Maass form invariants
| Level: | \( 29 \) |
| Weight: | \( 0 \) |
| Character: | 29.1 |
| Symmetry: | even |
| Fricke sign: | $-1$ |
| Spectral parameter: | \(4.92464456348645956190829352358 \pm 3 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
| \(a_{1}= +1 \) | \(a_{2}= -1.75646359 \pm 2.3 \cdot 10^{-8} \) | \(a_{3}= -1.54462148 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{4}= +2.08516433 \pm 2.4 \cdot 10^{-8} \) | \(a_{5}= -1.71867425 \pm 2.0 \cdot 10^{-8} \) | \(a_{6}= +2.71307138 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{7}= +1.10824917 \pm 1.9 \cdot 10^{-8} \) | \(a_{8}= -1.90605164 \pm 2.8 \cdot 10^{-8} \) | \(a_{9}= +1.38585551 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{10}= +3.01878875 \pm 2.2 \cdot 10^{-8} \) | \(a_{11}= -0.77823194 \pm 1.8 \cdot 10^{-8} \) | \(a_{12}= -3.22078962 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{13}= +0.89661519 \pm 2.0 \cdot 10^{-8} \) | \(a_{14}= -1.94659930 \pm 1.7 \cdot 10^{-8} \) | \(a_{15}= +2.65470117 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{16}= +1.26274597 \pm 3.0 \cdot 10^{-8} \) | \(a_{17}= -0.03564343 \pm 1.8 \cdot 10^{-8} \) | \(a_{18}= -2.43420475 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{19}= +0.16738351 \pm 1.6 \cdot 10^{-8} \) | \(a_{20}= -3.58371826 \pm 2.2 \cdot 10^{-8} \) | \(a_{21}= -1.71182546 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{22}= +1.36693607 \pm 2.0 \cdot 10^{-8} \) | \(a_{23}= +0.63056769 \pm 1.9 \cdot 10^{-8} \) | \(a_{24}= +2.94412830 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{25}= +1.95384119 \pm 2.0 \cdot 10^{-8} \) | \(a_{26}= -1.57487194 \pm 2.4 \cdot 10^{-8} \) | \(a_{27}= -0.59600072 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{28}= +2.31088163 \pm 1.6 \cdot 10^{-8} \) | \(a_{29}= +0.18569534 \pm 1.0 \cdot 10^{-8} \) | \(a_{30}= -4.66288594 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{31}= -0.63757959 \pm 1.9 \cdot 10^{-8} \) | \(a_{32}= -0.31191567 \pm 3.2 \cdot 10^{-8} \) | \(a_{33}= +1.20207378 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{34}= +0.06260639 \pm 2.4 \cdot 10^{-8} \) | \(a_{35}= -1.90471931 \pm 2.1 \cdot 10^{-8} \) | \(a_{36}= +2.88973649 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{37}= -1.00194492 \pm 2.0 \cdot 10^{-8} \) | \(a_{38}= -0.29400304 \pm 1.7 \cdot 10^{-8} \) | \(a_{39}= -1.38493108 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{40}= +3.27588188 \pm 2.6 \cdot 10^{-8} \) | \(a_{41}= +1.18105179 \pm 1.8 \cdot 10^{-8} \) | \(a_{42}= +3.00675910 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{43}= -0.98350563 \pm 1.9 \cdot 10^{-8} \) | \(a_{44}= -1.62274150 \pm 2.1 \cdot 10^{-8} \) | \(a_{45}= -2.38183419 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{46}= -1.10756918 \pm 1.9 \cdot 10^{-8} \) | \(a_{47}= +1.25191329 \pm 1.7 \cdot 10^{-8} \) | \(a_{48}= -1.95046454 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{49}= +0.22821621 \pm 1.6 \cdot 10^{-8} \) | \(a_{50}= -3.43185091 \pm 2.1 \cdot 10^{-8} \) | \(a_{51}= +0.05505561 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{52}= +1.86959002 \pm 2.7 \cdot 10^{-8} \) | \(a_{53}= +1.10888756 \pm 2.0 \cdot 10^{-8} \) | \(a_{54}= +1.04685355 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{55}= +1.33752721 \pm 1.8 \cdot 10^{-8} \) | \(a_{56}= -2.11238014 \pm 2.0 \cdot 10^{-8} \) | \(a_{57}= -0.25854417 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{58}= -0.32616710 \pm 3.4 \cdot 10^{-8} \) | \(a_{59}= -1.62550489 \pm 1.8 \cdot 10^{-8} \) | \(a_{60}= +5.53548820 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{61}= -0.13225579 \pm 1.8 \cdot 10^{-8} \) | \(a_{62}= +1.11988533 \pm 2.0 \cdot 10^{-8} \) | \(a_{63}= +1.53587322 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{64}= -0.71487745 \pm 3.6 \cdot 10^{-8} \) | \(a_{65}= -1.54098945 \pm 1.6 \cdot 10^{-8} \) | \(a_{66}= -2.11139882 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{67}= +0.65742376 \pm 1.6 \cdot 10^{-8} \) | \(a_{68}= -0.07432242 \pm 2.3 \cdot 10^{-8} \) | \(a_{69}= -0.97398839 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{70}= +3.34557011 \pm 1.9 \cdot 10^{-8} \) | \(a_{71}= +0.68177910 \pm 2.1 \cdot 10^{-8} \) | \(a_{72}= -2.64151218 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{73}= +0.73460734 \pm 1.9 \cdot 10^{-8} \) | \(a_{74}= +1.75987977 \pm 2.2 \cdot 10^{-8} \) | \(a_{75}= -3.01794507 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{76}= +0.34902213 \pm 1.9 \cdot 10^{-8} \) | \(a_{77}= -0.86247490 \pm 1.7 \cdot 10^{-8} \) | \(a_{78}= +2.43258102 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{79}= -1.60591589 \pm 1.9 \cdot 10^{-8} \) | \(a_{80}= -2.17024898 \pm 3.0 \cdot 10^{-8} \) | \(a_{81}= -0.46526001 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{82}= -2.07447446 \pm 2.3 \cdot 10^{-8} \) | \(a_{83}= +0.88503276 \pm 2.0 \cdot 10^{-8} \) | \(a_{84}= -3.56943741 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{85}= +0.06125945 \pm 1.6 \cdot 10^{-8} \) | \(a_{86}= +1.72749182 \pm 1.9 \cdot 10^{-8} \) | \(a_{87}= -0.28682901 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{88}= +1.48335027 \pm 2.1 \cdot 10^{-8} \) | \(a_{89}= -1.23441291 \pm 1.6 \cdot 10^{-8} \) | \(a_{90}= +4.18360503 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{91}= +0.99367304 \pm 1.8 \cdot 10^{-8} \) | \(a_{92}= +1.31483725 \pm 1.8 \cdot 10^{-8} \) | \(a_{93}= +0.98481913 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{94}= -2.19894011 \pm 1.9 \cdot 10^{-8} \) | \(a_{95}= -0.28767773 \pm 1.6 \cdot 10^{-8} \) | \(a_{96}= +0.48179165 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{97}= -0.03586840 \pm 1.8 \cdot 10^{-8} \) | \(a_{98}= -0.40085347 \pm 1.8 \cdot 10^{-8} \) | \(a_{99}= -1.07851703 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{100}= +4.07407997 \pm 1.9 \cdot 10^{-8} \) | \(a_{101}= -0.60763579 \pm 1.9 \cdot 10^{-8} \) | \(a_{102}= -0.09670318 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{103}= +0.31735694 \pm 2.0 \cdot 10^{-8} \) | \(a_{104}= -1.70899486 \pm 2.7 \cdot 10^{-8} \) | \(a_{105}= +2.94207035 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{106}= -1.94772061 \pm 2.2 \cdot 10^{-8} \) | \(a_{107}= -0.45721768 \pm 1.8 \cdot 10^{-8} \) | \(a_{108}= -1.24275943 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{109}= +0.64286654 \pm 1.8 \cdot 10^{-8} \) | \(a_{110}= -2.34931784 \pm 1.9 \cdot 10^{-8} \) | \(a_{111}= +1.54762565 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{112}= +1.39943716 \pm 2.0 \cdot 10^{-8} \) | \(a_{113}= -0.60960146 \pm 1.8 \cdot 10^{-8} \) | \(a_{114}= +0.45412341 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{115}= -1.08374045 \pm 1.5 \cdot 10^{-8} \) | \(a_{116}= +0.38720530 \pm 3.5 \cdot 10^{-8} \) | \(a_{117}= +1.24257911 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{118}= +2.85514016 \pm 2.5 \cdot 10^{-8} \) | \(a_{119}= -0.03950181 \pm 1.5 \cdot 10^{-8} \) | \(a_{120}= -5.05999752 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{121}= -0.39435504 \pm 1.6 \cdot 10^{-8} \) | \(a_{122}= +0.23230247 \pm 2.3 \cdot 10^{-8} \) | \(a_{123}= -1.82427796 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{124}= -1.32945822 \pm 1.6 \cdot 10^{-8} \) | \(a_{125}= -1.63934230 \pm 1.5 \cdot 10^{-8} \) | \(a_{126}= -2.69770538 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{127}= +1.28996088 \pm 2.0 \cdot 10^{-8} \) | \(a_{128}= +1.56757188 \pm 4.0 \cdot 10^{-8} \) | \(a_{129}= +1.51914392 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{130}= +2.70669185 \pm 1.8 \cdot 10^{-8} \) | \(a_{131}= +0.33046125 \pm 1.8 \cdot 10^{-8} \) | \(a_{132}= +2.50652137 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{133}= +0.18550264 \pm 1.7 \cdot 10^{-8} \) | \(a_{134}= -1.15474089 \pm 1.8 \cdot 10^{-8} \) | \(a_{135}= +1.02433108 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{136}= +0.06793823 \pm 2.2 \cdot 10^{-8} \) | \(a_{137}= -0.41743329 \pm 1.6 \cdot 10^{-8} \) | \(a_{138}= +1.71077515 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{139}= +1.78444291 \pm 1.8 \cdot 10^{-8} \) | \(a_{140}= -3.97165277 \pm 1.7 \cdot 10^{-8} \) | \(a_{141}= -1.93373216 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{142}= -1.19752016 \pm 2.6 \cdot 10^{-8} \) | \(a_{143}= -0.69777458 \pm 2.0 \cdot 10^{-8} \) | \(a_{144}= +1.74998346 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{145}= -0.31914980 \pm 3.0 \cdot 10^{-8} \) | \(a_{146}= -1.29031105 \pm 2.0 \cdot 10^{-8} \) | \(a_{147}= -0.35250766 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{148}= -2.08921982 \pm 2.2 \cdot 10^{-8} \) | \(a_{149}= -1.25820746 \pm 1.8 \cdot 10^{-8} \) | \(a_{150}= +5.30091063 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{151}= +1.15899505 \pm 2.1 \cdot 10^{-8} \) | \(a_{152}= -0.31904162 \pm 2.0 \cdot 10^{-8} \) | \(a_{153}= -0.04939665 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{154}= +1.51490576 \pm 1.4 \cdot 10^{-8} \) | \(a_{155}= +1.09579162 \pm 1.8 \cdot 10^{-8} \) | \(a_{156}= -2.88780890 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{157}= -1.72208999 \pm 2.1 \cdot 10^{-8} \) | \(a_{158}= +2.82073278 \pm 2.6 \cdot 10^{-8} \) | \(a_{159}= -1.71281154 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{160}= +0.53608143 \pm 2.9 \cdot 10^{-8} \) | \(a_{161}= +0.69882611 \pm 1.8 \cdot 10^{-8} \) | \(a_{162}= +0.81721226 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{163}= -1.36195773 \pm 1.8 \cdot 10^{-8} \) | \(a_{164}= +2.46268707 \pm 2.7 \cdot 10^{-8} \) | \(a_{165}= -2.06597325 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{166}= -1.55452781 \pm 2.2 \cdot 10^{-8} \) | \(a_{167}= +0.45810764 \pm 1.6 \cdot 10^{-8} \) | \(a_{168}= +3.26282773 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{169}= -0.19608120 \pm 1.9 \cdot 10^{-8} \) | \(a_{170}= -0.10760000 \pm 1.6 \cdot 10^{-8} \) | \(a_{171}= +0.23196936 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{172}= -2.05077086 \pm 1.9 \cdot 10^{-8} \) | \(a_{173}= -0.43477447 \pm 1.9 \cdot 10^{-8} \) | \(a_{174}= +0.50380471 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{175}= +2.16534287 \pm 2.1 \cdot 10^{-8} \) | \(a_{176}= -0.98270925 \pm 2.1 \cdot 10^{-8} \) | \(a_{177}= +2.51078977 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{178}= +2.16820132 \pm 2.1 \cdot 10^{-8} \) | \(a_{179}= -0.29932875 \pm 2.2 \cdot 10^{-8} \) | \(a_{180}= -4.96651571 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{181}= -0.91713416 \pm 1.6 \cdot 10^{-8} \) | \(a_{182}= -1.74535051 \pm 1.4 \cdot 10^{-8} \) | \(a_{183}= +0.20428513 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{184}= -1.20189457 \pm 2.1 \cdot 10^{-8} \) | \(a_{185}= +1.72201694 \pm 2.1 \cdot 10^{-8} \) | \(a_{186}= -1.72979894 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{187}= +0.02773886 \pm 1.7 \cdot 10^{-8} \) | \(a_{188}= +2.61044495 \pm 1.6 \cdot 10^{-8} \) | \(a_{189}= -0.66051729 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{190}= +0.50529546 \pm 1.5 \cdot 10^{-8} \) | \(a_{191}= -0.72080346 \pm 1.7 \cdot 10^{-8} \) | \(a_{192}= +1.10421506 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{193}= -1.04989331 \pm 1.9 \cdot 10^{-8} \) | \(a_{194}= +0.06300154 \pm 1.8 \cdot 10^{-8} \) | \(a_{195}= +2.38024540 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{196}= +0.47586831 \pm 2.0 \cdot 10^{-8} \) | \(a_{197}= +0.00467961 \pm 2.0 \cdot 10^{-8} \) | \(a_{198}= +1.89437590 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{199}= +0.44871011 \pm 1.6 \cdot 10^{-8} \) | \(a_{200}= -3.72412221 \pm 2.0 \cdot 10^{-8} \) | \(a_{201}= -1.01547085 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{202}= +1.06729014 \pm 2.3 \cdot 10^{-8} \) | \(a_{203}= +0.20579670 \pm 2.9 \cdot 10^{-8} \) | \(a_{204}= +0.11480000 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{205}= -2.02984330 \pm 1.9 \cdot 10^{-8} \) | \(a_{206}= -0.55742591 \pm 2.3 \cdot 10^{-8} \) | \(a_{207}= +0.87387571 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{208}= +1.13219722 \pm 2.4 \cdot 10^{-8} \) | \(a_{209}= -0.13026320 \pm 1.7 \cdot 10^{-8} \) | \(a_{210}= -5.16763945 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{211}= -0.37742712 \pm 2.1 \cdot 10^{-8} \) | \(a_{212}= +2.31221278 \pm 1.6 \cdot 10^{-8} \) | \(a_{213}= -1.05309064 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{214}= +0.80308621 \pm 2.2 \cdot 10^{-8} \) | \(a_{215}= +1.69032580 \pm 2.1 \cdot 10^{-8} \) | \(a_{216}= +1.13600814 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{217}= -0.70659705 \pm 1.8 \cdot 10^{-8} \) | \(a_{218}= -1.12917167 \pm 2.1 \cdot 10^{-8} \) | \(a_{219}= -1.13469028 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{220}= +2.78896403 \pm 1.9 \cdot 10^{-8} \) | \(a_{221}= -0.03195844 \pm 2.2 \cdot 10^{-8} \) | \(a_{222}= -2.71834810 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{223}= -1.62954595 \pm 1.7 \cdot 10^{-8} \) | \(a_{224}= -0.34568028 \pm 1.8 \cdot 10^{-8} \) | \(a_{225}= +2.70774159 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{226}= +1.07074277 \pm 2.2 \cdot 10^{-8} \) | \(a_{227}= -0.44566228 \pm 1.8 \cdot 10^{-8} \) | \(a_{228}= -0.53910708 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{229}= +1.21244014 \pm 1.8 \cdot 10^{-8} \) | \(a_{230}= +1.90355064 \pm 1.8 \cdot 10^{-8} \) | \(a_{231}= +1.33219726 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{232}= -0.35394490 \pm 3.8 \cdot 10^{-8} \) | \(a_{233}= -0.26792398 \pm 1.9 \cdot 10^{-8} \) | \(a_{234}= -2.18254496 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{235}= -2.15163114 \pm 1.9 \cdot 10^{-8} \) | \(a_{236}= -3.38944483 \pm 3.0 \cdot 10^{-8} \) | \(a_{237}= +2.48053217 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{238}= +0.06938348 \pm 1.6 \cdot 10^{-8} \) | \(a_{239}= +1.05805381 \pm 2.1 \cdot 10^{-8} \) | \(a_{240}= +3.35221320 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{241}= +1.28564220 \pm 2.1 \cdot 10^{-8} \) | \(a_{242}= +0.69267027 \pm 1.9 \cdot 10^{-8} \) | \(a_{243}= +1.31465132 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{244}= -0.27577505 \pm 2.3 \cdot 10^{-8} \) | \(a_{245}= -0.39222933 \pm 1.7 \cdot 10^{-8} \) | \(a_{246}= +3.20427782 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{247}= +0.15007860 \pm 1.8 \cdot 10^{-8} \) | \(a_{248}= +1.21525962 \pm 1.8 \cdot 10^{-8} \) | \(a_{249}= -1.36704061 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{250}= +2.87944506 \pm 1.9 \cdot 10^{-8} \) | \(a_{251}= -0.00748517 \pm 1.7 \cdot 10^{-8} \) | \(a_{252}= +3.20254805 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{253}= -0.49072792 \pm 1.9 \cdot 10^{-8} \) | \(a_{254}= -2.26576932 \pm 2.2 \cdot 10^{-8} \) | \(a_{255}= -0.09462267 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{256}= -2.03850548 \pm 4.2 \cdot 10^{-8} \) | \(a_{257}= -1.22719383 \pm 1.6 \cdot 10^{-8} \) | \(a_{258}= -2.66832098 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{259}= -1.11040462 \pm 1.7 \cdot 10^{-8} \) | \(a_{260}= -3.21321623 \pm 2.1 \cdot 10^{-8} \) | \(a_{261}= +0.25734691 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{262}= -0.58044316 \pm 2.5 \cdot 10^{-8} \) | \(a_{263}= +1.36623197 \pm 1.7 \cdot 10^{-8} \) | \(a_{264}= -2.29121470 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{265}= -1.90581649 \pm 2.3 \cdot 10^{-8} \) | \(a_{266}= -0.32582863 \pm 1.4 \cdot 10^{-8} \) | \(a_{267}= +1.90670069 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{268}= +1.37083657 \pm 1.8 \cdot 10^{-8} \) | \(a_{269}= -1.12260944 \pm 2.0 \cdot 10^{-8} \) | \(a_{270}= -1.79920025 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{271}= +0.13603182 \pm 1.6 \cdot 10^{-8} \) | \(a_{272}= -0.04500860 \pm 1.9 \cdot 10^{-8} \) | \(a_{273}= -1.53484872 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{274}= +0.73320638 \pm 2.0 \cdot 10^{-8} \) | \(a_{275}= -1.52054163 \pm 1.9 \cdot 10^{-8} \) | \(a_{276}= -2.03092586 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{277}= -0.04563231 \pm 2.1 \cdot 10^{-8} \) | \(a_{278}= -3.13430900 \pm 2.4 \cdot 10^{-8} \) | \(a_{279}= -0.88359319 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{280}= +3.63049336 \pm 2.2 \cdot 10^{-8} \) | \(a_{281}= +0.08738240 \pm 1.9 \cdot 10^{-8} \) | \(a_{282}= +3.39653013 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{283}= -0.73436198 \pm 2.1 \cdot 10^{-8} \) | \(a_{284}= +1.42162146 \pm 2.5 \cdot 10^{-8} \) | \(a_{285}= +0.44435320 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{286}= +1.22561565 \pm 2.3 \cdot 10^{-8} \) | \(a_{287}= +1.30889966 \pm 1.7 \cdot 10^{-8} \) | \(a_{288}= -0.43227005 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{289}= -0.99872955 \pm 1.8 \cdot 10^{-8} \) | \(a_{290}= +0.56057500 \pm 5.4 \cdot 10^{-8} \) | \(a_{291}= +0.05540310 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{292}= +1.53177703 \pm 1.9 \cdot 10^{-8} \) | \(a_{293}= +1.61635901 \pm 1.5 \cdot 10^{-8} \) | \(a_{294}= +0.61916687 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{295}= +2.79371341 \pm 1.9 \cdot 10^{-8} \) | \(a_{296}= +1.90975876 \pm 2.9 \cdot 10^{-8} \) | \(a_{297}= +0.46382680 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{298}= +2.20999559 \pm 1.7 \cdot 10^{-8} \) | \(a_{299}= +0.56537657 \pm 2.1 \cdot 10^{-8} \) | \(a_{300}= -6.29291143 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{301}= -1.08996929 \pm 2.0 \cdot 10^{-8} \) | \(a_{302}= -2.03573260 \pm 2.1 \cdot 10^{-8} \) | \(a_{303}= +0.93856729 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{304}= +0.21136285 \pm 2.0 \cdot 10^{-8} \) | \(a_{305}= +0.22730461 \pm 1.6 \cdot 10^{-8} \) | \(a_{306}= +0.08676342 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{307}= +0.67854901 \pm 1.9 \cdot 10^{-8} \) | \(a_{308}= -1.79840191 \pm 1.5 \cdot 10^{-8} \) | \(a_{309}= -0.49019635 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{310}= -1.92471809 \pm 1.5 \cdot 10^{-8} \) | \(a_{311}= -0.15990257 \pm 2.0 \cdot 10^{-8} \) | \(a_{312}= +2.63975016 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{313}= -0.42886001 \pm 1.8 \cdot 10^{-8} \) | \(a_{314}= +3.02478836 \pm 2.4 \cdot 10^{-8} \) | \(a_{315}= -2.63966576 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{316}= -3.34859853 \pm 3.0 \cdot 10^{-8} \) | \(a_{317}= -1.64915820 \pm 1.7 \cdot 10^{-8} \) | \(a_{318}= +3.00849110 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{319}= -0.14451404 \pm 2.9 \cdot 10^{-8} \) | \(a_{320}= +1.22864146 \pm 3.4 \cdot 10^{-8} \) | \(a_{321}= +0.70622825 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{322}= -1.22746262 \pm 1.5 \cdot 10^{-8} \) | \(a_{323}= -0.00596612 \pm 1.5 \cdot 10^{-8} \) | \(a_{324}= -0.97014357 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{325}= +1.75184370 \pm 2.0 \cdot 10^{-8} \) | \(a_{326}= +2.39222916 \pm 2.0 \cdot 10^{-8} \) | \(a_{327}= -0.99298546 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{328}= -2.25114570 \pm 3.4 \cdot 10^{-8} \) | \(a_{329}= +1.38743186 \pm 1.7 \cdot 10^{-8} \) | \(a_{330}= +3.62880679 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{331}= +0.61811410 \pm 2.2 \cdot 10^{-8} \) | \(a_{332}= +1.84543874 \pm 1.7 \cdot 10^{-8} \) | \(a_{333}= -1.38855090 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{334}= -0.80464940 \pm 1.5 \cdot 10^{-8} \) | \(a_{335}= -1.12989728 \pm 1.4 \cdot 10^{-8} \) | \(a_{336}= -2.16160070 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{337}= -1.35491332 \pm 1.9 \cdot 10^{-8} \) | \(a_{338}= +0.34440948 \pm 2.5 \cdot 10^{-8} \) | \(a_{339}= +0.94160351 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{340}= +0.12773603 \pm 1.3 \cdot 10^{-8} \) | \(a_{341}= +0.49618480 \pm 1.8 \cdot 10^{-8} \) | \(a_{342}= -0.40744574 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{343}= -0.85532874 \pm 1.7 \cdot 10^{-8} \) | \(a_{344}= +1.87461252 \pm 2.1 \cdot 10^{-8} \) | \(a_{345}= +1.67396878 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{346}= +0.76366552 \pm 2.2 \cdot 10^{-8} \) | \(a_{347}= -1.77167357 \pm 1.8 \cdot 10^{-8} \) | \(a_{348}= -0.59808562 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{349}= +1.60093923 \pm 2.1 \cdot 10^{-8} \) | \(a_{350}= -3.80334591 \pm 1.9 \cdot 10^{-8} \) | \(a_{351}= -0.53438330 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{352}= +0.24274274 \pm 2.2 \cdot 10^{-8} \) | \(a_{353}= -0.08078919 \pm 1.8 \cdot 10^{-8} \) | \(a_{354}= -4.41011081 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{355}= -1.17175619 \pm 1.9 \cdot 10^{-8} \) | \(a_{356}= -2.57395377 \pm 2.2 \cdot 10^{-8} \) | \(a_{357}= +0.06101534 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{358}= +0.52576005 \pm 2.6 \cdot 10^{-8} \) | \(a_{359}= +0.75709437 \pm 2.3 \cdot 10^{-8} \) | \(a_{360}= +4.53989897 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{361}= -0.97198276 \pm 1.3 \cdot 10^{-8} \) | \(a_{362}= +1.61091275 \pm 2.2 \cdot 10^{-8} \) | \(a_{363}= +0.60912927 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{364}= +2.07197158 \pm 1.6 \cdot 10^{-8} \) | \(a_{365}= -1.26255073 \pm 1.2 \cdot 10^{-8} \) | \(a_{366}= -0.35881939 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{367}= +1.78705236 \pm 2.3 \cdot 10^{-8} \) | \(a_{368}= +0.79624680 \pm 1.7 \cdot 10^{-8} \) | \(a_{369}= +1.63676714 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{370}= -3.02466006 \pm 2.4 \cdot 10^{-8} \) | \(a_{371}= +1.22892371 \pm 2.1 \cdot 10^{-8} \) | \(a_{372}= +2.05350972 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{373}= -0.31228212 \pm 1.9 \cdot 10^{-8} \) | \(a_{374}= -0.04872230 \pm 2.2 \cdot 10^{-8} \) | \(a_{375}= +2.53216333 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{376}= -2.38621138 \pm 1.8 \cdot 10^{-8} \) | \(a_{377}= +0.16649726 \pm 3.0 \cdot 10^{-8} \) | \(a_{378}= +1.16017458 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{379}= -1.23825808 \pm 1.9 \cdot 10^{-8} \) | \(a_{380}= -0.59985535 \pm 1.6 \cdot 10^{-8} \) | \(a_{381}= -1.99250129 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{382}= +1.26606503 \pm 1.7 \cdot 10^{-8} \) | \(a_{383}= -1.68840882 \pm 1.8 \cdot 10^{-8} \) | \(a_{384}= -2.42130519 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{385}= +1.48231341 \pm 2.0 \cdot 10^{-8} \) | \(a_{386}= +1.84409937 \pm 2.1 \cdot 10^{-8} \) | \(a_{387}= -1.36299670 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{388}= -0.07479151 \pm 1.7 \cdot 10^{-8} \) | \(a_{389}= +0.23153775 \pm 2.2 \cdot 10^{-8} \) | \(a_{390}= -4.18081437 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{391}= -0.02247560 \pm 1.4 \cdot 10^{-8} \) | \(a_{392}= -0.43499189 \pm 2.1 \cdot 10^{-8} \) | \(a_{393}= -0.51043755 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{394}= -0.00821956 \pm 2.2 \cdot 10^{-8} \) | \(a_{395}= +2.76004629 \pm 1.8 \cdot 10^{-8} \) | \(a_{396}= -2.24888525 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{397}= +0.00007135 \pm 1.7 \cdot 10^{-8} \) | \(a_{398}= -0.78814296 \pm 1.9 \cdot 10^{-8} \) | \(a_{399}= -0.28653136 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{400}= +2.46720509 \pm 1.9 \cdot 10^{-8} \) | \(a_{401}= -0.14450308 \pm 2.3 \cdot 10^{-8} \) | \(a_{402}= +1.78363758 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{403}= -0.57166354 \pm 1.8 \cdot 10^{-8} \) | \(a_{404}= -1.26702048 \pm 2.6 \cdot 10^{-8} \) | \(a_{405}= +0.79963040 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{406}= -0.36147442 \pm 5.3 \cdot 10^{-8} \) | \(a_{407}= +0.77974555 \pm 1.6 \cdot 10^{-8} \) | \(a_{408}= -0.10493884 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{409}= -0.08219362 \pm 2.1 \cdot 10^{-8} \) | \(a_{410}= +3.56534585 \pm 2.5 \cdot 10^{-8} \) | \(a_{411}= +0.64477643 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{412}= +0.66174138 \pm 2.7 \cdot 10^{-8} \) | \(a_{413}= -1.80146444 \pm 1.6 \cdot 10^{-8} \) | \(a_{414}= -1.53493086 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{415}= -1.52108301 \pm 2.3 \cdot 10^{-8} \) | \(a_{416}= -0.27966833 \pm 2.3 \cdot 10^{-8} \) | \(a_{417}= -2.75628885 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{418}= +0.22880256 \pm 1.7 \cdot 10^{-8} \) | \(a_{419}= +0.51008687 \pm 1.6 \cdot 10^{-8} \) | \(a_{420}= +6.13470017 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{421}= -0.61708632 \pm 2.0 \cdot 10^{-8} \) | \(a_{422}= +0.66293699 \pm 3.0 \cdot 10^{-8} \) | \(a_{423}= +1.73497094 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{424}= -2.11359694 \pm 2.1 \cdot 10^{-8} \) | \(a_{425}= -0.06964161 \pm 1.9 \cdot 10^{-8} \) | \(a_{426}= +1.84971537 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{427}= -0.14657236 \pm 1.4 \cdot 10^{-8} \) | \(a_{428}= -0.95337400 \pm 2.3 \cdot 10^{-8} \) | \(a_{429}= +1.07779761 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{430}= -2.96899572 \pm 1.8 \cdot 10^{-8} \) | \(a_{431}= -1.42224071 \pm 2.0 \cdot 10^{-8} \) | \(a_{432}= -0.75259750 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{433}= +0.63992655 \pm 2.1 \cdot 10^{-8} \) | \(a_{434}= +1.24111198 \pm 1.4 \cdot 10^{-8} \) | \(a_{435}= +0.49296563 \pm 5.1 \cdot 10^{-8} \) |
| \(a_{436}= +1.34048238 \pm 2.0 \cdot 10^{-8} \) | \(a_{437}= +0.10554663 \pm 1.6 \cdot 10^{-8} \) | \(a_{438}= +1.99304216 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{439}= +1.22851012 \pm 1.9 \cdot 10^{-8} \) | \(a_{440}= -2.54939593 \pm 1.7 \cdot 10^{-8} \) | \(a_{441}= +0.31627470 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{442}= +0.05613384 \pm 3.2 \cdot 10^{-8} \) | \(a_{443}= -0.51927641 \pm 2.0 \cdot 10^{-8} \) | \(a_{444}= +3.22705381 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{445}= +2.12155368 \pm 1.8 \cdot 10^{-8} \) | \(a_{446}= +2.86223813 \pm 2.2 \cdot 10^{-8} \) | \(a_{447}= +1.94345427 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{448}= -0.79226233 \pm 2.2 \cdot 10^{-8} \) | \(a_{449}= -1.78449189 \pm 1.9 \cdot 10^{-8} \) | \(a_{450}= -4.75604951 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{451}= -0.91913223 \pm 1.6 \cdot 10^{-8} \) | \(a_{452}= -1.27111922 \pm 2.0 \cdot 10^{-8} \) | \(a_{453}= -1.79020864 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{454}= +0.78278957 \pm 2.4 \cdot 10^{-8} \) | \(a_{455}= -1.70780027 \pm 1.4 \cdot 10^{-8} \) | \(a_{456}= +0.49279853 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{457}= +1.49904182 \pm 1.4 \cdot 10^{-8} \) | \(a_{458}= -2.12960696 \pm 2.2 \cdot 10^{-8} \) | \(a_{459}= +0.02124351 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{460}= -2.25977693 \pm 1.5 \cdot 10^{-8} \) | \(a_{461}= -0.05819926 \pm 2.3 \cdot 10^{-8} \) | \(a_{462}= -2.33995598 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{463}= -0.98552802 \pm 1.8 \cdot 10^{-8} \) | \(a_{464}= +0.23448604 \pm 4.1 \cdot 10^{-8} \) | \(a_{465}= -1.69258328 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{466}= +0.47059872 \pm 2.4 \cdot 10^{-8} \) | \(a_{467}= +1.26796645 \pm 2.1 \cdot 10^{-8} \) | \(a_{468}= +2.59098164 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{469}= +0.72858933 \pm 1.6 \cdot 10^{-8} \) | \(a_{470}= +3.77926176 \pm 2.1 \cdot 10^{-8} \) | \(a_{471}= +2.65997719 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{472}= +3.09829627 \pm 3.4 \cdot 10^{-8} \) | \(a_{473}= +0.76539550 \pm 1.7 \cdot 10^{-8} \) | \(a_{474}= -4.35696444 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{475}= +0.32704080 \pm 1.6 \cdot 10^{-8} \) | \(a_{476}= -0.08236776 \pm 1.3 \cdot 10^{-8} \) | \(a_{477}= +1.53675793 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{478}= -1.85843299 \pm 2.3 \cdot 10^{-8} \) | \(a_{479}= -1.10328525 \pm 2.0 \cdot 10^{-8} \) | \(a_{480}= -0.82804290 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{481}= -0.89835904 \pm 1.6 \cdot 10^{-8} \) | \(a_{482}= -2.25818371 \pm 2.6 \cdot 10^{-8} \) | \(a_{483}= -1.07942182 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{484}= -0.82229506 \pm 1.7 \cdot 10^{-8} \) | \(a_{485}= +0.06164610 \pm 1.5 \cdot 10^{-8} \) | \(a_{486}= -2.30913717 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{487}= +1.24506433 \pm 1.9 \cdot 10^{-8} \) | \(a_{488}= +0.25208636 \pm 2.2 \cdot 10^{-8} \) | \(a_{489}= +2.10370916 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{490}= +0.68893653 \pm 1.6 \cdot 10^{-8} \) | \(a_{491}= -0.51669852 \pm 1.9 \cdot 10^{-8} \) | \(a_{492}= -3.80391935 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{493}= -0.00661882 \pm 2.9 \cdot 10^{-8} \) | \(a_{494}= -0.26360759 \pm 2.0 \cdot 10^{-8} \) | \(a_{495}= +1.85361946 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{496}= -0.80510105 \pm 2.0 \cdot 10^{-8} \) | \(a_{497}= +0.75558112 \pm 1.9 \cdot 10^{-8} \) | \(a_{498}= +2.40115705 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{499}= -0.77299897 \pm 1.8 \cdot 10^{-8} \) | \(a_{500}= -3.41829810 \pm 2.2 \cdot 10^{-8} \) | \(a_{501}= -0.70760291 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{502}= +0.01314743 \pm 1.9 \cdot 10^{-8} \) | \(a_{503}= +0.05731042 \pm 1.9 \cdot 10^{-8} \) | \(a_{504}= -2.92745366 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{505}= +1.04432799 \pm 2.0 \cdot 10^{-8} \) | \(a_{506}= +0.86194572 \pm 1.8 \cdot 10^{-8} \) | \(a_{507}= +0.30287123 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{508}= +2.68978043 \pm 1.8 \cdot 10^{-8} \) | \(a_{509}= -1.86797280 \pm 2.0 \cdot 10^{-8} \) | \(a_{510}= +0.16620127 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{511}= +0.81412798 \pm 1.7 \cdot 10^{-8} \) | \(a_{512}= +2.01298877 \pm 4.5 \cdot 10^{-8} \) | \(a_{513}= -0.09976069 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{514}= +2.15552128 \pm 2.3 \cdot 10^{-8} \) | \(a_{515}= -0.54543321 \pm 2.1 \cdot 10^{-8} \) | \(a_{516}= +3.16766472 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{517}= -0.97427892 \pm 1.8 \cdot 10^{-8} \) | \(a_{518}= +1.95038529 \pm 1.6 \cdot 10^{-8} \) | \(a_{519}= +0.67156198 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{520}= +2.93720546 \pm 1.9 \cdot 10^{-8} \) | \(a_{521}= -0.45575741 \pm 2.0 \cdot 10^{-8} \) | \(a_{522}= -0.45202047 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{523}= -1.86916865 \pm 1.9 \cdot 10^{-8} \) | \(a_{524}= +0.68906602 \pm 3.1 \cdot 10^{-8} \) | \(a_{525}= -3.34463511 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{526}= -2.39973670 \pm 2.2 \cdot 10^{-8} \) | \(a_{527}= +0.02272553 \pm 1.8 \cdot 10^{-8} \) | \(a_{528}= +1.51791382 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{529}= -0.60238439 \pm 2.0 \cdot 10^{-8} \) | \(a_{530}= +3.34749727 \pm 2.5 \cdot 10^{-8} \) | \(a_{531}= -2.25271492 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{532}= +0.38680348 \pm 1.6 \cdot 10^{-8} \) | \(a_{533}= +1.05894898 \pm 1.8 \cdot 10^{-8} \) | \(a_{534}= -3.34905033 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{535}= +0.78580826 \pm 2.0 \cdot 10^{-8} \) | \(a_{536}= -1.25308363 \pm 2.0 \cdot 10^{-8} \) | \(a_{537}= +0.46234961 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{538}= +1.97182260 \pm 2.2 \cdot 10^{-8} \) | \(a_{539}= -0.17760515 \pm 1.5 \cdot 10^{-8} \) | \(a_{540}= +2.13589864 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{541}= -0.73561996 \pm 1.9 \cdot 10^{-8} \) | \(a_{542}= -0.23893494 \pm 1.8 \cdot 10^{-8} \) | \(a_{543}= +1.41662512 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{544}= +0.01111775 \pm 1.6 \cdot 10^{-8} \) | \(a_{545}= -1.10487817 \pm 1.7 \cdot 10^{-8} \) | \(a_{546}= +2.69590589 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{547}= -0.57619460 \pm 2.2 \cdot 10^{-8} \) | \(a_{548}= -0.87041701 \pm 2.2 \cdot 10^{-8} \) | \(a_{549}= -0.18328741 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{550}= +2.67077601 \pm 1.8 \cdot 10^{-8} \) | \(a_{551}= +0.03108234 \pm 2.7 \cdot 10^{-8} \) | \(a_{552}= +1.85647218 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{553}= -1.77975494 \pm 1.5 \cdot 10^{-8} \) | \(a_{554}= +0.08015149 \pm 2.3 \cdot 10^{-8} \) | \(a_{555}= -2.65986436 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{556}= +3.72085671 \pm 2.5 \cdot 10^{-8} \) | \(a_{557}= +0.90514635 \pm 1.8 \cdot 10^{-8} \) | \(a_{558}= +1.55199926 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{559}= -0.88182609 \pm 1.9 \cdot 10^{-8} \) | \(a_{560}= -2.40517662 \pm 2.2 \cdot 10^{-8} \) | \(a_{561}= -0.04284604 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{562}= -0.15348400 \pm 2.6 \cdot 10^{-8} \) | \(a_{563}= +0.87041457 \pm 1.9 \cdot 10^{-8} \) | \(a_{564}= -4.03214933 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{565}= +1.04770633 \pm 1.8 \cdot 10^{-8} \) | \(a_{566}= +1.28988008 \pm 1.9 \cdot 10^{-8} \) | \(a_{567}= -0.51562402 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{568}= -1.29950617 \pm 2.6 \cdot 10^{-8} \) | \(a_{569}= +0.07496366 \pm 1.9 \cdot 10^{-8} \) | \(a_{570}= -0.78049022 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{571}= +0.05990772 \pm 1.7 \cdot 10^{-8} \) | \(a_{572}= -1.45497468 \pm 2.5 \cdot 10^{-8} \) | \(a_{573}= +1.11336850 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{574}= -2.29903459 \pm 1.7 \cdot 10^{-8} \) | \(a_{575}= +1.23202912 \pm 1.8 \cdot 10^{-8} \) | \(a_{576}= -0.99071685 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{577}= +0.96091654 \pm 2.1 \cdot 10^{-8} \) | \(a_{578}= +1.75423208 \pm 2.5 \cdot 10^{-8} \) | \(a_{579}= +1.62168776 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{580}= -0.66547977 \pm 5.5 \cdot 10^{-8} \) | \(a_{581}= +0.98083681 \pm 2.0 \cdot 10^{-8} \) | \(a_{582}= -0.09731353 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{583}= -0.86297172 \pm 1.5 \cdot 10^{-8} \) | \(a_{584}= -1.40019953 \pm 2.1 \cdot 10^{-8} \) | \(a_{585}= -2.13558872 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{586}= -2.83907574 \pm 1.9 \cdot 10^{-8} \) | \(a_{587}= +0.50869899 \pm 1.7 \cdot 10^{-8} \) | \(a_{588}= -0.73503641 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{589}= -0.10672031 \pm 1.5 \cdot 10^{-8} \) | \(a_{590}= -4.90705588 \pm 2.3 \cdot 10^{-8} \) | \(a_{591}= -0.00722822 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{592}= -1.26520191 \pm 3.4 \cdot 10^{-8} \) | \(a_{593}= +0.66214278 \pm 1.7 \cdot 10^{-8} \) | \(a_{594}= -0.81469488 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{595}= +0.06789074 \pm 1.8 \cdot 10^{-8} \) | \(a_{596}= -2.62356932 \pm 1.4 \cdot 10^{-8} \) | \(a_{597}= -0.69308727 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{598}= -0.99306336 \pm 2.0 \cdot 10^{-8} \) | \(a_{599}= +0.66961993 \pm 1.7 \cdot 10^{-8} \) | \(a_{600}= +5.75235916 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{601}= -1.36278219 \pm 1.8 \cdot 10^{-8} \) | \(a_{602}= +1.91449137 \pm 1.6 \cdot 10^{-8} \) | \(a_{603}= +0.91109434 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{604}= +2.41669514 \pm 2.0 \cdot 10^{-8} \) | \(a_{605}= +0.67776785 \pm 1.7 \cdot 10^{-8} \) | \(a_{606}= -1.64855927 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{607}= -0.41111336 \pm 2.2 \cdot 10^{-8} \) | \(a_{608}= -0.05220954 \pm 2.1 \cdot 10^{-8} \) | \(a_{609}= -0.31787801 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{610}= -0.39925228 \pm 1.6 \cdot 10^{-8} \) | \(a_{611}= +1.12248448 \pm 1.4 \cdot 10^{-8} \) | \(a_{612}= -0.10300013 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{613}= +1.18865563 \pm 1.9 \cdot 10^{-8} \) | \(a_{614}= -1.19184663 \pm 1.9 \cdot 10^{-8} \) | \(a_{615}= +3.13533957 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{616}= +1.64392170 \pm 1.7 \cdot 10^{-8} \) | \(a_{617}= +0.07753307 \pm 1.9 \cdot 10^{-8} \) | \(a_{618}= +0.86101204 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{619}= +1.84910680 \pm 1.6 \cdot 10^{-8} \) | \(a_{620}= +2.28490561 \pm 1.8 \cdot 10^{-8} \) | \(a_{621}= -0.37581879 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{622}= +0.28086305 \pm 2.0 \cdot 10^{-8} \) | \(a_{623}= -1.36803707 \pm 1.6 \cdot 10^{-8} \) | \(a_{624}= -1.74881614 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{625}= +0.86365421 \pm 1.5 \cdot 10^{-8} \) | \(a_{626}= +0.75327700 \pm 2.3 \cdot 10^{-8} \) | \(a_{627}= +0.20120733 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{628}= -3.59084063 \pm 2.6 \cdot 10^{-8} \) | \(a_{629}= +0.03571276 \pm 1.2 \cdot 10^{-8} \) | \(a_{630}= +4.63647678 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{631}= -1.23269253 \pm 1.7 \cdot 10^{-8} \) | \(a_{632}= +3.06095861 \pm 3.7 \cdot 10^{-8} \) | \(a_{633}= +0.58298204 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{634}= +2.89668633 \pm 2.3 \cdot 10^{-8} \) | \(a_{635}= -2.21702256 \pm 2.2 \cdot 10^{-8} \) | \(a_{636}= -3.57149353 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{637}= +0.20462212 \pm 1.7 \cdot 10^{-8} \) | \(a_{638}= +0.25383366 \pm 5.2 \cdot 10^{-8} \) | \(a_{639}= +0.94484732 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{640}= -2.69414543 \pm 3.7 \cdot 10^{-8} \) | \(a_{641}= -0.26391229 \pm 1.7 \cdot 10^{-8} \) | \(a_{642}= -1.24046421 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{643}= -1.68238925 \pm 1.7 \cdot 10^{-8} \) | \(a_{644}= +1.45716729 \pm 1.6 \cdot 10^{-8} \) | \(a_{645}= -2.61091354 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{646}= +0.01047928 \pm 1.9 \cdot 10^{-8} \) | \(a_{647}= +0.90733554 \pm 1.3 \cdot 10^{-8} \) | \(a_{648}= +0.88680960 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{649}= +1.26501983 \pm 1.7 \cdot 10^{-8} \) | \(a_{650}= -3.07704966 \pm 2.3 \cdot 10^{-8} \) | \(a_{651}= +1.09142497 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{652}= -2.83990568 \pm 1.8 \cdot 10^{-8} \) | \(a_{653}= -0.04296901 \pm 2.3 \cdot 10^{-8} \) | \(a_{654}= +1.74414281 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{655}= -0.56795525 \pm 2.0 \cdot 10^{-8} \) | \(a_{656}= +1.49136839 \pm 3.8 \cdot 10^{-8} \) | \(a_{657}= +1.01805964 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{658}= -2.43697354 \pm 1.6 \cdot 10^{-8} \) | \(a_{659}= +1.13485600 \pm 1.9 \cdot 10^{-8} \) | \(a_{660}= -4.30789375 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{661}= +0.10297884 \pm 1.5 \cdot 10^{-8} \) | \(a_{662}= -1.08569490 \pm 2.5 \cdot 10^{-8} \) | \(a_{663}= +0.04936370 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{664}= -1.68691814 \pm 2.1 \cdot 10^{-8} \) | \(a_{665}= -0.31881861 \pm 1.9 \cdot 10^{-8} \) | \(a_{666}= +2.43893909 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{667}= +0.11709348 \pm 3.0 \cdot 10^{-8} \) | \(a_{668}= +0.95522972 \pm 1.3 \cdot 10^{-8} \) | \(a_{669}= +2.51703168 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{670}= +1.98462343 \pm 1.6 \cdot 10^{-8} \) | \(a_{671}= +0.10292568 \pm 1.7 \cdot 10^{-8} \) | \(a_{672}= +0.53394519 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{673}= -0.71262319 \pm 2.1 \cdot 10^{-8} \) | \(a_{674}= +2.37985591 \pm 2.3 \cdot 10^{-8} \) | \(a_{675}= -1.16449075 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{676}= -0.40886152 \pm 2.9 \cdot 10^{-8} \) | \(a_{677}= +1.35078336 \pm 2.0 \cdot 10^{-8} \) | \(a_{678}= -1.65389228 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{679}= -0.03975112 \pm 1.6 \cdot 10^{-8} \) | \(a_{680}= -0.11676368 \pm 1.5 \cdot 10^{-8} \) | \(a_{681}= +0.68837953 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{682}= -0.87153054 \pm 1.8 \cdot 10^{-8} \) | \(a_{683}= -0.85737199 \pm 2.3 \cdot 10^{-8} \) | \(a_{684}= +0.48369424 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{685}= +0.71743185 \pm 1.6 \cdot 10^{-8} \) | \(a_{686}= +1.50235378 \pm 1.9 \cdot 10^{-8} \) | \(a_{687}= -1.87276108 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{688}= -1.24191777 \pm 2.3 \cdot 10^{-8} \) | \(a_{689}= +0.99424543 \pm 1.7 \cdot 10^{-8} \) | \(a_{690}= -2.94026520 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{691}= +1.34791970 \pm 2.1 \cdot 10^{-8} \) | \(a_{692}= -0.90657621 \pm 1.9 \cdot 10^{-8} \) | \(a_{693}= -1.19526560 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{694}= +3.11188011 \pm 2.4 \cdot 10^{-8} \) | \(a_{695}= -3.06687609 \pm 1.6 \cdot 10^{-8} \) | \(a_{696}= +0.54671090 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{697}= -0.04209674 \pm 1.2 \cdot 10^{-8} \) | \(a_{698}= -2.81199147 \pm 2.5 \cdot 10^{-8} \) | \(a_{699}= +0.41384114 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{700}= +4.51509573 \pm 1.7 \cdot 10^{-8} \) | \(a_{701}= +0.30206946 \pm 2.3 \cdot 10^{-8} \) | \(a_{702}= +0.93862480 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{703}= -0.16770906 \pm 1.6 \cdot 10^{-8} \) | \(a_{704}= +0.55634047 \pm 2.3 \cdot 10^{-8} \) | \(a_{705}= +3.32345568 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{706}= +0.14190327 \pm 2.1 \cdot 10^{-8} \) | \(a_{707}= -0.67341186 \pm 1.9 \cdot 10^{-8} \) | \(a_{708}= +5.23540929 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{709}= +0.43571677 \pm 1.9 \cdot 10^{-8} \) | \(a_{710}= +2.05814707 \pm 2.2 \cdot 10^{-8} \) | \(a_{711}= -2.22556739 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{712}= +2.35285474 \pm 2.7 \cdot 10^{-8} \) | \(a_{713}= -0.40203709 \pm 1.4 \cdot 10^{-8} \) | \(a_{714}= -0.10717122 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{715}= +1.19924721 \pm 1.6 \cdot 10^{-8} \) | \(a_{716}= -0.62414963 \pm 2.9 \cdot 10^{-8} \) | \(a_{717}= -1.63429264 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{718}= -1.32980869 \pm 2.9 \cdot 10^{-8} \) | \(a_{719}= -1.33282159 \pm 2.0 \cdot 10^{-8} \) | \(a_{720}= -3.00765152 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{721}= +0.35171057 \pm 1.9 \cdot 10^{-8} \) | \(a_{722}= +1.70725233 \pm 1.4 \cdot 10^{-8} \) | \(a_{723}= -1.98583055 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{724}= -1.91237543 \pm 2.7 \cdot 10^{-8} \) | \(a_{725}= +0.36281920 \pm 3.0 \cdot 10^{-8} \) | \(a_{726}= -1.06991337 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{727}= +0.65181301 \pm 2.0 \cdot 10^{-8} \) | \(a_{728}= -1.89399212 \pm 1.7 \cdot 10^{-8} \) | \(a_{729}= -1.56537865 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{730}= +2.21762438 \pm 1.4 \cdot 10^{-8} \) | \(a_{731}= +0.03505552 \pm 1.9 \cdot 10^{-8} \) | \(a_{732}= +0.42596806 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{733}= +1.40696246 \pm 1.9 \cdot 10^{-8} \) | \(a_{734}= -3.13889239 \pm 2.6 \cdot 10^{-8} \) | \(a_{735}= +0.60584585 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{736}= -0.19668394 \pm 2.0 \cdot 10^{-8} \) | \(a_{737}= -0.51162817 \pm 1.6 \cdot 10^{-8} \) | \(a_{738}= -2.87492188 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{739}= -0.00073637 \pm 2.0 \cdot 10^{-8} \) | \(a_{740}= +3.59068832 \pm 2.2 \cdot 10^{-8} \) | \(a_{741}= -0.23181463 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{742}= -2.15855975 \pm 2.0 \cdot 10^{-8} \) | \(a_{743}= -1.12830317 \pm 2.0 \cdot 10^{-8} \) | \(a_{744}= -1.87711611 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{745}= +2.16244877 \pm 1.4 \cdot 10^{-8} \) | \(a_{746}= +0.54851217 \pm 2.4 \cdot 10^{-8} \) | \(a_{747}= +1.22652753 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{748}= +0.05784008 \pm 2.2 \cdot 10^{-8} \) | \(a_{749}= -0.50671111 \pm 1.8 \cdot 10^{-8} \) | \(a_{750}= -4.44765268 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{751}= -1.31887907 \pm 1.8 \cdot 10^{-8} \) | \(a_{752}= +1.58084846 \pm 1.9 \cdot 10^{-8} \) | \(a_{753}= +0.01156175 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{754}= -0.29244638 \pm 5.4 \cdot 10^{-8} \) | \(a_{755}= -1.99193495 \pm 1.9 \cdot 10^{-8} \) | \(a_{756}= -1.37728711 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{757}= -0.74511688 \pm 2.0 \cdot 10^{-8} \) | \(a_{758}= +2.17495523 \pm 2.1 \cdot 10^{-8} \) | \(a_{759}= +0.75798888 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{760}= +0.54832861 \pm 1.8 \cdot 10^{-8} \) | \(a_{761}= -1.20356310 \pm 2.4 \cdot 10^{-8} \) | \(a_{762}= +3.49975596 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{763}= +0.71245630 \pm 1.6 \cdot 10^{-8} \) | \(a_{764}= -1.50299366 \pm 1.8 \cdot 10^{-8} \) | \(a_{765}= +0.08489675 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{766}= +2.96562861 \pm 2.1 \cdot 10^{-8} \) | \(a_{767}= -1.45745238 \pm 1.8 \cdot 10^{-8} \) | \(a_{768}= +3.14871934 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{769}= -1.39202528 \pm 1.8 \cdot 10^{-8} \) | \(a_{770}= -2.60362953 \pm 1.5 \cdot 10^{-8} \) | \(a_{771}= +1.89554995 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{772}= -2.18920009 \pm 2.1 \cdot 10^{-8} \) | \(a_{773}= -1.40653769 \pm 1.7 \cdot 10^{-8} \) | \(a_{774}= +2.39405407 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{775}= -1.24572926 \pm 2.0 \cdot 10^{-8} \) | \(a_{776}= +0.06836702 \pm 1.7 \cdot 10^{-8} \) | \(a_{777}= +1.71515483 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{778}= -0.40668762 \pm 2.2 \cdot 10^{-8} \) | \(a_{779}= +0.19768860 \pm 1.5 \cdot 10^{-8} \) | \(a_{780}= +4.96320281 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{781}= -0.53058227 \pm 2.0 \cdot 10^{-8} \) | \(a_{782}= +0.03947757 \pm 1.9 \cdot 10^{-8} \) | \(a_{783}= -0.11067455 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{784}= +0.28817910 \pm 2.4 \cdot 10^{-8} \) | \(a_{785}= +2.95971173 \pm 2.3 \cdot 10^{-8} \) | \(a_{786}= +0.89656497 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{787}= -1.09665341 \pm 2.0 \cdot 10^{-8} \) | \(a_{788}= +0.00975775 \pm 2.2 \cdot 10^{-8} \) | \(a_{789}= -2.11031124 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{790}= -4.84792081 \pm 2.5 \cdot 10^{-8} \) | \(a_{791}= -0.67559031 \pm 1.8 \cdot 10^{-8} \) | \(a_{792}= +2.05570916 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{793}= -0.11858255 \pm 2.1 \cdot 10^{-8} \) | \(a_{794}= -0.00012532 \pm 2.1 \cdot 10^{-8} \) | \(a_{795}= +2.94376509 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{796}= +0.93563431 \pm 1.7 \cdot 10^{-8} \) | \(a_{797}= -0.43444002 \pm 2.2 \cdot 10^{-8} \) | \(a_{798}= +0.50328190 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{799}= -0.04462249 \pm 1.2 \cdot 10^{-8} \) | \(a_{800}= -0.60943369 \pm 1.5 \cdot 10^{-8} \) | \(a_{801}= -1.71071793 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{802}= +0.25381439 \pm 2.3 \cdot 10^{-8} \) | \(a_{803}= -0.57169490 \pm 1.8 \cdot 10^{-8} \) | \(a_{804}= -2.11742361 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{805}= -1.20105445 \pm 1.4 \cdot 10^{-8} \) | \(a_{806}= +1.00410620 \pm 1.7 \cdot 10^{-8} \) | \(a_{807}= +1.73400665 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{808}= +1.15818519 \pm 2.8 \cdot 10^{-8} \) | \(a_{809}= +0.42625083 \pm 1.8 \cdot 10^{-8} \) | \(a_{810}= -1.40452168 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{811}= +0.38017780 \pm 1.8 \cdot 10^{-8} \) | \(a_{812}= +0.42911995 \pm 5.4 \cdot 10^{-8} \) | \(a_{813}= -0.21011767 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{814}= -1.36959466 \pm 1.6 \cdot 10^{-8} \) | \(a_{815}= +2.34076168 \pm 1.6 \cdot 10^{-8} \) | \(a_{816}= +0.06952125 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{817}= -0.16462263 \pm 1.5 \cdot 10^{-8} \) | \(a_{818}= +0.14437011 \pm 2.6 \cdot 10^{-8} \) | \(a_{819}= +1.37708726 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{820}= -4.23255686 \pm 2.6 \cdot 10^{-8} \) | \(a_{821}= -1.14474157 \pm 2.3 \cdot 10^{-8} \) | \(a_{822}= -1.13252632 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{823}= +0.43533002 \pm 2.3 \cdot 10^{-8} \) | \(a_{824}= -0.60489872 \pm 3.3 \cdot 10^{-8} \) | \(a_{825}= +2.34866126 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{826}= +3.16420670 \pm 1.6 \cdot 10^{-8} \) | \(a_{827}= +1.16406378 \pm 1.6 \cdot 10^{-8} \) | \(a_{828}= +1.82217446 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{829}= -0.42245251 \pm 2.1 \cdot 10^{-8} \) | \(a_{830}= +2.67172693 \pm 2.6 \cdot 10^{-8} \) | \(a_{831}= +0.07048465 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{832}= -0.64096998 \pm 2.5 \cdot 10^{-8} \) | \(a_{833}= -0.00813441 \pm 1.6 \cdot 10^{-8} \) | \(a_{834}= +4.84132100 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{835}= -0.78733781 \pm 1.6 \cdot 10^{-8} \) | \(a_{836}= -0.27162017 \pm 1.8 \cdot 10^{-8} \) | \(a_{837}= +0.37999789 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{838}= -0.89594901 \pm 1.9 \cdot 10^{-8} \) | \(a_{839}= +1.68293121 \pm 2.0 \cdot 10^{-8} \) | \(a_{840}= -5.60773802 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{841}= +0.03448276 \pm 1.5 \cdot 10^{-6} \) | \(a_{842}= +1.08388965 \pm 2.3 \cdot 10^{-8} \) | \(a_{843}= -0.13497273 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{844}= -0.78699757 \pm 3.3 \cdot 10^{-8} \) | \(a_{845}= +0.33699971 \pm 1.8 \cdot 10^{-8} \) | \(a_{846}= -3.04741328 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{847}= -0.43704364 \pm 1.4 \cdot 10^{-8} \) | \(a_{848}= +1.40024329 \pm 2.2 \cdot 10^{-8} \) | \(a_{849}= +1.13431129 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{850}= +0.12232295 \pm 2.3 \cdot 10^{-8} \) | \(a_{851}= -0.63179409 \pm 2.1 \cdot 10^{-8} \) | \(a_{852}= -2.19586705 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{853}= +0.21181586 \pm 1.8 \cdot 10^{-8} \) | \(a_{854}= +0.25744902 \pm 1.3 \cdot 10^{-8} \) | \(a_{855}= -0.39867977 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{856}= +0.87148051 \pm 2.8 \cdot 10^{-8} \) | \(a_{857}= -0.33989297 \pm 2.0 \cdot 10^{-8} \) | \(a_{858}= -1.89311226 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{859}= +1.02886236 \pm 2.0 \cdot 10^{-8} \) | \(a_{860}= +3.52460708 \pm 2.0 \cdot 10^{-8} \) | \(a_{861}= -2.02175453 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{862}= +2.49811402 \pm 2.1 \cdot 10^{-8} \) | \(a_{863}= -0.02783795 \pm 1.9 \cdot 10^{-8} \) | \(a_{864}= +0.18590196 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{865}= +0.74723568 \pm 2.3 \cdot 10^{-8} \) | \(a_{866}= -1.12400768 \pm 2.4 \cdot 10^{-8} \) | \(a_{867}= +1.54265911 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{868}= -1.47337096 \pm 1.4 \cdot 10^{-8} \) | \(a_{869}= +1.24977504 \pm 1.7 \cdot 10^{-8} \) | \(a_{870}= -0.86587618 \pm 7.5 \cdot 10^{-8} \) |
| \(a_{871}= +0.58945613 \pm 1.6 \cdot 10^{-8} \) | \(a_{872}= -1.22533682 \pm 2.4 \cdot 10^{-8} \) | \(a_{873}= -0.04970842 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{874}= -0.18538882 \pm 1.5 \cdot 10^{-8} \) | \(a_{875}= -1.81679974 \pm 1.4 \cdot 10^{-8} \) | \(a_{876}= -2.36601571 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{877}= -0.60136579 \pm 2.0 \cdot 10^{-8} \) | \(a_{878}= -2.15783329 \pm 1.8 \cdot 10^{-8} \) | \(a_{879}= -2.49666284 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{880}= +1.68895709 \pm 2.1 \cdot 10^{-8} \) | \(a_{881}= -0.23894785 \pm 2.0 \cdot 10^{-8} \) | \(a_{882}= -0.55552499 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{883}= -0.03585700 \pm 2.1 \cdot 10^{-8} \) | \(a_{884}= -0.06663861 \pm 3.5 \cdot 10^{-8} \) | \(a_{885}= -4.31522974 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{886}= +0.91209010 \pm 2.0 \cdot 10^{-8} \) | \(a_{887}= +0.45835236 \pm 2.2 \cdot 10^{-8} \) | \(a_{888}= -2.94985441 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{889}= +1.42959807 \pm 1.9 \cdot 10^{-8} \) | \(a_{890}= -3.72643179 \pm 2.1 \cdot 10^{-8} \) | \(a_{891}= +0.36208020 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{892}= -3.39787111 \pm 2.1 \cdot 10^{-8} \) | \(a_{893}= +0.20954964 \pm 1.4 \cdot 10^{-8} \) | \(a_{894}= -3.41360666 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{895}= +0.51444861 \pm 2.6 \cdot 10^{-8} \) | \(a_{896}= +1.73726022 \pm 2.3 \cdot 10^{-8} \) | \(a_{897}= -0.87329279 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{898}= +3.13439502 \pm 2.5 \cdot 10^{-8} \) | \(a_{899}= -0.11839556 \pm 2.9 \cdot 10^{-8} \) | \(a_{900}= +5.64608619 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{901}= -0.03952456 \pm 1.8 \cdot 10^{-8} \) | \(a_{902}= +1.61442230 \pm 1.7 \cdot 10^{-8} \) | \(a_{903}= +1.68358998 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{904}= +1.16193186 \pm 2.2 \cdot 10^{-8} \) | \(a_{905}= +1.57625486 \pm 1.3 \cdot 10^{-8} \) | \(a_{906}= +3.14443630 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{907}= -1.18525962 \pm 2.2 \cdot 10^{-8} \) | \(a_{908}= -0.92927909 \pm 2.6 \cdot 10^{-8} \) | \(a_{909}= -0.84209541 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{910}= +2.99968898 \pm 1.3 \cdot 10^{-8} \) | \(a_{911}= +0.35990807 \pm 1.6 \cdot 10^{-8} \) | \(a_{912}= -0.32647560 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{913}= -0.68876076 \pm 1.7 \cdot 10^{-8} \) | \(a_{914}= -2.63301237 \pm 1.7 \cdot 10^{-8} \) | \(a_{915}= -0.35109959 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{916}= +2.52813694 \pm 2.5 \cdot 10^{-8} \) | \(a_{917}= +0.36623341 \pm 1.8 \cdot 10^{-8} \) | \(a_{918}= -0.03731346 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{919}= +0.35732306 \pm 1.7 \cdot 10^{-8} \) | \(a_{920}= +2.06566526 \pm 1.6 \cdot 10^{-8} \) | \(a_{921}= -1.04810137 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{922}= +0.10222487 \pm 2.4 \cdot 10^{-8} \) | \(a_{923}= +0.61129350 \pm 2.5 \cdot 10^{-8} \) | \(a_{924}= +2.77785021 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{925}= -1.95764126 \pm 1.9 \cdot 10^{-8} \) | \(a_{926}= +1.73104409 \pm 2.2 \cdot 10^{-8} \) | \(a_{927}= +0.43981087 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{928}= -0.05792129 \pm 4.2 \cdot 10^{-8} \) | \(a_{929}= -1.32742954 \pm 1.9 \cdot 10^{-8} \) | \(a_{930}= +2.97296090 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{931}= +0.03819963 \pm 1.4 \cdot 10^{-8} \) | \(a_{932}= -0.55866554 \pm 2.4 \cdot 10^{-8} \) | \(a_{933}= +0.24698895 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{934}= -2.22713690 \pm 2.7 \cdot 10^{-8} \) | \(a_{935}= -0.04767406 \pm 1.5 \cdot 10^{-8} \) | \(a_{936}= -2.36841995 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{937}= +0.01678532 \pm 1.9 \cdot 10^{-8} \) | \(a_{938}= -1.27974063 \pm 1.5 \cdot 10^{-8} \) | \(a_{939}= +0.66242639 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{940}= -4.48650452 \pm 1.6 \cdot 10^{-8} \) | \(a_{941}= -0.10315297 \pm 1.5 \cdot 10^{-8} \) | \(a_{942}= -4.67215308 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{943}= +0.74473310 \pm 1.9 \cdot 10^{-8} \) | \(a_{944}= -2.05259975 \pm 3.6 \cdot 10^{-8} \) | \(a_{945}= +1.13521407 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{946}= -1.34438932 \pm 1.7 \cdot 10^{-8} \) | \(a_{947}= -0.31729709 \pm 2.0 \cdot 10^{-8} \) | \(a_{948}= +5.17231722 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{949}= +0.65866010 \pm 2.1 \cdot 10^{-8} \) | \(a_{950}= -0.57443526 \pm 1.5 \cdot 10^{-8} \) | \(a_{951}= +2.54732518 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{952}= +0.07529248 \pm 1.7 \cdot 10^{-8} \) | \(a_{953}= -1.41875076 \pm 1.7 \cdot 10^{-8} \) | \(a_{954}= -2.69925935 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{955}= +1.23882634 \pm 1.5 \cdot 10^{-8} \) | \(a_{956}= +2.20621607 \pm 2.3 \cdot 10^{-8} \) | \(a_{957}= +0.22321950 \pm 5.0 \cdot 10^{-8} \) |
| \(a_{958}= +1.93788037 \pm 2.3 \cdot 10^{-8} \) | \(a_{959}= -0.46262010 \pm 1.6 \cdot 10^{-8} \) | \(a_{960}= -1.89778600 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{961}= -0.59349227 \pm 2.0 \cdot 10^{-8} \) | \(a_{962}= +1.57793494 \pm 1.5 \cdot 10^{-8} \) | \(a_{963}= -0.63363765 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{964}= +2.68077526 \pm 2.9 \cdot 10^{-8} \) | \(a_{965}= +1.80442460 \pm 2.1 \cdot 10^{-8} \) | \(a_{966}= +1.89596513 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{967}= +1.42190610 \pm 1.9 \cdot 10^{-8} \) | \(a_{968}= +0.75166107 \pm 1.9 \cdot 10^{-8} \) | \(a_{969}= +0.00921540 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{970}= -0.10827912 \pm 1.3 \cdot 10^{-8} \) | \(a_{971}= -0.53770925 \pm 1.6 \cdot 10^{-8} \) | \(a_{972}= +2.74126404 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{973}= +1.97760737 \pm 1.6 \cdot 10^{-8} \) | \(a_{974}= -2.18691016 \pm 2.5 \cdot 10^{-8} \) | \(a_{975}= -2.70593540 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{976}= -0.16700546 \pm 2.1 \cdot 10^{-8} \) | \(a_{977}= +0.92625601 \pm 1.4 \cdot 10^{-8} \) | \(a_{978}= -3.69508854 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{979}= +0.96065956 \pm 1.4 \cdot 10^{-8} \) | \(a_{980}= -0.81786261 \pm 1.8 \cdot 10^{-8} \) | \(a_{981}= +0.89092014 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{982}= +0.90756214 \pm 2.1 \cdot 10^{-8} \) | \(a_{983}= +0.47863275 \pm 1.7 \cdot 10^{-8} \) | \(a_{984}= +3.47716800 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{985}= -0.00804272 \pm 2.2 \cdot 10^{-8} \) | \(a_{986}= +0.01162572 \pm 5.2 \cdot 10^{-8} \) | \(a_{987}= -2.14305705 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{988}= +0.31293854 \pm 2.3 \cdot 10^{-8} \) | \(a_{989}= -0.62016687 \pm 1.6 \cdot 10^{-8} \) | \(a_{990}= -3.25581508 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{991}= -0.29132004 \pm 2.2 \cdot 10^{-8} \) | \(a_{992}= +0.19887107 \pm 1.7 \cdot 10^{-8} \) | \(a_{993}= -0.95475231 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{994}= -1.32715072 \pm 1.8 \cdot 10^{-8} \) | \(a_{995}= -0.77118651 \pm 1.0 \cdot 10^{-8} \) | \(a_{996}= -2.85050432 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{997}= +0.02586178 \pm 2.0 \cdot 10^{-8} \) | \(a_{998}= +1.35774454 \pm 2.2 \cdot 10^{-8} \) | \(a_{999}= +0.59715989 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{1000}= +3.12467108 \pm 2.4 \cdot 10^{-8} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000