(a_{272}= -0.13480757 \pm 2.8 \cdot 10^{-6} \) | \(a_{273}= -2.14570373 \pm 3.1 \cdot 10^{-6} \) |
| \(a_{274}= +1.06791740 \pm 3.5 \cdot 10^{-6} \) | \(a_{275}= -0.20237881 \pm 2.5 \cdot 10^{-6} \) | \(a_{276}= +0.43319305 \pm 4.0 \cdot 10^{-6} \) |
| \(a_{277}= +0.80835740 \pm 2.8 \cdot 10^{-6} \) | \(a_{278}= -0.31287545 \pm 2.9 \cdot 10^{-6} \) | \(a_{279}= +0.25506450 \pm 2.6 \cdot 10^{-6} \) |
| \(a_{280}= +0.56203047 \pm 3.5 \cdot 10^{-6} \) | \(a_{281}= +0.21520964 \pm 2.9 \cdot 10^{-6} \) | \(a_{282}= -1.17744756 \pm 3.0 \cdot 10^{-6} \) |
| \(a_{283}= +1.00764922 \pm 2.4 \cdot 10^{-6} \) | \(a_{284}= +0.36417613 \pm 2.5 \cdot 10^{-6} \) | \(a_{285}= -1.23163202 \pm 3.2 \cdot 10^{-6} \) |
| \(a_{286}= +0.36380862 \pm 2.0 \cdot 10^{-6} \) | \(a_{287}= -0.01124228 \pm 2.6 \cdot 10^{-6} \) | \(a_{288}= +0.62784618 \pm 3.0 \cdot 10^{-6} \) |
| \(a_{289}= -0.74403575 \pm 2.6 \cdot 10^{-6} \) | \(a_{290}= -0.07405745 \pm 6.5 \cdot 10^{-6} \) | \(a_{291}= -0.17184162 \pm 3.2 \cdot 10^{-6} \) |
| \(a_{292}= -0.46126461 \pm 3.4 \cdot 10^{-6} \) | \(a_{293}= +0.09356363 \pm 3.0 \cdot 10^{-6} \) | \(a_{294}= +0.10049250 \pm 4.4 \cdot 10^{-6} \) |
| \(a_{295}= -0.67305728 \pm 2.4 \cdot 10^{-6} \) | \(a_{296}= -1.07290049 \pm 3.2 \cdot 10^{-6} \) | \(a_{297}= +0.10861110 \pm 2.7 \cdot 10^{-6} \) |
| \(a_{298}= +1.35699621 \pm 3.6 \cdot 10^{-6} \) | \(a_{299}= +1.16414492 \pm 2.0 \cdot 10^{-6} \) | \(a_{300}= -0.44293492 \pm 3.7 \cdot 10^{-6} \) |
| \(a_{301}= +1.27332088 \pm 2.1 \cdot 10^{-6} \) | \(a_{302}= -0.16737361 \pm 3.8 \cdot 10^{-6} \) | \(a_{303}= -1.48575854 \pm 3.8 \cdot 10^{-6} \) |
| \(a_{304}= +0.44748268 \pm 2.4 \cdot 10^{-6} \) | \(a_{305}= +0.13460107 \pm 3.1 \cdot 10^{-6} \) | \(a_{306}= +0.25924274 \pm 2.5 \cdot 10^{-6} \) |
| \(a_{307}= -0.20796418 \pm 2.5 \cdot 10^{-6} \) | \(a_{308}= -0.13683519 \pm 2.7 \cdot 10^{-6} \) | \(a_{309}= +1.21509820 \pm 3.2 \cdot 10^{-6} \) |
| \(a_{310}= -0.14152871 \pm 2.9 \cdot 10^{-6} \) | \(a_{311}= -0.31031239 \pm 3.0 \cdot 10^{-6} \) | \(a_{312}= +2.41549742 \pm 3.2 \cdot 10^{-6} \) |
| \(a_{313}= -1.42900072 \pm 2.6 \cdot 10^{-6} \) | \(a_{314}= +0.50223341 \pm 3.7 \cdot 10^{-6} \) | \(a_{315}= -0.37983651 \pm 2.9 \cdot 10^{-6} \) |
| \(a_{316}= +0.69512062 \pm 2.6 \cdot 10^{-6} \) | \(a_{317}= +0.29952726 \pm 2.7 \cdot 10^{-6} \) | \(a_{318}= -0.03011066 \pm 3.7 \cdot 10^{-6} \) |
| \(a_{319}= +0.05469724 \pm 2.8 \cdot 10^{-6} \) | \(a_{320}= -0.49743135 \pm 3.1 \cdot 10^{-6} \) | \(a_{321}= -0.00027559 \pm 3.1 \cdot 10^{-6} \) |
| \(a_{322}= +0.45256972 \pm 3.0 \cdot 10^{-6} \) | \(a_{323}= -0.84965236 \pm 2.6 \cdot 10^{-6} \) | \(a_{324}= +0.59114390 \pm 2.6 \cdot 10^{-6} \) |
| \(a_{325}= -1.19032482 \pm 2.3 \cdot 10^{-6} \) | \(a_{326}= +0.67992809 \pm 3.3 \cdot 10^{-6} \) | \(a_{327}= -1.59677126 \pm 3.1 \cdot 10^{-6} \) |
| \(a_{328}= +0.01265585 \pm 2.3 \cdot 10^{-6} \) | \(a_{329}= +1.19012332 \pm 2.2 \cdot 10^{-6} \) | \(a_{330}= +0.15400595 \pm 3.8 \cdot 10^{-6} \) |
| \(a_{331}= -0.44216063 \pm 3.1 \cdot 10^{-6} \) | \(a_{332}= +0.54056710 \pm 2.6 \cdot 10^{-6} \) | \(a_{333}= +0.72509730 \pm 3.3 \cdot 10^{-6} \) |
| \(a_{334}= +0.47724059 \pm 3.3 \cdot 10^{-6} \) | \(a_{335}= -0.18787839 \pm 3.0 \cdot 10^{-6} \) | \(a_{336}= +0.33001184 \pm 3.1 \cdot 10^{-6} \) |
| \(a_{337}= +0.72360926 \pm 2.6 \cdot 10^{-6} \) | \(a_{338}= +1.42687643 \pm 2.7 \cdot 10^{-6} \) | \(a_{339}= -0.71511907 \pm 2.0 \cdot 10^{-6} \) |
| \(a_{340}= +0.13917061 \pm 2.7 \cdot 10^{-6} \) | \(a_{341}= +0.10453006 \pm 2.3 \cdot 10^{-6} \) | \(a_{342}= -0.86053506 \pm 3.2 \cdot 10^{-6} \) |
| \(a_{343}= -1.04628657 \pm 3.0 \cdot 10^{-6} \) | \(a_{344}= -1.43342404 \pm 2.3 \cdot 10^{-6} \) | \(a_{345}= +0.49280098 \pm 3.7 \cdot 10^{-6} \) |
| \(a_{346}= -0.71961111 \pm 2.8 \cdot 10^{-6} \) | \(a_{347}= +1.33826413 \pm 2.4 \cdot 10^{-6} \) | \(a_{348}= +0.11971271 \pm 6.7 \cdot 10^{-6} \) |
| \(a_{349}= -0.21805767 \pm 2.4 \cdot 10^{-6} \) | \(a_{350}= -0.46274734 \pm 3.3 \cdot 10^{-6} \) | \(a_{351}= +0.63881435 \pm 2.5 \cdot 10^{-6} \) |
| \(a_{352}= +0.25730276 \pm 3.1 \cdot 10^{-6} \) | \(a_{353}= +1.35501852 \pm 3.2 \cdot 10^{-6} \) | \(a_{354}= -1.12454591 \pm 4.3 \cdot 10^{-6} \) |
| \(a_{355}= +0.41428723 \pm 2.3 \cdot 10^{-6} \) | \(a_{356}= -0.59988907 \pm 3.2 \cdot 10^{-6} \) | \(a_{357}= -0.62660602 \pm 3.0 \cdot 10^{-6} \) |
| \(a_{358}= +0.38763492 \pm 3.5 \cdot 10^{-6} \) | \(a_{359}= -0.84265453 \pm 2.2 \cdot 10^{-6} \) | \(a_{360}= +0.42759589 \pm 3.2 \cdot 10^{-6} \) |
| \(a_{361}= +1.82035143 \pm 2.3 \cdot 10^{-6} \) | \(a_{362}= -0.99553147 \pm 3.4 \cdot 10^{-6} \) | \(a_{363}= +1.19726264 \pm 2.8 \cdot 10^{-6} \) |
| \(a_{364}= -0.80481910 \pm 4.1 \cdot 10^{-6} \) | \(a_{365}= -0.52473522 \pm 3.1 \cdot 10^{-6} \) | \(a_{366}= +0.22489183 \pm 3.5 \cdot 10^{-6} \) |
| \(a_{367}= -1.42995139 \pm 3.2 \cdot 10^{-6} \) | \(a_{368}= -0.17904691 \pm 2.8 \cdot 10^{-6} \) | \(a_{369}= -0.00855319 \pm 2.1 \cdot 10^{-6} \) |
| \(a_{370}= -0.40233779 \pm 3.1 \cdot 10^{-6} \) | \(a_{371}= +0.03043481 \pm 2.6 \cdot 10^{-6} \) | \(a_{372}= +0.22877897 \pm 3.4 \cdot 10^{-6} \) |
| \(a_{373}= -1.58110422 \pm 2.8 \cdot 10^{-6} \) | \(a_{374}= +0.10624238 \pm 2.8 \cdot 10^{-6} \) | \(a_{375}= -1.23726384 \pm 3.3 \cdot 10^{-6} \) |
| \(a_{376}= -1.33976549 \pm 2.0 \cdot 10^{-6} \) | \(a_{377}= +0.32171095 \pm 2.6 \cdot 10^{-6} \) | \(a_{378}= +0.24834368 \pm 3.4 \cdot 10^{-6} \) |
| \(a_{379}= +0.25996117 \pm 2.8 \cdot 10^{-6} \) | \(a_{380}= -0.46196544 \pm 2.8 \cdot 10^{-6} \) | \(a_{381}= -1.48335421 \pm 2.7 \cdot 10^{-6} \) |
| \(a_{382}= -1.26598893 \pm 3.6 \cdot 10^{-6} \) | \(a_{383}= -1.07963284 \pm 2.7 \cdot 10^{-6} \) | \(a_{384}= +0.31410117 \pm 3.4 \cdot 10^{-6} \) |
| \(a_{385}= -0.15566389 \pm 2.5 \cdot 10^{-6} \) | \(a_{386}= -0.82711264 \pm 2.9 \cdot 10^{-6} \) | \(a_{387}= +0.96874958 \pm 2.4 \cdot 10^{-6} \) |
| \(a_{388}= -0.06445504 \pm 3.5 \cdot 10^{-6} \) | \(a_{389}= +1.06143438 \pm 2.9 \cdot 10^{-6} \) | \(a_{390}= +0.90581177 \pm 2.7 \cdot 10^{-6} \) |
| \(a_{391}= +0.33996316 \pm 2.6 \cdot 10^{-6} \) | \(a_{392}= +0.11434598 \pm 3.0 \cdot 10^{-6} \) | \(a_{393}= +2.37482676 \pm 2.2 \cdot 10^{-6} \) |
| \(a_{394}= +1.13386236 \pm 4.0 \cdot 10^{-6} \) | \(a_{395}= +0.79077012 \pm 2.9 \cdot 10^{-6} \) | \(a_{396}= -0.10410497 \pm 3.8 \cdot 10^{-6} \) |
| \(a_{397}= -0.99170617 \pm 2.5 \cdot 10^{-6} \) | \(a_{398}= -1.15810535 \pm 3.3 \cdot 10^{-6} \) | \(a_{399}= +2.07996739 \pm 2.4 \cdot 10^{-6} \) |
| \(a_{400}= +0.18307340 \pm 2.3 \cdot 10^{-6} \) | \(a_{401}= +0.10350428 \pm 2.6 \cdot 10^{-6} \) | \(a_{402}= -0.31390772 \pm 3.0 \cdot 10^{-6} \) |
| \(a_{403}= +0.61481105 \pm 1.8 \cdot 10^{-6} \) | \(a_{404}= -0.55728423 \pm 2.9 \cdot 10^{-6} \) | \(a_{405}= +0.67248607 \pm 2.4 \cdot 10^{-6} \) |
| \(a_{406}= +0.12506745 \pm 6.3 \cdot 10^{-6} \) | \(a_{407}= +0.29715803 \pm 2.9 \cdot 10^{-6} \) | \(a_{408}= +0.70539340 \pm 2.4 \cdot 10^{-6} \) |
| \(a_{409}= -0.81410427 \pm 2.7 \cdot 10^{-6} \) | \(a_{410}= +0.00474595 \pm 3.8 \cdot 10^{-6} \) | \(a_{411}= -1.96380918 \pm 3.7 \cdot 10^{-6} \) |
| \(a_{412}= +0.45576387 \pm 3.2 \cdot 10^{-6} \) | \(a_{413}= +1.13665216 \pm 2.5 \cdot 10^{-6} \) | \(a_{414}= +0.34431755 \pm 4.2 \cdot 10^{-6} \) |
| \(a_{415}= +0.61494983 \pm 2.4 \cdot 10^{-6} \) | \(a_{416}= +1.51336923 \pm 3.0 \cdot 10^{-6} \) | \(a_{417}= +0.57535132 \pm 3.4 \cdot 10^{-6} \) |
| \(a_{418}= -0.35266289 \pm 2.3 \cdot 10^{-6} \) | \(a_{419}= -0.49937503 \pm 2.7 \cdot 10^{-6} \) | \(a_{420}= -0.34069267 \pm 3.0 \cdot 10^{-6} \) |
| \(a_{421}= +1.00467645 \pm 2.6 \cdot 10^{-6} \) | \(a_{422}= +0.98251869 \pm 3.5 \cdot 10^{-6} \) | \(a_{423}= +0.90545241 \pm 2.7 \cdot 10^{-6} \) |
| \(a_{424}= -0.03426159 \pm 2.3 \cdot 10^{-6} \) | \(a_{425}= -0.34760843 \pm 2.7 \cdot 10^{-6} \) | \(a_{426}= +0.69219222 \pm 2.8 \cdot 10^{-6} \) |
| \(a_{427}= -0.22731289 \pm 3.2 \cdot 10^{-6} \) | \(a_{428}= -0.00010337 \pm 3.5 \cdot 10^{-6} \) | \(a_{429}= -0.66901308 \pm 2.4 \cdot 10^{-6} \) |
| \(a_{430}= -0.53753416 \pm 3.8 \cdot 10^{-6} \) | \(a_{431}= -0.53146177 \pm 2.7 \cdot 10^{-6} \) | \(a_{432}= -0.09825042 \pm 3.0 \cdot 10^{-6} \) |
| \(a_{433}= -0.78812087 \pm 2.6 \cdot 10^{-6} \) | \(a_{434}= +0.23901222 \pm 3.3 \cdot 10^{-6} \) | \(a_{435}= +0.13618534 \pm 6.3 \cdot 10^{-6} \) |
| \(a_{436}= -0.59892332 \pm 3.4 \cdot 10^{-6} \) | \(a_{437}= -1.12847987 \pm 2.6 \cdot 10^{-6} \) | \(a_{438}= -0.87672901 \pm 3.6 \cdot 10^{-6} \) |
| \(a_{439}= +0.43399853 \pm 3.0 \cdot 10^{-6} \) | \(a_{440}= +0.17523656 \pm 2.4 \cdot 10^{-6} \) | \(a_{441}= -0.07727833 \pm 3.1 \cdot 10^{-6} \) |
| \(a_{442}= +0.62488235 \pm 2.4 \cdot 10^{-6} \) | \(a_{443}= +1.02003168 \pm 2.9 \cdot 10^{-6} \) | \(a_{444}= +0.65037280 \pm 4.7 \cdot 10^{-6} \) |
| \(a_{445}= -0.68243458 \pm 2.5 \cdot 10^{-6} \) | \(a_{446}= -0.69614475 \pm 3.3 \cdot 10^{-6} \) | \(a_{447}= -2.49540050 \pm 3.8 \cdot 10^{-6} \) |
| \(a_{448}= +0.84005691 \pm 3.2 \cdot 10^{-6} \) | \(a_{449}= +1.61110759 \pm 2.5 \cdot 10^{-6} \) | \(a_{450}= -0.35206074 \pm 3.6 \cdot 10^{-6} \) |
| \(a_{451}= -0.00350525 \pm 2.1 \cdot 10^{-6} \) | \(a_{452}= -0.26822971 \pm 2.3 \cdot 10^{-6} \) | \(a_{453}= +0.30778581 \pm 3.7 \cdot 10^{-6} \) |
| \(a_{454}= +0.04147009 \pm 3.4 \cdot 10^{-6} \) | \(a_{455}= -0.91556324 \pm 3.0 \cdot 10^{-6} \) | \(a_{456}= -2.34149561 \pm 2.8 \cdot 10^{-6} \) |
| \(a_{457}= -1.36293998 \pm 2.7 \cdot 10^{-6} \) | \(a_{458}= +0.67737508 \pm 3.9 \cdot 10^{-6} \) | \(a_{459}= +0.18655181 \pm 2.7 \cdot 10^{-6} \) |
| \(a_{460}= +0.18484175 \pm 4.2 \cdot 10^{-6} \) | \(a_{461}= -0.82134541 \pm 2.6 \cdot 10^{-6} \) | \(a_{462}= -0.26008365 \pm 2.8 \cdot 10^{-6} \) |
| \(a_{463}= +1.12720099 \pm 2.8 \cdot 10^{-6} \) | \(a_{464}= -0.04947954 \pm 2.9 \cdot 10^{-6} \) | \(a_{465}= +0.26025925 \pm 2.9 \cdot 10^{-6} \) |
| \(a_{466}= +0.69249353 \pm 2.8 \cdot 10^{-6} \) | \(a_{467}= +0.05364747 \pm 2.7 \cdot 10^{-6} \) | \(a_{468}= -0.61231083 \pm 2.9 \cdot 10^{-6} \) |
| \(a_{469}= +0.31728708 \pm 2.3 \cdot 10^{-6} \) | \(a_{470}= -0.50241219 \pm 2.7 \cdot 10^{-6} \) | \(a_{471}= -0.92356448 \pm 2.8 \cdot 10^{-6} \) |
| \(a_{472}= -1.27957105 \pm 2.4 \cdot 10^{-6} \) | \(a_{473}= +0.39701116 \pm 2.7 \cdot 10^{-6} \) | \(a_{474}= +1.32122084 \pm 3.1 \cdot 10^{-6} \) |
| \(a_{475}= +1.15385771 \pm 2.4 \cdot 10^{-6} \) | \(a_{476}= -0.23502988 \pm 3.4 \cdot 10^{-6} \) | \(a_{477}= +0.02315498 \pm 2.5 \cdot 10^{-6} \) |
| \(a_{478}= -0.02498894 \pm 2.4 \cdot 10^{-6} \) | \(a_{479}= +1.88328566 \pm 3.1 \cdot 10^{-6} \) | \(a_{480}= +0.64063316 \pm 3.1 \cdot 10^{-6} \) |
| \(a_{481}= +1.74778471 \pm 2.6 \cdot 10^{-6} \) | \(a_{482}= +0.70625824 \pm 2.7 \cdot 10^{-6} \) | \(a_{483}= -0.83223719 \pm 2.4 \cdot 10^{-6} \) |
| \(a_{484}= +0.44907404 \pm 3.2 \cdot 10^{-6} \) | \(a_{485}= -0.07332414 \pm 2.6 \cdot 10^{-6} \) | \(a_{486}= +0.86071393 \pm 2.6 \cdot 10^{-6} \) |
| \(a_{487}= -1.51829216 \pm 3.1 \cdot 10^{-6} \) | \(a_{488}= +0.25589446 \pm 3.3 \cdot 10^{-6} \) | \(a_{489}= -1.25032987 \pm 2.5 \cdot 10^{-6} \) |
| \(a_{490}= +0.04287975 \pm 3.7 \cdot 10^{-6} \) | \(a_{491}= +1.02229857 \pm 3.1 \cdot 10^{-6} \) | \(a_{492}= -0.00767175 \pm 2.7 \cdot 10^{-6} \) |
| \(a_{493}= +0.09394867 \pm 3.0 \cdot 10^{-6} \) | \(a_{494}= -2.07424578 \pm 1.9 \cdot 10^{-6} \) | \(a_{495}= -0.11842995 \pm 2.9 \cdot 10^{-6} \) |
| \(a_{496}= -0.09455869 \pm 3.0 \cdot 10^{-6} \) | \(a_{497}= -0.69964399 \pm 2.5 \cdot 10^{-6} \) | \(a_{498}= +1.02745983 \pm 2.3 \cdot 10^{-6} \) |
| \(a_{499}= -0.74903955 \pm 2.6 \cdot 10^{-6} \) | \(a_{500}= -0.46407785 \pm 2.8 \cdot 10^{-6} \) | \(a_{501}= -0.87760482 \pm 2.9 \cdot 10^{-6} \) |
| \(a_{502}= -0.02246368 \pm 3.3 \cdot 10^{-6} \) | \(a_{503}= +0.31061991 \pm 2.6 \cdot 10^{-6} \) | \(a_{504}= -0.72211952 \pm 3.4 \cdot 10^{-6} \) |
| \(a_{505}= -0.63396726 \pm 3.0 \cdot 10^{-6} \) | \(a_{506}= +0.14110758 \pm 4.5 \cdot 10^{-6} \) | \(a_{507}= -2.62390428 \pm 3.1 \cdot 10^{-6} \) |
| \(a_{508}= -0.55638240 \pm 2.9 \cdot 10^{-6} \) | \(a_{509}= -0.60885968 \pm 2.3 \cdot 10^{-6} \) | \(a_{510}= +0.26452259 \pm 2.9 \cdot 10^{-6} \) |
| \(a_{511}= +0.88616740 \pm 2.6 \cdot 10^{-6} \) | \(a_{512}= -0.51613266 \pm 2.5 \cdot 10^{-6} \) | \(a_{513}= -0.61924347 \pm 2.3 \cdot 10^{-6} \) |
| \(a_{514}= +0.48225544 \pm 3.8 \cdot 10^{-6} \) | \(a_{515}= +0.51847757 \pm 1.9 \cdot 10^{-6} \) | \(a_{516}= +0.86891563 \pm 3.2 \cdot 10^{-6} \) |
| \(a_{517}= +0.37107083 \pm 2.5 \cdot 10^{-6} \) | \(a_{518}= +0.67946389 \pm 4.0 \cdot 10^{-6} \) | \(a_{519}= +1.32330356 \pm 2.3 \cdot 10^{-6} \) |
| \(a_{520}= +1.03068314 \pm 3.3 \cdot 10^{-6} \) | \(a_{521}= +1.10257325 \pm 2.8 \cdot 10^{-6} \) | \(a_{522}= +0.09515201 \pm 6.4 \cdot 10^{-6} \) |
| \(a_{523}= -1.13542953 \pm 2.9 \cdot 10^{-6} \) | \(a_{524}= +0.89075948 \pm 2.4 \cdot 10^{-6} \) | \(a_{525}= +0.85095297 \pm 2.7 \cdot 10^{-6} \) |
| \(a_{526}= +0.41667284 \pm 3.0 \cdot 10^{-6} \) | \(a_{527}= +0.17954217 \pm 2.9 \cdot 10^{-6} \) | \(a_{528}= +0.10289503 \pm 2.8 \cdot 10^{-6} \) |
| \(a_{529}= -0.54847229 \pm 2.9 \cdot 10^{-6} \) | \(a_{530}= -0.01284810 \pm 3.6 \cdot 10^{-6} \) | \(a_{531}= +0.86477126 \pm 2.9 \cdot 10^{-6} \) |
| \(a_{532}= +0.78016245 \pm 2.2 \cdot 10^{-6} \) | \(a_{533}= -0.02061673 \pm 2.1 \cdot 10^{-6} \) | \(a_{534}= -1.14021354 \pm 4.2 \cdot 10^{-6} \) |
| \(a_{535}= -0.00011760 \pm 2.6 \cdot 10^{-6} \) | \(a_{536}= -0.35718170 \pm 2.5 \cdot 10^{-6} \) | \(a_{537}= -0.71282761 \pm 3.4 \cdot 10^{-6} \) |
| \(a_{538}= -0.76677225 \pm 3.2 \cdot 10^{-6} \) | \(a_{539}= -0.03167006 \pm 2.3 \cdot 10^{-6} \) | \(a_{540}= +0.10143030 \pm 3.7 \cdot 10^{-6} \) |
| \(a_{541}= +1.67383802 \pm 2.8 \cdot 10^{-6} \) | \(a_{542}= +0.46677457 \pm 3.1 \cdot 10^{-6} \) | \(a_{543}= +1.83069762 \pm 3.0 \cdot 10^{-6} \) |
| \(a_{544}= +0.44194651 \pm 2.5 \cdot 10^{-6} \) | \(a_{545}= -0.68133595 \pm 2.9 \cdot 10^{-6} \) | \(a_{546}= -1.52972553 \pm 3.6 \cdot 10^{-6} \) |
| \(a_{547}= +0.62791706 \pm 2.5 \cdot 10^{-6} \) | \(a_{548}= -0.73659336 \pm 3.4 \cdot 10^{-6} \) | \(a_{549}= -0.17294091 \pm 2.8 \cdot 10^{-6} \) |
| \(a_{550}= -0.14428088 \pm 3.4 \cdot 10^{-6} \) | \(a_{551}= -0.31185493 \pm 2.4 \cdot 10^{-6} \) | \(a_{552}= +0.93687994 \pm 3.2 \cdot 10^{-6} \) |
| \(a_{553}= -1.33544438 \pm 2.6 \cdot 10^{-6} \) | \(a_{554}= +0.57629808 \pm 3.4 \cdot 10^{-6} \) | \(a_{555}= +0.73986494 \pm 2.6 \cdot 10^{-6} \) |
| \(a_{556}= +0.21580506 \pm 3.3 \cdot 10^{-6} \) | \(a_{557}= -1.47530421 \pm 3.1 \cdot 10^{-6} \) | \(a_{558}= +0.18184182 \pm 3.4 \cdot 10^{-6} \) |
| \(a_{559}= +2.33508758 \pm 2.4 \cdot 10^{-6} \) | \(a_{560}= +0.14081474 \pm 3.3 \cdot 10^{-6} \) | \(a_{561}= -0.19537069 \pm 2.2 \cdot 10^{-6} \) |
| \(a_{562}= +0.15342830 \pm 4.0 \cdot 10^{-6} \) | \(a_{563}= -1.49810640 \pm 3.5 \cdot 10^{-6} \) | \(a_{564}= +0.81214152 \pm 2.8 \cdot 10^{-6} \) |
| \(a_{565}= -0.30513846 \pm 2.4 \cdot 10^{-6} \) | \(a_{566}= +0.71837818 \pm 2.9 \cdot 10^{-6} \) | \(a_{567}= -1.13568750 \pm 2.2 \cdot 10^{-6} \) |
| \(a_{568}= +0.78761491 \pm 2.3 \cdot 10^{-6} \) | \(a_{569}= -0.30728849 \pm 3.1 \cdot 10^{-6} \) | \(a_{570}= -0.87806108 \pm 3.8 \cdot 10^{-6} \) |
| \(a_{571}= -1.27598828 \pm 3.1 \cdot 10^{-6} \) | \(a_{572}= -0.25093609 \pm 2.2 \cdot 10^{-6} \) | \(a_{573}= +2.32804585 \pm 2.4 \cdot 10^{-6} \) |
| \(a_{574}= -0.00801490 \pm 3.5 \cdot 10^{-6} \) | \(a_{575}= -0.46168190 \pm 2.9 \cdot 10^{-6} \) | \(a_{576}= +0.63911995 \pm 3.2 \cdot 10^{-6} \) |
| \(a_{577}= +1.40627785 \pm 2.8 \cdot 10^{-6} \) | \(a_{578}= -0.53044159 \pm 3.0 \cdot 10^{-6} \) | \(a_{579}= +1.52098973 \pm 3.1 \cdot 10^{-6} \) |
| \(a_{580}= +0.05108094 \pm 6.5 \cdot 10^{-6} \) | \(a_{581}= -1.03852090 \pm 2.4 \cdot 10^{-6} \) | \(a_{582}= -0.12251017 \pm 4.2 \cdot 10^{-6} \) |
| \(a_{583}= +0.00948933 \pm 2.5 \cdot 10^{-6} \) | \(a_{584}= -0.99759116 \pm 2.9 \cdot 10^{-6} \) | \(a_{585}= -0.69656559 \pm 2.6 \cdot 10^{-6} \) |
| \(a_{586}= +0.06670383 \pm 3.6 \cdot 10^{-6} \) | \(a_{587}= -0.84319333 \pm 3.0 \cdot 10^{-6} \) | \(a_{588}= -0.06931445 \pm 4.7 \cdot 10^{-6} \) |
| \(a_{589}= -0.59597553 \pm 2.4 \cdot 10^{-6} \) | \(a_{590}= -0.47983927 \pm 2.7 \cdot 10^{-6} \) | \(a_{591}= -2.08507633 \pm 3.3 \cdot 10^{-6} \) |
| \(a_{592}= -0.26881141 \pm 3.2 \cdot 10^{-6} \) | \(a_{593}= -0.09443260 \pm 2.6 \cdot 10^{-6} \) | \(a_{594}= +0.07743155 \pm 3.6 \cdot 10^{-6} \) |
| \(a_{595}= -0.26737030 \pm 3.0 \cdot 10^{-6} \) | \(a_{596}= -0.93598475 \pm 3.9 \cdot 10^{-6} \) | \(a_{597}= +2.12965713 \pm 3.1 \cdot 10^{-6} \) |
| \(a_{598}= +0.82994786 \pm 2.4 \cdot 10^{-6} \) | \(a_{599}= -0.10775354 \pm 3.0 \cdot 10^{-6} \) | \(a_{600}= -0.95794898 \pm 2.9 \cdot 10^{-6} \) |
| \(a_{601}= -1.05873855 \pm 2.7 \cdot 10^{-6} \) | \(a_{602}= +0.90778211 \pm 2.6 \cdot 10^{-6} \) | \(a_{603}= +0.24139376 \pm 2.2 \cdot 10^{-6} \) |
| \(a_{604}= +0.11544553 \pm 3.5 \cdot 10^{-6} \) | \(a_{605}= +0.51086720 \pm 2.6 \cdot 10^{-6} \) | \(a_{606}= -1.05923420 \pm 4.3 \cdot 10^{-6} \) |
| \(a_{607}= -1.24192765 \pm 2.6 \cdot 10^{-6} \) | \(a_{608}= -1.46700526 \pm 2.2 \cdot 10^{-6} \) | \(a_{609}= -0.22998839 \pm 6.1 \cdot 10^{-6} \) |
| \(a_{610}= +0.09596045 \pm 4.1 \cdot 10^{-6} \) | \(a_{611}= +2.18251520 \pm 1.7 \cdot 10^{-6} \) | \(a_{612}= -0.17881204 \pm 2.6 \cdot 10^{-6} \) |
| \(a_{613}= -0.34780902 \pm 2.8 \cdot 10^{-6} \) | \(a_{614}= -0.14826284 \pm 2.9 \cdot 10^{-6} \) | \(a_{615}= -0.00872739 \pm 2.6 \cdot 10^{-6} \) |
| \(a_{616}= -0.29593768 \pm 1.8 \cdot 10^{-6} \) | \(a_{617}= -0.00506025 \pm 2.9 \cdot 10^{-6} \) | \(a_{618}= +0.86627371 \pm 4.2 \cdot 10^{-6} \) |
| \(a_{619}= -0.72517274 \pm 2.5 \cdot 10^{-6} \) | \(a_{620}= +0.09761908 \pm 2.4 \cdot 10^{-6} \) | \(a_{621}= +0.24777189 \pm 3.1 \cdot 10^{-6} \) |
| \(a_{622}= -0.22122942 \pm 3.7 \cdot 10^{-6} \) | \(a_{623}= +1.15248845 \pm 2.5 \cdot 10^{-6} \) | \(a_{624}= +0.60519431 \pm 3.2 \cdot 10^{-6} \) |
| \(a_{625}= +0.15913390 \pm 2.6 \cdot 10^{-6} \) | \(a_{626}= -1.01877014 \pm 3.1 \cdot 10^{-6} \) | \(a_{627}= +0.64851702 \pm 2.4 \cdot 10^{-6} \) |
| \(a_{628}= -0.34641424 \pm 3.6 \cdot 10^{-6} \) | \(a_{629}= +0.51040244 \pm 2.4 \cdot 10^{-6} \) | \(a_{630}= -0.27079489 \pm 3.6 \cdot 10^{-6} \) |
| \(a_{631}= -0.21586148 \pm 2.7 \cdot 10^{-6} \) | \(a_{632}= +1.50335874 \pm 2.3 \cdot 10^{-6} \) | \(a_{633}= -1.80676823 \pm 3.3 \cdot 10^{-6} \) |
| \(a_{634}= +0.21354043 \pm 3.1 \cdot 10^{-6} \) | \(a_{635}= -0.63294134 \pm 2.3 \cdot 10^{-6} \) | \(a_{636}= +0.02076875 \pm 3.6 \cdot 10^{-6} \) |
| \(a_{637}= -0.18627277 \pm 2.1 \cdot 10^{-6} \) | \(a_{638}= +0.03899502 \pm 6.2 \cdot 10^{-6} \) | \(a_{639}= -0.53229302 \pm 2.5 \cdot 10^{-6} \) |
| \(a_{640}= +0.13402572 \pm 3.4 \cdot 10^{-6} \) | \(a_{641}= +1.08859531 \pm 2.8 \cdot 10^{-6} \) | \(a_{642}= -0.00019648 \pm 4.5 \cdot 10^{-6} \) |
| \(a_{643}= +1.22331834 \pm 2.6 \cdot 10^{-6} \) | \(a_{644}= -0.31215884 \pm 2.4 \cdot 10^{-6} \) | \(a_{645}= +0.98847955 \pm 3.2 \cdot 10^{-6} \) |
| \(a_{646}= -0.60573829 \pm 2.3 \cdot 10^{-6} \) | \(a_{647}= +0.35438448 \pm 3.2 \cdot 10^{-6} \) | \(a_{648}= +1.27848509 \pm 2.4 \cdot 10^{-6} \) |
| \(a_{649}= +0.35439896 \pm 2.5 \cdot 10^{-6} \) | \(a_{650}= -0.84861215 \pm 2.6 \cdot 10^{-6} \) | \(a_{651}= -0.43952313 \pm 2.6 \cdot 10^{-6} \) |
| \(a_{652}= -0.46897871 \pm 3.7 \cdot 10^{-6} \) | \(a_{653}= +0.53039332 \pm 2.7 \cdot 10^{-6} \) | \(a_{654}= -1.13837793 \pm 3.2 \cdot 10^{-6} \) |
| \(a_{655}= +1.01332913 \pm 2.6 \cdot 10^{-6} \) | \(a_{656}= +0.00317088 \pm 2.7 \cdot 10^{-6} \) | \(a_{657}= +0.67420106 \pm 2.8 \cdot 10^{-6} \) |
| \(a_{658}= +0.84846850 \pm 2.5 \cdot 10^{-6} \) | \(a_{659}= -0.28400906 \pm 2.8 \cdot 10^{-6} \) | \(a_{660}= -0.10622522 \pm 3.5 \cdot 10^{-6} \) |
| \(a_{661}= +0.34125605 \pm 2.8 \cdot 10^{-6} \) | \(a_{662}= -0.31522730 \pm 3.9 \cdot 10^{-6} \) | \(a_{663}= -1.14910543 \pm 3.2 \cdot 10^{-6} \) |
| \(a_{664}= +1.16910109 \pm 2.4 \cdot 10^{-6} \) | \(a_{665}= +0.88751381 \pm 2.6 \cdot 10^{-6} \) | \(a_{666}= +0.51693989 \pm 4.8 \cdot 10^{-6} \) |
| \(a_{667}= +0.12477949 \pm 2.9 \cdot 10^{-6} \) | \(a_{668}= -0.32917551 \pm 3.2 \cdot 10^{-6} \) | \(a_{669}= +1.28015092 \pm 3.3 \cdot 10^{-6} \) |
| \(a_{670}= -0.13394317 \pm 4.0 \cdot 10^{-6} \) | \(a_{671}= -0.07087432 \pm 2.5 \cdot 10^{-6} \) | \(a_{672}= -1.08189464 \pm 2.9 \cdot 10^{-6} \) |
| \(a_{673}= -0.70346078 \pm 3.4 \cdot 10^{-6} \) | \(a_{674}= +0.51587903 \pm 3.3 \cdot 10^{-6} \) | \(a_{675}= -0.25334391 \pm 3.0 \cdot 10^{-6} \) |
| \(a_{676}= -0.98418446 \pm 3.0 \cdot 10^{-6} \) | \(a_{677}= +0.54543823 \pm 2.4 \cdot 10^{-6} \) | \(a_{678}= -0.50982616 \pm 2.2 \cdot 10^{-6} \) |
| \(a_{679}= +0.12382904 \pm 2.8 \cdot 10^{-6} \) | \(a_{680}= +0.30098856 \pm 2.4 \cdot 10^{-6} \) | \(a_{681}= -0.07625996 \pm 3.6 \cdot 10^{-6} \) |
| \(a_{682}= +0.07452208 \pm 3.0 \cdot 10^{-6} \) | \(a_{683}= +1.75947687 \pm 2.4 \cdot 10^{-6} \) | \(a_{684}= +0.59355191 \pm 3.2 \cdot 10^{-6} \) |
| \(a_{685}= -0.83794956 \pm 2.5 \cdot 10^{-6} \) | \(a_{686}= -0.74592370 \pm 3.8 \cdot 10^{-6} \) | \(a_{687}= -1.24563510 \pm 3.5 \cdot 10^{-6} \) |
| \(a_{688}= -0.35913931 \pm 2.1 \cdot 10^{-6} \) | \(a_{689}= +0.05581308 \pm 2.6 \cdot 10^{-6} \) | \(a_{690}= +0.35133007 \pm 4.9 \cdot 10^{-6} \) |
| \(a_{691}= +0.52206565 \pm 2.6 \cdot 10^{-6} \) | \(a_{692}= +0.49634997 \pm 2.7 \cdot 10^{-6} \) | \(a_{693}= +0.20000328 \pm 2.6 \cdot 10^{-6} \) |
| \(a_{694}= +0.95408177 \pm 3.2 \cdot 10^{-6} \) | \(a_{695}= +0.24550012 \pm 3.0 \cdot 10^{-6} \) | \(a_{696}= +0.25890637 \pm 6.1 \cdot 10^{-6} \) |
| \(a_{697}= -0.00602067 \pm 3.1 \cdot 10^{-6} \) | \(a_{698}= -0.15545873 \pm 2.9 \cdot 10^{-6} \) | \(a_{699}= -1.27343663 \pm 2.7 \cdot 10^{-6} \) |
| \(a_{700}= +0.31917883 \pm 3.4 \cdot 10^{-6} \) | \(a_{701}= +1.04628690 \pm 2.7 \cdot 10^{-6} \) | \(a_{702}= +0.45542663 \pm 2.8 \cdot 10^{-6} \) |
| \(a_{703}= -1.69423912 \pm 2.0 \cdot 10^{-6} \) | \(a_{704}= +0.26192295 \pm 3.1 \cdot 10^{-6} \) | \(a_{705}= +0.92389324 \pm 2.9 \cdot 10^{-6} \) |
| \(a_{706}= +0.96602639 \pm 4.1 \cdot 10^{-6} \) | \(a_{707}= +1.07063733 \pm 2.4 \cdot 10^{-6} \) | \(a_{708}= +0.77565274 \pm 4.1 \cdot 10^{-6} \) |
| \(a_{709}= -0.50835439 \pm 3.0 \cdot 10^{-6} \) | \(a_{710}= +0.29535567 \pm 2.3 \cdot 10^{-6} \) | \(a_{711}= -1.01601348 \pm 2.5 \cdot 10^{-6} \) |
| \(a_{712}= -1.29739854 \pm 2.8 \cdot 10^{-6} \) | \(a_{713}= +0.23846191 \pm 2.7 \cdot 10^{-6} \) | \(a_{714}= -0.44672301 \pm 3.7 \cdot 10^{-6} \) |
| \(a_{715}= -0.28546522 \pm 2.2 \cdot 10^{-6} \) | \(a_{716}= -0.26737022 \pm 3.1 \cdot 10^{-6} \) | \(a_{717}= +0.04595253 \pm 3.2 \cdot 10^{-6} \) |
| \(a_{718}= -0.60074937 \pm 3.0 \cdot 10^{-6} \) | \(a_{719}= -1.47925385 \pm 2.4 \cdot 10^{-6} \) | \(a_{720}= +0.10713263 \pm 2.8 \cdot 10^{-6} \) |
| \(a_{721}= -0.87559955 \pm 2.5 \cdot 10^{-6} \) | \(a_{722}= +1.29777379 \pm 3.0 \cdot 10^{-6} \) | \(a_{723}= -1.29874878 \pm 3.2 \cdot 10^{-6} \) |
| \(a_{724}= +0.68666535 \pm 3.6 \cdot 10^{-6} \) | \(a_{725}= -0.12758560 \pm 2.8 \cdot 10^{-6} \) | \(a_{726}= +0.85355830 \pm 3.7 \cdot 10^{-6} \) |
| \(a_{727}= -1.92618291 \pm 2.5 \cdot 10^{-6} \) | \(a_{728}= -1.74060701 \pm 3.8 \cdot 10^{-6} \) | \(a_{729}= -0.38062782 \pm 3.0 \cdot 10^{-6} \) |
| \(a_{730}= -0.37409678 \pm 3.8 \cdot 10^{-6} \) | \(a_{731}= +0.68191145 \pm 2.5 \cdot 10^{-6} \) | \(a_{732}= -0.15511858 \pm 3.7 \cdot 10^{-6} \) |
| \(a_{733}= -0.83324272 \pm 3.3 \cdot 10^{-6} \) | \(a_{734}= -1.01944790 \pm 3.2 \cdot 10^{-6} \) | \(a_{735}= -0.07885221 \pm 2.3 \cdot 10^{-6} \) |
| \(a_{736}= +0.58697859 \pm 3.2 \cdot 10^{-6} \) | \(a_{737}= +0.09892755 \pm 2.6 \cdot 10^{-6} \) | \(a_{738}= -0.00609778 \pm 2.8 \cdot 10^{-6} \) |
| \(a_{739}= -1.04003377 \pm 3.0 \cdot 10^{-6} \) | \(a_{740}= +0.27751149 \pm 3.1 \cdot 10^{-6} \) | \(a_{741}= +3.81436139 \pm 2.3 \cdot 10^{-6} \) |
| \(a_{742}= +0.02169774 \pm 3.3 \cdot 10^{-6} \) | \(a_{743}= -0.91499951 \pm 2.6 \cdot 10^{-6} \) | \(a_{744}= +0.49478731 \pm 2.7 \cdot 10^{-6} \) |
| \(a_{745}= -1.06477747 \pm 3.1 \cdot 10^{-6} \) | \(a_{746}= -1.12720850 \pm 3.3 \cdot 10^{-6} \) | \(a_{747}= -0.79011246 \pm 2.0 \cdot 10^{-6} \) |
| \(a_{748}= -0.07328042 \pm 2.5 \cdot 10^{-6} \) | \(a_{749}= +0.00019859 \pm 3.1 \cdot 10^{-6} \) | \(a_{750}= -0.88207615 \pm 2.8 \cdot 10^{-6} \) |
| \(a_{751}= -0.11662661 \pm 3.0 \cdot 10^{-6} \) | \(a_{752}= -0.33567349 \pm 2.4 \cdot 10^{-6} \) | \(a_{753}= +0.04130879 \pm 3.2 \cdot 10^{-6} \) |
| \(a_{754}= +0.22935573 \pm 6.1 \cdot 10^{-6} \) | \(a_{755}= +0.13133098 \pm 3.1 \cdot 10^{-6} \) | \(a_{756}= -0.17129443 \pm 3.4 \cdot 10^{-6} \) |
| \(a_{757}= +1.07952398 \pm 1.9 \cdot 10^{-6} \) | \(a_{758}= +0.18533278 \pm 3.4 \cdot 10^{-6} \) | \(a_{759}= -0.25948483 \pm 3.6 \cdot 10^{-6} \) |
| \(a_{760}= -0.99910686 \pm 2.8 \cdot 10^{-6} \) | \(a_{761}= +0.73641654 \pm 2.2 \cdot 10^{-6} \) | \(a_{762}= -1.05752009 \pm 2.9 \cdot 10^{-6} \) |
| \(a_{763}= +1.15063309 \pm 2.9 \cdot 10^{-6} \) | \(a_{764}= +0.87321270 \pm 3.2 \cdot 10^{-6} \) | \(a_{765}= -0.20341680 \pm 2.4 \cdot 10^{-6} \) |
| \(a_{766}= -0.76969709 \pm 3.4 \cdot 10^{-6} \) | \(a_{767}= +2.08445678 \pm 2.1 \cdot 10^{-6} \) | \(a_{768}= +1.38970505 \pm 3.4 \cdot 10^{-6} \) |
| \(a_{769}= +0.62645944 \pm 2.5 \cdot 10^{-6} \) | \(a_{770}= -0.11097666 \pm 3.3 \cdot 10^{-6} \) | \(a_{771}= -0.88682669 \pm 3.9 \cdot 10^{-6} \) |
| \(a_{772}= +0.57049888 \pm 3.1 \cdot 10^{-6} \) | \(a_{773}= +0.52526962 \pm 3.3 \cdot 10^{-6} \) | \(a_{774}= +0.69064566 \pm 2.6 \cdot 10^{-6} \) |
| \(a_{775}= -0.24382457 \pm 2.5 \cdot 10^{-6} \) | \(a_{776}= -0.13939890 \pm 3.0 \cdot 10^{-6} \) | \(a_{777}= -1.24947624 \pm 3.3 \cdot 10^{-6} \) |
| \(a_{778}= +0.75672296 \pm 3.5 \cdot 10^{-6} \) | \(a_{779}= +0.01998511 \pm 2.4 \cdot 10^{-6} \) | \(a_{780}= -0.62478141 \pm 3.2 \cdot 10^{-6} \) |
| \(a_{781}= -0.21814334 \pm 2.0 \cdot 10^{-6} \) | \(a_{782}= +0.24236819 \pm 2.9 \cdot 10^{-6} \) | \(a_{783}= +0.06847165 \pm 2.8 \cdot 10^{-6} \) |
| \(a_{784}= +0.02864898 \pm 2.3 \cdot 10^{-6} \) | \(a_{785}= -0.39408129 \pm 3.1 \cdot 10^{-6} \) | \(a_{786}= +1.69307304 \pm 2.4 \cdot 10^{-6} \) |
| \(a_{787}= +1.65348573 \pm 2.9 \cdot 10^{-6} \) | \(a_{788}= -0.78207873 \pm 3.6 \cdot 10^{-6} \) | \(a_{789}= -0.76622588 \pm 3.3 \cdot 10^{-6} \) |
| \(a_{790}= +0.56375968 \pm 3.2 \cdot 10^{-6} \) | \(a_{791}= +0.51531467 \pm 2.3 \cdot 10^{-6} \) | \(a_{792}= -0.22515103 \pm 2.4 \cdot 10^{-6} \) |
| \(a_{793}= -0.41685919 \pm 2.9 \cdot 10^{-6} \) | \(a_{794}= -0.70701198 \pm 3.2 \cdot 10^{-6} \) | \(a_{795}= +0.02362656 \pm 2.9 \cdot 10^{-6} \) |
| \(a_{796}= +0.79880027 \pm 3.2 \cdot 10^{-6} \) | \(a_{797}= -0.39087409 \pm 2.7 \cdot 10^{-6} \) | \(a_{798}= +1.48286046 \pm 2.6 \cdot 10^{-6} \) |
| \(a_{799}= +0.63735601 \pm 2.6 \cdot 10^{-6} \) | \(a_{800}= -0.60017887 \pm 2.4 \cdot 10^{-6} \) | \(a_{801}= +0.87681960 \pm 3.3 \cdot 10^{-6} \) |
| \(a_{802}= +0.07379077 \pm 3.0 \cdot 10^{-6} \) | \(a_{803}= +0.27629983 \pm 2.7 \cdot 10^{-6} \) | \(a_{804}= +0.21651706 \pm 3.0 \cdot 10^{-6} \) |
| \(a_{805}= -0.35511230 \pm 2.6 \cdot 10^{-6} \) | \(a_{806}= +0.43831408 \pm 2.3 \cdot 10^{-6} \) | \(a_{807}= +1.41002888 \pm 3.1 \cdot 10^{-6} \) |
| \(a_{808}= -1.20525573 \pm 2.3 \cdot 10^{-6} \) | \(a_{809}= -0.37004485 \pm 2.9 \cdot 10^{-6} \) | \(a_{810}= +0.47943203 \pm 2.6 \cdot 10^{-6} \) |
| \(a_{811}= -0.50092542 \pm 2.3 \cdot 10^{-6} \) | \(a_{812}= -0.08626496 \pm 6.3 \cdot 10^{-6} \) | \(a_{813}= -0.85835869 \pm 2.8 \cdot 10^{-6} \) |
| \(a_{814}= +0.21185135 \pm 3.7 \cdot 10^{-6} \) | \(a_{815}= -0.53351078 \pm 2.6 \cdot 10^{-6} \) | \(a_{816}= +0.17673381 \pm 2.7 \cdot 10^{-6} \) |
| \(a_{817}= -2.26354923 \pm 1.8 \cdot 10^{-6} \) | \(a_{818}= -0.58039518 \pm 3.5 \cdot 10^{-6} \) | \(a_{819}= +1.17635275 \pm 2.7 \cdot 10^{-6} \) |
| \(a_{820}= -0.00327350 \pm 3.5 \cdot 10^{-6} \) | \(a_{821}= -0.65757338 \pm 2.8 \cdot 10^{-6} \) | \(a_{822}= -1.40004838 \pm 4.7 \cdot 10^{-6} \) |
| \(a_{823}= +1.07768259 \pm 3.1 \cdot 10^{-6} \) | \(a_{824}= +0.98569454 \pm 2.5 \cdot 10^{-6} \) | \(a_{825}= +0.26532026 \pm 2.6 \cdot 10^{-6} \) |
| \(a_{826}= +0.81034758 \pm 3.5 \cdot 10^{-6} \) | \(a_{827}= -0.52076066 \pm 3.3 \cdot 10^{-6} \) | \(a_{828}= -0.23749217 \pm 4.0 \cdot 10^{-6} \) |
| \(a_{829}= +0.08354886 \pm 2.8 \cdot 10^{-6} \) | \(a_{830}= +0.43841302 \pm 3.0 \cdot 10^{-6} \) | \(a_{831}= -1.05976311 \pm 3.6 \cdot 10^{-6} \) |
| \(a_{832}= +1.54054369 \pm 2.9 \cdot 10^{-6} \) | \(a_{833}= -0.05439690 \pm 2.8 \cdot 10^{-6} \) | \(a_{834}= +0.41018226 \pm 3.6 \cdot 10^{-6} \) |
| \(a_{835}= -0.37447049 \pm 3.3 \cdot 10^{-6} \) | \(a_{836}= +0.24324835 \pm 2.2 \cdot 10^{-6} \) | \(a_{837}= +0.13085389 \pm 2.6 \cdot 10^{-6} \) |
| \(a_{838}= -0.35601687 \pm 3.5 \cdot 10^{-6} \) | \(a_{839}= -0.22257954 \pm 3.2 \cdot 10^{-6} \) | \(a_{840}= -0.73682651 \pm 2.9 \cdot 10^{-6} \) |
| \(a_{841}= +0.03448276 \pm 1.5 \cdot 10^{-6} \) | \(a_{842}= +0.71625882 \pm 3.1 \cdot 10^{-6} \) | \(a_{843}= -0.28214158 \pm 3.8 \cdot 10^{-6} \) |
| \(a_{844}= -0.67768982 \pm 3.2 \cdot 10^{-6} \) | \(a_{845}= -1.11960952 \pm 2.7 \cdot 10^{-6} \) | \(a_{846}= +0.64551954 \pm 2.9 \cdot 10^{-6} \) |
| \(a_{847}= -0.86274724 \pm 2.4 \cdot 10^{-6} \) | \(a_{848}= -0.00858412 \pm 2.9 \cdot 10^{-6} \) | \(a_{849}= -1.32103631 \pm 2.9 \cdot 10^{-6} \) |
| \(a_{850}= -0.24781869 \pm 2.5 \cdot 10^{-6} \) | \(a_{851}= +0.67789947 \pm 2.1 \cdot 10^{-6} \) | \(a_{852}= -0.47743786 \pm 3.0 \cdot 10^{-6} \) |
| \(a_{853}= +1.03421113 \pm 3.1 \cdot 10^{-6} \) | \(a_{854}= -0.16205701 \pm 4.4 \cdot 10^{-6} \) | \(a_{855}= +0.67522542 \pm 3.0 \cdot 10^{-6} \) |
| \(a_{856}= -0.00022356 \pm 3.3 \cdot 10^{-6} \) | \(a_{857}= -0.18759908 \pm 2.6 \cdot 10^{-6} \) | \(a_{858}= -0.47695606 \pm 1.9 \cdot 10^{-6} \) |
| \(a_{859}= -0.01746115 \pm 2.5 \cdot 10^{-6} \) | \(a_{860}= +0.37076284 \pm 3.7 \cdot 10^{-6} \) | \(a_{861}= +0.01473873 \pm 2.1 \cdot 10^{-6} \) |
| \(a_{862}= -0.37889231 \pm 3.3 \cdot 10^{-6} \) | \(a_{863}= +1.01072429 \pm 2.4 \cdot 10^{-6} \) | \(a_{864}= +0.32209937 \pm 3.0 \cdot 10^{-6} \) |
| \(a_{865}= +0.56464836 \pm 2.9 \cdot 10^{-6} \) | \(a_{866}= -0.56187096 \pm 3.3 \cdot 10^{-6} \) | \(a_{867}= +0.97543691 \pm 2.8 \cdot 10^{-6} \) |
| \(a_{868}= -0.16485808 \pm 2.9 \cdot 10^{-6} \) | \(a_{869}= -0.41638076 \pm 2.4 \cdot 10^{-6} \) | \(a_{870}= +0.09708991 \pm 9.8 \cdot 10^{-6} \) |
| \(a_{871}= +0.58185892 \pm 2.0 \cdot 10^{-6} \) | \(a_{872}= -1.29530989 \pm 3.4 \cdot 10^{-6} \) | \(a_{873}= +0.09420982 \pm 3.1 \cdot 10^{-6} \) |
| \(a_{874}= -0.80452136 \pm 3.2 \cdot 10^{-6} \) | \(a_{875}= +0.89157210 \pm 2.4 \cdot 10^{-6} \) | \(a_{876}= +0.60472165 \pm 3.6 \cdot 10^{-6} \) |
| \(a_{877}= +1.32661093 \pm 3.2 \cdot 10^{-6} \) | \(a_{878}= +0.30940834 \pm 3.5 \cdot 10^{-6} \) | \(a_{879}= -0.12266267 \pm 3.3 \cdot 10^{-6} \) |
| \(a_{880}= +0.04390490 \pm 2.4 \cdot 10^{-6} \) | \(a_{881}= -0.78838240 \pm 2.6 \cdot 10^{-6} \) | \(a_{882}= -0.05509364 \pm 4.8 \cdot 10^{-6} \) |
| \(a_{883}= -0.68719689 \pm 2.4 \cdot 10^{-6} \) | \(a_{884}= -0.43101104 \pm 2.8 \cdot 10^{-6} \) | \(a_{885}= +0.88238356 \pm 2.8 \cdot 10^{-6} \) |
| \(a_{886}= +0.72720594 \pm 3.2 \cdot 10^{-6} \) | \(a_{887}= +0.02881322 \pm 2.4 \cdot 10^{-6} \) | \(a_{888}= +1.40658126 \pm 3.4 \cdot 10^{-6} \) |
| \(a_{889}= +1.06890477 \pm 2.2 \cdot 10^{-6} \) | \(a_{890}= -0.48652458 \pm 2.5 \cdot 10^{-6} \) | \(a_{891}= -0.35409818 \pm 1.7 \cdot 10^{-6} \) |
| \(a_{892}= +0.48016410 \pm 3.2 \cdot 10^{-6} \) | \(a_{893}= -2.11565109 \pm 2.5 \cdot 10^{-6} \) | \(a_{894}= -1.77903305 \pm 4.5 \cdot 10^{-6} \) |
| \(a_{895}= -0.30416071 \pm 3.1 \cdot 10^{-6} \) | \(a_{896}= -0.22634125 \pm 3.5 \cdot 10^{-6} \) | \(a_{897}= -1.52620344 \pm 2.0 \cdot 10^{-6} \) |
| \(a_{898}= +1.14859865 \pm 2.9 \cdot 10^{-6} \) | \(a_{899}= +0.06589885 \pm 2.7 \cdot 10^{-6} \) | \(a_{900}= +0.24283302 \pm 4.2 \cdot 10^{-6} \) |
| \(a_{901}= +0.01629899 \pm 3.0 \cdot 10^{-6} \) | \(a_{902}= -0.00249898 \pm 2.7 \cdot 10^{-6} \) | \(a_{903}= -1.66933402 \pm 2.3 \cdot 10^{-6} \) |
| \(a_{904}= -0.58010864 \pm 2.2 \cdot 10^{-6} \) | \(a_{905}= +0.78115139 \pm 3.1 \cdot 10^{-6} \) | \(a_{906}= +0.21942816 \pm 4.7 \cdot 10^{-6} \) |
| \(a_{907}= +1.56835714 \pm 2.8 \cdot 10^{-6} \) | \(a_{908}= -0.02860389 \pm 3.3 \cdot 10^{-6} \) | \(a_{909}= +0.81454682 \pm 3.6 \cdot 10^{-6} \) |
| \(a_{910}= -0.65272780 \pm 3.9 \cdot 10^{-6} \) | \(a_{911}= -0.02343733 \pm 3.3 \cdot 10^{-6} \) | \(a_{912}= -0.58665342 \pm 2.6 \cdot 10^{-6} \) |
| \(a_{913}= -0.32380242 \pm 1.5 \cdot 10^{-6} \) | \(a_{914}= -0.97167379 \pm 3.1 \cdot 10^{-6} \) | \(a_{915}= -0.17646309 \pm 3.3 \cdot 10^{-6} \) |
| \(a_{916}= -0.46721777 \pm 3.7 \cdot 10^{-6} \) | \(a_{917}= -1.71129974 \pm 2.2 \cdot 10^{-6} \) | \(a_{918}= +0.13299743 \pm 2.8 \cdot 10^{-6} \) |
| \(a_{919}= +0.78724705 \pm 2.8 \cdot 10^{-6} \) | \(a_{920}= +0.39976294 \pm 3.3 \cdot 10^{-6} \) | \(a_{921}= +0.27264273 \pm 2.7 \cdot 10^{-6} \) |
| \(a_{922}= -0.58555756 \pm 3.5 \cdot 10^{-6} \) | \(a_{923}= -1.28304657 \pm 2.5 \cdot 10^{-6} \) | \(a_{924}= +0.17939205 \pm 2.4 \cdot 10^{-6} \) |
| \(a_{925}= -0.69314443 \pm 2.3 \cdot 10^{-6} \) | \(a_{926}= +0.80360961 \pm 3.4 \cdot 10^{-6} \) | \(a_{927}= -0.66616099 \pm 3.0 \cdot 10^{-6} \) |
| \(a_{928}= +0.16221128 \pm 3.0 \cdot 10^{-6} \) | \(a_{929}= -0.65033590 \pm 2.7 \cdot 10^{-6} \) | \(a_{930}= +0.18554529 \pm 3.0 \cdot 10^{-6} \) |
| \(a_{931}= +0.18056607 \pm 2.2 \cdot 10^{-6} \) | \(a_{932}= -0.47764568 \pm 3.1 \cdot 10^{-6} \) | \(a_{933}= +0.40682206 \pm 3.5 \cdot 10^{-6} \) |
| \(a_{934}= +0.03824661 \pm 3.5 \cdot 10^{-6} \) | \(a_{935}= -0.08336390 \pm 2.6 \cdot 10^{-6} \) | \(a_{936}= -1.32426346 \pm 2.5 \cdot 10^{-6} \) |
| \(a_{937}= -0.56260144 \pm 3.1 \cdot 10^{-6} \) | \(a_{938}= +0.22620184 \pm 3.3 \cdot 10^{-6} \) | \(a_{939}= +1.87343155 \pm 3.1 \cdot 10^{-6} \) |
| \(a_{940}= +0.34653755 \pm 2.5 \cdot 10^{-6} \) | \(a_{941}= -0.18932563 \pm 2.9 \cdot 10^{-6} \) | \(a_{942}= -0.65843208 \pm 3.7 \cdot 10^{-6} \) |
| \(a_{943}= -0.00799645 \pm 3.1 \cdot 10^{-6} \) | \(a_{944}= -0.32059199 \pm 2.4 \cdot 10^{-6} \) | \(a_{945}= -0.19486477 \pm 2.6 \cdot 10^{-6} \) |
| \(a_{946}= +0.28303913 \pm 3.7 \cdot 10^{-6} \) | \(a_{947}= +0.86129437 \pm 3.1 \cdot 10^{-6} \) | \(a_{948}= -0.91130878 \pm 2.9 \cdot 10^{-6} \) |
| \(a_{949}= +1.62510370 \pm 2.9 \cdot 10^{-6} \) | \(a_{950}= +0.82261385 \pm 2.4 \cdot 10^{-6} \) | \(a_{951}= -0.39268267 \pm 3.3 \cdot 10^{-6} \) |
| \(a_{952}= -0.50830635 \pm 2.5 \cdot 10^{-6} \) | \(a_{953}= +1.22123811 \pm 2.5 \cdot 10^{-6} \) | \(a_{954}= +0.01650776 \pm 3.7 \cdot 10^{-6} \) |
| \(a_{955}= +0.99336790 \pm 3.2 \cdot 10^{-6} \) | \(a_{956}= +0.01723606 \pm 2.5 \cdot 10^{-6} \) | \(a_{957}= -0.07170852 \pm 6.0 \cdot 10^{-6} \) |
| \(a_{958}= +1.34264117 \pm 4.2 \cdot 10^{-6} \) | \(a_{959}= +1.41512054 \pm 2.7 \cdot 10^{-6} \) | \(a_{960}= +0.65213654 \pm 3.0 \cdot 10^{-6} \) |
| \(a_{961}= -0.87406292 \pm 2.7 \cdot 10^{-6} \) | \(a_{962}= +1.24603917 \pm 3.3 \cdot 10^{-6} \) | \(a_{963}= +0.00015109 \pm 3.0 \cdot 10^{-6} \) |
| \(a_{964}= -0.48713986 \pm 2.9 \cdot 10^{-6} \) | \(a_{965}= +0.64900027 \pm 2.6 \cdot 10^{-6} \) | \(a_{966}= -0.59332258 \pm 3.1 \cdot 10^{-6} \) |
| \(a_{967}= +0.79917983 \pm 1.8 \cdot 10^{-6} \) | \(a_{968}= +0.97122623 \pm 2.5 \cdot 10^{-6} \) | \(a_{969}= +1.11390114 \pm 2.6 \cdot 10^{-6} \) |
| \(a_{970}= -0.05227460 \pm 3.5 \cdot 10^{-6} \) | \(a_{971}= +0.46285346 \pm 3.0 \cdot 10^{-6} \) | \(a_{972}= -0.59367528 \pm 2.2 \cdot 10^{-6} \) |
| \(a_{973}= -0.41459805 \pm 3.0 \cdot 10^{-6} \) | \(a_{974}= -1.08242823 \pm 3.5 \cdot 10^{-6} \) | \(a_{975}= +1.56052550 \pm 2.5 \cdot 10^{-6} \) |
| \(a_{976}= +0.06411345 \pm 3.5 \cdot 10^{-6} \) | \(a_{977}= -0.76856637 \pm 3.1 \cdot 10^{-6} \) | \(a_{978}= -0.89139125 \pm 3.8 \cdot 10^{-6} \) |
| \(a_{979}= +0.35933659 \pm 2.5 \cdot 10^{-6} \) | \(a_{980}= -0.02957620 \pm 3.7 \cdot 10^{-6} \) | \(a_{981}= +0.87540803 \pm 2.7 \cdot 10^{-6} \) |
| \(a_{982}= +0.72882207 \pm 3.8 \cdot 10^{-6} \) | \(a_{983}= +0.14177283 \pm 3.0 \cdot 10^{-6} \) | \(a_{984}= -0.01659192 \pm 2.3 \cdot 10^{-6} \) |
| \(a_{985}= -0.88969378 \pm 3.6 \cdot 10^{-6} \) | \(a_{986}= +0.06697835 \pm 6.4 \cdot 10^{-6} \) | \(a_{987}= -1.56026133 \pm 2.3 \cdot 10^{-6} \) |
| \(a_{988}= +1.43070585 \pm 2.3 \cdot 10^{-6} \) | \(a_{989}= +0.90569201 \pm 2.9 \cdot 10^{-6} \) | \(a_{990}= -0.08443166 \pm 3.8 \cdot 10^{-6} \) |
| \(a_{991}= -0.92697696 \pm 2.5 \cdot 10^{-6} \) | \(a_{992}= +0.30999656 \pm 3.1 \cdot 10^{-6} \) | \(a_{993}= +0.57967617 \pm 3.5 \cdot 10^{-6} \) |
| \(a_{994}= -0.49879359 \pm 2.9 \cdot 10^{-6} \) | \(a_{995}= +0.90871623 \pm 3.1 \cdot 10^{-6} \) | \(a_{996}= -0.70868785 \pm 2.2 \cdot 10^{-6} \) |
| \(a_{997}= +1.15512030 \pm 2.5 \cdot 10^{-6} \) | \(a_{998}= -0.53400892 \pm 3.2 \cdot 10^{-6} \) | \(a_{999}= +0.37199141 \pm 2.7 \cdot 10^{-6} \) |
| \(a_{1000}= -1.00367543 \pm 2.2 \cdot 10^{-6} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000