Maass form invariants
| Level: | \( 29 \) |
| Weight: | \( 0 \) |
| Character: | 29.1 |
| Symmetry: | even |
| Fricke sign: | $-1$ |
| Spectral parameter: | \(4.21369833883085011969053601248 \pm 5 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
| \(a_{1}= +1 \) | \(a_{2}= +0.15357478 \pm 1.3 \cdot 10^{-8} \) | \(a_{3}= +1.52006573 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{4}= -0.97641479 \pm 1.4 \cdot 10^{-8} \) | \(a_{5}= -0.74765597 \pm 1.1 \cdot 10^{-8} \) | \(a_{6}= +0.23344376 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{7}= -1.59208018 \pm 1.1 \cdot 10^{-8} \) | \(a_{8}= -0.30352747 \pm 1.6 \cdot 10^{-8} \) | \(a_{9}= +1.31059984 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{10}= -0.11482110 \pm 1.3 \cdot 10^{-8} \) | \(a_{11}= +0.17774324 \pm 1.0 \cdot 10^{-8} \) | \(a_{12}= -1.48421466 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{13}= -1.41378406 \pm 1.1 \cdot 10^{-8} \) | \(a_{14}= -0.24450336 \pm 1.0 \cdot 10^{-8} \) | \(a_{15}= -1.13648622 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{16}= +0.92980062 \pm 1.7 \cdot 10^{-8} \) | \(a_{17}= +0.11821138 \pm 1.0 \cdot 10^{-8} \) | \(a_{18}= +0.20127508 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{19}= +0.15085212 \pm 1 \cdot 10^{-8} \) | \(a_{20}= +0.73002235 \pm 1.3 \cdot 10^{-8} \) | \(a_{21}= -2.42006653 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{22}= +0.02729688 \pm 1.2 \cdot 10^{-8} \) | \(a_{23}= +1.35186531 \pm 1.1 \cdot 10^{-8} \) | \(a_{24}= -0.46138170 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{25}= -0.44101055 \pm 1.1 \cdot 10^{-8} \) | \(a_{26}= -0.21712158 \pm 1.4 \cdot 10^{-8} \) | \(a_{27}= +0.47213217 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{28}= +1.55453063 \pm 1 \cdot 10^{-8} \) | \(a_{29}= +0.18569534 \pm 1.0 \cdot 10^{-8} \) | \(a_{30}= -0.17453562 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{31}= -1.34303293 \pm 1.1 \cdot 10^{-8} \) | \(a_{32}= +0.44632139 \pm 1.8 \cdot 10^{-8} \) | \(a_{33}= +0.27018141 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{34}= +0.01815429 \pm 1.4 \cdot 10^{-8} \) | \(a_{35}= +1.19032825 \pm 1.2 \cdot 10^{-8} \) | \(a_{36}= -1.27968906 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{37}= +0.24180936 \pm 1.1 \cdot 10^{-8} \) | \(a_{38}= +0.02316708 \pm 1.0 \cdot 10^{-8} \) | \(a_{39}= -2.14904471 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{40}= +0.22693412 \pm 1.5 \cdot 10^{-8} \) | \(a_{41}= +0.65680179 \pm 1.1 \cdot 10^{-8} \) | \(a_{42}= -0.37166118 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{43}= -1.79465967 \pm 1.1 \cdot 10^{-8} \) | \(a_{44}= -0.17355113 \pm 1.2 \cdot 10^{-8} \) | \(a_{45}= -0.97987780 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{46}= +0.20761242 \pm 1.1 \cdot 10^{-8} \) | \(a_{47}= +1.05621410 \pm 1.0 \cdot 10^{-8} \) | \(a_{48}= +1.41335807 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{49}= +1.53471930 \pm 1 \cdot 10^{-8} \) | \(a_{50}= -0.06772810 \pm 1.2 \cdot 10^{-8} \) | \(a_{51}= +0.17968907 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{52}= +1.38043966 \pm 1.6 \cdot 10^{-8} \) | \(a_{53}= -1.04944443 \pm 1.2 \cdot 10^{-8} \) | \(a_{54}= +0.07250759 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{55}= -0.13289080 \pm 1.0 \cdot 10^{-8} \) | \(a_{56}= +0.48324006 \pm 1.1 \cdot 10^{-8} \) | \(a_{57}= +0.22930513 \pm 1 \cdot 10^{-8} \) |
| \(a_{58}= +0.02851812 \pm 2.4 \cdot 10^{-8} \) | \(a_{59}= -0.12166386 \pm 1.0 \cdot 10^{-8} \) | \(a_{60}= +1.10968195 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{61}= -1.29448309 \pm 1.1 \cdot 10^{-8} \) | \(a_{62}= -0.20625599 \pm 1.1 \cdot 10^{-8} \) | \(a_{63}= -2.08658003 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{64}= -0.86125691 \pm 2.1 \cdot 10^{-8} \) | \(a_{65}= +1.05702410 \pm 1 \cdot 10^{-8} \) | \(a_{66}= +0.04149305 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{67}= -0.17446859 \pm 1 \cdot 10^{-8} \) | \(a_{68}= -0.11542334 \pm 1.3 \cdot 10^{-8} \) | \(a_{69}= +2.05492414 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{70}= +0.18280440 \pm 1.1 \cdot 10^{-8} \) | \(a_{71}= -1.21848080 \pm 1.2 \cdot 10^{-8} \) | \(a_{72}= -0.39780305 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{73}= +1.22505494 \pm 1.1 \cdot 10^{-8} \) | \(a_{74}= +0.03713582 \pm 1.3 \cdot 10^{-8} \) | \(a_{75}= -0.67036502 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{76}= -0.14729424 \pm 1.1 \cdot 10^{-8} \) | \(a_{77}= -0.28298149 \pm 1.0 \cdot 10^{-8} \) | \(a_{78}= -0.33003907 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{79}= +0.11673417 \pm 1.1 \cdot 10^{-8} \) | \(a_{80}= -0.69517099 \pm 1.7 \cdot 10^{-8} \) | \(a_{81}= -0.59292790 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{82}= +0.10086819 \pm 1.3 \cdot 10^{-8} \) | \(a_{83}= -1.85751043 \pm 1.2 \cdot 10^{-8} \) | \(a_{84}= +2.36298874 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{85}= -0.08838145 \pm 1 \cdot 10^{-8} \) | \(a_{86}= -0.27561446 \pm 1.1 \cdot 10^{-8} \) | \(a_{87}= +0.28226912 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{88}= -0.05394996 \pm 1.2 \cdot 10^{-8} \) | \(a_{89}= +0.73445426 \pm 1 \cdot 10^{-8} \) | \(a_{90}= -0.15048452 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{91}= +2.25085758 \pm 1.0 \cdot 10^{-8} \) | \(a_{92}= -1.31998128 \pm 1.0 \cdot 10^{-8} \) | \(a_{93}= -2.04149834 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{94}= +0.16220785 \pm 1.1 \cdot 10^{-8} \) | \(a_{95}= -0.11278549 \pm 1 \cdot 10^{-8} \) | \(a_{96}= +0.67843785 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{97}= +1.50010112 \pm 1.0 \cdot 10^{-8} \) | \(a_{98}= +0.23569418 \pm 1.0 \cdot 10^{-8} \) | \(a_{99}= +0.23295026 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{100}= +0.43060922 \pm 1.1 \cdot 10^{-8} \) | \(a_{101}= -1.84618866 \pm 1.1 \cdot 10^{-8} \) | \(a_{102}= +0.02759571 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{103}= +0.30368939 \pm 1.1 \cdot 10^{-8} \) | \(a_{104}= +0.42912229 \pm 1.5 \cdot 10^{-8} \) | \(a_{105}= +1.80937719 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{106}= -0.16116820 \pm 1.3 \cdot 10^{-8} \) | \(a_{107}= +0.64413297 \pm 1.0 \cdot 10^{-8} \) | \(a_{108}= -0.46099683 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{109}= +0.92586497 \pm 1.1 \cdot 10^{-8} \) | \(a_{110}= -0.02040867 \pm 1.1 \cdot 10^{-8} \) | \(a_{111}= +0.36756612 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{112}= -1.48031714 \pm 1.1 \cdot 10^{-8} \) | \(a_{113}= +0.34685832 \pm 1.0 \cdot 10^{-8} \) | \(a_{114}= +0.03521549 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{115}= -1.01073017 \pm 1 \cdot 10^{-8} \) | \(a_{116}= -0.18131567 \pm 2.4 \cdot 10^{-8} \) | \(a_{117}= -1.85290516 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{118}= -0.01868450 \pm 1.4 \cdot 10^{-8} \) | \(a_{119}= -0.18820200 \pm 1 \cdot 10^{-8} \) | \(a_{120}= +0.34495478 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{121}= -0.96840734 \pm 1 \cdot 10^{-8} \) | \(a_{122}= -0.19879996 \pm 1.3 \cdot 10^{-8} \) | \(a_{123}= +0.99838190 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{124}= +1.31135721 \pm 1 \cdot 10^{-8} \) | \(a_{125}= +1.07738014 \pm 1 \cdot 10^{-8} \) | \(a_{126}= -0.32044607 \pm 1 \cdot 10^{-8} \) |
| \(a_{127}= -0.99731386 \pm 1.1 \cdot 10^{-8} \) | \(a_{128}= -0.57858873 \pm 2.3 \cdot 10^{-8} \) | \(a_{129}= -2.72800068 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{130}= +0.16233224 \pm 1.0 \cdot 10^{-8} \) | \(a_{131}= +0.48289517 \pm 1.0 \cdot 10^{-8} \) | \(a_{132}= -0.26380912 \pm 1 \cdot 10^{-8} \) |
| \(a_{133}= -0.24016866 \pm 1.0 \cdot 10^{-8} \) | \(a_{134}= -0.02679398 \pm 1.1 \cdot 10^{-8} \) | \(a_{135}= -0.35299244 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{136}= -0.03588040 \pm 1.3 \cdot 10^{-8} \) | \(a_{137}= +1.17524050 \pm 1 \cdot 10^{-8} \) | \(a_{138}= +0.31558452 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{139}= +0.10757335 \pm 1.1 \cdot 10^{-8} \) | \(a_{140}= -1.16225411 \pm 1.0 \cdot 10^{-8} \) | \(a_{141}= +1.60551487 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{142}= -0.18712792 \pm 1.5 \cdot 10^{-8} \) | \(a_{143}= -0.25129056 \pm 1.1 \cdot 10^{-8} \) | \(a_{144}= +1.21859655 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{145}= -0.13883623 \pm 2.2 \cdot 10^{-8} \) | \(a_{146}= +0.18813754 \pm 1.1 \cdot 10^{-8} \) | \(a_{147}= +2.33287422 \pm 1 \cdot 10^{-8} \) |
| \(a_{148}= -0.23610623 \pm 1.3 \cdot 10^{-8} \) | \(a_{149}= -0.49115624 \pm 1.0 \cdot 10^{-8} \) | \(a_{150}= -0.10295116 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{151}= -0.12853708 \pm 1.2 \cdot 10^{-8} \) | \(a_{152}= -0.04578776 \pm 1.2 \cdot 10^{-8} \) | \(a_{153}= +0.15492782 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{154}= -0.04345882 \pm 1 \cdot 10^{-8} \) | \(a_{155}= +1.00412659 \pm 1.0 \cdot 10^{-8} \) | \(a_{156}= +2.09835903 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{157}= -1.17526073 \pm 1.2 \cdot 10^{-8} \) | \(a_{158}= +0.01792743 \pm 1.5 \cdot 10^{-8} \) | \(a_{159}= -1.59522452 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{160}= -0.33369485 \pm 1.7 \cdot 10^{-8} \) | \(a_{161}= -2.15227797 \pm 1.0 \cdot 10^{-8} \) | \(a_{162}= -0.09105877 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{163}= +0.69020997 \pm 1.1 \cdot 10^{-8} \) | \(a_{164}= -0.64131098 \pm 1.5 \cdot 10^{-8} \) | \(a_{165}= -0.20200275 \pm 1 \cdot 10^{-8} \) |
| \(a_{166}= -0.28526676 \pm 1.2 \cdot 10^{-8} \) | \(a_{167}= -0.04008220 \pm 1 \cdot 10^{-8} \) | \(a_{168}= +0.73455666 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{169}= +0.99878537 \pm 1.1 \cdot 10^{-8} \) | \(a_{170}= -0.01357316 \pm 1 \cdot 10^{-8} \) | \(a_{171}= +0.19770676 \pm 1 \cdot 10^{-8} \) |
| \(a_{172}= +1.75233224 \pm 1.1 \cdot 10^{-8} \) | \(a_{173}= -0.77172239 \pm 1.1 \cdot 10^{-8} \) | \(a_{174}= +0.04334942 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{175}= +0.70212415 \pm 1.2 \cdot 10^{-8} \) | \(a_{176}= +0.16526578 \pm 1.2 \cdot 10^{-8} \) | \(a_{177}= -0.18493707 \pm 1 \cdot 10^{-8} \) |
| \(a_{178}= +0.11279365 \pm 1.2 \cdot 10^{-8} \) | \(a_{179}= +0.62405641 \pm 1.3 \cdot 10^{-8} \) | \(a_{180}= +0.95676717 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{181}= +0.10927300 \pm 1 \cdot 10^{-8} \) | \(a_{182}= +0.34567496 \pm 1 \cdot 10^{-8} \) | \(a_{183}= -1.96769940 \pm 1 \cdot 10^{-8} \) |
| \(a_{184}= -0.41032825 \pm 1.2 \cdot 10^{-8} \) | \(a_{185}= -0.18079021 \pm 1.2 \cdot 10^{-8} \) | \(a_{186}= -0.31352266 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{187}= +0.02101127 \pm 1.0 \cdot 10^{-8} \) | \(a_{188}= -1.03130307 \pm 1 \cdot 10^{-8} \) | \(a_{189}= -0.75167227 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{190}= -0.01732101 \pm 1 \cdot 10^{-8} \) | \(a_{191}= -0.97495232 \pm 1.0 \cdot 10^{-8} \) | \(a_{192}= -1.30916712 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{193}= +0.10875360 \pm 1.1 \cdot 10^{-8} \) | \(a_{194}= +0.23037770 \pm 1.0 \cdot 10^{-8} \) | \(a_{195}= +1.60674611 \pm 1 \cdot 10^{-8} \) |
| \(a_{196}= -1.49852262 \pm 1.2 \cdot 10^{-8} \) | \(a_{197}= +0.08600335 \pm 1.1 \cdot 10^{-8} \) | \(a_{198}= +0.03577529 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{199}= -0.31305741 \pm 1 \cdot 10^{-8} \) | \(a_{200}= +0.13385881 \pm 1.2 \cdot 10^{-8} \) | \(a_{201}= -0.26520373 \pm 1 \cdot 10^{-8} \) |
| \(a_{202}= -0.28352802 \pm 1.3 \cdot 10^{-8} \) | \(a_{203}= -0.29564187 \pm 2.1 \cdot 10^{-8} \) | \(a_{204}= -0.17545107 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{205}= -0.49106178 \pm 1.1 \cdot 10^{-8} \) | \(a_{206}= +0.04663903 \pm 1.3 \cdot 10^{-8} \) | \(a_{207}= +1.77175446 \pm 1 \cdot 10^{-8} \) |
| \(a_{208}= -1.31453730 \pm 1.3 \cdot 10^{-8} \) | \(a_{209}= +0.02681294 \pm 1 \cdot 10^{-8} \) | \(a_{210}= +0.27787470 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{211}= +0.78514471 \pm 1.2 \cdot 10^{-8} \) | \(a_{212}= +1.02469306 \pm 1 \cdot 10^{-8} \) | \(a_{213}= -1.85217091 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{214}= +0.09892258 \pm 1.3 \cdot 10^{-8} \) | \(a_{215}= +1.34178802 \pm 1.2 \cdot 10^{-8} \) | \(a_{216}= -0.14330508 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{217}= +2.13821611 \pm 1.0 \cdot 10^{-8} \) | \(a_{218}= +0.14218951 \pm 1.2 \cdot 10^{-8} \) | \(a_{219}= +1.86216403 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{220}= +0.12975654 \pm 1.1 \cdot 10^{-8} \) | \(a_{221}= -0.16712537 \pm 1.3 \cdot 10^{-8} \) | \(a_{222}= +0.05644889 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{223}= +0.27248644 \pm 1.0 \cdot 10^{-8} \) | \(a_{224}= -0.71057944 \pm 1.0 \cdot 10^{-8} \) | \(a_{225}= -0.57798835 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{226}= +0.05326869 \pm 1.3 \cdot 10^{-8} \) | \(a_{227}= +0.96908211 \pm 1.0 \cdot 10^{-8} \) | \(a_{228}= -0.22389692 \pm 1 \cdot 10^{-8} \) |
| \(a_{229}= +1.04682912 \pm 1.0 \cdot 10^{-8} \) | \(a_{230}= -0.15522266 \pm 1.0 \cdot 10^{-8} \) | \(a_{231}= -0.43015047 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{232}= -0.05636364 \pm 2.7 \cdot 10^{-8} \) | \(a_{233}= +0.45899065 \pm 1.1 \cdot 10^{-8} \) | \(a_{234}= -0.28455950 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{235}= -0.78968478 \pm 1.1 \cdot 10^{-8} \) | \(a_{236}= +0.11879440 \pm 1.7 \cdot 10^{-8} \) | \(a_{237}= +0.17744362 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{238}= -0.02890308 \pm 1 \cdot 10^{-8} \) | \(a_{239}= -0.24657373 \pm 1.2 \cdot 10^{-8} \) | \(a_{240}= -1.05670560 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{241}= +0.92909228 \pm 1.2 \cdot 10^{-8} \) | \(a_{242}= -0.14872294 \pm 1.1 \cdot 10^{-8} \) | \(a_{243}= -1.37342156 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{244}= +1.26395244 \pm 1.3 \cdot 10^{-8} \) | \(a_{245}= -1.14744205 \pm 1.0 \cdot 10^{-8} \) | \(a_{246}= +0.15332628 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{247}= -0.21327232 \pm 1.0 \cdot 10^{-8} \) | \(a_{248}= +0.40764738 \pm 1.0 \cdot 10^{-8} \) | \(a_{249}= -2.82353796 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{250}= +0.16545842 \pm 1.1 \cdot 10^{-8} \) | \(a_{251}= +0.40960157 \pm 1.0 \cdot 10^{-8} \) | \(a_{252}= +2.03736759 \pm 1 \cdot 10^{-8} \) |
| \(a_{253}= +0.24028492 \pm 1.1 \cdot 10^{-8} \) | \(a_{254}= -0.15316226 \pm 1.3 \cdot 10^{-8} \) | \(a_{255}= -0.13434561 \pm 1 \cdot 10^{-8} \) |
| \(a_{256}= +0.77240028 \pm 2.4 \cdot 10^{-8} \) | \(a_{257}= -0.92569893 \pm 1 \cdot 10^{-8} \) | \(a_{258}= -0.41895210 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{259}= -0.38497988 \pm 1.0 \cdot 10^{-8} \) | \(a_{260}= -1.03209396 \pm 1.2 \cdot 10^{-8} \) | \(a_{261}= +0.24337228 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{262}= +0.07416052 \pm 1.4 \cdot 10^{-8} \) | \(a_{263}= -0.17499886 \pm 1 \cdot 10^{-8} \) | \(a_{264}= -0.08200748 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{265}= +0.78462339 \pm 1.3 \cdot 10^{-8} \) | \(a_{266}= -0.03688385 \pm 1 \cdot 10^{-8} \) | \(a_{267}= +1.11641875 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{268}= +0.17035371 \pm 1.0 \cdot 10^{-8} \) | \(a_{269}= -0.18351934 \pm 1.2 \cdot 10^{-8} \) | \(a_{270}= -0.05421074 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{271}= +0.11564755 \pm 1 \cdot 10^{-8} \) | \(a_{272}= +0.10991302 \pm 1.1 \cdot 10^{-8} \) | \(a_{273}= +3.42145149 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{274}= +0.18048730 \pm 1.1 \cdot 10^{-8} \) | \(a_{275}= -0.07838664 \pm 1.1 \cdot 10^{-8} \) | \(a_{276}= -2.00645832 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{277}= -0.87718680 \pm 1.2 \cdot 10^{-8} \) | \(a_{278}= +0.01652055 \pm 1.4 \cdot 10^{-8} \) | \(a_{279}= -1.76017874 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{280}= -0.36129732 \pm 1.2 \cdot 10^{-8} \) | \(a_{281}= -1.40855109 \pm 1.1 \cdot 10^{-8} \) | \(a_{282}= +0.24656659 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{283}= -1.95942507 \pm 1.2 \cdot 10^{-8} \) | \(a_{284}= +1.18974267 \pm 1.4 \cdot 10^{-8} \) | \(a_{285}= -0.17144135 \pm 1 \cdot 10^{-8} \) |
| \(a_{286}= -0.03859189 \pm 1.3 \cdot 10^{-8} \) | \(a_{287}= -1.04568111 \pm 1 \cdot 10^{-8} \) | \(a_{288}= +0.58494874 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{289}= -0.98602607 \pm 1.0 \cdot 10^{-8} \) | \(a_{290}= -0.02132174 \pm 3.6 \cdot 10^{-8} \) | \(a_{291}= +2.28025232 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{292}= -1.19616176 \pm 1.1 \cdot 10^{-8} \) | \(a_{293}= +1.64221898 \pm 1 \cdot 10^{-8} \) | \(a_{294}= +0.35827065 \pm 1 \cdot 10^{-8} \) |
| \(a_{295}= +0.09096272 \pm 1.1 \cdot 10^{-8} \) | \(a_{296}= -0.07339578 \pm 1.7 \cdot 10^{-8} \) | \(a_{297}= +0.08391830 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{298}= -0.07542921 \pm 1.0 \cdot 10^{-8} \) | \(a_{299}= -1.91124563 \pm 1.2 \cdot 10^{-8} \) | \(a_{300}= +0.65455432 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{301}= +2.85724210 \pm 1.1 \cdot 10^{-8} \) | \(a_{302}= -0.01974005 \pm 1.2 \cdot 10^{-8} \) | \(a_{303}= -2.80632812 \pm 1 \cdot 10^{-8} \) |
| \(a_{304}= +0.14026239 \pm 1.1 \cdot 10^{-8} \) | \(a_{305}= +0.96782802 \pm 1 \cdot 10^{-8} \) | \(a_{306}= +0.02379301 \pm 1.8 \cdot 10^{-8} \) |
| \(a_{307}= +0.17644397 \pm 1.1 \cdot 10^{-8} \) | \(a_{308}= +0.27630731 \pm 1 \cdot 10^{-8} \) | \(a_{309}= +0.46162783 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{310}= +0.15420852 \pm 1 \cdot 10^{-8} \) | \(a_{311}= +1.16589941 \pm 1.2 \cdot 10^{-8} \) | \(a_{312}= +0.65229409 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{313}= -1.36377228 \pm 1.0 \cdot 10^{-8} \) | \(a_{314}= -0.18049041 \pm 1.4 \cdot 10^{-8} \) | \(a_{315}= +1.56004402 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{316}= -0.11398097 \pm 1.7 \cdot 10^{-8} \) | \(a_{317}= -0.29874870 \pm 1.0 \cdot 10^{-8} \) | \(a_{318}= -0.24498625 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{319}= +0.03300609 \pm 2.1 \cdot 10^{-8} \) | \(a_{320}= +0.64392387 \pm 2.0 \cdot 10^{-8} \) | \(a_{321}= +0.97912445 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{322}= -0.33053562 \pm 1 \cdot 10^{-8} \) | \(a_{323}= +0.01783244 \pm 1 \cdot 10^{-8} \) | \(a_{324}= +0.57894357 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{325}= +0.62349368 \pm 1.2 \cdot 10^{-8} \) | \(a_{326}= +0.10599884 \pm 1.1 \cdot 10^{-8} \) | \(a_{327}= +1.40737561 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{328}= -0.19935738 \pm 2.0 \cdot 10^{-8} \) | \(a_{329}= -1.68157754 \pm 1.0 \cdot 10^{-8} \) | \(a_{330}= -0.03102253 \pm 1 \cdot 10^{-8} \) |
| \(a_{331}= -0.45930474 \pm 1.2 \cdot 10^{-8} \) | \(a_{332}= +1.81370065 \pm 1 \cdot 10^{-8} \) | \(a_{333}= +0.31691530 \pm 1 \cdot 10^{-8} \) |
| \(a_{334}= -0.00615561 \pm 1 \cdot 10^{-8} \) | \(a_{335}= +0.13044249 \pm 1 \cdot 10^{-8} \) | \(a_{336}= -2.25017937 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{337}= -0.17835363 \pm 1.1 \cdot 10^{-8} \) | \(a_{338}= +0.15338824 \pm 1.4 \cdot 10^{-8} \) | \(a_{339}= +0.52724745 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{340}= +0.08629695 \pm 1 \cdot 10^{-8} \) | \(a_{341}= -0.23871503 \pm 1.0 \cdot 10^{-8} \) | \(a_{342}= +0.03036277 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{343}= -0.85131600 \pm 1.0 \cdot 10^{-8} \) | \(a_{344}= +0.54472850 \pm 1.2 \cdot 10^{-8} \) | \(a_{345}= -1.53637630 \pm 1 \cdot 10^{-8} \) |
| \(a_{346}= -0.11851710 \pm 1.3 \cdot 10^{-8} \) | \(a_{347}= +0.06778078 \pm 1.0 \cdot 10^{-8} \) | \(a_{348}= -0.27561174 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{349}= -0.71886513 \pm 1.2 \cdot 10^{-8} \) | \(a_{350}= +0.10782856 \pm 1.1 \cdot 10^{-8} \) | \(a_{351}= -0.66749294 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{352}= +0.07933061 \pm 1.3 \cdot 10^{-8} \) | \(a_{353}= -0.82830189 \pm 1.0 \cdot 10^{-8} \) | \(a_{354}= -0.02840167 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{355}= +0.91100445 \pm 1.1 \cdot 10^{-8} \) | \(a_{356}= -0.71713200 \pm 1.3 \cdot 10^{-8} \) | \(a_{357}= -0.28607941 \pm 1 \cdot 10^{-8} \) |
| \(a_{358}= +0.09583933 \pm 1.5 \cdot 10^{-8} \) | \(a_{359}= +0.02018899 \pm 1.3 \cdot 10^{-8} \) | \(a_{360}= +0.29741982 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{361}= -0.97724364 \pm 1 \cdot 10^{-8} \) | \(a_{362}= +0.01678158 \pm 1.3 \cdot 10^{-8} \) | \(a_{363}= -1.47204281 \pm 1 \cdot 10^{-8} \) |
| \(a_{364}= -2.19777063 \pm 1 \cdot 10^{-8} \) | \(a_{365}= -0.91591964 \pm 1 \cdot 10^{-8} \) | \(a_{366}= -0.30218900 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{367}= +0.76456925 \pm 1.3 \cdot 10^{-8} \) | \(a_{368}= +1.25696521 \pm 1.0 \cdot 10^{-8} \) | \(a_{369}= +0.86080432 \pm 1 \cdot 10^{-8} \) |
| \(a_{370}= -0.02776482 \pm 1.4 \cdot 10^{-8} \) | \(a_{371}= +1.67079968 \pm 1.2 \cdot 10^{-8} \) | \(a_{372}= +1.99334917 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{373}= +0.94192781 \pm 1.1 \cdot 10^{-8} \) | \(a_{374}= +0.00322680 \pm 1.3 \cdot 10^{-8} \) | \(a_{375}= +1.63768864 \pm 1 \cdot 10^{-8} \) |
| \(a_{376}= -0.32058999 \pm 1.0 \cdot 10^{-8} \) | \(a_{377}= -0.26253311 \pm 2.2 \cdot 10^{-8} \) | \(a_{378}= -0.11543790 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{379}= +0.24685804 \pm 1.1 \cdot 10^{-8} \) | \(a_{380}= +0.11012542 \pm 1 \cdot 10^{-8} \) | \(a_{381}= -1.51598263 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{382}= -0.14972809 \pm 1.0 \cdot 10^{-8} \) | \(a_{383}= +1.68090604 \pm 1.1 \cdot 10^{-8} \) | \(a_{384}= -0.87949291 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{385}= +0.21157280 \pm 1.1 \cdot 10^{-8} \) | \(a_{386}= +0.01670181 \pm 1.2 \cdot 10^{-8} \) | \(a_{387}= -2.35208068 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{388}= -1.46472092 \pm 1.0 \cdot 10^{-8} \) | \(a_{389}= -1.09786820 \pm 1.3 \cdot 10^{-8} \) | \(a_{390}= +0.24675568 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{391}= +0.15980587 \pm 1 \cdot 10^{-8} \) | \(a_{392}= -0.46582946 \pm 1.2 \cdot 10^{-8} \) | \(a_{393}= +0.73403240 \pm 1 \cdot 10^{-8} \) |
| \(a_{394}= +0.01320795 \pm 1.3 \cdot 10^{-8} \) | \(a_{395}= -0.08727700 \pm 1.1 \cdot 10^{-8} \) | \(a_{396}= -0.22745608 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{397}= +0.86441488 \pm 1.0 \cdot 10^{-8} \) | \(a_{398}= -0.04807772 \pm 1.1 \cdot 10^{-8} \) | \(a_{399}= -0.36507216 \pm 1 \cdot 10^{-8} \) |
| \(a_{400}= -0.41005188 \pm 1.1 \cdot 10^{-8} \) | \(a_{401}= +0.01217155 \pm 1.3 \cdot 10^{-8} \) | \(a_{402}= -0.04072860 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{403}= +1.89875855 \pm 1.0 \cdot 10^{-8} \) | \(a_{404}= +1.80264590 \pm 1.5 \cdot 10^{-8} \) | \(a_{405}= +0.44330609 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{406}= -0.04540313 \pm 3.5 \cdot 10^{-8} \) | \(a_{407}= +0.04297998 \pm 1 \cdot 10^{-8} \) | \(a_{408}= -0.05454057 \pm 1 \cdot 10^{-8} \) |
| \(a_{409}= -0.48595688 \pm 1.2 \cdot 10^{-8} \) | \(a_{410}= -0.07541470 \pm 1.4 \cdot 10^{-8} \) | \(a_{411}= +1.78644282 \pm 1 \cdot 10^{-8} \) |
| \(a_{412}= -0.29652681 \pm 1.5 \cdot 10^{-8} \) | \(a_{413}= +0.19369863 \pm 1 \cdot 10^{-8} \) | \(a_{414}= +0.27209680 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{415}= +1.38877877 \pm 1.3 \cdot 10^{-8} \) | \(a_{416}= -0.63100207 \pm 1.3 \cdot 10^{-8} \) | \(a_{417}= +0.16351857 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{418}= +0.00411779 \pm 1.0 \cdot 10^{-8} \) | \(a_{419}= -0.73786763 \pm 1 \cdot 10^{-8} \) | \(a_{420}= -1.76670265 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{421}= -0.55609311 \pm 1.1 \cdot 10^{-8} \) | \(a_{422}= +0.12057843 \pm 1.7 \cdot 10^{-8} \) | \(a_{423}= +1.38427403 \pm 1 \cdot 10^{-8} \) |
| \(a_{424}= +0.31853521 \pm 1.2 \cdot 10^{-8} \) | \(a_{425}= -0.05213247 \pm 1.1 \cdot 10^{-8} \) | \(a_{426}= -0.28444674 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{427}= +2.06092088 \pm 1 \cdot 10^{-8} \) | \(a_{428}= -0.62894095 \pm 1.3 \cdot 10^{-8} \) | \(a_{429}= -0.38197817 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{430}= +0.20606480 \pm 1.0 \cdot 10^{-8} \) | \(a_{431}= -1.35073640 \pm 1.1 \cdot 10^{-8} \) | \(a_{432}= +0.43898879 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{433}= -1.64641995 \pm 1.2 \cdot 10^{-8} \) | \(a_{434}= +0.32837607 \pm 1 \cdot 10^{-8} \) | \(a_{435}= -0.21104019 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{436}= -0.90402824 \pm 1.2 \cdot 10^{-8} \) | \(a_{437}= +0.20393174 \pm 1 \cdot 10^{-8} \) | \(a_{438}= +0.28598143 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{439}= +0.21435278 \pm 1.1 \cdot 10^{-8} \) | \(a_{440}= +0.04033601 \pm 1.0 \cdot 10^{-8} \) | \(a_{441}= +2.01140287 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{442}= -0.02566624 \pm 1.8 \cdot 10^{-8} \) | \(a_{443}= +1.28072828 \pm 1.1 \cdot 10^{-8} \) | \(a_{444}= -0.35889699 \pm 1 \cdot 10^{-8} \) |
| \(a_{445}= -0.54911911 \pm 1.0 \cdot 10^{-8} \) | \(a_{446}= +0.04184704 \pm 1.3 \cdot 10^{-8} \) | \(a_{447}= -0.74658977 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{448}= +1.37119006 \pm 1.2 \cdot 10^{-8} \) | \(a_{449}= -0.14690345 \pm 1.1 \cdot 10^{-8} \) | \(a_{450}= -0.08876443 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{451}= +0.11674208 \pm 1 \cdot 10^{-8} \) | \(a_{452}= -0.33867759 \pm 1.2 \cdot 10^{-8} \) | \(a_{453}= -0.19538481 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{454}= +0.14882657 \pm 1.4 \cdot 10^{-8} \) | \(a_{455}= -1.68286711 \pm 1 \cdot 10^{-8} \) | \(a_{456}= -0.06960041 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{457}= -1.23156398 \pm 1 \cdot 10^{-8} \) | \(a_{458}= +0.16076655 \pm 1.3 \cdot 10^{-8} \) | \(a_{459}= +0.05581140 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{460}= +0.98689189 \pm 1 \cdot 10^{-8} \) | \(a_{461}= -1.15996608 \pm 1.3 \cdot 10^{-8} \) | \(a_{462}= -0.06606026 \pm 1 \cdot 10^{-8} \) |
| \(a_{463}= -0.80771552 \pm 1.0 \cdot 10^{-8} \) | \(a_{464}= +0.17265964 \pm 2.8 \cdot 10^{-8} \) | \(a_{465}= +1.52633843 \pm 1 \cdot 10^{-8} \) |
| \(a_{466}= +0.07048939 \pm 1.4 \cdot 10^{-8} \) | \(a_{467}= -0.49766976 \pm 1.2 \cdot 10^{-8} \) | \(a_{468}= +1.80920400 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{469}= +0.27776799 \pm 1 \cdot 10^{-8} \) | \(a_{470}= -0.12127567 \pm 1.2 \cdot 10^{-8} \) | \(a_{471}= -1.78647357 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{472}= +0.03692832 \pm 2.0 \cdot 10^{-8} \) | \(a_{473}= -0.31898863 \pm 1.0 \cdot 10^{-8} \) | \(a_{474}= +0.02725086 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{475}= -0.06652737 \pm 1 \cdot 10^{-8} \) | \(a_{476}= +0.18376322 \pm 1 \cdot 10^{-8} \) | \(a_{477}= -1.37540170 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{478}= -0.03786751 \pm 1.3 \cdot 10^{-8} \) | \(a_{479}= -0.32943110 \pm 1.2 \cdot 10^{-8} \) | \(a_{480}= -0.50723811 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{481}= -0.34186621 \pm 1 \cdot 10^{-8} \) | \(a_{482}= +0.14268514 \pm 1.5 \cdot 10^{-8} \) | \(a_{483}= -3.27160399 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{484}= +0.94556725 \pm 1.0 \cdot 10^{-8} \) | \(a_{485}= -1.12155956 \pm 1 \cdot 10^{-8} \) | \(a_{486}= -0.21092291 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{487}= +1.41366977 \pm 1.1 \cdot 10^{-8} \) | \(a_{488}= +0.39291117 \pm 1.3 \cdot 10^{-8} \) | \(a_{489}= +1.04916453 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{490}= -0.17621816 \pm 1 \cdot 10^{-8} \) | \(a_{491}= -0.00598773 \pm 1.1 \cdot 10^{-8} \) | \(a_{492}= -0.97483485 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{493}= +0.02195130 \pm 2.1 \cdot 10^{-8} \) | \(a_{494}= -0.03275325 \pm 1.1 \cdot 10^{-8} \) | \(a_{495}= -0.17416666 \pm 1 \cdot 10^{-8} \) |
| \(a_{496}= -1.24875286 \pm 1.2 \cdot 10^{-8} \) | \(a_{497}= +1.93991913 \pm 1.1 \cdot 10^{-8} \) | \(a_{498}= -0.43362422 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{499}= +0.48066321 \pm 1.0 \cdot 10^{-8} \) | \(a_{500}= -1.05196990 \pm 1.3 \cdot 10^{-8} \) | \(a_{501}= -0.06092757 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{502}= +0.06290447 \pm 1.1 \cdot 10^{-8} \) | \(a_{503}= +1.83848678 \pm 1.1 \cdot 10^{-8} \) | \(a_{504}= +0.63333435 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{505}= +1.38031397 \pm 1.1 \cdot 10^{-8} \) | \(a_{506}= +0.03690170 \pm 1.1 \cdot 10^{-8} \) | \(a_{507}= +1.51821942 \pm 1 \cdot 10^{-8} \) |
| \(a_{508}= +0.97379200 \pm 1.0 \cdot 10^{-8} \) | \(a_{509}= -0.96536408 \pm 1.2 \cdot 10^{-8} \) | \(a_{510}= -0.02063210 \pm 1 \cdot 10^{-8} \) |
| \(a_{511}= -1.95038569 \pm 1.0 \cdot 10^{-8} \) | \(a_{512}= +0.69720994 \pm 2.6 \cdot 10^{-8} \) | \(a_{513}= +0.07122214 \pm 1 \cdot 10^{-8} \) |
| \(a_{514}= -0.14216401 \pm 1.3 \cdot 10^{-8} \) | \(a_{515}= -0.22705518 \pm 1.2 \cdot 10^{-8} \) | \(a_{516}= +2.66366020 \pm 1 \cdot 10^{-8} \) |
| \(a_{517}= +0.18773492 \pm 1.0 \cdot 10^{-8} \) | \(a_{518}= -0.05912320 \pm 1 \cdot 10^{-8} \) | \(a_{519}= -1.17306875 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{520}= -0.32083585 \pm 1.1 \cdot 10^{-8} \) | \(a_{521}= +1.92142060 \pm 1.1 \cdot 10^{-8} \) | \(a_{522}= +0.03737584 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{523}= -0.79249079 \pm 1.1 \cdot 10^{-8} \) | \(a_{524}= -0.47150599 \pm 1.8 \cdot 10^{-8} \) | \(a_{525}= +1.06727487 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{526}= -0.02687541 \pm 1.3 \cdot 10^{-8} \) | \(a_{527}= -0.15876178 \pm 1.0 \cdot 10^{-8} \) | \(a_{528}= +0.25121484 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{529}= +0.82753982 \pm 1.1 \cdot 10^{-8} \) | \(a_{530}= +0.12049837 \pm 1.4 \cdot 10^{-8} \) | \(a_{531}= -0.15945264 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{532}= +0.23450423 \pm 1 \cdot 10^{-8} \) | \(a_{533}= -0.92857590 \pm 1.0 \cdot 10^{-8} \) | \(a_{534}= +0.17145376 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{535}= -0.48158986 \pm 1.2 \cdot 10^{-8} \) | \(a_{536}= +0.05295601 \pm 1.1 \cdot 10^{-8} \) | \(a_{537}= +0.94860676 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{538}= -0.02818394 \pm 1.2 \cdot 10^{-8} \) | \(a_{539}= +0.27278598 \pm 1 \cdot 10^{-8} \) | \(a_{540}= +0.34466703 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{541}= -0.59370771 \pm 1.1 \cdot 10^{-8} \) | \(a_{542}= +0.01776055 \pm 1.0 \cdot 10^{-8} \) | \(a_{543}= +0.16610214 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{544}= +0.05276027 \pm 1 \cdot 10^{-8} \) | \(a_{545}= -0.69222847 \pm 1.0 \cdot 10^{-8} \) | \(a_{546}= +0.52544866 \pm 1 \cdot 10^{-8} \) |
| \(a_{547}= -0.19256660 \pm 1.3 \cdot 10^{-8} \) | \(a_{548}= -1.14752220 \pm 1.3 \cdot 10^{-8} \) | \(a_{549}= -1.69654933 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{550}= -0.01203821 \pm 1.0 \cdot 10^{-8} \) | \(a_{551}= +0.02801253 \pm 2.0 \cdot 10^{-8} \) | \(a_{552}= -0.62372592 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{553}= -0.18585016 \pm 1 \cdot 10^{-8} \) | \(a_{554}= -0.13471377 \pm 1.3 \cdot 10^{-8} \) | \(a_{555}= -0.27481300 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{556}= -0.10503621 \pm 1.5 \cdot 10^{-8} \) | \(a_{557}= -1.47801709 \pm 1.0 \cdot 10^{-8} \) | \(a_{558}= -0.27031906 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{559}= +2.53726124 \pm 1.1 \cdot 10^{-8} \) | \(a_{560}= +1.10676795 \pm 1.3 \cdot 10^{-8} \) | \(a_{561}= +0.03193852 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{562}= -0.21631792 \pm 1.5 \cdot 10^{-8} \) | \(a_{563}= +1.33719946 \pm 1.1 \cdot 10^{-8} \) | \(a_{564}= -1.56764846 \pm 1 \cdot 10^{-8} \) |
| \(a_{565}= -0.25933070 \pm 1.0 \cdot 10^{-8} \) | \(a_{566}= -0.30091827 \pm 1.1 \cdot 10^{-8} \) | \(a_{567}= +0.94398876 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{568}= +0.36984239 \pm 1.5 \cdot 10^{-8} \) | \(a_{569}= +0.58050221 \pm 1.1 \cdot 10^{-8} \) | \(a_{570}= -0.02632907 \pm 1 \cdot 10^{-8} \) |
| \(a_{571}= -0.22914578 \pm 1.0 \cdot 10^{-8} \) | \(a_{572}= +0.24536382 \pm 1.5 \cdot 10^{-8} \) | \(a_{573}= -1.48199162 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{574}= -0.16059025 \pm 1.0 \cdot 10^{-8} \) | \(a_{575}= -0.59618686 \pm 1.0 \cdot 10^{-8} \) | \(a_{576}= -1.12876317 \pm 1.7 \cdot 10^{-8} \) |
| \(a_{577}= +1.54477630 \pm 1.2 \cdot 10^{-8} \) | \(a_{578}= -0.15142874 \pm 1.5 \cdot 10^{-8} \) | \(a_{579}= +0.16531262 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{580}= +0.13556175 \pm 3.6 \cdot 10^{-8} \) | \(a_{581}= +2.95730554 \pm 1.1 \cdot 10^{-8} \) | \(a_{582}= +0.35018925 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{583}= -0.18653165 \pm 1 \cdot 10^{-8} \) | \(a_{584}= -0.37183782 \pm 1.2 \cdot 10^{-8} \) | \(a_{585}= +1.38533561 \pm 1 \cdot 10^{-8} \) |
| \(a_{586}= +0.25220342 \pm 1.1 \cdot 10^{-8} \) | \(a_{587}= -1.15331212 \pm 1.0 \cdot 10^{-8} \) | \(a_{588}= -2.27785289 \pm 1 \cdot 10^{-8} \) |
| \(a_{589}= -0.20259936 \pm 1 \cdot 10^{-8} \) | \(a_{590}= +0.01396958 \pm 1.3 \cdot 10^{-8} \) | \(a_{591}= +0.13073075 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{592}= +0.22483449 \pm 1.9 \cdot 10^{-8} \) | \(a_{593}= -1.13796694 \pm 1.0 \cdot 10^{-8} \) | \(a_{594}= +0.01288773 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{595}= +0.14071035 \pm 1.0 \cdot 10^{-8} \) | \(a_{596}= +0.47957221 \pm 1 \cdot 10^{-8} \) | \(a_{597}= -0.47586785 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{598}= -0.29351913 \pm 1.2 \cdot 10^{-8} \) | \(a_{599}= -0.23357273 \pm 1.0 \cdot 10^{-8} \) | \(a_{600}= +0.20347420 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{601}= +0.33416901 \pm 1.0 \cdot 10^{-8} \) | \(a_{602}= +0.43880033 \pm 1 \cdot 10^{-8} \) | \(a_{603}= -0.22865851 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{604}= +0.12550551 \pm 1.1 \cdot 10^{-8} \) | \(a_{605}= +0.72403553 \pm 1.0 \cdot 10^{-8} \) | \(a_{606}= -0.43098122 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{607}= -0.07203689 \pm 1.3 \cdot 10^{-8} \) | \(a_{608}= +0.06732853 \pm 1.2 \cdot 10^{-8} \) | \(a_{609}= -0.44939507 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{610}= +0.14863397 \pm 1 \cdot 10^{-8} \) | \(a_{611}= -1.49325867 \pm 1 \cdot 10^{-8} \) | \(a_{612}= -0.15127381 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{613}= +0.53399457 \pm 1.1 \cdot 10^{-8} \) | \(a_{614}= +0.02709734 \pm 1.1 \cdot 10^{-8} \) | \(a_{615}= -0.74644619 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{616}= +0.08589266 \pm 1.0 \cdot 10^{-8} \) | \(a_{617}= -1.34793661 \pm 1.1 \cdot 10^{-8} \) | \(a_{618}= +0.07089439 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{619}= -1.20995060 \pm 1 \cdot 10^{-8} \) | \(a_{620}= -0.98044405 \pm 1.0 \cdot 10^{-8} \) | \(a_{621}= +0.63825910 \pm 1 \cdot 10^{-8} \) |
| \(a_{622}= +0.17905274 \pm 1.1 \cdot 10^{-8} \) | \(a_{623}= -1.16931007 \pm 1 \cdot 10^{-8} \) | \(a_{624}= -1.99818311 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{625}= -0.36449915 \pm 1 \cdot 10^{-8} \) | \(a_{626}= -0.20944103 \pm 1.3 \cdot 10^{-8} \) | \(a_{627}= +0.04075744 \pm 1 \cdot 10^{-8} \) |
| \(a_{628}= +1.14754196 \pm 1.5 \cdot 10^{-8} \) | \(a_{629}= +0.02858462 \pm 1 \cdot 10^{-8} \) | \(a_{630}= +0.23958342 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{631}= +0.68334995 \pm 1.0 \cdot 10^{-8} \) | \(a_{632}= -0.03543203 \pm 2.1 \cdot 10^{-8} \) | \(a_{633}= +1.19347157 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{634}= -0.04588027 \pm 1.3 \cdot 10^{-8} \) | \(a_{635}= +0.74564767 \pm 1.3 \cdot 10^{-8} \) | \(a_{636}= +1.55760081 \pm 1 \cdot 10^{-8} \) |
| \(a_{637}= -2.16976169 \pm 1 \cdot 10^{-8} \) | \(a_{638}= +0.00506890 \pm 3.5 \cdot 10^{-8} \) | \(a_{639}= -1.59694074 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{640}= +0.43258532 \pm 2.1 \cdot 10^{-8} \) | \(a_{641}= +0.66767663 \pm 1.0 \cdot 10^{-8} \) | \(a_{642}= +0.15036882 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{643}= -0.44194988 \pm 1 \cdot 10^{-8} \) | \(a_{644}= +2.10151604 \pm 1 \cdot 10^{-8} \) | \(a_{645}= +2.03960600 \pm 1 \cdot 10^{-8} \) |
| \(a_{646}= +0.00273861 \pm 1.1 \cdot 10^{-8} \) | \(a_{647}= +0.55527915 \pm 1 \cdot 10^{-8} \) | \(a_{648}= +0.17996990 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{649}= -0.02162493 \pm 1.0 \cdot 10^{-8} \) | \(a_{650}= +0.09575291 \pm 1.3 \cdot 10^{-8} \) | \(a_{651}= +3.25022904 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{652}= -0.67393122 \pm 1.0 \cdot 10^{-8} \) | \(a_{653}= +0.21686148 \pm 1.3 \cdot 10^{-8} \) | \(a_{654}= +0.21613740 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{655}= -0.36103946 \pm 1.2 \cdot 10^{-8} \) | \(a_{656}= +0.61069471 \pm 2.2 \cdot 10^{-8} \) | \(a_{657}= +1.60555680 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{658}= -0.25824790 \pm 1 \cdot 10^{-8} \) | \(a_{659}= +1.43936324 \pm 1.1 \cdot 10^{-8} \) | \(a_{660}= +0.19723847 \pm 1 \cdot 10^{-8} \) |
| \(a_{661}= -0.68357301 \pm 1 \cdot 10^{-8} \) | \(a_{662}= -0.07053762 \pm 1.4 \cdot 10^{-8} \) | \(a_{663}= -0.25404155 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{664}= +0.56380543 \pm 1.2 \cdot 10^{-8} \) | \(a_{665}= +0.17956354 \pm 1.1 \cdot 10^{-8} \) | \(a_{666}= +0.04867020 \pm 1 \cdot 10^{-8} \) |
| \(a_{667}= +0.25103509 \pm 2.1 \cdot 10^{-8} \) | \(a_{668}= +0.03913685 \pm 1 \cdot 10^{-8} \) | \(a_{669}= +0.41419730 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{670}= +0.02003268 \pm 1 \cdot 10^{-8} \) | \(a_{671}= -0.23008562 \pm 1.0 \cdot 10^{-8} \) | \(a_{672}= -1.08012746 \pm 1 \cdot 10^{-8} \) |
| \(a_{673}= -0.44468594 \pm 1.2 \cdot 10^{-8} \) | \(a_{674}= -0.02739062 \pm 1.3 \cdot 10^{-8} \) | \(a_{675}= -0.20821527 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{676}= -0.97522881 \pm 1.6 \cdot 10^{-8} \) | \(a_{677}= -1.53552099 \pm 1.1 \cdot 10^{-8} \) | \(a_{678}= +0.08097191 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{679}= -2.38828127 \pm 1 \cdot 10^{-8} \) | \(a_{680}= +0.02682620 \pm 1 \cdot 10^{-8} \) | \(a_{681}= +1.47306851 \pm 1 \cdot 10^{-8} \) |
| \(a_{682}= -0.03666061 \pm 1.1 \cdot 10^{-8} \) | \(a_{683}= +0.14922132 \pm 1.3 \cdot 10^{-8} \) | \(a_{684}= -0.19304380 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{685}= -0.87867558 \pm 1 \cdot 10^{-8} \) | \(a_{686}= -0.13074067 \pm 1.1 \cdot 10^{-8} \) | \(a_{687}= +1.59124908 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{688}= -1.66867568 \pm 1.3 \cdot 10^{-8} \) | \(a_{689}= +1.48368781 \pm 1.0 \cdot 10^{-8} \) | \(a_{690}= -0.23594865 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{691}= -0.23379885 \pm 1.2 \cdot 10^{-8} \) | \(a_{692}= +0.75352115 \pm 1.1 \cdot 10^{-8} \) | \(a_{693}= -0.37087550 \pm 1 \cdot 10^{-8} \) |
| \(a_{694}= +0.01040942 \pm 1.4 \cdot 10^{-8} \) | \(a_{695}= -0.08042786 \pm 1 \cdot 10^{-8} \) | \(a_{696}= -0.08567643 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{697}= +0.07764145 \pm 1 \cdot 10^{-8} \) | \(a_{698}= -0.11039955 \pm 1.4 \cdot 10^{-8} \) | \(a_{699}= +0.69769596 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{700}= -0.68556440 \pm 1 \cdot 10^{-8} \) | \(a_{701}= -0.02683799 \pm 1.3 \cdot 10^{-8} \) | \(a_{702}= -0.10251008 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{703}= +0.03647745 \pm 1 \cdot 10^{-8} \) | \(a_{704}= -0.15308260 \pm 1.3 \cdot 10^{-8} \) | \(a_{705}= -1.20037278 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{706}= -0.12720628 \pm 1.2 \cdot 10^{-8} \) | \(a_{707}= +2.93928037 \pm 1.1 \cdot 10^{-8} \) | \(a_{708}= +0.18057529 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{709}= -0.70763901 \pm 1.1 \cdot 10^{-8} \) | \(a_{710}= +0.13990731 \pm 1.3 \cdot 10^{-8} \) | \(a_{711}= +0.15299179 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{712}= -0.22292704 \pm 1.6 \cdot 10^{-8} \) | \(a_{713}= -1.81559963 \pm 1 \cdot 10^{-8} \) | \(a_{714}= -0.04393458 \pm 1 \cdot 10^{-8} \) |
| \(a_{715}= +0.18787889 \pm 1 \cdot 10^{-8} \) | \(a_{716}= -0.60933790 \pm 1.7 \cdot 10^{-8} \) | \(a_{717}= -0.37480828 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{718}= +0.00310052 \pm 1.7 \cdot 10^{-8} \) | \(a_{719}= -1.74711950 \pm 1.1 \cdot 10^{-8} \) | \(a_{720}= -0.91109098 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{721}= -0.48349785 \pm 1.1 \cdot 10^{-8} \) | \(a_{722}= -0.15007998 \pm 1 \cdot 10^{-8} \) | \(a_{723}= +1.41228135 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{724}= -0.10669577 \pm 1.5 \cdot 10^{-8} \) | \(a_{725}= -0.08189360 \pm 2.2 \cdot 10^{-8} \) | \(a_{726}= -0.22606865 \pm 1 \cdot 10^{-8} \) |
| \(a_{727}= +0.64620401 \pm 1.2 \cdot 10^{-8} \) | \(a_{728}= -0.68319710 \pm 1.0 \cdot 10^{-8} \) | \(a_{729}= -1.49476315 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{730}= -0.14066216 \pm 1 \cdot 10^{-8} \) | \(a_{731}= -0.21214920 \pm 1.1 \cdot 10^{-8} \) | \(a_{732}= +1.92129079 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{733}= +1.88952869 \pm 1.1 \cdot 10^{-8} \) | \(a_{734}= +0.11741855 \pm 1.5 \cdot 10^{-8} \) | \(a_{735}= -1.74418734 \pm 1 \cdot 10^{-8} \) |
| \(a_{736}= +0.60336641 \pm 1.1 \cdot 10^{-8} \) | \(a_{737}= -0.03101061 \pm 1 \cdot 10^{-8} \) | \(a_{738}= +0.13219783 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{739}= +1.44940951 \pm 1.2 \cdot 10^{-8} \) | \(a_{740}= +0.17652623 \pm 1.3 \cdot 10^{-8} \) | \(a_{741}= -0.32418794 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{742}= +0.25659269 \pm 1.2 \cdot 10^{-8} \) | \(a_{743}= -0.64877187 \pm 1.1 \cdot 10^{-8} \) | \(a_{744}= +0.61965082 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{745}= +0.36721589 \pm 1 \cdot 10^{-8} \) | \(a_{746}= +0.14465636 \pm 1.4 \cdot 10^{-8} \) | \(a_{747}= -2.43445287 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{748}= -0.02051572 \pm 1.3 \cdot 10^{-8} \) | \(a_{749}= -1.02551133 \pm 1.1 \cdot 10^{-8} \) | \(a_{750}= +0.25150767 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{751}= +0.84057009 \pm 1.0 \cdot 10^{-8} \) | \(a_{752}= +0.98206853 \pm 1.1 \cdot 10^{-8} \) | \(a_{753}= +0.62262132 \pm 1 \cdot 10^{-8} \) |
| \(a_{754}= -0.04031846 \pm 3.6 \cdot 10^{-8} \) | \(a_{755}= +0.09610152 \pm 1.1 \cdot 10^{-8} \) | \(a_{756}= +0.73394392 \pm 1 \cdot 10^{-8} \) |
| \(a_{757}= +0.35108704 \pm 1.1 \cdot 10^{-8} \) | \(a_{758}= +0.03791117 \pm 1.2 \cdot 10^{-8} \) | \(a_{759}= +0.36524888 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{760}= +0.03423349 \pm 1.0 \cdot 10^{-8} \) | \(a_{761}= -1.37207182 \pm 1.4 \cdot 10^{-8} \) | \(a_{762}= -0.23281670 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{763}= -1.47405126 \pm 1 \cdot 10^{-8} \) | \(a_{764}= +0.95195787 \pm 1.0 \cdot 10^{-8} \) | \(a_{765}= -0.11583271 \pm 1 \cdot 10^{-8} \) |
| \(a_{766}= +0.25814478 \pm 1.2 \cdot 10^{-8} \) | \(a_{767}= +0.17200643 \pm 1.0 \cdot 10^{-8} \) | \(a_{768}= +1.17409919 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{769}= -1.39253303 \pm 1.0 \cdot 10^{-8} \) | \(a_{770}= +0.03249225 \pm 1 \cdot 10^{-8} \) | \(a_{771}= -1.40712322 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{772}= -0.10618862 \pm 1.2 \cdot 10^{-8} \) | \(a_{773}= +1.37734210 \pm 1 \cdot 10^{-8} \) | \(a_{774}= -0.36122027 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{775}= +0.59229169 \pm 1.1 \cdot 10^{-8} \) | \(a_{776}= -0.45532189 \pm 1 \cdot 10^{-8} \) | \(a_{777}= -0.58519473 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{778}= -0.16860487 \pm 1.3 \cdot 10^{-8} \) | \(a_{779}= +0.09907994 \pm 1 \cdot 10^{-8} \) | \(a_{780}= -1.56885066 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{781}= -0.21657673 \pm 1.2 \cdot 10^{-8} \) | \(a_{782}= +0.02454215 \pm 1.1 \cdot 10^{-8} \) | \(a_{783}= +0.08767274 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{784}= +1.42698296 \pm 1.4 \cdot 10^{-8} \) | \(a_{785}= +0.87869070 \pm 1.3 \cdot 10^{-8} \) | \(a_{786}= +0.11272886 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{787}= -1.62731292 \pm 1.1 \cdot 10^{-8} \) | \(a_{788}= -0.08397495 \pm 1.2 \cdot 10^{-8} \) | \(a_{789}= -0.26600977 \pm 1 \cdot 10^{-8} \) |
| \(a_{790}= -0.01340355 \pm 1.5 \cdot 10^{-8} \) | \(a_{791}= -0.55222626 \pm 1.0 \cdot 10^{-8} \) | \(a_{792}= -0.07070680 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{793}= +1.83011957 \pm 1.2 \cdot 10^{-8} \) | \(a_{794}= +0.13275233 \pm 1.2 \cdot 10^{-8} \) | \(a_{795}= +1.19267914 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{796}= +0.30567389 \pm 1.0 \cdot 10^{-8} \) | \(a_{797}= -1.36419614 \pm 1.3 \cdot 10^{-8} \) | \(a_{798}= -0.05606588 \pm 1 \cdot 10^{-8} \) |
| \(a_{799}= +0.12485653 \pm 1 \cdot 10^{-8} \) | \(a_{800}= -0.19683244 \pm 1 \cdot 10^{-8} \) | \(a_{801}= +0.96257563 \pm 1 \cdot 10^{-8} \) |
| \(a_{802}= +0.00186924 \pm 1.3 \cdot 10^{-8} \) | \(a_{803}= +0.21774524 \pm 1.0 \cdot 10^{-8} \) | \(a_{804}= +0.25894884 \pm 1 \cdot 10^{-8} \) |
| \(a_{805}= +1.60916348 \pm 1 \cdot 10^{-8} \) | \(a_{806}= +0.29160143 \pm 1.0 \cdot 10^{-8} \) | \(a_{807}= -0.27896146 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{808}= +0.56036896 \pm 1.6 \cdot 10^{-8} \) | \(a_{809}= +0.95710761 \pm 1.1 \cdot 10^{-8} \) | \(a_{810}= +0.06808063 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{811}= -1.07330288 \pm 1.0 \cdot 10^{-8} \) | \(a_{812}= +0.28866909 \pm 3.6 \cdot 10^{-8} \) | \(a_{813}= +0.17579188 \pm 1 \cdot 10^{-8} \) |
| \(a_{814}= +0.00660064 \pm 1 \cdot 10^{-8} \) | \(a_{815}= -0.51603961 \pm 1 \cdot 10^{-8} \) | \(a_{816}= +0.16707501 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{817}= -0.27072821 \pm 1 \cdot 10^{-8} \) | \(a_{818}= -0.07463072 \pm 1.5 \cdot 10^{-8} \) | \(a_{819}= +2.94997358 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{820}= +0.47947998 \pm 1.5 \cdot 10^{-8} \) | \(a_{821}= -0.15686222 \pm 1.3 \cdot 10^{-8} \) | \(a_{822}= +0.27435256 \pm 1 \cdot 10^{-8} \) |
| \(a_{823}= -0.87855720 \pm 1.3 \cdot 10^{-8} \) | \(a_{824}= -0.09217807 \pm 1.9 \cdot 10^{-8} \) | \(a_{825}= -0.11915285 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{826}= +0.02974722 \pm 1 \cdot 10^{-8} \) | \(a_{827}= +0.39399398 \pm 1 \cdot 10^{-8} \) | \(a_{828}= -1.72996725 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{829}= +1.45569386 \pm 1.2 \cdot 10^{-8} \) | \(a_{830}= +0.21328139 \pm 1.5 \cdot 10^{-8} \) | \(a_{831}= -1.33338159 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{832}= +1.21763130 \pm 1.4 \cdot 10^{-8} \) | \(a_{833}= +0.18142129 \pm 1 \cdot 10^{-8} \) | \(a_{834}= +0.02511233 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{835}= +0.02996769 \pm 1 \cdot 10^{-8} \) | \(a_{836}= -0.02618056 \pm 1.0 \cdot 10^{-8} \) | \(a_{837}= -0.63408905 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{838}= -0.11331786 \pm 1.1 \cdot 10^{-8} \) | \(a_{839}= +1.20105675 \pm 1.1 \cdot 10^{-8} \) | \(a_{840}= -0.54919567 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{841}= +0.03448276 \pm 1.5 \cdot 10^{-6} \) | \(a_{842}= -0.08540188 \pm 1.3 \cdot 10^{-8} \) | \(a_{843}= -2.14109025 \pm 1 \cdot 10^{-8} \) |
| \(a_{844}= -0.76662690 \pm 1.9 \cdot 10^{-8} \) | \(a_{845}= -0.74674785 \pm 1.1 \cdot 10^{-8} \) | \(a_{846}= +0.21258958 \pm 1 \cdot 10^{-8} \) |
| \(a_{847}= +1.54178213 \pm 1 \cdot 10^{-8} \) | \(a_{848}= -0.97577408 \pm 1.3 \cdot 10^{-8} \) | \(a_{849}= -2.97845491 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{850}= -0.00800623 \pm 1.3 \cdot 10^{-8} \) | \(a_{851}= +0.32689368 \pm 1.2 \cdot 10^{-8} \) | \(a_{852}= +1.80848707 \pm 1 \cdot 10^{-8} \) |
| \(a_{853}= +1.81574679 \pm 1.0 \cdot 10^{-8} \) | \(a_{854}= +0.31650547 \pm 1 \cdot 10^{-8} \) | \(a_{855}= -0.14781664 \pm 1 \cdot 10^{-8} \) |
| \(a_{856}= -0.19551205 \pm 1.6 \cdot 10^{-8} \) | \(a_{857}= +1.93646443 \pm 1.2 \cdot 10^{-8} \) | \(a_{858}= -0.05866221 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{859}= +0.20867298 \pm 1.1 \cdot 10^{-8} \) | \(a_{860}= -1.31014167 \pm 1.1 \cdot 10^{-8} \) | \(a_{861}= -1.58950403 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{862}= -0.20743905 \pm 1.2 \cdot 10^{-8} \) | \(a_{863}= +0.45847157 \pm 1.1 \cdot 10^{-8} \) | \(a_{864}= +0.21072269 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{865}= +0.57698285 \pm 1.3 \cdot 10^{-8} \) | \(a_{866}= -0.25284858 \pm 1.4 \cdot 10^{-8} \) | \(a_{867}= -1.49882444 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{868}= -2.08778583 \pm 1 \cdot 10^{-8} \) | \(a_{869}= +0.02074871 \pm 1.0 \cdot 10^{-8} \) | \(a_{870}= -0.03241045 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{871}= +0.24666092 \pm 1 \cdot 10^{-8} \) | \(a_{872}= -0.28102545 \pm 1.4 \cdot 10^{-8} \) | \(a_{873}= +1.96603229 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{874}= +0.03131877 \pm 1 \cdot 10^{-8} \) | \(a_{875}= -1.71527557 \pm 1 \cdot 10^{-8} \) | \(a_{876}= -1.81824450 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{877}= -0.85783613 \pm 1.1 \cdot 10^{-8} \) | \(a_{878}= +0.03291918 \pm 1.0 \cdot 10^{-8} \) | \(a_{879}= +2.49628079 \pm 1 \cdot 10^{-8} \) |
| \(a_{880}= -0.12356194 \pm 1.2 \cdot 10^{-8} \) | \(a_{881}= -1.16652056 \pm 1.1 \cdot 10^{-8} \) | \(a_{882}= +0.30890075 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{883}= -1.82776287 \pm 1.2 \cdot 10^{-8} \) | \(a_{884}= +0.16318368 \pm 2.0 \cdot 10^{-8} \) | \(a_{885}= +0.13826931 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{886}= +0.19668756 \pm 1.2 \cdot 10^{-8} \) | \(a_{887}= -0.00979720 \pm 1.3 \cdot 10^{-8} \) | \(a_{888}= -0.11156641 \pm 1.3 \cdot 10^{-8} \) |
| \(a_{889}= +1.58780363 \pm 1.1 \cdot 10^{-8} \) | \(a_{890}= -0.08433085 \pm 1.2 \cdot 10^{-8} \) | \(a_{891}= -0.10538893 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{892}= -0.26605979 \pm 1.2 \cdot 10^{-8} \) | \(a_{893}= +0.15933213 \pm 1 \cdot 10^{-8} \) | \(a_{894}= -0.11465736 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{895}= -0.46657950 \pm 1.5 \cdot 10^{-8} \) | \(a_{896}= +0.92115965 \pm 1.3 \cdot 10^{-8} \) | \(a_{897}= -2.90521900 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{898}= -0.02256067 \pm 1.4 \cdot 10^{-8} \) | \(a_{899}= -0.24939495 \pm 2.1 \cdot 10^{-8} \) | \(a_{900}= +0.56435637 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{901}= -0.12405628 \pm 1.1 \cdot 10^{-8} \) | \(a_{902}= +0.01792864 \pm 1.0 \cdot 10^{-8} \) | \(a_{903}= +4.34319581 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{904}= -0.10528103 \pm 1.2 \cdot 10^{-8} \) | \(a_{905}= -0.08169861 \pm 1 \cdot 10^{-8} \) | \(a_{906}= -0.03000618 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{907}= +1.06632991 \pm 1.3 \cdot 10^{-8} \) | \(a_{908}= -0.94622610 \pm 1.5 \cdot 10^{-8} \) | \(a_{909}= -2.41961455 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{910}= -0.25844595 \pm 1 \cdot 10^{-8} \) | \(a_{911}= -0.67126904 \pm 1 \cdot 10^{-8} \) | \(a_{912}= +0.21320806 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{913}= -0.33015993 \pm 1 \cdot 10^{-8} \) | \(a_{914}= -0.18913717 \pm 1.0 \cdot 10^{-8} \) | \(a_{915}= +1.47116220 \pm 1 \cdot 10^{-8} \) |
| \(a_{916}= -1.02213943 \pm 1.5 \cdot 10^{-8} \) | \(a_{917}= -0.76880783 \pm 1.0 \cdot 10^{-8} \) | \(a_{918}= +0.00857122 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{919}= +0.73694139 \pm 1.0 \cdot 10^{-8} \) | \(a_{920}= +0.30678437 \pm 1 \cdot 10^{-8} \) | \(a_{921}= +0.26820644 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{922}= -0.17814154 \pm 1.4 \cdot 10^{-8} \) | \(a_{923}= +1.72266873 \pm 1.5 \cdot 10^{-8} \) | \(a_{924}= +0.42000528 \pm 1 \cdot 10^{-8} \) |
| \(a_{925}= -0.10664048 \pm 1.1 \cdot 10^{-8} \) | \(a_{926}= -0.12404473 \pm 1.3 \cdot 10^{-8} \) | \(a_{927}= +0.39801526 \pm 1 \cdot 10^{-8} \) |
| \(a_{928}= +0.08287980 \pm 2.9 \cdot 10^{-8} \) | \(a_{929}= +0.04668933 \pm 1.1 \cdot 10^{-8} \) | \(a_{930}= +0.23440709 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{931}= +0.23151565 \pm 1 \cdot 10^{-8} \) | \(a_{932}= -0.44816526 \pm 1.4 \cdot 10^{-8} \) | \(a_{933}= +1.77224374 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{934}= -0.07642952 \pm 1.5 \cdot 10^{-8} \) | \(a_{935}= -0.01570920 \pm 1 \cdot 10^{-8} \) | \(a_{936}= +0.56240761 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{937}= +1.13162736 \pm 1.1 \cdot 10^{-8} \) | \(a_{938}= +0.04265816 \pm 1 \cdot 10^{-8} \) | \(a_{939}= -2.07302351 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{940}= +0.77105990 \pm 1 \cdot 10^{-8} \) | \(a_{941}= -0.60354741 \pm 1 \cdot 10^{-8} \) | \(a_{942}= -0.27435728 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{943}= +0.88790756 \pm 1.1 \cdot 10^{-8} \) | \(a_{944}= -0.11312314 \pm 2.1 \cdot 10^{-8} \) | \(a_{945}= +0.56199226 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{946}= -0.04898861 \pm 1.0 \cdot 10^{-8} \) | \(a_{947}= +0.38997638 \pm 1.1 \cdot 10^{-8} \) | \(a_{948}= -0.17325857 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{949}= -1.73196315 \pm 1.2 \cdot 10^{-8} \) | \(a_{950}= -0.01021693 \pm 1 \cdot 10^{-8} \) | \(a_{951}= -0.45411767 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{952}= +0.05712448 \pm 1.0 \cdot 10^{-8} \) | \(a_{953}= -1.09728494 \pm 1.0 \cdot 10^{-8} \) | \(a_{954}= -0.21122701 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{955}= +0.72892893 \pm 1 \cdot 10^{-8} \) | \(a_{956}= +0.24075824 \pm 1.3 \cdot 10^{-8} \) | \(a_{957}= +0.05017143 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{958}= -0.05059231 \pm 1.3 \cdot 10^{-8} \) | \(a_{959}= -1.87107711 \pm 1 \cdot 10^{-8} \) | \(a_{960}= +0.97880662 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{961}= +0.80373746 \pm 1.2 \cdot 10^{-8} \) | \(a_{962}= -0.05250203 \pm 1 \cdot 10^{-8} \) | \(a_{963}= +0.84420056 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{964}= -0.90717945 \pm 1.7 \cdot 10^{-8} \) | \(a_{965}= -0.08131028 \pm 1.2 \cdot 10^{-8} \) | \(a_{966}= -0.50243586 \pm 1 \cdot 10^{-8} \) |
| \(a_{967}= +0.85348951 \pm 1.1 \cdot 10^{-8} \) | \(a_{968}= +0.29393823 \pm 1.1 \cdot 10^{-8} \) | \(a_{969}= +0.02710648 \pm 1 \cdot 10^{-8} \) |
| \(a_{970}= -0.17224326 \pm 1 \cdot 10^{-8} \) | \(a_{971}= +0.98629768 \pm 1 \cdot 10^{-8} \) | \(a_{972}= +1.34102912 \pm 1.5 \cdot 10^{-8} \) |
| \(a_{973}= -0.17126540 \pm 1 \cdot 10^{-8} \) | \(a_{974}= +0.21710402 \pm 1.4 \cdot 10^{-8} \) | \(a_{975}= +0.94775138 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{976}= -1.20361119 \pm 1.2 \cdot 10^{-8} \) | \(a_{977}= +0.38056741 \pm 1 \cdot 10^{-8} \) | \(a_{978}= +0.16112521 \pm 1.2 \cdot 10^{-8} \) |
| \(a_{979}= +0.13054428 \pm 1 \cdot 10^{-8} \) | \(a_{980}= +1.12037938 \pm 1.0 \cdot 10^{-8} \) | \(a_{981}= +1.21343847 \pm 1.4 \cdot 10^{-8} \) |
| \(a_{982}= -0.00091956 \pm 1.2 \cdot 10^{-8} \) | \(a_{983}= +0.28116722 \pm 1.0 \cdot 10^{-8} \) | \(a_{984}= -0.30303633 \pm 1.6 \cdot 10^{-8} \) |
| \(a_{985}= -0.06430092 \pm 1.3 \cdot 10^{-8} \) | \(a_{986}= +0.00337117 \pm 3.5 \cdot 10^{-8} \) | \(a_{987}= -2.55610840 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{988}= +0.20824224 \pm 1.3 \cdot 10^{-8} \) | \(a_{989}= -2.42613816 \pm 1 \cdot 10^{-8} \) | \(a_{990}= -0.02674761 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{991}= +0.62074205 \pm 1.2 \cdot 10^{-8} \) | \(a_{992}= -0.59942433 \pm 1.0 \cdot 10^{-8} \) | \(a_{993}= -0.69817339 \pm 1.1 \cdot 10^{-8} \) |
| \(a_{994}= +0.29792265 \pm 1.0 \cdot 10^{-8} \) | \(a_{995}= +0.23405925 \pm 1 \cdot 10^{-8} \) | \(a_{996}= +2.75694422 \pm 1.0 \cdot 10^{-8} \) |
| \(a_{997}= -0.10325324 \pm 1.2 \cdot 10^{-8} \) | \(a_{998}= +0.07381775 \pm 1.3 \cdot 10^{-8} \) | \(a_{999}= +0.11416598 \pm 1 \cdot 10^{-8} \) |
| \(a_{1000}= -0.32701446 \pm 1.4 \cdot 10^{-8} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000