Maass form invariants
| Level: | \( 29 \) |
| Weight: | \( 0 \) |
| Character: | 29.1 |
| Symmetry: | even |
| Fricke sign: | $-1$ |
| Spectral parameter: | \(4.3967606392743823364994195848 \pm 4 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
| \(a_{1}= +1 \) | \(a_{2}= +1.44551521 \pm 2.6 \cdot 10^{-8} \) | \(a_{3}= -0.24673958 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{4}= +1.08951423 \pm 2.7 \cdot 10^{-8} \) | \(a_{5}= -1.70042823 \pm 2.2 \cdot 10^{-8} \) | \(a_{6}= -0.35666582 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{7}= -0.50572547 \pm 2.1 \cdot 10^{-8} \) | \(a_{8}= +0.12939418 \pm 3.2 \cdot 10^{-8} \) | \(a_{9}= -0.93911958 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{10}= -2.45799488 \pm 2.5 \cdot 10^{-8} \) | \(a_{11}= +0.75424580 \pm 2.1 \cdot 10^{-8} \) | \(a_{12}= -0.26882629 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{13}= +1.39329904 \pm 2.2 \cdot 10^{-8} \) | \(a_{14}= -0.73103386 \pm 1.9 \cdot 10^{-8} \) | \(a_{15}= +0.41956295 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{16}= -0.90247297 \pm 3.4 \cdot 10^{-8} \) | \(a_{17}= -1.01255510 \pm 2.1 \cdot 10^{-8} \) | \(a_{18}= -1.35751164 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{19}= +0.43750129 \pm 1.9 \cdot 10^{-8} \) | \(a_{20}= -1.85264076 \pm 2.5 \cdot 10^{-8} \) | \(a_{21}= +0.12478249 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{22}= +1.09027378 \pm 2.3 \cdot 10^{-8} \) | \(a_{23}= -1.40391256 \pm 2.2 \cdot 10^{-8} \) | \(a_{24}= -0.03192667 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{25}= +1.89145618 \pm 2.2 \cdot 10^{-8} \) | \(a_{26}= +2.01403496 \pm 2.7 \cdot 10^{-8} \) | \(a_{27}= +0.47845756 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{28}= -0.55099510 \pm 1.8 \cdot 10^{-8} \) | \(a_{29}= +0.18569534 \pm 1.0 \cdot 10^{-8} \) | \(a_{30}= +0.60648463 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{31}= -0.60564025 \pm 2.1 \cdot 10^{-8} \) | \(a_{32}= -1.43393259 \pm 3.6 \cdot 10^{-8} \) | \(a_{33}= -0.18610230 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{34}= -1.46366381 \pm 2.7 \cdot 10^{-8} \) | \(a_{35}= +0.85994987 \pm 2.4 \cdot 10^{-8} \) | \(a_{36}= -1.02318414 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{37}= +1.15600546 \pm 2.2 \cdot 10^{-8} \) | \(a_{38}= +0.63241477 \pm 1.9 \cdot 10^{-8} \) | \(a_{39}= -0.34378203 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{40}= -0.22002552 \pm 2.9 \cdot 10^{-8} \) | \(a_{41}= -1.42676996 \pm 2.1 \cdot 10^{-8} \) | \(a_{42}= +0.18037499 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{43}= -1.14035250 \pm 2.1 \cdot 10^{-8} \) | \(a_{44}= +0.82176153 \pm 2.3 \cdot 10^{-8} \) | \(a_{45}= +1.59690545 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{46}= -2.02937697 \pm 2.1 \cdot 10^{-8} \) | \(a_{47}= -0.53143172 \pm 2.0 \cdot 10^{-8} \) | \(a_{48}= +0.22267581 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{49}= -0.74424175 \pm 1.8 \cdot 10^{-8} \) | \(a_{50}= +2.73412868 \pm 2.4 \cdot 10^{-8} \) | \(a_{51}= +0.24983742 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{52}= +1.51801914 \pm 3.0 \cdot 10^{-8} \) | \(a_{53}= +0.12833951 \pm 2.3 \cdot 10^{-8} \) | \(a_{54}= +0.69161768 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{55}= -1.28254086 \pm 2.0 \cdot 10^{-8} \) | \(a_{56}= -0.06543793 \pm 2.3 \cdot 10^{-8} \) | \(a_{57}= -0.10794889 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{58}= +0.26842544 \pm 3.7 \cdot 10^{-8} \) | \(a_{59}= +0.84387344 \pm 2.0 \cdot 10^{-8} \) | \(a_{60}= +0.45711981 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{61}= +0.34765358 \pm 2.1 \cdot 10^{-8} \) | \(a_{62}= -0.87546220 \pm 2.2 \cdot 10^{-8} \) | \(a_{63}= +0.47493669 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{64}= -1.17029840 \pm 4.0 \cdot 10^{-8} \) | \(a_{65}= -2.36920503 \pm 1.8 \cdot 10^{-8} \) | \(a_{66}= -0.26901370 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{67}= +0.13767992 \pm 1.8 \cdot 10^{-8} \) | \(a_{68}= -1.10319319 \pm 2.6 \cdot 10^{-8} \) | \(a_{69}= +0.34640080 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{70}= +1.24307062 \pm 2.2 \cdot 10^{-8} \) | \(a_{71}= -0.56625484 \pm 2.4 \cdot 10^{-8} \) | \(a_{72}= -0.12151661 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{73}= +0.66874489 \pm 2.1 \cdot 10^{-8} \) | \(a_{74}= +1.67102348 \pm 2.5 \cdot 10^{-8} \) | \(a_{75}= -0.46669711 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{76}= +0.47666388 \pm 2.1 \cdot 10^{-8} \) | \(a_{77}= -0.38144131 \pm 2.0 \cdot 10^{-8} \) | \(a_{78}= -0.49694215 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{79}= -1.13496548 \pm 2.2 \cdot 10^{-8} \) | \(a_{80}= +1.53459052 \pm 3.3 \cdot 10^{-8} \) | \(a_{81}= +0.82106516 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{82}= -2.06241768 \pm 2.6 \cdot 10^{-8} \) | \(a_{83}= -0.58470447 \pm 2.3 \cdot 10^{-8} \) | \(a_{84}= +0.13595230 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{85}= +1.72177729 \pm 1.8 \cdot 10^{-8} \) | \(a_{86}= -1.64839688 \pm 2.2 \cdot 10^{-8} \) | \(a_{87}= -0.04581839 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{88}= +0.09759502 \pm 2.3 \cdot 10^{-8} \) | \(a_{89}= +0.68340349 \pm 1.9 \cdot 10^{-8} \) | \(a_{90}= +2.30835111 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{91}= -0.70462682 \pm 2.0 \cdot 10^{-8} \) | \(a_{92}= -1.52958271 \pm 2.1 \cdot 10^{-8} \) | \(a_{93}= +0.14943542 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{94}= -0.76819264 \pm 2.1 \cdot 10^{-8} \) | \(a_{95}= -0.74393955 \pm 1.8 \cdot 10^{-8} \) | \(a_{96}= +0.35380793 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{97}= +0.19611853 \pm 2.0 \cdot 10^{-8} \) | \(a_{98}= -1.07581277 \pm 2.1 \cdot 10^{-8} \) | \(a_{99}= -0.70832700 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{100}= +2.06076842 \pm 2.2 \cdot 10^{-8} \) | \(a_{101}= +1.21346957 \pm 2.1 \cdot 10^{-8} \) | \(a_{102}= +0.36114380 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{103}= +1.54740530 \pm 2.2 \cdot 10^{-8} \) | \(a_{104}= +0.18028479 \pm 3.0 \cdot 10^{-8} \) | \(a_{105}= -0.21218367 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{106}= +0.18551672 \pm 2.5 \cdot 10^{-8} \) | \(a_{107}= -0.18542991 \pm 2.1 \cdot 10^{-8} \) | \(a_{108}= +0.52128632 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{109}= -1.81068983 \pm 2.1 \cdot 10^{-8} \) | \(a_{110}= -1.85393232 \pm 2.1 \cdot 10^{-8} \) | \(a_{111}= -0.28523231 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{112}= +0.45640357 \pm 2.2 \cdot 10^{-8} \) | \(a_{113}= +0.43936321 \pm 2.0 \cdot 10^{-8} \) | \(a_{114}= -0.15604176 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{115}= +2.38725256 \pm 1.7 \cdot 10^{-8} \) | \(a_{116}= +0.20231771 \pm 3.8 \cdot 10^{-8} \) | \(a_{117}= -1.30847441 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{118}= +1.21983189 \pm 2.8 \cdot 10^{-8} \) | \(a_{119}= +0.51207491 \pm 1.7 \cdot 10^{-8} \) | \(a_{120}= +0.05428900 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{121}= -0.43111327 \pm 1.8 \cdot 10^{-8} \) | \(a_{122}= +0.50253854 \pm 2.5 \cdot 10^{-8} \) | \(a_{123}= +0.35204063 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{124}= -0.65985367 \pm 1.8 \cdot 10^{-8} \) | \(a_{125}= -1.51585726 \pm 1.7 \cdot 10^{-8} \) | \(a_{126}= +0.68652821 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{127}= -1.36600665 \pm 2.2 \cdot 10^{-8} \) | \(a_{128}= -0.25775155 \pm 4.5 \cdot 10^{-8} \) | \(a_{129}= +0.28137010 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{130}= -3.42472192 \pm 2.0 \cdot 10^{-8} \) | \(a_{131}= +1.77370602 \pm 2.0 \cdot 10^{-8} \) | \(a_{132}= -0.20276110 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{133}= -0.22125555 \pm 2.0 \cdot 10^{-8} \) | \(a_{134}= +0.19901841 \pm 2.1 \cdot 10^{-8} \) | \(a_{135}= -0.81358274 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{136}= -0.13101874 \pm 2.5 \cdot 10^{-8} \) | \(a_{137}= -1.40920678 \pm 1.8 \cdot 10^{-8} \) | \(a_{138}= +0.50072763 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{139}= -0.38180861 \pm 2.1 \cdot 10^{-8} \) | \(a_{140}= +0.93692762 \pm 2.0 \cdot 10^{-8} \) | \(a_{141}= +0.13112524 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{142}= -0.81852999 \pm 2.9 \cdot 10^{-8} \) | \(a_{143}= +1.05088996 \pm 2.2 \cdot 10^{-8} \) | \(a_{144}= +0.84753004 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{145}= -0.31576160 \pm 3.3 \cdot 10^{-8} \) | \(a_{146}= +0.96668092 \pm 2.2 \cdot 10^{-8} \) | \(a_{147}= +0.18363390 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{148}= +1.25948440 \pm 2.5 \cdot 10^{-8} \) | \(a_{149}= -1.48813777 \pm 2.0 \cdot 10^{-8} \) | \(a_{150}= -0.67461777 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{151}= +1.43271760 \pm 2.4 \cdot 10^{-8} \) | \(a_{152}= +0.05661012 \pm 2.3 \cdot 10^{-8} \) | \(a_{153}= +0.95091032 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{154}= -0.55137922 \pm 1.6 \cdot 10^{-8} \) | \(a_{155}= +1.02984779 \pm 2.0 \cdot 10^{-8} \) | \(a_{156}= -0.37455541 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{157}= +0.63913574 \pm 2.3 \cdot 10^{-8} \) | \(a_{158}= -1.64060986 \pm 2.9 \cdot 10^{-8} \) | \(a_{159}= -0.03166644 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{160}= +2.43829947 \pm 3.3 \cdot 10^{-8} \) | \(a_{161}= +0.70999434 \pm 2.1 \cdot 10^{-8} \) | \(a_{162}= +1.18686218 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{163}= +0.53455002 \pm 2.1 \cdot 10^{-8} \) | \(a_{164}= -1.55448617 \pm 3.0 \cdot 10^{-8} \) | \(a_{165}= +0.31645360 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{166}= -0.84519921 \pm 2.5 \cdot 10^{-8} \) | \(a_{167}= -0.33515938 \pm 1.8 \cdot 10^{-8} \) | \(a_{168}= +0.01614613 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{169}= +0.94128223 \pm 2.2 \cdot 10^{-8} \) | \(a_{170}= +2.48885526 \pm 1.8 \cdot 10^{-8} \) | \(a_{171}= -0.41086603 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{172}= -1.24243027 \pm 2.2 \cdot 10^{-8} \) | \(a_{173}= -1.73850779 \pm 2.1 \cdot 10^{-8} \) | \(a_{174}= -0.06623118 \pm 6.0 \cdot 10^{-8} \) |
| \(a_{175}= -0.95655757 \pm 2.3 \cdot 10^{-8} \) | \(a_{176}= -0.68068645 \pm 2.3 \cdot 10^{-8} \) | \(a_{177}= -0.20821698 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{178}= +0.98787014 \pm 2.3 \cdot 10^{-8} \) | \(a_{179}= -0.15315238 \pm 2.5 \cdot 10^{-8} \) | \(a_{180}= +1.73985121 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{181}= -0.93457757 \pm 1.8 \cdot 10^{-8} \) | \(a_{182}= -1.01854878 \pm 1.6 \cdot 10^{-8} \) | \(a_{183}= -0.08577990 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{184}= -0.18165812 \pm 2.4 \cdot 10^{-8} \) | \(a_{185}= -1.96570432 \pm 2.3 \cdot 10^{-8} \) | \(a_{186}= +0.21601118 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{187}= -0.76371544 \pm 1.9 \cdot 10^{-8} \) | \(a_{188}= -0.57900243 \pm 1.8 \cdot 10^{-8} \) | \(a_{189}= -0.24196817 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{190}= -1.07537593 \pm 1.7 \cdot 10^{-8} \) | \(a_{191}= +0.23314584 \pm 1.9 \cdot 10^{-8} \) | \(a_{192}= +0.28875894 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{193}= +0.36003623 \pm 2.1 \cdot 10^{-8} \) | \(a_{194}= +0.28349231 \pm 2.0 \cdot 10^{-8} \) | \(a_{195}= +0.58457666 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{196}= -0.81086197 \pm 2.3 \cdot 10^{-8} \) | \(a_{197}= -1.42573619 \pm 2.2 \cdot 10^{-8} \) | \(a_{198}= -1.02389745 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{199}= -0.20624735 \pm 1.8 \cdot 10^{-8} \) | \(a_{200}= +0.24474342 \pm 2.3 \cdot 10^{-8} \) | \(a_{201}= -0.03397108 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{202}= +1.75408873 \pm 2.6 \cdot 10^{-8} \) | \(a_{203}= -0.09391086 \pm 3.2 \cdot 10^{-8} \) | \(a_{204}= +0.27220143 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{205}= +2.42611992 \pm 2.2 \cdot 10^{-8} \) | \(a_{206}= +2.23679791 \pm 2.6 \cdot 10^{-8} \) | \(a_{207}= +1.31844177 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{208}= -1.25741473 \pm 2.7 \cdot 10^{-8} \) | \(a_{209}= +0.32998351 \pm 1.9 \cdot 10^{-8} \) | \(a_{210}= -0.30671473 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{211}= +0.90692329 \pm 2.4 \cdot 10^{-8} \) | \(a_{212}= +0.13982772 \pm 1.8 \cdot 10^{-8} \) | \(a_{213}= +0.13971748 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{214}= -0.26804175 \pm 2.5 \cdot 10^{-8} \) | \(a_{215}= +1.93908758 \pm 2.3 \cdot 10^{-8} \) | \(a_{216}= +0.06190962 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{217}= +0.30628770 \pm 2.0 \cdot 10^{-8} \) | \(a_{218}= -2.61737970 \pm 2.4 \cdot 10^{-8} \) | \(a_{219}= -0.16500584 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{220}= -1.39734651 \pm 2.2 \cdot 10^{-8} \) | \(a_{221}= -1.41079206 \pm 2.5 \cdot 10^{-8} \) | \(a_{222}= -0.41230764 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{223}= +0.14329324 \pm 2.0 \cdot 10^{-8} \) | \(a_{224}= +0.72517624 \pm 2.1 \cdot 10^{-8} \) | \(a_{225}= -1.77630353 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{226}= +0.63510620 \pm 2.5 \cdot 10^{-8} \) | \(a_{227}= -1.11961394 \pm 2.0 \cdot 10^{-8} \) | \(a_{228}= -0.11761185 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{229}= +1.29425007 \pm 2.1 \cdot 10^{-8} \) | \(a_{230}= +3.45080989 \pm 2.0 \cdot 10^{-8} \) | \(a_{231}= +0.09411667 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{232}= +0.02402790 \pm 4.2 \cdot 10^{-8} \) | \(a_{233}= -0.98521028 \pm 2.2 \cdot 10^{-8} \) | \(a_{234}= -1.89141967 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{235}= +0.90366151 \pm 2.1 \cdot 10^{-8} \) | \(a_{236}= +0.91941212 \pm 3.4 \cdot 10^{-8} \) | \(a_{237}= +0.28004091 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{238}= +0.74021207 \pm 1.8 \cdot 10^{-8} \) | \(a_{239}= -0.40496199 \pm 2.3 \cdot 10^{-8} \) | \(a_{240}= -0.37864423 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{241}= +0.10891013 \pm 2.3 \cdot 10^{-8} \) | \(a_{242}= -0.62318079 \pm 2.2 \cdot 10^{-8} \) | \(a_{243}= -0.68104683 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{244}= +0.37877352 \pm 2.6 \cdot 10^{-8} \) | \(a_{245}= +1.26552968 \pm 1.9 \cdot 10^{-8} \) | \(a_{246}= +0.50888008 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{247}= +0.60957013 \pm 2.0 \cdot 10^{-8} \) | \(a_{248}= -0.07836632 \pm 2.0 \cdot 10^{-8} \) | \(a_{249}= +0.14426974 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{250}= -2.19119472 \pm 2.1 \cdot 10^{-8} \) | \(a_{251}= +1.32066187 \pm 1.9 \cdot 10^{-8} \) | \(a_{252}= +0.51745028 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{253}= -1.05889516 \pm 2.1 \cdot 10^{-8} \) | \(a_{254}= -1.97458340 \pm 2.5 \cdot 10^{-8} \) | \(a_{255}= -0.42483061 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{256}= +0.79771461 \pm 4.7 \cdot 10^{-8} \) | \(a_{257}= +1.28496172 \pm 1.8 \cdot 10^{-8} \) | \(a_{258}= +0.40672476 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{259}= -0.58462141 \pm 1.9 \cdot 10^{-8} \) | \(a_{260}= -2.58128260 \pm 2.3 \cdot 10^{-8} \) | \(a_{261}= -0.17439013 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{262}= +2.56391904 \pm 2.8 \cdot 10^{-8} \) | \(a_{263}= +0.91973062 \pm 1.9 \cdot 10^{-8} \) | \(a_{264}= -0.02408055 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{265}= -0.21823213 \pm 2.6 \cdot 10^{-8} \) | \(a_{266}= -0.31982826 \pm 1.5 \cdot 10^{-8} \) | \(a_{267}= -0.16862269 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{268}= +0.15000423 \pm 2.0 \cdot 10^{-8} \) | \(a_{269}= -0.15233630 \pm 2.3 \cdot 10^{-8} \) | \(a_{270}= -1.17604623 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{271}= -1.82513043 \pm 1.8 \cdot 10^{-8} \) | \(a_{272}= +0.91380361 \pm 2.2 \cdot 10^{-8} \) | \(a_{273}= +0.17385933 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{274}= -2.03702983 \pm 2.2 \cdot 10^{-8} \) | \(a_{275}= +1.42662288 \pm 2.2 \cdot 10^{-8} \) | \(a_{276}= +0.37740860 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{277}= -0.51335447 \pm 2.4 \cdot 10^{-8} \) | \(a_{278}= -0.55191015 \pm 2.8 \cdot 10^{-8} \) | \(a_{279}= +0.56876862 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{280}= +0.11127251 \pm 2.4 \cdot 10^{-8} \) | \(a_{281}= -0.68628764 \pm 2.1 \cdot 10^{-8} \) | \(a_{282}= +0.18954353 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{283}= +1.02458732 \pm 2.4 \cdot 10^{-8} \) | \(a_{284}= -0.61694271 \pm 2.8 \cdot 10^{-8} \) | \(a_{285}= +0.18355933 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{286}= +1.51907742 \pm 2.5 \cdot 10^{-8} \) | \(a_{287}= +0.72155391 \pm 1.9 \cdot 10^{-8} \) | \(a_{288}= +1.34663417 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{289}= +0.02526784 \pm 2.1 \cdot 10^{-8} \) | \(a_{290}= -0.45643819 \pm 5.9 \cdot 10^{-8} \) | \(a_{291}= -0.04839020 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{292}= +0.72860708 \pm 2.2 \cdot 10^{-8} \) | \(a_{293}= -1.14153766 \pm 1.7 \cdot 10^{-8} \) | \(a_{294}= +0.26544559 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{295}= -1.43494622 \pm 2.1 \cdot 10^{-8} \) | \(a_{296}= +0.14958038 \pm 3.3 \cdot 10^{-8} \) | \(a_{297}= +0.36087460 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{298}= -2.15112579 \pm 2.0 \cdot 10^{-8} \) | \(a_{299}= -1.95607003 \pm 2.3 \cdot 10^{-8} \) | \(a_{300}= -0.50847314 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{301}= +0.57670531 \pm 2.2 \cdot 10^{-8} \) | \(a_{302}= +2.07101509 \pm 2.3 \cdot 10^{-8} \) | \(a_{303}= -0.29941098 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{304}= -0.39483309 \pm 2.2 \cdot 10^{-8} \) | \(a_{305}= -0.59115996 \pm 1.8 \cdot 10^{-8} \) | \(a_{306}= +1.37455534 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{307}= -1.73565327 \pm 2.1 \cdot 10^{-8} \) | \(a_{308}= -0.41558574 \pm 1.7 \cdot 10^{-8} \) | \(a_{309}= -0.38180614 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{310}= +1.48866064 \pm 1.7 \cdot 10^{-8} \) | \(a_{311}= -0.52938398 \pm 2.3 \cdot 10^{-8} \) | \(a_{312}= -0.04448339 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{313}= +1.51908958 \pm 2.0 \cdot 10^{-8} \) | \(a_{314}= +0.92388044 \pm 2.7 \cdot 10^{-8} \) | \(a_{315}= -0.80759576 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{316}= -1.23656104 \pm 3.4 \cdot 10^{-8} \) | \(a_{317}= -0.17707624 \pm 1.9 \cdot 10^{-8} \) | \(a_{318}= -0.04577432 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{319}= +0.14005993 \pm 3.1 \cdot 10^{-8} \) | \(a_{320}= +1.99000845 \pm 3.9 \cdot 10^{-8} \) | \(a_{321}= +0.04575290 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{322}= +1.02630762 \pm 1.7 \cdot 10^{-8} \) | \(a_{323}= -0.44299417 \pm 1.7 \cdot 10^{-8} \) | \(a_{324}= +0.89456217 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{325}= +2.63536409 \pm 2.3 \cdot 10^{-8} \) | \(a_{326}= +0.77270019 \pm 2.2 \cdot 10^{-8} \) | \(a_{327}= +0.44676885 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{328}= -0.18461573 \pm 3.8 \cdot 10^{-8} \) | \(a_{329}= +0.26875856 \pm 1.9 \cdot 10^{-8} \) | \(a_{330}= +0.45743849 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{331}= +1.26918397 \pm 2.4 \cdot 10^{-8} \) | \(a_{332}= -0.63704384 \pm 1.9 \cdot 10^{-8} \) | \(a_{333}= -1.08562736 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{334}= -0.48447798 \pm 1.7 \cdot 10^{-8} \) | \(a_{335}= -0.23411482 \pm 1.6 \cdot 10^{-8} \) | \(a_{336}= -0.11261283 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{337}= -1.47433909 \pm 2.2 \cdot 10^{-8} \) | \(a_{338}= +1.36063778 \pm 2.8 \cdot 10^{-8} \) | \(a_{339}= -0.10840830 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{340}= +1.87590085 \pm 1.5 \cdot 10^{-8} \) | \(a_{341}= -0.45680162 \pm 2.1 \cdot 10^{-8} \) | \(a_{342}= -0.59391309 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{343}= +0.88210748 \pm 1.9 \cdot 10^{-8} \) | \(a_{344}= -0.14755498 \pm 2.4 \cdot 10^{-8} \) | \(a_{345}= -0.58902970 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{346}= -2.51303946 \pm 2.5 \cdot 10^{-8} \) | \(a_{347}= +0.42235018 \pm 2.1 \cdot 10^{-8} \) | \(a_{348}= -0.04991979 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{349}= -0.45959133 \pm 2.4 \cdot 10^{-8} \) | \(a_{350}= -1.38271852 \pm 2.1 \cdot 10^{-8} \) | \(a_{351}= +0.66663446 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{352}= -1.08153764 \pm 2.5 \cdot 10^{-8} \) | \(a_{353}= -0.10290256 \pm 2.0 \cdot 10^{-8} \) | \(a_{354}= -0.30098081 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{355}= +0.96287572 \pm 2.2 \cdot 10^{-8} \) | \(a_{356}= +0.74457782 \pm 2.5 \cdot 10^{-8} \) | \(a_{357}= -0.12634915 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{358}= -0.22138410 \pm 3.0 \cdot 10^{-8} \) | \(a_{359}= -1.71546548 \pm 2.6 \cdot 10^{-8} \) | \(a_{360}= +0.20663027 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{361}= -0.80859262 \pm 1.5 \cdot 10^{-8} \) | \(a_{362}= -1.35094609 \pm 2.5 \cdot 10^{-8} \) | \(a_{363}= +0.10637271 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{364}= -0.76770094 \pm 1.8 \cdot 10^{-8} \) | \(a_{365}= -1.13715270 \pm 1.4 \cdot 10^{-8} \) | \(a_{366}= -0.12399615 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{367}= +0.25852124 \pm 2.6 \cdot 10^{-8} \) | \(a_{368}= +1.26699314 \pm 2.0 \cdot 10^{-8} \) | \(a_{369}= +1.33990760 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{370}= -2.84145550 \pm 2.8 \cdot 10^{-8} \) | \(a_{371}= -0.06490456 \pm 2.3 \cdot 10^{-8} \) | \(a_{372}= +0.16281202 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{373}= +1.01372032 \pm 2.1 \cdot 10^{-8} \) | \(a_{374}= -1.10396228 \pm 2.5 \cdot 10^{-8} \) | \(a_{375}= +0.37402199 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{376}= -0.06876417 \pm 2.0 \cdot 10^{-8} \) | \(a_{377}= +0.25872914 \pm 3.3 \cdot 10^{-8} \) | \(a_{378}= -0.34976868 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{379}= -0.00425381 \pm 2.1 \cdot 10^{-8} \) | \(a_{380}= -0.81053272 \pm 1.9 \cdot 10^{-8} \) | \(a_{381}= +0.33704791 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{382}= +0.33701585 \pm 1.9 \cdot 10^{-8} \) | \(a_{383}= +0.91499271 \pm 2.1 \cdot 10^{-8} \) | \(a_{384}= +0.06359751 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{385}= +0.64861358 \pm 2.2 \cdot 10^{-8} \) | \(a_{386}= +0.52043785 \pm 2.3 \cdot 10^{-8} \) | \(a_{387}= +1.07092736 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{388}= +0.21367392 \pm 2.0 \cdot 10^{-8} \) | \(a_{389}= -0.11366971 \pm 2.5 \cdot 10^{-8} \) | \(a_{390}= +0.84501446 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{391}= +1.42153883 \pm 1.6 \cdot 10^{-8} \) | \(a_{392}= -0.09630055 \pm 2.4 \cdot 10^{-8} \) | \(a_{393}= -0.43764349 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{394}= -2.06092335 \pm 2.5 \cdot 10^{-8} \) | \(a_{395}= +1.92992734 \pm 2.1 \cdot 10^{-8} \) | \(a_{396}= -0.77173235 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{397}= +0.10242621 \pm 2.0 \cdot 10^{-8} \) | \(a_{398}= -0.29813368 \pm 2.2 \cdot 10^{-8} \) | \(a_{399}= +0.05459250 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{400}= -1.70698808 \pm 2.2 \cdot 10^{-8} \) | \(a_{401}= -0.55206762 \pm 2.6 \cdot 10^{-8} \) | \(a_{402}= -0.04910572 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{403}= -0.84383799 \pm 2.0 \cdot 10^{-8} \) | \(a_{404}= +1.32209237 \pm 2.9 \cdot 10^{-8} \) | \(a_{405}= -1.39616238 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{406}= -0.13574958 \pm 5.8 \cdot 10^{-8} \) | \(a_{407}= +0.87191227 \pm 1.8 \cdot 10^{-8} \) | \(a_{408}= +0.03232751 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{409}= +0.08119420 \pm 2.4 \cdot 10^{-8} \) | \(a_{410}= +3.50699326 \pm 2.8 \cdot 10^{-8} \) | \(a_{411}= +0.34770709 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{412}= +1.68592010 \pm 3.0 \cdot 10^{-8} \) | \(a_{413}= -0.42676829 \pm 1.8 \cdot 10^{-8} \) | \(a_{414}= +1.90582764 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{415}= +0.99424799 \pm 2.6 \cdot 10^{-8} \) | \(a_{416}= -1.99789691 \pm 2.6 \cdot 10^{-8} \) | \(a_{417}= +0.09420730 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{418}= +0.47699619 \pm 1.9 \cdot 10^{-8} \) | \(a_{419}= -1.28177557 \pm 1.8 \cdot 10^{-8} \) | \(a_{420}= -0.23117713 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{421}= +1.45324258 \pm 2.2 \cdot 10^{-8} \) | \(a_{422}= +1.31097142 \pm 3.3 \cdot 10^{-8} \) | \(a_{423}= +0.49907794 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{424}= +0.01660639 \pm 2.4 \cdot 10^{-8} \) | \(a_{425}= -1.91520361 \pm 2.1 \cdot 10^{-8} \) | \(a_{426}= +0.20196375 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{427}= -0.17581727 \pm 1.6 \cdot 10^{-8} \) | \(a_{428}= -0.20202852 \pm 2.5 \cdot 10^{-8} \) | \(a_{429}= -0.25929615 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{430}= +2.80298060 \pm 2.0 \cdot 10^{-8} \) | \(a_{431}= -1.27417523 \pm 2.2 \cdot 10^{-8} \) | \(a_{432}= -0.43179501 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{433}= +0.34820273 \pm 2.3 \cdot 10^{-8} \) | \(a_{434}= +0.44274353 \pm 1.6 \cdot 10^{-8} \) | \(a_{435}= +0.07791088 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{436}= -1.97277234 \pm 2.3 \cdot 10^{-8} \) | \(a_{437}= -0.61421356 \pm 1.9 \cdot 10^{-8} \) | \(a_{438}= -0.23851845 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{439}= -0.92596961 \pm 2.1 \cdot 10^{-8} \) | \(a_{440}= -0.16595332 \pm 1.9 \cdot 10^{-8} \) | \(a_{441}= +0.69893200 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{442}= -2.03932138 \pm 3.6 \cdot 10^{-8} \) | \(a_{443}= +0.27533535 \pm 2.2 \cdot 10^{-8} \) | \(a_{444}= -0.31076466 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{445}= -1.16207858 \pm 2.0 \cdot 10^{-8} \) | \(a_{446}= +0.20713255 \pm 2.5 \cdot 10^{-8} \) | \(a_{447}= +0.36718249 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{448}= +0.59184971 \pm 2.4 \cdot 10^{-8} \) | \(a_{449}= +0.48176569 \pm 2.1 \cdot 10^{-8} \) | \(a_{450}= -2.56767377 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{451}= -1.07613525 \pm 1.8 \cdot 10^{-8} \) | \(a_{452}= +0.47869247 \pm 2.3 \cdot 10^{-8} \) | \(a_{453}= -0.35350814 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{454}= -1.61841898 \pm 2.7 \cdot 10^{-8} \) | \(a_{455}= +1.19816733 \pm 1.6 \cdot 10^{-8} \) | \(a_{456}= -0.01396796 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{457}= +0.60606547 \pm 1.6 \cdot 10^{-8} \) | \(a_{458}= +1.87085816 \pm 2.5 \cdot 10^{-8} \) | \(a_{459}= -0.48446464 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{460}= +2.60094563 \pm 1.7 \cdot 10^{-8} \) | \(a_{461}= +0.13286094 \pm 2.6 \cdot 10^{-8} \) | \(a_{462}= +0.13604708 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{463}= -0.58434239 \pm 2.1 \cdot 10^{-8} \) | \(a_{464}= -0.16758502 \pm 4.4 \cdot 10^{-8} \) | \(a_{465}= -0.25410421 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{466}= -1.42413644 \pm 2.8 \cdot 10^{-8} \) | \(a_{467}= -0.93425483 \pm 2.4 \cdot 10^{-8} \) | \(a_{468}= -1.42560149 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{469}= -0.06962824 \pm 1.8 \cdot 10^{-8} \) | \(a_{470}= +1.30625646 \pm 2.4 \cdot 10^{-8} \) | \(a_{471}= -0.15770009 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{472}= +0.10919231 \pm 3.8 \cdot 10^{-8} \) | \(a_{473}= -0.86010608 \pm 1.9 \cdot 10^{-8} \) | \(a_{474}= +0.40480339 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{475}= +0.82751452 \pm 1.8 \cdot 10^{-8} \) | \(a_{476}= +0.55791290 \pm 1.4 \cdot 10^{-8} \) | \(a_{477}= -0.12052615 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{478}= -0.58537872 \pm 2.6 \cdot 10^{-8} \) | \(a_{479}= +0.50191051 \pm 2.3 \cdot 10^{-8} \) | \(a_{480}= -0.60162499 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{481}= +1.61066130 \pm 1.8 \cdot 10^{-8} \) | \(a_{482}= +0.15743125 \pm 2.9 \cdot 10^{-8} \) | \(a_{483}= -0.17518371 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{484}= -0.46970404 \pm 2.0 \cdot 10^{-8} \) | \(a_{485}= -0.33348548 \pm 1.6 \cdot 10^{-8} \) | \(a_{486}= -0.98446356 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{487}= -0.08465068 \pm 2.2 \cdot 10^{-8} \) | \(a_{488}= +0.04498435 \pm 2.5 \cdot 10^{-8} \) | \(a_{489}= -0.13189465 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{490}= +1.82934240 \pm 1.8 \cdot 10^{-8} \) | \(a_{491}= +0.41385642 \pm 2.2 \cdot 10^{-8} \) | \(a_{492}= +0.38355327 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{493}= -0.18802676 \pm 3.1 \cdot 10^{-8} \) | \(a_{494}= +0.88114290 \pm 2.2 \cdot 10^{-8} \) | \(a_{495}= +1.20445923 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{496}= +0.54657396 \pm 2.3 \cdot 10^{-8} \) | \(a_{497}= +0.28636950 \pm 2.2 \cdot 10^{-8} \) | \(a_{498}= +0.20854410 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{499}= -0.74074922 \pm 2.1 \cdot 10^{-8} \) | \(a_{500}= -1.65154805 \pm 2.5 \cdot 10^{-8} \) | \(a_{501}= +0.08269709 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{502}= +1.90903683 \pm 2.2 \cdot 10^{-8} \) | \(a_{503}= +0.22547215 \pm 2.2 \cdot 10^{-8} \) | \(a_{504}= +0.06145404 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{505}= -2.06341792 \pm 2.2 \cdot 10^{-8} \) | \(a_{506}= -1.53064906 \pm 2.1 \cdot 10^{-8} \) | \(a_{507}= -0.23225158 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{508}= -1.48828369 \pm 2.1 \cdot 10^{-8} \) | \(a_{509}= -0.07595103 \pm 2.3 \cdot 10^{-8} \) | \(a_{510}= -0.61409911 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{511}= -0.33820133 \pm 1.9 \cdot 10^{-8} \) | \(a_{512}= +1.41086016 \pm 5.1 \cdot 10^{-8} \) | \(a_{513}= +0.20932580 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{514}= +1.85743171 \pm 2.6 \cdot 10^{-8} \) | \(a_{515}= -2.63125167 \pm 2.4 \cdot 10^{-8} \) | \(a_{516}= +0.30655673 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{517}= -0.40083015 \pm 2.0 \cdot 10^{-8} \) | \(a_{518}= -0.84507914 \pm 1.8 \cdot 10^{-8} \) | \(a_{519}= +0.42895869 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{520}= -0.30656134 \pm 2.1 \cdot 10^{-8} \) | \(a_{521}= -0.18592417 \pm 2.2 \cdot 10^{-8} \) | \(a_{522}= -0.25208358 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{523}= +1.57621872 \pm 2.1 \cdot 10^{-8} \) | \(a_{524}= +1.93247795 \pm 3.5 \cdot 10^{-8} \) | \(a_{525}= +0.23602062 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{526}= +1.32948460 \pm 2.5 \cdot 10^{-8} \) | \(a_{527}= +0.61324413 \pm 2.1 \cdot 10^{-8} \) | \(a_{528}= +0.16795229 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{529}= +0.97097048 \pm 2.2 \cdot 10^{-8} \) | \(a_{530}= -0.31545786 \pm 2.8 \cdot 10^{-8} \) | \(a_{531}= -0.79249807 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{532}= -0.24106107 \pm 1.8 \cdot 10^{-8} \) | \(a_{533}= -1.98791722 \pm 2.0 \cdot 10^{-8} \) | \(a_{534}= -0.24374667 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{535}= +0.31531025 \pm 2.3 \cdot 10^{-8} \) | \(a_{536}= +0.01781498 \pm 2.2 \cdot 10^{-8} \) | \(a_{537}= +0.03778876 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{538}= -0.22020444 \pm 2.4 \cdot 10^{-8} \) | \(a_{539}= -0.56134121 \pm 1.7 \cdot 10^{-8} \) | \(a_{540}= -0.88640997 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{541}= +0.57300328 \pm 2.1 \cdot 10^{-8} \) | \(a_{542}= -2.63825380 \pm 2.1 \cdot 10^{-8} \) | \(a_{543}= +0.23059728 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{544}= +1.45193576 \pm 1.9 \cdot 10^{-8} \) | \(a_{545}= +3.07894811 \pm 2.0 \cdot 10^{-8} \) | \(a_{546}= +0.25131630 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{547}= +0.93087620 \pm 2.5 \cdot 10^{-8} \) | \(a_{548}= -1.53535084 \pm 2.5 \cdot 10^{-8} \) | \(a_{549}= -0.32648828 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{550}= +2.06220508 \pm 2.0 \cdot 10^{-8} \) | \(a_{551}= +0.08124195 \pm 2.9 \cdot 10^{-8} \) | \(a_{552}= +0.04482225 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{553}= +0.57398095 \pm 1.7 \cdot 10^{-8} \) | \(a_{554}= -0.74206170 \pm 2.5 \cdot 10^{-8} \) | \(a_{555}= +0.48501707 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{556}= -0.41598591 \pm 2.9 \cdot 10^{-8} \) | \(a_{557}= +0.32416350 \pm 2.1 \cdot 10^{-8} \) | \(a_{558}= +0.82216369 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{559}= -1.58885205 \pm 2.1 \cdot 10^{-8} \) | \(a_{560}= -0.77608152 \pm 2.5 \cdot 10^{-8} \) | \(a_{561}= +0.18843883 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{562}= -0.99203923 \pm 2.9 \cdot 10^{-8} \) | \(a_{563}= +1.24312345 \pm 2.1 \cdot 10^{-8} \) | \(a_{564}= +0.14286282 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{565}= -0.74710561 \pm 2.1 \cdot 10^{-8} \) | \(a_{566}= +1.48105656 \pm 2.2 \cdot 10^{-8} \) | \(a_{567}= -0.41523357 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{568}= -0.07327008 \pm 2.9 \cdot 10^{-8} \) | \(a_{569}= -1.21196769 \pm 2.1 \cdot 10^{-8} \) | \(a_{570}= +0.26533781 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{571}= +1.76846695 \pm 1.9 \cdot 10^{-8} \) | \(a_{572}= +1.14495956 \pm 2.9 \cdot 10^{-8} \) | \(a_{573}= -0.05752631 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{574}= +1.04301716 \pm 1.9 \cdot 10^{-8} \) | \(a_{575}= -2.65543909 \pm 2.0 \cdot 10^{-8} \) | \(a_{576}= +1.09905014 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{577}= +0.07143374 \pm 2.4 \cdot 10^{-8} \) | \(a_{578}= +0.03652504 \pm 2.9 \cdot 10^{-8} \) | \(a_{579}= -0.08883519 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{580}= -0.34402675 \pm 6.1 \cdot 10^{-8} \) | \(a_{581}= +0.29569994 \pm 2.2 \cdot 10^{-8} \) | \(a_{582}= -0.06994877 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{583}= +0.09679954 \pm 1.7 \cdot 10^{-8} \) | \(a_{584}= +0.08653170 \pm 2.4 \cdot 10^{-8} \) | \(a_{585}= +2.22496683 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{586}= -1.65011005 \pm 2.1 \cdot 10^{-8} \) | \(a_{587}= -0.06586322 \pm 1.9 \cdot 10^{-8} \) | \(a_{588}= +0.20007175 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{589}= -0.26496839 \pm 1.7 \cdot 10^{-8} \) | \(a_{590}= -2.07423659 \pm 2.6 \cdot 10^{-8} \) | \(a_{591}= +0.35178555 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{592}= -1.04326368 \pm 3.8 \cdot 10^{-8} \) | \(a_{593}= +0.09077319 \pm 2.0 \cdot 10^{-8} \) | \(a_{594}= +0.52164973 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{595}= -0.87074663 \pm 2.0 \cdot 10^{-8} \) | \(a_{596}= -1.62134728 \pm 1.6 \cdot 10^{-8} \) | \(a_{597}= +0.05088939 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{598}= -2.82752899 \pm 2.3 \cdot 10^{-8} \) | \(a_{599}= +0.21237170 \pm 1.9 \cdot 10^{-8} \) | \(a_{600}= -0.06038789 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{601}= -1.21309167 \pm 2.0 \cdot 10^{-8} \) | \(a_{602}= +0.83363629 \pm 1.9 \cdot 10^{-8} \) | \(a_{603}= -0.12929790 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{604}= +1.56096621 \pm 2.3 \cdot 10^{-8} \) | \(a_{605}= +0.73307718 \pm 2.0 \cdot 10^{-8} \) | \(a_{606}= -0.43280312 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{607}= +0.28369814 \pm 2.5 \cdot 10^{-8} \) | \(a_{608}= -0.62734736 \pm 2.3 \cdot 10^{-8} \) | \(a_{609}= +0.02317153 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{610}= -0.85453072 \pm 1.8 \cdot 10^{-8} \) | \(a_{611}= -0.74044331 \pm 1.5 \cdot 10^{-8} \) | \(a_{612}= +1.03603033 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{613}= +0.79663073 \pm 2.2 \cdot 10^{-8} \) | \(a_{614}= -2.50891320 \pm 2.2 \cdot 10^{-8} \) | \(a_{615}= -0.59861982 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{616}= -0.04935629 \pm 1.9 \cdot 10^{-8} \) | \(a_{617}= +0.89240243 \pm 2.1 \cdot 10^{-8} \) | \(a_{618}= -0.55190658 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{619}= -0.20234461 \pm 1.8 \cdot 10^{-8} \) | \(a_{620}= +1.12203382 \pm 2.0 \cdot 10^{-8} \) | \(a_{621}= -0.67171258 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{622}= -0.76523260 \pm 2.3 \cdot 10^{-8} \) | \(a_{623}= -0.34561455 \pm 1.9 \cdot 10^{-8} \) | \(a_{624}= +0.31025399 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{625}= +0.68615030 \pm 1.7 \cdot 10^{-8} \) | \(a_{626}= +2.19586710 \pm 2.5 \cdot 10^{-8} \) | \(a_{627}= -0.08141999 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{628}= +0.69634749 \pm 2.9 \cdot 10^{-8} \) | \(a_{629}= -1.17051923 \pm 1.3 \cdot 10^{-8} \) | \(a_{630}= -1.16739196 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{631}= +0.18364850 \pm 2.0 \cdot 10^{-8} \) | \(a_{632}= -0.14685793 \pm 4.2 \cdot 10^{-8} \) | \(a_{633}= -0.22377388 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{634}= -0.25596639 \pm 2.6 \cdot 10^{-8} \) | \(a_{635}= +2.32279628 \pm 2.5 \cdot 10^{-8} \) | \(a_{636}= -0.03450103 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{637}= -1.03695132 \pm 1.9 \cdot 10^{-8} \) | \(a_{638}= +0.20245876 \pm 5.8 \cdot 10^{-8} \) | \(a_{639}= +0.53178101 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{640}= +0.43828802 \pm 4.1 \cdot 10^{-8} \) | \(a_{641}= +0.08708658 \pm 2.0 \cdot 10^{-8} \) | \(a_{642}= +0.06613651 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{643}= +1.38003266 \pm 1.9 \cdot 10^{-8} \) | \(a_{644}= +0.77354894 \pm 1.8 \cdot 10^{-8} \) | \(a_{645}= -0.47844966 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{646}= -0.64035480 \pm 2.2 \cdot 10^{-8} \) | \(a_{647}= -0.13332876 \pm 1.5 \cdot 10^{-8} \) | \(a_{648}= +0.10624105 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{649}= +0.63648800 \pm 2.0 \cdot 10^{-8} \) | \(a_{650}= +3.80945888 \pm 2.6 \cdot 10^{-8} \) | \(a_{651}= -0.07557330 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{652}= +0.58239986 \pm 2.0 \cdot 10^{-8} \) | \(a_{653}= -0.36238952 \pm 2.6 \cdot 10^{-8} \) | \(a_{654}= +0.64581118 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{655}= -3.01605980 \pm 2.3 \cdot 10^{-8} \) | \(a_{656}= +1.28762133 \pm 4.3 \cdot 10^{-8} \) | \(a_{657}= -0.62803142 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{658}= +0.38849459 \pm 1.8 \cdot 10^{-8} \) | \(a_{659}= -0.47952202 \pm 2.2 \cdot 10^{-8} \) | \(a_{660}= +0.34478070 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{661}= -0.43849668 \pm 1.7 \cdot 10^{-8} \) | \(a_{662}= +1.83462474 \pm 2.8 \cdot 10^{-8} \) | \(a_{663}= +0.34809824 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{664}= -0.07565736 \pm 2.4 \cdot 10^{-8} \) | \(a_{665}= +0.37622918 \pm 2.2 \cdot 10^{-8} \) | \(a_{666}= -1.56929086 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{667}= -0.26070002 \pm 3.2 \cdot 10^{-8} \) | \(a_{668}= -0.36516092 \pm 1.5 \cdot 10^{-8} \) | \(a_{669}= -0.03535611 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{670}= -0.33841653 \pm 1.8 \cdot 10^{-8} \) | \(a_{671}= +0.26221625 \pm 2.0 \cdot 10^{-8} \) | \(a_{672}= -0.17892968 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{673}= -0.62701938 \pm 2.4 \cdot 10^{-8} \) | \(a_{674}= -2.13117958 \pm 2.5 \cdot 10^{-8} \) | \(a_{675}= +0.90498150 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{676}= +1.02554038 \pm 3.2 \cdot 10^{-8} \) | \(a_{677}= +1.03213899 \pm 2.3 \cdot 10^{-8} \) | \(a_{678}= -0.15670584 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{679}= -0.09918213 \pm 1.9 \cdot 10^{-8} \) | \(a_{680}= +0.22278796 \pm 1.7 \cdot 10^{-8} \) | \(a_{681}= +0.27625308 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{682}= -0.66031369 \pm 2.1 \cdot 10^{-8} \) | \(a_{683}= +0.37781978 \pm 2.6 \cdot 10^{-8} \) | \(a_{684}= -0.44764438 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{685}= +2.39625499 \pm 1.8 \cdot 10^{-8} \) | \(a_{686}= +1.27509978 \pm 2.1 \cdot 10^{-8} \) | \(a_{687}= -0.31934272 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{688}= +1.02913731 \pm 2.6 \cdot 10^{-8} \) | \(a_{689}= +0.17881532 \pm 1.9 \cdot 10^{-8} \) | \(a_{690}= -0.85145140 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{691}= -0.46581888 \pm 2.3 \cdot 10^{-8} \) | \(a_{692}= -1.89412898 \pm 2.1 \cdot 10^{-8} \) | \(a_{693}= +0.35821901 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{694}= +0.61051361 \pm 2.7 \cdot 10^{-8} \) | \(a_{695}= +0.64923814 \pm 1.8 \cdot 10^{-8} \) | \(a_{696}= -0.00592863 \pm 6.6 \cdot 10^{-8} \) |
| \(a_{697}= +1.44468320 \pm 1.4 \cdot 10^{-8} \) | \(a_{698}= -0.66434626 \pm 2.8 \cdot 10^{-8} \) | \(a_{699}= +0.24309037 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{700}= -1.04218308 \pm 1.9 \cdot 10^{-8} \) | \(a_{701}= +0.49176717 \pm 2.6 \cdot 10^{-8} \) | \(a_{702}= +0.96363025 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{703}= +0.50575388 \pm 1.8 \cdot 10^{-8} \) | \(a_{704}= -0.88269266 \pm 2.6 \cdot 10^{-8} \) | \(a_{705}= -0.22296906 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{706}= -0.14874722 \pm 2.4 \cdot 10^{-8} \) | \(a_{707}= -0.61368247 \pm 2.1 \cdot 10^{-8} \) | \(a_{708}= -0.22685536 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{709}= -1.88842373 \pm 2.2 \cdot 10^{-8} \) | \(a_{710}= +1.39185150 \pm 2.5 \cdot 10^{-8} \) | \(a_{711}= +1.06586830 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{712}= +0.08842843 \pm 3.1 \cdot 10^{-8} \) | \(a_{713}= +0.85026596 \pm 1.6 \cdot 10^{-8} \) | \(a_{714}= -0.18263962 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{715}= -1.78696295 \pm 1.8 \cdot 10^{-8} \) | \(a_{716}= -0.16686170 \pm 3.3 \cdot 10^{-8} \) | \(a_{717}= +0.09992015 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{718}= -2.47973145 \pm 3.3 \cdot 10^{-8} \) | \(a_{719}= -1.87036883 \pm 2.2 \cdot 10^{-8} \) | \(a_{720}= -1.44116400 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{721}= -0.78256228 \pm 2.2 \cdot 10^{-8} \) | \(a_{722}= -1.16883293 \pm 1.6 \cdot 10^{-8} \) | \(a_{723}= -0.02687244 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{724}= -1.01823556 \pm 3.0 \cdot 10^{-8} \) | \(a_{725}= +0.35123459 \pm 3.3 \cdot 10^{-8} \) | \(a_{726}= +0.15376337 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{727}= -1.28455357 \pm 2.3 \cdot 10^{-8} \) | \(a_{728}= -0.09117461 \pm 1.9 \cdot 10^{-8} \) | \(a_{729}= -0.65302395 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{730}= -1.64377153 \pm 1.6 \cdot 10^{-8} \) | \(a_{731}= +1.15466974 \pm 2.1 \cdot 10^{-8} \) | \(a_{732}= -0.09345842 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{733}= -0.87933184 \pm 2.2 \cdot 10^{-8} \) | \(a_{734}= +0.37369639 \pm 2.9 \cdot 10^{-8} \) | \(a_{735}= -0.31225627 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{736}= +2.01311598 \pm 2.3 \cdot 10^{-8} \) | \(a_{737}= +0.10384450 \pm 1.8 \cdot 10^{-8} \) | \(a_{738}= +1.93685682 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{739}= +0.85659518 \pm 2.3 \cdot 10^{-8} \) | \(a_{740}= -2.14166283 \pm 2.5 \cdot 10^{-8} \) | \(a_{741}= -0.15040508 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{742}= -0.09382053 \pm 2.3 \cdot 10^{-8} \) | \(a_{743}= -0.49051746 \pm 2.2 \cdot 10^{-8} \) | \(a_{744}= +0.01933607 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{745}= +2.53047148 \pm 1.6 \cdot 10^{-8} \) | \(a_{746}= +1.46534814 \pm 2.7 \cdot 10^{-8} \) | \(a_{747}= +0.54910742 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{748}= -0.83207884 \pm 2.5 \cdot 10^{-8} \) | \(a_{749}= +0.09377663 \pm 2.1 \cdot 10^{-8} \) | \(a_{750}= +0.54065447 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{751}= -1.13378077 \pm 2.0 \cdot 10^{-8} \) | \(a_{752}= +0.47960277 \pm 2.1 \cdot 10^{-8} \) | \(a_{753}= -0.32585956 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{754}= +0.37399690 \pm 6.0 \cdot 10^{-8} \) | \(a_{755}= -2.43623346 \pm 2.1 \cdot 10^{-8} \) | \(a_{756}= -0.26362777 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{757}= +1.15630649 \pm 2.2 \cdot 10^{-8} \) | \(a_{758}= -0.00614894 \pm 2.3 \cdot 10^{-8} \) | \(a_{759}= +0.26127135 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{760}= -0.09626145 \pm 2.1 \cdot 10^{-8} \) | \(a_{761}= +1.86531920 \pm 2.7 \cdot 10^{-8} \) | \(a_{762}= +0.48720789 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{763}= +0.91571197 \pm 1.8 \cdot 10^{-8} \) | \(a_{764}= +0.25401571 \pm 2.1 \cdot 10^{-8} \) | \(a_{765}= -1.61695476 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{766}= +1.32263589 \pm 2.4 \cdot 10^{-8} \) | \(a_{767}= +1.17576805 \pm 2.1 \cdot 10^{-8} \) | \(a_{768}= -0.19682777 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{769}= -0.55475101 \pm 2.0 \cdot 10^{-8} \) | \(a_{770}= +0.93758080 \pm 1.7 \cdot 10^{-8} \) | \(a_{771}= -0.31705092 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{772}= +0.39226460 \pm 2.4 \cdot 10^{-8} \) | \(a_{773}= +0.49247208 \pm 1.9 \cdot 10^{-8} \) | \(a_{774}= +1.54804179 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{775}= -1.14554200 \pm 2.2 \cdot 10^{-8} \) | \(a_{776}= +0.02537660 \pm 1.9 \cdot 10^{-8} \) | \(a_{777}= +0.14424924 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{778}= -0.16431130 \pm 2.5 \cdot 10^{-8} \) | \(a_{779}= -0.62421370 \pm 1.7 \cdot 10^{-8} \) | \(a_{780}= +0.63690459 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{781}= -0.42709534 \pm 2.3 \cdot 10^{-8} \) | \(a_{782}= +2.05485600 \pm 2.1 \cdot 10^{-8} \) | \(a_{783}= +0.08884734 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{784}= +0.67165806 \pm 2.7 \cdot 10^{-8} \) | \(a_{785}= -1.08680446 \pm 2.6 \cdot 10^{-8} \) | \(a_{786}= -0.63262032 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{787}= +1.12494558 \pm 2.2 \cdot 10^{-8} \) | \(a_{788}= -1.55335987 \pm 2.4 \cdot 10^{-8} \) | \(a_{789}= -0.22693395 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{790}= +2.78973933 \pm 2.8 \cdot 10^{-8} \) | \(a_{791}= -0.22219717 \pm 2.0 \cdot 10^{-8} \) | \(a_{792}= -0.09165339 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{793}= +0.48438540 \pm 2.4 \cdot 10^{-8} \) | \(a_{794}= +0.14805865 \pm 2.4 \cdot 10^{-8} \) | \(a_{795}= +0.05384650 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{796}= -0.22470942 \pm 1.9 \cdot 10^{-8} \) | \(a_{797}= -0.42161599 \pm 2.5 \cdot 10^{-8} \) | \(a_{798}= +0.07891429 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{799}= +0.53810390 \pm 1.4 \cdot 10^{-8} \) | \(a_{800}= -2.71222066 \pm 1.7 \cdot 10^{-8} \) | \(a_{801}= -0.64179759 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{802}= -0.79802214 \pm 2.6 \cdot 10^{-8} \) | \(a_{803}= +0.50439803 \pm 2.0 \cdot 10^{-8} \) | \(a_{804}= -0.03701198 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{805}= -1.20729443 \pm 1.6 \cdot 10^{-8} \) | \(a_{806}= -1.21978065 \pm 1.9 \cdot 10^{-8} \) | \(a_{807}= +0.03758740 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{808}= +0.15701590 \pm 3.2 \cdot 10^{-8} \) | \(a_{809}= -1.04557076 \pm 2.1 \cdot 10^{-8} \) | \(a_{810}= -2.01817396 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{811}= -0.69155520 \pm 2.0 \cdot 10^{-8} \) | \(a_{812}= -0.10231722 \pm 5.9 \cdot 10^{-8} \) | \(a_{813}= +0.45033192 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{814}= +1.26036244 \pm 1.8 \cdot 10^{-8} \) | \(a_{815}= -0.90896395 \pm 1.8 \cdot 10^{-8} \) | \(a_{816}= -0.22547152 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{817}= -0.49890569 \pm 1.7 \cdot 10^{-8} \) | \(a_{818}= +0.11736746 \pm 2.9 \cdot 10^{-8} \) | \(a_{819}= +0.66172884 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{820}= +2.64329218 \pm 3.0 \cdot 10^{-8} \) | \(a_{821}= -0.16449121 \pm 2.6 \cdot 10^{-8} \) | \(a_{822}= +0.50261589 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{823}= +1.17776332 \pm 2.6 \cdot 10^{-8} \) | \(a_{824}= +0.20022524 \pm 3.7 \cdot 10^{-8} \) | \(a_{825}= -0.35200434 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{826}= -0.61690006 \pm 1.8 \cdot 10^{-8} \) | \(a_{827}= +1.77767936 \pm 1.8 \cdot 10^{-8} \) | \(a_{828}= +1.43646107 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{829}= -0.40258156 \pm 2.3 \cdot 10^{-8} \) | \(a_{830}= +1.43720059 \pm 2.9 \cdot 10^{-8} \) | \(a_{831}= +0.12666487 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{832}= -1.63057565 \pm 2.8 \cdot 10^{-8} \) | \(a_{833}= +0.75358578 \pm 1.8 \cdot 10^{-8} \) | \(a_{834}= +0.13617808 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{835}= +0.56991448 \pm 1.8 \cdot 10^{-8} \) | \(a_{836}= +0.35952173 \pm 2.0 \cdot 10^{-8} \) | \(a_{837}= -0.28977316 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{838}= -1.85282608 \pm 2.2 \cdot 10^{-8} \) | \(a_{839}= +0.77115806 \pm 2.3 \cdot 10^{-8} \) | \(a_{840}= -0.02745533 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{841}= +0.03448276 \pm 1.5 \cdot 10^{-6} \) | \(a_{842}= +2.10068426 \pm 2.6 \cdot 10^{-8} \) | \(a_{843}= +0.16933433 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{844}= +0.98810583 \pm 3.8 \cdot 10^{-8} \) | \(a_{845}= -1.60058288 \pm 2.1 \cdot 10^{-8} \) | \(a_{846}= +0.72142475 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{847}= +0.21802496 \pm 1.6 \cdot 10^{-8} \) | \(a_{848}= -0.11582294 \pm 2.5 \cdot 10^{-8} \) | \(a_{849}= -0.25280625 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{850}= -2.76845595 \pm 2.6 \cdot 10^{-8} \) | \(a_{851}= -1.62293059 \pm 2.4 \cdot 10^{-8} \) | \(a_{852}= +0.15222419 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{853}= -1.67260659 \pm 2.0 \cdot 10^{-8} \) | \(a_{854}= -0.25414654 \pm 1.5 \cdot 10^{-8} \) | \(a_{855}= +0.69864819 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{856}= -0.02399355 \pm 3.1 \cdot 10^{-8} \) | \(a_{857}= -1.35812035 \pm 2.3 \cdot 10^{-8} \) | \(a_{858}= -0.37481653 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{859}= +0.17162030 \pm 2.2 \cdot 10^{-8} \) | \(a_{860}= +2.11266352 \pm 2.2 \cdot 10^{-8} \) | \(a_{861}= -0.17803591 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{862}= -1.84183967 \pm 2.4 \cdot 10^{-8} \) | \(a_{863}= +0.87325483 \pm 2.2 \cdot 10^{-8} \) | \(a_{864}= -0.68607589 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{865}= +2.95620773 \pm 2.6 \cdot 10^{-8} \) | \(a_{866}= +0.50333234 \pm 2.7 \cdot 10^{-8} \) | \(a_{867}= -0.00623458 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{868}= +0.33370481 \pm 1.6 \cdot 10^{-8} \) | \(a_{869}= -0.85604295 \pm 1.9 \cdot 10^{-8} \) | \(a_{870}= +0.11262137 \pm 8.3 \cdot 10^{-8} \) |
| \(a_{871}= +0.19182929 \pm 1.8 \cdot 10^{-8} \) | \(a_{872}= -0.23429273 \pm 2.7 \cdot 10^{-8} \) | \(a_{873}= -0.18417875 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{874}= -0.88785504 \pm 1.7 \cdot 10^{-8} \) | \(a_{875}= +0.76660763 \pm 1.6 \cdot 10^{-8} \) | \(a_{876}= -0.17977621 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{877}= -0.89523783 \pm 2.2 \cdot 10^{-8} \) | \(a_{878}= -1.33850316 \pm 2.1 \cdot 10^{-8} \) | \(a_{879}= +0.28166253 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{880}= +1.15745846 \pm 2.3 \cdot 10^{-8} \) | \(a_{881}= -0.19766482 \pm 2.3 \cdot 10^{-8} \) | \(a_{882}= +1.01031683 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{883}= +0.69899989 \pm 2.4 \cdot 10^{-8} \) | \(a_{884}= -1.53707802 \pm 4.0 \cdot 10^{-8} \) | \(a_{885}= +0.35405803 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{886}= +0.39800143 \pm 2.3 \cdot 10^{-8} \) | \(a_{887}= -0.31908187 \pm 2.5 \cdot 10^{-8} \) | \(a_{888}= -0.03690740 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{889}= +0.69082436 \pm 2.1 \cdot 10^{-8} \) | \(a_{890}= -1.67980227 \pm 2.4 \cdot 10^{-8} \) | \(a_{891}= +0.61928495 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{892}= +0.15612002 \pm 2.4 \cdot 10^{-8} \) | \(a_{893}= -0.23250207 \pm 1.6 \cdot 10^{-8} \) | \(a_{894}= +0.53076788 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{895}= +0.26042464 \pm 2.9 \cdot 10^{-8} \) | \(a_{896}= +0.13035153 \pm 2.6 \cdot 10^{-8} \) | \(a_{897}= +0.48263991 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{898}= +0.69639964 \pm 2.8 \cdot 10^{-8} \) | \(a_{899}= -0.11246457 \pm 3.2 \cdot 10^{-8} \) | \(a_{900}= -1.93530797 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{901}= -0.12995083 \pm 2.1 \cdot 10^{-8} \) | \(a_{902}= -1.55556988 \pm 2.0 \cdot 10^{-8} \) | \(a_{903}= -0.14229603 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{904}= +0.05685104 \pm 2.5 \cdot 10^{-8} \) | \(a_{905}= +1.58918208 \pm 1.5 \cdot 10^{-8} \) | \(a_{906}= -0.51100140 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{907}= -1.15415866 \pm 2.5 \cdot 10^{-8} \) | \(a_{908}= -1.21983532 \pm 3.0 \cdot 10^{-8} \) | \(a_{909}= -1.13959303 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{910}= +1.73196911 \pm 1.5 \cdot 10^{-8} \) | \(a_{911}= -0.29633057 \pm 1.8 \cdot 10^{-8} \) | \(a_{912}= +0.09742095 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{913}= -0.44101089 \pm 1.9 \cdot 10^{-8} \) | \(a_{914}= +0.87607685 \pm 1.9 \cdot 10^{-8} \) | \(a_{915}= +0.14586256 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{916}= +1.41010387 \pm 2.9 \cdot 10^{-8} \) | \(a_{917}= -0.89700832 \pm 2.0 \cdot 10^{-8} \) | \(a_{918}= -0.70030101 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{919}= +1.32802062 \pm 2.0 \cdot 10^{-8} \) | \(a_{920}= +0.30889659 \pm 1.8 \cdot 10^{-8} \) | \(a_{921}= +0.42825436 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{922}= +0.19205251 \pm 2.7 \cdot 10^{-8} \) | \(a_{923}= -0.78896233 \pm 2.8 \cdot 10^{-8} \) | \(a_{924}= +0.10254145 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{925}= +2.18653367 \pm 2.1 \cdot 10^{-8} \) | \(a_{926}= -0.84467581 \pm 2.5 \cdot 10^{-8} \) | \(a_{927}= -1.45319862 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{928}= -0.26627460 \pm 4.6 \cdot 10^{-8} \) | \(a_{929}= +0.62055521 \pm 2.2 \cdot 10^{-8} \) | \(a_{930}= -0.36731151 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{931}= -0.32560673 \pm 1.6 \cdot 10^{-8} \) | \(a_{932}= -1.07340062 \pm 2.7 \cdot 10^{-8} \) | \(a_{933}= +0.13061998 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{934}= -1.35047957 \pm 3.0 \cdot 10^{-8} \) | \(a_{935}= +1.29864329 \pm 1.7 \cdot 10^{-8} \) | \(a_{936}= -0.16930897 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{937}= -0.16996010 \pm 2.1 \cdot 10^{-8} \) | \(a_{938}= -0.10064868 \pm 1.7 \cdot 10^{-8} \) | \(a_{939}= -0.37481953 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{940}= +0.98455207 \pm 1.8 \cdot 10^{-8} \) | \(a_{941}= -1.61419660 \pm 1.7 \cdot 10^{-8} \) | \(a_{942}= -0.22795787 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{943}= +2.00306027 \pm 2.2 \cdot 10^{-8} \) | \(a_{944}= -0.76157297 \pm 4.1 \cdot 10^{-8} \) | \(a_{945}= +0.41144951 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{946}= -1.24329643 \pm 1.9 \cdot 10^{-8} \) | \(a_{947}= -0.24521970 \pm 2.2 \cdot 10^{-8} \) | \(a_{948}= +0.30510856 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{949}= +0.93176162 \pm 2.4 \cdot 10^{-8} \) | \(a_{950}= +1.19618483 \pm 1.7 \cdot 10^{-8} \) | \(a_{951}= +0.04369172 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{952}= +0.06625951 \pm 1.9 \cdot 10^{-8} \) | \(a_{953}= -1.48193840 \pm 1.9 \cdot 10^{-8} \) | \(a_{954}= -0.17422238 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{955}= -0.39644776 \pm 1.7 \cdot 10^{-8} \) | \(a_{956}= -0.44121185 \pm 2.6 \cdot 10^{-8} \) | \(a_{957}= -0.03455833 \pm 5.5 \cdot 10^{-8} \) |
| \(a_{958}= +0.72551928 \pm 2.6 \cdot 10^{-8} \) | \(a_{959}= +0.71267176 \pm 1.8 \cdot 10^{-8} \) | \(a_{960}= -0.49101386 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{961}= -0.63319988 \pm 2.3 \cdot 10^{-8} \) | \(a_{962}= +2.32823542 \pm 1.7 \cdot 10^{-8} \) | \(a_{963}= +0.17414086 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{964}= +0.11865914 \pm 3.3 \cdot 10^{-8} \) | \(a_{965}= -0.61221577 \pm 2.4 \cdot 10^{-8} \) | \(a_{966}= -0.25323072 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{967}= +1.11824061 \pm 2.1 \cdot 10^{-8} \) | \(a_{968}= -0.05578355 \pm 2.1 \cdot 10^{-8} \) | \(a_{969}= +0.10930420 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{970}= -0.48205833 \pm 1.5 \cdot 10^{-8} \) | \(a_{971}= +0.03715183 \pm 1.8 \cdot 10^{-8} \) | \(a_{972}= -0.74201022 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{973}= +0.19309034 \pm 1.8 \cdot 10^{-8} \) | \(a_{974}= -0.12236384 \pm 2.8 \cdot 10^{-8} \) | \(a_{975}= -0.65024864 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{976}= -0.31374796 \pm 2.3 \cdot 10^{-8} \) | \(a_{977}= +0.90748795 \pm 1.6 \cdot 10^{-8} \) | \(a_{978}= -0.19065572 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{979}= +0.51545421 \pm 1.6 \cdot 10^{-8} \) | \(a_{980}= +1.37881259 \pm 2.0 \cdot 10^{-8} \) | \(a_{981}= +1.70045427 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{982}= +0.59823575 \pm 2.4 \cdot 10^{-8} \) | \(a_{983}= +1.32263546 \pm 1.9 \cdot 10^{-8} \) | \(a_{984}= +0.04555201 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{985}= +2.42436207 \pm 2.5 \cdot 10^{-8} \) | \(a_{986}= -0.27179555 \pm 5.8 \cdot 10^{-8} \) | \(a_{987}= -0.06631337 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{988}= +0.66413533 \pm 2.6 \cdot 10^{-8} \) | \(a_{989}= +1.60095520 \pm 1.8 \cdot 10^{-8} \) | \(a_{990}= +1.74106414 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{991}= -1.85333741 \pm 2.4 \cdot 10^{-8} \) | \(a_{992}= +0.86844730 \pm 1.9 \cdot 10^{-8} \) | \(a_{993}= -0.31315792 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{994}= +0.41395146 \pm 2.0 \cdot 10^{-8} \) | \(a_{995}= +0.35070882 \pm 1.1 \cdot 10^{-8} \) | \(a_{996}= +0.15718393 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{997}= -1.48663072 \pm 2.3 \cdot 10^{-8} \) | \(a_{998}= -1.07076427 \pm 2.5 \cdot 10^{-8} \) | \(a_{999}= +0.55309955 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{1000}= -0.19614311 \pm 2.7 \cdot 10^{-8} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000