Maass form invariants
| Level: | \( 29 \) |
| Weight: | \( 0 \) |
| Character: | 29.1 |
| Symmetry: | odd |
| Fricke sign: | $-1$ |
| Spectral parameter: | \(4.00361102662478373194051468741 \pm 4 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
| \(a_{1}= +1 \) | \(a_{2}= +0.23038571 \pm 7.3 \cdot 10^{-7} \) | \(a_{3}= -1.72773637 \pm 6.9 \cdot 10^{-7} \) |
| \(a_{4}= -0.94692242 \pm 7.3 \cdot 10^{-7} \) | \(a_{5}= +1.91334301 \pm 6.5 \cdot 10^{-7} \) | \(a_{6}= -0.39804577 \pm 8.4 \cdot 10^{-7} \) |
| \(a_{7}= -0.64961391 \pm 6.1 \cdot 10^{-7} \) | \(a_{8}= -0.44854311 \pm 6.1 \cdot 10^{-7} \) | \(a_{9}= +1.98507297 \pm 6.4 \cdot 10^{-7} \) |
| \(a_{10}= +0.44080689 \pm 8.0 \cdot 10^{-7} \) | \(a_{11}= +0.29686329 \pm 6.0 \cdot 10^{-7} \) | \(a_{12}= +1.63603231 \pm 8.5 \cdot 10^{-7} \) |
| \(a_{13}= +0.00961264 \pm 5.7 \cdot 10^{-7} \) | \(a_{14}= -0.14966176 \pm 8.0 \cdot 10^{-7} \) | \(a_{15}= -3.30575231 \pm 7.3 \cdot 10^{-7} \) |
| \(a_{16}= +0.84358450 \pm 6.3 \cdot 10^{-7} \) | \(a_{17}= +0.86347394 \pm 6.4 \cdot 10^{-7} \) | \(a_{18}= +0.45733245 \pm 8.4 \cdot 10^{-7} \) |
| \(a_{19}= +0.87837493 \pm 5.3 \cdot 10^{-7} \) | \(a_{20}= -1.81178740 \pm 7.7 \cdot 10^{-7} \) | \(a_{21}= +1.12236158 \pm 6.6 \cdot 10^{-7} \) |
| \(a_{22}= +0.06839306 \pm 7.5 \cdot 10^{-7} \) | \(a_{23}= -0.92786699 \pm 6.3 \cdot 10^{-7} \) | \(a_{24}= +0.77496424 \pm 6.6 \cdot 10^{-7} \) |
| \(a_{25}= +2.66088148 \pm 6.0 \cdot 10^{-7} \) | \(a_{26}= +0.00221461 \pm 6.1 \cdot 10^{-7} \) | \(a_{27}= -1.70194640 \pm 6.1 \cdot 10^{-7} \) |
| \(a_{28}= +0.61513398 \pm 8.1 \cdot 10^{-7} \) | \(a_{29}= +0.18569534 \pm 1.0 \cdot 10^{-8} \) | \(a_{30}= -0.76159810 \pm 7.9 \cdot 10^{-7} \) |
| \(a_{31}= +0.80275448 \pm 5.7 \cdot 10^{-7} \) | \(a_{32}= +0.64289292 \pm 6.4 \cdot 10^{-7} \) | \(a_{33}= -0.51290151 \pm 6.9 \cdot 10^{-7} \) |
| \(a_{34}= +0.19893206 \pm 6.4 \cdot 10^{-7} \) | \(a_{35}= -1.24293423 \pm 6.5 \cdot 10^{-7} \) | \(a_{36}= -1.87971011 \pm 8.4 \cdot 10^{-7} \) |
| \(a_{37}= +0.12699191 \pm 5.7 \cdot 10^{-7} \) | \(a_{38}= +0.20236503 \pm 5.5 \cdot 10^{-7} \) | \(a_{39}= -0.01660811 \pm 6.3 \cdot 10^{-7} \) |
| \(a_{40}= -0.85821682 \pm 6.7 \cdot 10^{-7} \) | \(a_{41}= +0.32359359 \pm 5.9 \cdot 10^{-7} \) | \(a_{42}= +0.25857607 \pm 8.6 \cdot 10^{-7} \) |
| \(a_{43}= -0.35714316 \pm 5.3 \cdot 10^{-7} \) | \(a_{44}= -0.28110651 \pm 6.8 \cdot 10^{-7} \) | \(a_{45}= +3.79812550 \pm 6.8 \cdot 10^{-7} \) |
| \(a_{46}= -0.21376730 \pm 8.2 \cdot 10^{-7} \) | \(a_{47}= +1.33206087 \pm 5.3 \cdot 10^{-7} \) | \(a_{48}= -1.45749163 \pm 6.7 \cdot 10^{-7} \) |
| \(a_{49}= -0.57800177 \pm 5.7 \cdot 10^{-7} \) | \(a_{50}= +0.61302907 \pm 6.9 \cdot 10^{-7} \) | \(a_{51}= -1.49185533 \pm 6.5 \cdot 10^{-7} \) |
| \(a_{52}= -0.00910242 \pm 7.1 \cdot 10^{-7} \) | \(a_{53}= -0.46856434 \pm 5.8 \cdot 10^{-7} \) | \(a_{54}= -0.39210413 \pm 7.6 \cdot 10^{-7} \) |
| \(a_{55}= +0.56800131 \pm 6.2 \cdot 10^{-7} \) | \(a_{56}= +0.29137984 \pm 7.1 \cdot 10^{-7} \) | \(a_{57}= -1.51760031 \pm 5.8 \cdot 10^{-7} \) |
| \(a_{58}= +0.04278155 \pm 7.4 \cdot 10^{-7} \) | \(a_{59}= +0.73743606 \pm 5.6 \cdot 10^{-7} \) | \(a_{60}= +3.13029099 \pm 8.1 \cdot 10^{-7} \) |
| \(a_{61}= +1.18321922 \pm 6.1 \cdot 10^{-7} \) | \(a_{62}= +0.18494316 \pm 6.7 \cdot 10^{-7} \) | \(a_{63}= -1.28953101 \pm 6.4 \cdot 10^{-7} \) |
| \(a_{64}= -0.69547116 \pm 6.7 \cdot 10^{-7} \) | \(a_{65}= +0.01839227 \pm 6.2 \cdot 10^{-7} \) | \(a_{66}= -0.11816518 \pm 8.9 \cdot 10^{-7} \) |
| \(a_{67}= +0.10202858 \pm 5.2 \cdot 10^{-7} \) | \(a_{68}= -0.81764284 \pm 6.3 \cdot 10^{-7} \) | \(a_{69}= +1.60310955 \pm 6.9 \cdot 10^{-7} \) |
| \(a_{70}= -0.28635429 \pm 8.5 \cdot 10^{-7} \) | \(a_{71}= -0.41287871 \pm 5.3 \cdot 10^{-7} \) | \(a_{72}= -0.89039080 \pm 6.3 \cdot 10^{-7} \) |
| \(a_{73}= +0.31191009 \pm 5.9 \cdot 10^{-7} \) | \(a_{74}= +0.02925712 \pm 7.8 \cdot 10^{-7} \) | \(a_{75}= -4.59730171 \pm 7.2 \cdot 10^{-7} \) |
| \(a_{76}= -0.83175292 \pm 5.4 \cdot 10^{-7} \) | \(a_{77}= -0.19284652 \pm 5.2 \cdot 10^{-7} \) | \(a_{78}= -0.00382627 \pm 6.1 \cdot 10^{-7} \) |
| \(a_{79}= +1.10531626 \pm 5.4 \cdot 10^{-7} \) | \(a_{80}= +1.61406651 \pm 6.6 \cdot 10^{-7} \) | \(a_{81}= +0.95544173 \pm 4.9 \cdot 10^{-7} \) |
| \(a_{82}= +0.07455134 \pm 6.9 \cdot 10^{-7} \) | \(a_{83}= -0.41545533 \pm 5.0 \cdot 10^{-7} \) | \(a_{84}= -1.06278935 \pm 9.0 \cdot 10^{-7} \) |
| \(a_{85}= +1.65212183 \pm 6.7 \cdot 10^{-7} \) | \(a_{86}= -0.08228068 \pm 6.4 \cdot 10^{-7} \) | \(a_{87}= -0.32083259 \pm 7.1 \cdot 10^{-7} \) |
| \(a_{88}= -0.13315598 \pm 4.7 \cdot 10^{-7} \) | \(a_{89}= +1.55289238 \pm 5.8 \cdot 10^{-7} \) | \(a_{90}= +0.87503384 \pm 7.9 \cdot 10^{-7} \) |
| \(a_{91}= -0.00624450 \pm 6.1 \cdot 10^{-7} \) | \(a_{92}= +0.87861806 \pm 7.3 \cdot 10^{-7} \) | \(a_{93}= -1.38694811 \pm 6.5 \cdot 10^{-7} \) |
| \(a_{94}= +0.30688779 \pm 5.7 \cdot 10^{-7} \) | \(a_{95}= +1.68063253 \pm 5.6 \cdot 10^{-7} \) | \(a_{96}= -1.11074948 \pm 7.1 \cdot 10^{-7} \) |
| \(a_{97}= +0.49761329 \pm 5.7 \cdot 10^{-7} \) | \(a_{98}= -0.13316335 \pm 8.0 \cdot 10^{-7} \) | \(a_{99}= +0.58929530 \pm 7.0 \cdot 10^{-7} \) |
| \(a_{100}= -2.51964834 \pm 7.0 \cdot 10^{-7} \) | \(a_{101}= -1.68811334 \pm 6.0 \cdot 10^{-7} \) | \(a_{102}= -0.34370215 \pm 6.2 \cdot 10^{-7} \) |
| \(a_{103}= +0.82970989 \pm 5.3 \cdot 10^{-7} \) | \(a_{104}= -0.00431168 \pm 6.8 \cdot 10^{-7} \) | \(a_{105}= +2.14746268 \pm 6.4 \cdot 10^{-7} \) |
| \(a_{106}= -0.10795053 \pm 7.1 \cdot 10^{-7} \) | \(a_{107}= +0.16020393 \pm 6.0 \cdot 10^{-7} \) | \(a_{108}= +1.61161121 \pm 7.5 \cdot 10^{-7} \) |
| \(a_{109}= -0.60315620 \pm 5.9 \cdot 10^{-7} \) | \(a_{110}= +0.13085938 \pm 8.4 \cdot 10^{-7} \) | \(a_{111}= -0.21940854 \pm 7.4 \cdot 10^{-7} \) |
| \(a_{112}= -0.54800423 \pm 6.8 \cdot 10^{-7} \) | \(a_{113}= +0.23536131 \pm 5.1 \cdot 10^{-7} \) | \(a_{114}= -0.34963343 \pm 6.7 \cdot 10^{-7} \) |
| \(a_{115}= -1.77532782 \pm 7.1 \cdot 10^{-7} \) | \(a_{116}= -0.17583908 \pm 7.4 \cdot 10^{-7} \) | \(a_{117}= +0.01908179 \pm 5.1 \cdot 10^{-7} \) |
| \(a_{118}= +0.16989473 \pm 6.8 \cdot 10^{-7} \) | \(a_{119}= -0.56092468 \pm 6.5 \cdot 10^{-7} \) | \(a_{120}= +1.48277241 \pm 7.2 \cdot 10^{-7} \) |
| \(a_{121}= -0.91187219 \pm 5.5 \cdot 10^{-7} \) | \(a_{122}= +0.27259680 \pm 7.5 \cdot 10^{-7} \) | \(a_{123}= -0.55908441 \pm 5.4 \cdot 10^{-7} \) |
| \(a_{124}= -0.76014621 \pm 6.2 \cdot 10^{-7} \) | \(a_{125}= +3.17783597 \pm 5.5 \cdot 10^{-7} \) | \(a_{126}= -0.29708952 \pm 8.9 \cdot 10^{-7} \) |
| \(a_{127}= +0.12848533 \pm 5.1 \cdot 10^{-7} \) | \(a_{128}= -0.80311954 \pm 6.4 \cdot 10^{-7} \) | \(a_{129}= +0.61704924 \pm 5.8 \cdot 10^{-7} \) |
| \(a_{130}= +0.00423732 \pm 6.8 \cdot 10^{-7} \) | \(a_{131}= -0.98762594 \pm 5.3 \cdot 10^{-7} \) | \(a_{132}= +0.48567794 \pm 7.9 \cdot 10^{-7} \) |
| \(a_{133}= -0.57060457 \pm 5.2 \cdot 10^{-7} \) | \(a_{134}= +0.02350593 \pm 6.9 \cdot 10^{-7} \) | \(a_{135}= -3.25640725 \pm 6.6 \cdot 10^{-7} \) |
| \(a_{136}= -0.38730528 \pm 4.7 \cdot 10^{-7} \) | \(a_{137}= -1.34122737 \pm 6.3 \cdot 10^{-7} \) | \(a_{138}= +0.36933353 \pm 9.3 \cdot 10^{-7} \) |
| \(a_{139}= +1.59131257 \pm 6.1 \cdot 10^{-7} \) | \(a_{140}= +1.17696230 \pm 8.3 \cdot 10^{-7} \) | \(a_{141}= -2.30145001 \pm 5.9 \cdot 10^{-7} \) |
| \(a_{142}= -0.09512136 \pm 5.8 \cdot 10^{-7} \) | \(a_{143}= +0.00285364 \pm 4.6 \cdot 10^{-7} \) | \(a_{144}= +1.67457679 \pm 5.3 \cdot 10^{-7} \) |
| \(a_{145}= +0.35529888 \pm 6.6 \cdot 10^{-7} \) | \(a_{146}= +0.07185963 \pm 7.1 \cdot 10^{-7} \) | \(a_{147}= +0.99863468 \pm 6.3 \cdot 10^{-7} \) |
| \(a_{148}= -0.12025149 \pm 8.1 \cdot 10^{-7} \) | \(a_{149}= +0.73622760 \pm 7.1 \cdot 10^{-7} \) | \(a_{150}= -1.05915262 \pm 7.4 \cdot 10^{-7} \) |
| \(a_{151}= +0.95771847 \pm 6.6 \cdot 10^{-7} \) | \(a_{152}= -0.39398902 \pm 5.3 \cdot 10^{-7} \) | \(a_{153}= +1.71405878 \pm 4.7 \cdot 10^{-7} \) |
| \(a_{154}= -0.04442908 \pm 6.4 \cdot 10^{-7} \) | \(a_{155}= +1.53594467 \pm 5.6 \cdot 10^{-7} \) | \(a_{156}= +0.01572659 \pm 7.5 \cdot 10^{-7} \) |
| \(a_{157}= -0.62267264 \pm 5.9 \cdot 10^{-7} \) | \(a_{158}= +0.25464907 \pm 6.1 \cdot 10^{-7} \) | \(a_{159}= +0.80955565 \pm 6.1 \cdot 10^{-7} \) |
| \(a_{160}= +1.23007468 \pm 6.5 \cdot 10^{-7} \) | \(a_{161}= +0.60275530 \pm 5.3 \cdot 10^{-7} \) | \(a_{162}= +0.22012012 \pm 5.0 \cdot 10^{-7} \) |
| \(a_{163}= -0.67018854 \pm 4.9 \cdot 10^{-7} \) | \(a_{164}= -0.30641803 \pm 6.3 \cdot 10^{-7} \) | \(a_{165}= -0.98135652 \pm 6.5 \cdot 10^{-7} \) |
| \(a_{166}= -0.09571497 \pm 5.3 \cdot 10^{-7} \) | \(a_{167}= -1.15624826 \pm 6.1 \cdot 10^{-7} \) | \(a_{168}= -0.50342755 \pm 7.6 \cdot 10^{-7} \) |
| \(a_{169}= -0.99990760 \pm 5.6 \cdot 10^{-7} \) | \(a_{170}= +0.38062526 \pm 7.0 \cdot 10^{-7} \) | \(a_{171}= +1.74363833 \pm 5.5 \cdot 10^{-7} \) |
| \(a_{172}= +0.33818687 \pm 6.4 \cdot 10^{-7} \) | \(a_{173}= +0.07990707 \pm 4.7 \cdot 10^{-7} \) | \(a_{174}= -0.07391524 \pm 1.4 \cdot 10^{-6} \) |
| \(a_{175}= -1.72854562 \pm 5.3 \cdot 10^{-7} \) | \(a_{176}= +0.25042927 \pm 5.0 \cdot 10^{-7} \) | \(a_{177}= -1.27409511 \pm 6.8 \cdot 10^{-7} \) |
| \(a_{178}= +0.35776421 \pm 6.7 \cdot 10^{-7} \) | \(a_{179}= +1.20128928 \pm 6.1 \cdot 10^{-7} \) | \(a_{180}= -3.59653020 \pm 8.8 \cdot 10^{-7} \) |
| \(a_{181}= +0.58429833 \pm 6.4 \cdot 10^{-7} \) | \(a_{182}= -0.00143864 \pm 7.6 \cdot 10^{-7} \) | \(a_{183}= -2.04429089 \pm 6.5 \cdot 10^{-7} \) |
| \(a_{184}= +0.41618834 \pm 6.1 \cdot 10^{-7} \) | \(a_{185}= +0.24297908 \pm 5.1 \cdot 10^{-7} \) | \(a_{186}= -0.31953302 \pm 7.9 \cdot 10^{-7} \) |
| \(a_{187}= +0.25633372 \pm 5.5 \cdot 10^{-7} \) | \(a_{188}= -1.26135830 \pm 5.3 \cdot 10^{-7} \) | \(a_{189}= +1.10560805 \pm 5.6 \cdot 10^{-7} \) |
| \(a_{190}= +0.38719372 \pm 6.4 \cdot 10^{-7} \) | \(a_{191}= +0.65403630 \pm 5.8 \cdot 10^{-7} \) | \(a_{192}= +1.20159082 \pm 7.6 \cdot 10^{-7} \) |
| \(a_{193}= +1.78051502 \pm 5.4 \cdot 10^{-7} \) | \(a_{194}= +0.11464299 \pm 7.1 \cdot 10^{-7} \) | \(a_{195}= -0.03177700 \pm 6.8 \cdot 10^{-7} \) |
| \(a_{196}= +0.54732284 \pm 8.3 \cdot 10^{-7} \) | \(a_{197}= +0.04740152 \pm 7.1 \cdot 10^{-7} \) | \(a_{198}= +0.13576522 \pm 9.2 \cdot 10^{-7} \) |
| \(a_{199}= -1.75474057 \pm 6.2 \cdot 10^{-7} \) | \(a_{200}= -1.19352004 \pm 5.9 \cdot 10^{-7} \) | \(a_{201}= -0.17627849 \pm 5.3 \cdot 10^{-7} \) |
| \(a_{202}= -0.38891719 \pm 6.5 \cdot 10^{-7} \) | \(a_{203}= -0.12063027 \pm 6.2 \cdot 10^{-7} \) | \(a_{204}= +1.41267127 \pm 6.8 \cdot 10^{-7} \) |
| \(a_{205}= +0.61914553 \pm 6.2 \cdot 10^{-7} \) | \(a_{206}= +0.19115330 \pm 6.2 \cdot 10^{-7} \) | \(a_{207}= -1.84188368 \pm 6.7 \cdot 10^{-7} \) |
| \(a_{208}= +0.00810907 \pm 7.1 \cdot 10^{-7} \) | \(a_{209}= +0.26075727 \pm 5.0 \cdot 10^{-7} \) | \(a_{210}= +0.49474472 \pm 6.8 \cdot 10^{-7} \) |
| \(a_{211}= -0.82545787 \pm 6.1 \cdot 10^{-7} \) | \(a_{212}= +0.44369408 \pm 6.3 \cdot 10^{-7} \) | \(a_{213}= +0.71334557 \pm 5.8 \cdot 10^{-7} \) |
| \(a_{214}= +0.03690870 \pm 8.1 \cdot 10^{-7} \) | \(a_{215}= -0.68333738 \pm 6.5 \cdot 10^{-7} \) | \(a_{216}= +0.76339632 \pm 6.1 \cdot 10^{-7} \) |
| \(a_{217}= -0.52148047 \pm 5.4 \cdot 10^{-7} \) | \(a_{218}= -0.13895857 \pm 6.7 \cdot 10^{-7} \) | \(a_{219}= -0.53889842 \pm 6.7 \cdot 10^{-7} \) |
| \(a_{220}= -0.53785317 \pm 7.6 \cdot 10^{-7} \) | \(a_{221}= +0.00830026 \pm 6.3 \cdot 10^{-7} \) | \(a_{222}= -0.05054859 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{223}= -1.19909875 \pm 5.6 \cdot 10^{-7} \) | \(a_{224}= -0.41763218 \pm 6.2 \cdot 10^{-7} \) | \(a_{225}= +5.28204390 \pm 7.1 \cdot 10^{-7} \) |
| \(a_{226}= +0.05422388 \pm 5.5 \cdot 10^{-7} \) | \(a_{227}= -1.27462314 \pm 7.1 \cdot 10^{-7} \) | \(a_{228}= +1.43704977 \pm 6.7 \cdot 10^{-7} \) |
| \(a_{229}= +0.91172809 \pm 6.3 \cdot 10^{-7} \) | \(a_{230}= -0.40901016 \pm 9.8 \cdot 10^{-7} \) | \(a_{231}= +0.33318795 \pm 5.2 \cdot 10^{-7} \) |
| \(a_{232}= -0.08329236 \pm 6.2 \cdot 10^{-7} \) | \(a_{233}= -0.79661941 \pm 5.1 \cdot 10^{-7} \) | \(a_{234}= +0.00439617 \pm 5.5 \cdot 10^{-7} \) |
| \(a_{235}= +2.54868935 \pm 5.1 \cdot 10^{-7} \) | \(a_{236}= -0.69829475 \pm 6.4 \cdot 10^{-7} \) | \(a_{237}= -1.90969510 \pm 6.2 \cdot 10^{-7} \) |
| \(a_{238}= -0.12922903 \pm 7.9 \cdot 10^{-7} \) | \(a_{239}= +1.91243681 \pm 5.4 \cdot 10^{-7} \) | \(a_{240}= -2.78868142 \pm 7.2 \cdot 10^{-7} \) |
| \(a_{241}= +1.71207169 \pm 5.8 \cdot 10^{-7} \) | \(a_{242}= -0.21008232 \pm 7.1 \cdot 10^{-7} \) | \(a_{243}= +0.05119498 \pm 4.6 \cdot 10^{-7} \) |
| \(a_{244}= -1.12041682 \pm 8.1 \cdot 10^{-7} \) | \(a_{245}= -1.10591565 \pm 5.5 \cdot 10^{-7} \) | \(a_{246}= -0.12880506 \pm 6.1 \cdot 10^{-7} \) |
| \(a_{247}= +0.00844350 \pm 4.5 \cdot 10^{-7} \) | \(a_{248}= -0.36006999 \pm 5.4 \cdot 10^{-7} \) | \(a_{249}= +0.71779728 \pm 4.9 \cdot 10^{-7} \) |
| \(a_{250}= +0.73212800 \pm 5.4 \cdot 10^{-7} \) | \(a_{251}= +1.35085968 \pm 6.3 \cdot 10^{-7} \) | \(a_{252}= +1.22108583 \pm 9.3 \cdot 10^{-7} \) |
| \(a_{253}= -0.27544965 \pm 6.9 \cdot 10^{-7} \) | \(a_{254}= +0.02960118 \pm 5.7 \cdot 10^{-7} \) | \(a_{255}= -2.85443098 \pm 7.0 \cdot 10^{-7} \) |
| \(a_{256}= +0.51044389 \pm 6.5 \cdot 10^{-7} \) | \(a_{257}= -0.39527244 \pm 6.9 \cdot 10^{-7} \) | \(a_{258}= +0.14215933 \pm 6.1 \cdot 10^{-7} \) |
| \(a_{259}= -0.08249571 \pm 5.9 \cdot 10^{-7} \) | \(a_{260}= -0.01741606 \pm 7.2 \cdot 10^{-7} \) | \(a_{261}= +0.36861880 \pm 6.5 \cdot 10^{-7} \) |
| \(a_{262}= -0.22753490 \pm 6.0 \cdot 10^{-7} \) | \(a_{263}= +0.37907899 \pm 5.4 \cdot 10^{-7} \) | \(a_{264}= +0.23005844 \pm 4.7 \cdot 10^{-7} \) |
| \(a_{265}= -0.89652430 \pm 6.1 \cdot 10^{-7} \) | \(a_{266}= -0.13145914 \pm 5.5 \cdot 10^{-7} \) | \(a_{267}= -2.68298864 \pm 7.2 \cdot 10^{-7} \) |
| \(a_{268}= -0.09661315 \pm 6.9 \cdot 10^{-7} \) | \(a_{269}= +1.69195936 \pm 6.2 \cdot 10^{-7} \) | \(a_{270}= -0.75022970 \pm 7.8 \cdot 10^{-7} \) |
| \(a_{271}= -0.67655457 \pm 5.9 \cdot 10^{-7} \) | \(a_{272}= +0.72841324 \pm 6.1 \cdot 10^{-7} \) | \(a_{273}= +0.01078886 \pm 6.7 \cdot 10^{-7} \) |
| \(a_{274}= -0.30899962 \pm 7.6 \cdot 10^{-7} \) | \(a_{275}= +0.78991804 \pm 5.4 \cdot 10^{-7} \) | \(a_{276}= -1.51802038 \pm 8.6 \cdot 10^{-7} \) |
| \(a_{277}= +0.89085234 \pm 6.1 \cdot 10^{-7} \) | \(a_{278}= +0.36661568 \pm 6.2 \cdot 10^{-7} \) | \(a_{279}= +1.59352621 \pm 5.5 \cdot 10^{-7} \) |
| \(a_{280}= +0.55750958 \pm 7.5 \cdot 10^{-7} \) | \(a_{281}= -1.16724184 \pm 6.3 \cdot 10^{-7} \) | \(a_{282}= -0.53022120 \pm 6.5 \cdot 10^{-7} \) |
| \(a_{283}= -1.16992851 \pm 5.2 \cdot 10^{-7} \) | \(a_{284}= +0.39096411 \pm 5.5 \cdot 10^{-7} \) | \(a_{285}= -2.90368995 \pm 7.0 \cdot 10^{-7} \) |
| \(a_{286}= +0.00065744 \pm 4.3 \cdot 10^{-7} \) | \(a_{287}= -0.21021090 \pm 5.7 \cdot 10^{-7} \) | \(a_{288}= +1.27618936 \pm 6.4 \cdot 10^{-7} \) |
| \(a_{289}= -0.25441275 \pm 5.7 \cdot 10^{-7} \) | \(a_{290}= +0.08185578 \pm 1.4 \cdot 10^{-6} \) | \(a_{291}= -0.85974459 \pm 6.9 \cdot 10^{-7} \) |
| \(a_{292}= -0.29535466 \pm 7.4 \cdot 10^{-7} \) | \(a_{293}= -0.97269593 \pm 6.6 \cdot 10^{-7} \) | \(a_{294}= +0.23007116 \pm 9.5 \cdot 10^{-7} \) |
| \(a_{295}= +1.41096814 \pm 5.3 \cdot 10^{-7} \) | \(a_{296}= -0.05696134 \pm 6.9 \cdot 10^{-7} \) | \(a_{297}= -0.50524541 \pm 5.8 \cdot 10^{-7} \) |
| \(a_{298}= +0.16961632 \pm 7.7 \cdot 10^{-7} \) | \(a_{299}= -0.00891925 \pm 4.2 \cdot 10^{-7} \) | \(a_{300}= +4.35328808 \pm 8.0 \cdot 10^{-7} \) |
| \(a_{301}= +0.23200517 \pm 4.5 \cdot 10^{-7} \) | \(a_{302}= +0.22064465 \pm 8.1 \cdot 10^{-7} \) | \(a_{303}= +2.91661482 \pm 8.3 \cdot 10^{-7} \) |
| \(a_{304}= +0.74098348 \pm 5.1 \cdot 10^{-7} \) | \(a_{305}= +2.26390423 \pm 6.7 \cdot 10^{-7} \) | \(a_{306}= +0.39489465 \pm 5.5 \cdot 10^{-7} \) |
| \(a_{307}= -0.06157885 \pm 5.4 \cdot 10^{-7} \) | \(a_{308}= +0.18261070 \pm 5.8 \cdot 10^{-7} \) | \(a_{309}= -1.43351996 \pm 6.9 \cdot 10^{-7} \) |
| \(a_{310}= +0.35385970 \pm 6.2 \cdot 10^{-7} \) | \(a_{311}= -0.62676120 \pm 6.4 \cdot 10^{-7} \) | \(a_{312}= +0.00744945 \pm 6.9 \cdot 10^{-7} \) |
| \(a_{313}= -1.40294125 \pm 5.7 \cdot 10^{-7} \) | \(a_{314}= -0.14345488 \pm 7.9 \cdot 10^{-7} \) | \(a_{315}= -2.46731515 \pm 6.3 \cdot 10^{-7} \) |
| \(a_{316}= -1.04664875 \pm 5.6 \cdot 10^{-7} \) | \(a_{317}= +0.79550916 \pm 5.8 \cdot 10^{-7} \) | \(a_{318}= +0.18651005 \pm 7.9 \cdot 10^{-7} \) |
| \(a_{319}= +0.05512613 \pm 6.1 \cdot 10^{-7} \) | \(a_{320}= -1.33067488 \pm 6.7 \cdot 10^{-7} \) | \(a_{321}= -0.27679016 \pm 6.7 \cdot 10^{-7} \) |
| \(a_{322}= +0.13886621 \pm 6.5 \cdot 10^{-7} \) | \(a_{323}= +0.75845386 \pm 5.6 \cdot 10^{-7} \) | \(a_{324}= -0.90472920 \pm 5.6 \cdot 10^{-7} \) |
| \(a_{325}= +0.02557809 \pm 5.0 \cdot 10^{-7} \) | \(a_{326}= -0.15440186 \pm 7.2 \cdot 10^{-7} \) | \(a_{327}= +1.04209491 \pm 6.7 \cdot 10^{-7} \) |
| \(a_{328}= -0.14514567 \pm 5.1 \cdot 10^{-7} \) | \(a_{329}= -0.86532527 \pm 4.7 \cdot 10^{-7} \) | \(a_{330}= -0.22609052 \pm 8.2 \cdot 10^{-7} \) |
| \(a_{331}= +0.45951032 \pm 6.6 \cdot 10^{-7} \) | \(a_{332}= +0.39340396 \pm 5.7 \cdot 10^{-7} \) | \(a_{333}= +0.25208820 \pm 7.2 \cdot 10^{-7} \) |
| \(a_{334}= -0.26638308 \pm 7.1 \cdot 10^{-7} \) | \(a_{335}= +0.19521567 \pm 6.4 \cdot 10^{-7} \) | \(a_{336}= +0.94680683 \pm 6.8 \cdot 10^{-7} \) |
| \(a_{337}= -1.05222424 \pm 5.6 \cdot 10^{-7} \) | \(a_{338}= -0.23036442 \pm 5.8 \cdot 10^{-7} \) | \(a_{339}= -0.40664230 \pm 4.4 \cdot 10^{-7} \) |
| \(a_{340}= -1.56443121 \pm 5.8 \cdot 10^{-7} \) | \(a_{341}= +0.23830834 \pm 5.1 \cdot 10^{-7} \) | \(a_{342}= +0.40170936 \pm 6.8 \cdot 10^{-7} \) |
| \(a_{343}= +1.02509190 \pm 6.5 \cdot 10^{-7} \) | \(a_{344}= +0.16019410 \pm 5.0 \cdot 10^{-7} \) | \(a_{345}= +3.06729845 \pm 7.9 \cdot 10^{-7} \) |
| \(a_{346}= +0.01840945 \pm 6.0 \cdot 10^{-7} \) | \(a_{347}= +1.11866365 \pm 5.2 \cdot 10^{-7} \) | \(a_{348}= +0.30380357 \pm 1.4 \cdot 10^{-6} \) |
| \(a_{349}= +0.74684979 \pm 5.1 \cdot 10^{-7} \) | \(a_{350}= -0.39823221 \pm 7.1 \cdot 10^{-7} \) | \(a_{351}= -0.01636020 \pm 5.4 \cdot 10^{-7} \) |
| \(a_{352}= +0.19085131 \pm 6.7 \cdot 10^{-7} \) | \(a_{353}= -1.90438655 \pm 6.9 \cdot 10^{-7} \) | \(a_{354}= -0.29353331 \pm 9.2 \cdot 10^{-7} \) |
| \(a_{355}= -0.78997860 \pm 5.0 \cdot 10^{-7} \) | \(a_{356}= -1.47046862 \pm 6.8 \cdot 10^{-7} \) | \(a_{357}= +0.96912998 \pm 6.5 \cdot 10^{-7} \) |
| \(a_{358}= +0.27675988 \pm 7.6 \cdot 10^{-7} \) | \(a_{359}= -0.09483738 \pm 4.8 \cdot 10^{-7} \) | \(a_{360}= -1.70362301 \pm 7.0 \cdot 10^{-7} \) |
| \(a_{361}= -0.22845749 \pm 5.1 \cdot 10^{-7} \) | \(a_{362}= +0.13461399 \pm 7.3 \cdot 10^{-7} \) | \(a_{363}= +1.57547474 \pm 6.0 \cdot 10^{-7} \) |
| \(a_{364}= +0.00591306 \pm 8.8 \cdot 10^{-7} \) | \(a_{365}= +0.59679100 \pm 6.7 \cdot 10^{-7} \) | \(a_{366}= -0.47097541 \pm 7.6 \cdot 10^{-7} \) |
| \(a_{367}= -1.72321767 \pm 6.8 \cdot 10^{-7} \) | \(a_{368}= -0.78273421 \pm 6.0 \cdot 10^{-7} \) | \(a_{369}= +0.64235689 \pm 4.6 \cdot 10^{-7} \) |
| \(a_{370}= +0.05597891 \pm 6.6 \cdot 10^{-7} \) | \(a_{371}= +0.30438591 \pm 5.7 \cdot 10^{-7} \) | \(a_{372}= +1.31333226 \pm 7.4 \cdot 10^{-7} \) |
| \(a_{373}= -0.51521846 \pm 6.1 \cdot 10^{-7} \) | \(a_{374}= +0.05905563 \pm 6.0 \cdot 10^{-7} \) | \(a_{375}= -5.49046279 \pm 7.1 \cdot 10^{-7} \) |
| \(a_{376}= -0.59748672 \pm 4.3 \cdot 10^{-7} \) | \(a_{377}= +0.00178502 \pm 5.8 \cdot 10^{-7} \) | \(a_{378}= +0.25471630 \pm 7.4 \cdot 10^{-7} \) |
| \(a_{379}= +0.84422120 \pm 6.0 \cdot 10^{-7} \) | \(a_{380}= -1.59142863 \pm 6.1 \cdot 10^{-7} \) | \(a_{381}= -0.22198877 \pm 5.7 \cdot 10^{-7} \) |
| \(a_{382}= +0.15068062 \pm 7.7 \cdot 10^{-7} \) | \(a_{383}= +0.63866878 \pm 5.9 \cdot 10^{-7} \) | \(a_{384}= +1.38757884 \pm 7.3 \cdot 10^{-7} \) |
| \(a_{385}= -0.36898155 \pm 5.5 \cdot 10^{-7} \) | \(a_{386}= +0.41020522 \pm 6.3 \cdot 10^{-7} \) | \(a_{387}= -0.70895524 \pm 5.3 \cdot 10^{-7} \) |
| \(a_{388}= -0.47120119 \pm 7.6 \cdot 10^{-7} \) | \(a_{389}= -0.24882154 \pm 6.2 \cdot 10^{-7} \) | \(a_{390}= -0.00732097 \pm 5.8 \cdot 10^{-7} \) |
| \(a_{391}= -0.80118897 \pm 5.6 \cdot 10^{-7} \) | \(a_{392}= +0.25925871 \pm 6.5 \cdot 10^{-7} \) | \(a_{393}= +1.70635726 \pm 4.8 \cdot 10^{-7} \) |
| \(a_{394}= +0.01092063 \pm 8.7 \cdot 10^{-7} \) | \(a_{395}= +2.11484914 \pm 6.2 \cdot 10^{-7} \) | \(a_{396}= -0.55801693 \pm 8.2 \cdot 10^{-7} \) |
| \(a_{397}= -0.73393768 \pm 5.3 \cdot 10^{-7} \) | \(a_{398}= -0.40426715 \pm 7.1 \cdot 10^{-7} \) | \(a_{399}= +0.98585427 \pm 5.2 \cdot 10^{-7} \) |
| \(a_{400}= +2.24467838 \pm 5.0 \cdot 10^{-7} \) | \(a_{401}= +0.64348147 \pm 5.6 \cdot 10^{-7} \) | \(a_{402}= -0.04061204 \pm 6.5 \cdot 10^{-7} \) |
| \(a_{403}= +0.00771659 \pm 4.0 \cdot 10^{-7} \) | \(a_{404}= +1.59851238 \pm 6.3 \cdot 10^{-7} \) | \(a_{405}= +1.82808775 \pm 5.3 \cdot 10^{-7} \) |
| \(a_{406}= -0.02779149 \pm 1.3 \cdot 10^{-6} \) | \(a_{407}= +0.03769924 \pm 6.2 \cdot 10^{-7} \) | \(a_{408}= +0.66916143 \pm 5.1 \cdot 10^{-7} \) |
| \(a_{409}= +0.71214439 \pm 5.8 \cdot 10^{-7} \) | \(a_{410}= +0.14264228 \pm 8.3 \cdot 10^{-7} \) | \(a_{411}= +2.31728731 \pm 7.9 \cdot 10^{-7} \) |
| \(a_{412}= -0.78567090 \pm 6.8 \cdot 10^{-7} \) | \(a_{413}= -0.47904872 \pm 5.5 \cdot 10^{-7} \) | \(a_{414}= -0.42434368 \pm 9.1 \cdot 10^{-7} \) |
| \(a_{415}= -0.79490854 \pm 5.1 \cdot 10^{-7} \) | \(a_{416}= +0.00617990 \pm 6.4 \cdot 10^{-7} \) | \(a_{417}= -2.74936860 \pm 7.3 \cdot 10^{-7} \) |
| \(a_{418}= +0.06007475 \pm 4.9 \cdot 10^{-7} \) | \(a_{419}= -0.56291777 \pm 5.8 \cdot 10^{-7} \) | \(a_{420}= -2.03348057 \pm 6.4 \cdot 10^{-7} \) |
| \(a_{421}= -0.16033876 \pm 5.6 \cdot 10^{-7} \) | \(a_{422}= -0.19017370 \pm 7.5 \cdot 10^{-7} \) | \(a_{423}= +2.64423802 \pm 5.9 \cdot 10^{-7} \) |
| \(a_{424}= +0.21017130 \pm 4.9 \cdot 10^{-7} \) | \(a_{425}= +2.29760182 \pm 5.9 \cdot 10^{-7} \) | \(a_{426}= +0.16434463 \pm 6.1 \cdot 10^{-7} \) |
| \(a_{427}= -0.76863566 \pm 6.9 \cdot 10^{-7} \) | \(a_{428}= -0.15170070 \pm 7.6 \cdot 10^{-7} \) | \(a_{429}= -0.00493034 \pm 5.2 \cdot 10^{-7} \) |
| \(a_{430}= -0.15743117 \pm 8.3 \cdot 10^{-7} \) | \(a_{431}= -0.79851567 \pm 5.8 \cdot 10^{-7} \) | \(a_{432}= -1.43573561 \pm 6.6 \cdot 10^{-7} \) |
| \(a_{433}= +0.61706345 \pm 5.6 \cdot 10^{-7} \) | \(a_{434}= -0.12014165 \pm 7.1 \cdot 10^{-7} \) | \(a_{435}= -0.61386279 \pm 1.3 \cdot 10^{-6} \) |
| \(a_{436}= +0.57114213 \pm 7.3 \cdot 10^{-7} \) | \(a_{437}= -0.81501510 \pm 5.7 \cdot 10^{-7} \) | \(a_{438}= -0.12415449 \pm 7.7 \cdot 10^{-7} \) |
| \(a_{439}= -0.82514124 \pm 6.4 \cdot 10^{-7} \) | \(a_{440}= -0.25477307 \pm 5.2 \cdot 10^{-7} \) | \(a_{441}= -1.14737569 \pm 6.7 \cdot 10^{-7} \) |
| \(a_{442}= +0.00191226 \pm 5.3 \cdot 10^{-7} \) | \(a_{443}= +0.74394569 \pm 6.3 \cdot 10^{-7} \) | \(a_{444}= +0.20776286 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{445}= +2.97121578 \pm 5.3 \cdot 10^{-7} \) | \(a_{446}= -0.27625522 \pm 7.2 \cdot 10^{-7} \) | \(a_{447}= -1.27200720 \pm 8.2 \cdot 10^{-7} \) |
| \(a_{448}= +0.45178774 \pm 6.9 \cdot 10^{-7} \) | \(a_{449}= -1.53803420 \pm 5.3 \cdot 10^{-7} \) | \(a_{450}= +1.21690744 \pm 7.8 \cdot 10^{-7} \) |
| \(a_{451}= +0.09606306 \pm 4.5 \cdot 10^{-7} \) | \(a_{452}= -0.22286890 \pm 5.1 \cdot 10^{-7} \) | \(a_{453}= -1.65468503 \pm 7.9 \cdot 10^{-7} \) |
| \(a_{454}= -0.29365496 \pm 7.4 \cdot 10^{-7} \) | \(a_{455}= -0.01194788 \pm 6.5 \cdot 10^{-7} \) | \(a_{456}= +0.68070916 \pm 6.0 \cdot 10^{-7} \) |
| \(a_{457}= +0.42206287 \pm 5.7 \cdot 10^{-7} \) | \(a_{458}= +0.21004912 \pm 8.4 \cdot 10^{-7} \) | \(a_{459}= -1.46958637 \pm 5.9 \cdot 10^{-7} \) |
| \(a_{460}= +1.68109772 \pm 9.0 \cdot 10^{-7} \) | \(a_{461}= -0.15027339 \pm 5.6 \cdot 10^{-7} \) | \(a_{462}= +0.07676174 \pm 6.0 \cdot 10^{-7} \) |
| \(a_{463}= +0.52703758 \pm 6.2 \cdot 10^{-7} \) | \(a_{464}= +0.15664971 \pm 6.4 \cdot 10^{-7} \) | \(a_{465}= -2.65370746 \pm 6.4 \cdot 10^{-7} \) |
| \(a_{466}= -0.18352973 \pm 6.1 \cdot 10^{-7} \) | \(a_{467}= -1.48171136 \pm 5.9 \cdot 10^{-7} \) | \(a_{468}= -0.01806897 \pm 6.4 \cdot 10^{-7} \) |
| \(a_{469}= -0.06627918 \pm 5.0 \cdot 10^{-7} \) | \(a_{470}= +0.58718161 \pm 5.8 \cdot 10^{-7} \) | \(a_{471}= +1.07581417 \pm 6.0 \cdot 10^{-7} \) |
| \(a_{472}= -0.33077186 \pm 5.1 \cdot 10^{-7} \) | \(a_{473}= -0.10602270 \pm 5.9 \cdot 10^{-7} \) | \(a_{474}= -0.43996646 \pm 6.7 \cdot 10^{-7} \) |
| \(a_{475}= +2.33725158 \pm 5.1 \cdot 10^{-7} \) | \(a_{476}= +0.53115216 \pm 7.3 \cdot 10^{-7} \) | \(a_{477}= -0.93013440 \pm 5.5 \cdot 10^{-7} \) |
| \(a_{478}= +0.44059811 \pm 5.2 \cdot 10^{-7} \) | \(a_{479}= +0.46326084 \pm 6.8 \cdot 10^{-7} \) | \(a_{480}= -2.12524476 \pm 6.8 \cdot 10^{-7} \) |
| \(a_{481}= +0.00122073 \pm 5.6 \cdot 10^{-7} \) | \(a_{482}= +0.39443685 \pm 5.9 \cdot 10^{-7} \) | \(a_{483}= -1.04140226 \pm 5.3 \cdot 10^{-7} \) |
| \(a_{484}= +0.86347222 \pm 6.8 \cdot 10^{-7} \) | \(a_{485}= +0.95210492 \pm 5.6 \cdot 10^{-7} \) | \(a_{486}= +0.01179459 \pm 5.7 \cdot 10^{-7} \) |
| \(a_{487}= -0.67587904 \pm 6.7 \cdot 10^{-7} \) | \(a_{488}= -0.53072483 \pm 7.1 \cdot 10^{-7} \) | \(a_{489}= +1.15790911 \pm 5.4 \cdot 10^{-7} \) |
| \(a_{490}= -0.25478716 \pm 8.0 \cdot 10^{-7} \) | \(a_{491}= +0.08504547 \pm 6.7 \cdot 10^{-7} \) | \(a_{492}= +0.52940957 \pm 5.9 \cdot 10^{-7} \) |
| \(a_{493}= +0.16034309 \pm 6.5 \cdot 10^{-7} \) | \(a_{494}= +0.00194526 \pm 4.0 \cdot 10^{-7} \) | \(a_{495}= +1.12752404 \pm 6.3 \cdot 10^{-7} \) |
| \(a_{496}= +0.67719123 \pm 6.5 \cdot 10^{-7} \) | \(a_{497}= +0.26821175 \pm 5.4 \cdot 10^{-7} \) | \(a_{498}= +0.16537024 \pm 4.9 \cdot 10^{-7} \) |
| \(a_{499}= -0.33051649 \pm 5.5 \cdot 10^{-7} \) | \(a_{500}= -3.00916414 \pm 6.0 \cdot 10^{-7} \) | \(a_{501}= +1.99769218 \pm 6.2 \cdot 10^{-7} \) |
| \(a_{502}= +0.31121877 \pm 7.2 \cdot 10^{-7} \) | \(a_{503}= -1.38163502 \pm 5.6 \cdot 10^{-7} \) | \(a_{504}= +0.57841025 \pm 7.3 \cdot 10^{-7} \) |
| \(a_{505}= -3.22993987 \pm 6.6 \cdot 10^{-7} \) | \(a_{506}= -0.06345966 \pm 9.7 \cdot 10^{-7} \) | \(a_{507}= +1.72757672 \pm 6.7 \cdot 10^{-7} \) |
| \(a_{508}= -0.12166564 \pm 6.4 \cdot 10^{-7} \) | \(a_{509}= -1.68739560 \pm 5.1 \cdot 10^{-7} \) | \(a_{510}= -0.65762011 \pm 6.2 \cdot 10^{-7} \) |
| \(a_{511}= -0.20262114 \pm 5.7 \cdot 10^{-7} \) | \(a_{512}= +0.92071852 \pm 5.4 \cdot 10^{-7} \) | \(a_{513}= -1.49494705 \pm 5.0 \cdot 10^{-7} \) |
| \(a_{514}= -0.09106512 \pm 8.3 \cdot 10^{-7} \) | \(a_{515}= +1.58751962 \pm 4.2 \cdot 10^{-7} \) | \(a_{516}= -0.58429776 \pm 6.8 \cdot 10^{-7} \) |
| \(a_{517}= +0.39543997 \pm 5.4 \cdot 10^{-7} \) | \(a_{518}= -0.01900583 \pm 8.6 \cdot 10^{-7} \) | \(a_{519}= -0.13805834 \pm 4.9 \cdot 10^{-7} \) |
| \(a_{520}= -0.00824973 \pm 7.2 \cdot 10^{-7} \) | \(a_{521}= +0.31831726 \pm 6.2 \cdot 10^{-7} \) | \(a_{522}= +0.08492450 \pm 1.3 \cdot 10^{-6} \) |
| \(a_{523}= -0.16687170 \pm 6.2 \cdot 10^{-7} \) | \(a_{524}= +0.93520515 \pm 5.3 \cdot 10^{-7} \) | \(a_{525}= +2.98647114 \pm 5.8 \cdot 10^{-7} \) |
| \(a_{526}= +0.08733438 \pm 6.6 \cdot 10^{-7} \) | \(a_{527}= +0.69315757 \pm 6.3 \cdot 10^{-7} \) | \(a_{528}= -0.43267576 \pm 6.1 \cdot 10^{-7} \) |
| \(a_{529}= -0.13906285 \pm 6.2 \cdot 10^{-7} \) | \(a_{530}= -0.20654639 \pm 7.7 \cdot 10^{-7} \) | \(a_{531}= +1.46386440 \pm 6.3 \cdot 10^{-7} \) |
| \(a_{532}= +0.54031826 \pm 4.8 \cdot 10^{-7} \) | \(a_{533}= +0.00311059 \pm 4.5 \cdot 10^{-7} \) | \(a_{534}= -0.61812224 \pm 9.0 \cdot 10^{-7} \) |
| \(a_{535}= +0.30652508 \pm 5.6 \cdot 10^{-7} \) | \(a_{536}= -0.04576422 \pm 5.4 \cdot 10^{-7} \) | \(a_{537}= -2.07551118 \pm 7.4 \cdot 10^{-7} \) |
| \(a_{538}= +0.38980326 \pm 7.0 \cdot 10^{-7} \) | \(a_{539}= -0.17158751 \pm 4.9 \cdot 10^{-7} \) | \(a_{540}= +3.08356505 \pm 7.9 \cdot 10^{-7} \) |
| \(a_{541}= -1.68694355 \pm 6.1 \cdot 10^{-7} \) | \(a_{542}= -0.15586850 \pm 6.6 \cdot 10^{-7} \) | \(a_{543}= -1.00951347 \pm 6.6 \cdot 10^{-7} \) |
| \(a_{544}= +0.55512128 \pm 5.5 \cdot 10^{-7} \) | \(a_{545}= -1.15404470 \pm 6.2 \cdot 10^{-7} \) | \(a_{546}= +0.00248560 \pm 7.7 \cdot 10^{-7} \) |
| \(a_{547}= +1.30341311 \pm 5.3 \cdot 10^{-7} \) | \(a_{548}= +1.27003827 \pm 7.3 \cdot 10^{-7} \) | \(a_{549}= +2.34877650 \pm 6.0 \cdot 10^{-7} \) |
| \(a_{550}= +0.18198583 \pm 7.3 \cdot 10^{-7} \) | \(a_{551}= +0.16311013 \pm 5.4 \cdot 10^{-7} \) | \(a_{552}= -0.71906374 \pm 6.9 \cdot 10^{-7} \) |
| \(a_{553}= -0.71802882 \pm 5.6 \cdot 10^{-7} \) | \(a_{554}= +0.20523965 \pm 7.3 \cdot 10^{-7} \) | \(a_{555}= -0.41980379 \pm 5.6 \cdot 10^{-7} \) |
| \(a_{556}= -1.50684956 \pm 7.0 \cdot 10^{-7} \) | \(a_{557}= +1.77818162 \pm 6.6 \cdot 10^{-7} \) | \(a_{558}= +0.36712567 \pm 7.3 \cdot 10^{-7} \) |
| \(a_{559}= -0.00343309 \pm 5.2 \cdot 10^{-7} \) | \(a_{560}= -1.04852006 \pm 7.2 \cdot 10^{-7} \) | \(a_{561}= -0.44287709 \pm 4.8 \cdot 10^{-7} \) |
| \(a_{562}= -0.26891584 \pm 8.6 \cdot 10^{-7} \) | \(a_{563}= +1.25871879 \pm 7.5 \cdot 10^{-7} \) | \(a_{564}= +2.17929462 \pm 6.0 \cdot 10^{-7} \) |
| \(a_{565}= +0.45032692 \pm 5.1 \cdot 10^{-7} \) | \(a_{566}= -0.26953481 \pm 6.3 \cdot 10^{-7} \) | \(a_{567}= -0.62066823 \pm 4.8 \cdot 10^{-7} \) |
| \(a_{568}= +0.18519390 \pm 5.0 \cdot 10^{-7} \) | \(a_{569}= -0.13556762 \pm 6.6 \cdot 10^{-7} \) | \(a_{570}= -0.66896867 \pm 8.3 \cdot 10^{-7} \) |
| \(a_{571}= -0.29875182 \pm 6.6 \cdot 10^{-7} \) | \(a_{572}= -0.00270218 \pm 4.7 \cdot 10^{-7} \) | \(a_{573}= -1.13000231 \pm 5.1 \cdot 10^{-7} \) |
| \(a_{574}= -0.04842959 \pm 7.6 \cdot 10^{-7} \) | \(a_{575}= -2.46894409 \pm 6.3 \cdot 10^{-7} \) | \(a_{576}= -1.38056100 \pm 6.9 \cdot 10^{-7} \) |
| \(a_{577}= -0.26979749 \pm 6.0 \cdot 10^{-7} \) | \(a_{578}= -0.05861306 \pm 6.6 \cdot 10^{-7} \) | \(a_{579}= -3.07626056 \pm 6.7 \cdot 10^{-7} \) |
| \(a_{580}= -0.33644047 \pm 1.4 \cdot 10^{-6} \) | \(a_{581}= +0.26988556 \pm 5.2 \cdot 10^{-7} \) | \(a_{582}= -0.19807287 \pm 9.1 \cdot 10^{-7} \) |
| \(a_{583}= -0.13909955 \pm 5.4 \cdot 10^{-7} \) | \(a_{584}= -0.13990512 \pm 6.3 \cdot 10^{-7} \) | \(a_{585}= +0.03651001 \pm 5.6 \cdot 10^{-7} \) |
| \(a_{586}= -0.22409524 \pm 7.8 \cdot 10^{-7} \) | \(a_{587}= +0.64306993 \pm 6.5 \cdot 10^{-7} \) | \(a_{588}= -0.94562957 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{589}= +0.70511940 \pm 5.3 \cdot 10^{-7} \) | \(a_{590}= +0.32506690 \pm 5.8 \cdot 10^{-7} \) | \(a_{591}= -0.08189733 \pm 7.1 \cdot 10^{-7} \) |
| \(a_{592}= +0.10712841 \pm 6.9 \cdot 10^{-7} \) | \(a_{593}= -1.04671184 \pm 5.7 \cdot 10^{-7} \) | \(a_{594}= -0.11640132 \pm 7.7 \cdot 10^{-7} \) |
| \(a_{595}= -1.07324132 \pm 6.4 \cdot 10^{-7} \) | \(a_{596}= -0.69715042 \pm 8.4 \cdot 10^{-7} \) | \(a_{597}= +3.03172911 \pm 6.7 \cdot 10^{-7} \) |
| \(a_{598}= -0.00205487 \pm 5.1 \cdot 10^{-7} \) | \(a_{599}= +1.39950426 \pm 6.5 \cdot 10^{-7} \) | \(a_{600}= +2.06208799 \pm 6.3 \cdot 10^{-7} \) |
| \(a_{601}= +0.82219830 \pm 5.9 \cdot 10^{-7} \) | \(a_{602}= +0.05345068 \pm 5.6 \cdot 10^{-7} \) | \(a_{603}= +0.20253417 \pm 4.8 \cdot 10^{-7} \) |
| \(a_{604}= -0.90688509 \pm 7.6 \cdot 10^{-7} \) | \(a_{605}= -1.74472427 \pm 5.6 \cdot 10^{-7} \) | \(a_{606}= +0.67194638 \pm 9.3 \cdot 10^{-7} \) |
| \(a_{607}= +0.10259008 \pm 5.7 \cdot 10^{-7} \) | \(a_{608}= +0.56470102 \pm 4.8 \cdot 10^{-7} \) | \(a_{609}= +0.20841731 \pm 1.3 \cdot 10^{-6} \) |
| \(a_{610}= +0.52157118 \pm 8.9 \cdot 10^{-7} \) | \(a_{611}= +0.01280462 \pm 3.6 \cdot 10^{-7} \) | \(a_{612}= -1.62308070 \pm 5.6 \cdot 10^{-7} \) |
| \(a_{613}= -1.01506276 \pm 6.0 \cdot 10^{-7} \) | \(a_{614}= -0.01418689 \pm 6.2 \cdot 10^{-7} \) | \(a_{615}= -1.06972025 \pm 5.7 \cdot 10^{-7} \) |
| \(a_{616}= +0.08649998 \pm 3.9 \cdot 10^{-7} \) | \(a_{617}= +1.86452369 \pm 6.2 \cdot 10^{-7} \) | \(a_{618}= -0.33026251 \pm 9.1 \cdot 10^{-7} \) |
| \(a_{619}= -0.08418958 \pm 5.4 \cdot 10^{-7} \) | \(a_{620}= -1.45442045 \pm 5.2 \cdot 10^{-7} \) | \(a_{621}= +1.57917988 \pm 6.8 \cdot 10^{-7} \) |
| \(a_{622}= -0.14439682 \pm 8.0 \cdot 10^{-7} \) | \(a_{623}= -1.00878049 \pm 5.5 \cdot 10^{-7} \) | \(a_{624}= -0.01401034 \pm 6.9 \cdot 10^{-7} \) |
| \(a_{625}= +3.41940877 \pm 5.5 \cdot 10^{-7} \) | \(a_{626}= -0.32321762 \pm 6.7 \cdot 10^{-7} \) | \(a_{627}= -0.45051983 \pm 5.3 \cdot 10^{-7} \) |
| \(a_{628}= +0.58962269 \pm 7.8 \cdot 10^{-7} \) | \(a_{629}= +0.10965420 \pm 5.1 \cdot 10^{-7} \) | \(a_{630}= -0.56843415 \pm 7.8 \cdot 10^{-7} \) |
| \(a_{631}= -0.57484596 \pm 5.9 \cdot 10^{-7} \) | \(a_{632}= -0.49578199 \pm 5.0 \cdot 10^{-7} \) | \(a_{633}= +1.42617359 \pm 7.1 \cdot 10^{-7} \) |
| \(a_{634}= +0.18327394 \pm 6.7 \cdot 10^{-7} \) | \(a_{635}= +0.24583650 \pm 4.9 \cdot 10^{-7} \) | \(a_{636}= -0.76658640 \pm 7.8 \cdot 10^{-7} \) |
| \(a_{637}= -0.00555612 \pm 4.5 \cdot 10^{-7} \) | \(a_{638}= +0.01270027 \pm 1.3 \cdot 10^{-6} \) | \(a_{639}= -0.81959437 \pm 5.3 \cdot 10^{-7} \) |
| \(a_{640}= -1.53664316 \pm 7.4 \cdot 10^{-7} \) | \(a_{641}= -0.80337607 \pm 6.0 \cdot 10^{-7} \) | \(a_{642}= -0.06376850 \pm 9.7 \cdot 10^{-7} \) |
| \(a_{643}= -0.15589805 \pm 5.5 \cdot 10^{-7} \) | \(a_{644}= -0.57076251 \pm 5.1 \cdot 10^{-7} \) | \(a_{645}= +1.18062684 \pm 7.0 \cdot 10^{-7} \) |
| \(a_{646}= +0.17473693 \pm 5.0 \cdot 10^{-7} \) | \(a_{647}= +1.03335327 \pm 6.9 \cdot 10^{-7} \) | \(a_{648}= -0.42855680 \pm 5.1 \cdot 10^{-7} \) |
| \(a_{649}= +0.21891770 \pm 5.3 \cdot 10^{-7} \) | \(a_{650}= +0.00589283 \pm 5.7 \cdot 10^{-7} \) | \(a_{651}= +0.90098078 \pm 5.6 \cdot 10^{-7} \) |
| \(a_{652}= +0.63461656 \pm 8.1 \cdot 10^{-7} \) | \(a_{653}= +1.98559022 \pm 5.7 \cdot 10^{-7} \) | \(a_{654}= +0.24008378 \pm 6.9 \cdot 10^{-7} \) |
| \(a_{655}= -1.88966719 \pm 5.5 \cdot 10^{-7} \) | \(a_{656}= +0.27297854 \pm 5.9 \cdot 10^{-7} \) | \(a_{657}= +0.61916430 \pm 6.1 \cdot 10^{-7} \) |
| \(a_{658}= -0.19935858 \pm 5.4 \cdot 10^{-7} \) | \(a_{659}= +0.38665065 \pm 6.0 \cdot 10^{-7} \) | \(a_{660}= +0.92926849 \pm 7.5 \cdot 10^{-7} \) |
| \(a_{661}= -0.20991498 \pm 6.0 \cdot 10^{-7} \) | \(a_{662}= +0.10586461 \pm 8.4 \cdot 10^{-7} \) | \(a_{663}= -0.01434067 \pm 6.9 \cdot 10^{-7} \) |
| \(a_{664}= +0.18634962 \pm 5.2 \cdot 10^{-7} \) | \(a_{665}= -1.09176227 \pm 5.6 \cdot 10^{-7} \) | \(a_{666}= +0.05807752 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{667}= -0.17230057 \pm 6.4 \cdot 10^{-7} \) | \(a_{668}= +1.09487741 \pm 6.8 \cdot 10^{-7} \) | \(a_{669}= +2.07172653 \pm 7.0 \cdot 10^{-7} \) |
| \(a_{670}= +0.04497490 \pm 8.7 \cdot 10^{-7} \) | \(a_{671}= +0.35125435 \pm 5.5 \cdot 10^{-7} \) | \(a_{672}= +0.72155831 \pm 6.3 \cdot 10^{-7} \) |
| \(a_{673}= -0.36536444 \pm 7.3 \cdot 10^{-7} \) | \(a_{674}= -0.24241743 \pm 7.0 \cdot 10^{-7} \) | \(a_{675}= -4.52867765 \pm 6.5 \cdot 10^{-7} \) |
| \(a_{676}= +0.94683493 \pm 6.5 \cdot 10^{-7} \) | \(a_{677}= +1.02678922 \pm 5.3 \cdot 10^{-7} \) | \(a_{678}= -0.09368457 \pm 4.9 \cdot 10^{-7} \) |
| \(a_{679}= -0.32325652 \pm 6.1 \cdot 10^{-7} \) | \(a_{680}= -0.74104786 \pm 5.2 \cdot 10^{-7} \) | \(a_{681}= +2.20221276 \pm 7.8 \cdot 10^{-7} \) |
| \(a_{682}= +0.05490284 \pm 6.5 \cdot 10^{-7} \) | \(a_{683}= +1.48260309 \pm 5.3 \cdot 10^{-7} \) | \(a_{684}= -1.65109023 \pm 7.0 \cdot 10^{-7} \) |
| \(a_{685}= -2.56622801 \pm 5.5 \cdot 10^{-7} \) | \(a_{686}= +0.23616653 \pm 8.1 \cdot 10^{-7} \) | \(a_{687}= -1.57522579 \pm 7.5 \cdot 10^{-7} \) |
| \(a_{688}= -0.30128044 \pm 4.6 \cdot 10^{-7} \) | \(a_{689}= -0.00450414 \pm 5.7 \cdot 10^{-7} \) | \(a_{690}= +0.70666173 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{691}= +0.58358292 \pm 5.6 \cdot 10^{-7} \) | \(a_{692}= -0.07566579 \pm 5.9 \cdot 10^{-7} \) | \(a_{693}= -0.38281442 \pm 5.6 \cdot 10^{-7} \) |
| \(a_{694}= +0.25772412 \pm 6.8 \cdot 10^{-7} \) | \(a_{695}= +3.04472678 \pm 6.4 \cdot 10^{-7} \) | \(a_{696}= +0.14390725 \pm 1.3 \cdot 10^{-6} \) |
| \(a_{697}= +0.27941463 \pm 6.6 \cdot 10^{-7} \) | \(a_{698}= +0.17206352 \pm 6.3 \cdot 10^{-7} \) | \(a_{699}= +1.37634832 \pm 5.8 \cdot 10^{-7} \) |
| \(a_{700}= +1.63679861 \pm 7.4 \cdot 10^{-7} \) | \(a_{701}= -1.77132101 \pm 5.9 \cdot 10^{-7} \) | \(a_{702}= -0.00376916 \pm 6.1 \cdot 10^{-7} \) |
| \(a_{703}= +0.11154651 \pm 4.3 \cdot 10^{-7} \) | \(a_{704}= -0.20645986 \pm 6.7 \cdot 10^{-7} \) | \(a_{705}= -4.40346329 \pm 6.4 \cdot 10^{-7} \) |
| \(a_{706}= -0.43874345 \pm 8.9 \cdot 10^{-7} \) | \(a_{707}= +1.09662191 \pm 5.3 \cdot 10^{-7} \) | \(a_{708}= +1.20646923 \pm 8.8 \cdot 10^{-7} \) |
| \(a_{709}= -0.14851515 \pm 6.4 \cdot 10^{-7} \) | \(a_{710}= -0.18199978 \pm 4.9 \cdot 10^{-7} \) | \(a_{711}= +2.19413343 \pm 5.4 \cdot 10^{-7} \) |
| \(a_{712}= -0.69653917 \pm 6.1 \cdot 10^{-7} \) | \(a_{713}= -0.74484938 \pm 5.9 \cdot 10^{-7} \) | \(a_{714}= +0.22327370 \pm 7.9 \cdot 10^{-7} \) |
| \(a_{715}= +0.00545999 \pm 4.8 \cdot 10^{-7} \) | \(a_{716}= -1.13752776 \pm 6.7 \cdot 10^{-7} \) | \(a_{717}= -3.30418664 \pm 6.9 \cdot 10^{-7} \) |
| \(a_{718}= -0.02184918 \pm 6.4 \cdot 10^{-7} \) | \(a_{719}= +0.54204668 \pm 5.1 \cdot 10^{-7} \) | \(a_{720}= +3.20403981 \pm 6.1 \cdot 10^{-7} \) |
| \(a_{721}= -0.53899109 \pm 5.4 \cdot 10^{-7} \) | \(a_{722}= -0.05263334 \pm 6.5 \cdot 10^{-7} \) | \(a_{723}= -2.95800852 \pm 6.9 \cdot 10^{-7} \) |
| \(a_{724}= -0.55328519 \pm 7.8 \cdot 10^{-7} \) | \(a_{725}= +0.49411329 \pm 6.1 \cdot 10^{-7} \) | \(a_{726}= +0.36296687 \pm 8.1 \cdot 10^{-7} \) |
| \(a_{727}= -0.93617744 \pm 5.4 \cdot 10^{-7} \) | \(a_{728}= +0.00280093 \pm 8.2 \cdot 10^{-7} \) | \(a_{729}= -1.04389315 \pm 6.5 \cdot 10^{-7} \) |
| \(a_{730}= +0.13749212 \pm 8.2 \cdot 10^{-7} \) | \(a_{731}= -0.30838382 \pm 5.5 \cdot 10^{-7} \) | \(a_{732}= +1.93578488 \pm 7.9 \cdot 10^{-7} \) |
| \(a_{733}= +0.30888778 \pm 7.1 \cdot 10^{-7} \) | \(a_{734}= -0.39700473 \pm 6.9 \cdot 10^{-7} \) | \(a_{735}= +1.91073069 \pm 4.9 \cdot 10^{-7} \) |
| \(a_{736}= -0.59651912 \pm 6.8 \cdot 10^{-7} \) | \(a_{737}= +0.03028854 \pm 5.6 \cdot 10^{-7} \) | \(a_{738}= +0.14798985 \pm 6.1 \cdot 10^{-7} \) |
| \(a_{739}= -1.85467917 \pm 6.5 \cdot 10^{-7} \) | \(a_{740}= -0.23008234 \pm 6.7 \cdot 10^{-7} \) | \(a_{741}= -0.01458814 \pm 5.0 \cdot 10^{-7} \) |
| \(a_{742}= +0.07012616 \pm 7.2 \cdot 10^{-7} \) | \(a_{743}= -0.87297700 \pm 5.5 \cdot 10^{-7} \) | \(a_{744}= +0.62210601 \pm 5.9 \cdot 10^{-7} \) |
| \(a_{745}= +1.40865593 \pm 6.7 \cdot 10^{-7} \) | \(a_{746}= -0.11869897 \pm 7.2 \cdot 10^{-7} \) | \(a_{747}= -0.82470914 \pm 4.2 \cdot 10^{-7} \) |
| \(a_{748}= -0.24272815 \pm 5.4 \cdot 10^{-7} \) | \(a_{749}= -0.10407070 \pm 6.7 \cdot 10^{-7} \) | \(a_{750}= -1.26492417 \pm 6.1 \cdot 10^{-7} \) |
| \(a_{751}= -0.10139187 \pm 6.4 \cdot 10^{-7} \) | \(a_{752}= +1.12370590 \pm 5.1 \cdot 10^{-7} \) | \(a_{753}= -2.33392940 \pm 6.9 \cdot 10^{-7} \) |
| \(a_{754}= +0.00041124 \pm 1.3 \cdot 10^{-6} \) | \(a_{755}= +1.83244394 \pm 6.6 \cdot 10^{-7} \) | \(a_{756}= -1.04692506 \pm 7.4 \cdot 10^{-7} \) |
| \(a_{757}= -0.87554745 \pm 4.1 \cdot 10^{-7} \) | \(a_{758}= +0.19449650 \pm 7.4 \cdot 10^{-7} \) | \(a_{759}= +0.47590438 \pm 7.7 \cdot 10^{-7} \) |
| \(a_{760}= -0.75383614 \pm 6.0 \cdot 10^{-7} \) | \(a_{761}= -0.59269740 \pm 4.7 \cdot 10^{-7} \) | \(a_{762}= -0.05114304 \pm 6.3 \cdot 10^{-7} \) |
| \(a_{763}= +0.39181866 \pm 6.3 \cdot 10^{-7} \) | \(a_{764}= -0.61932164 \pm 6.9 \cdot 10^{-7} \) | \(a_{765}= +3.27958239 \pm 5.1 \cdot 10^{-7} \) |
| \(a_{766}= +0.14714016 \pm 7.3 \cdot 10^{-7} \) | \(a_{767}= +0.00708871 \pm 4.6 \cdot 10^{-7} \) | \(a_{768}= -0.88191248 \pm 7.3 \cdot 10^{-7} \) |
| \(a_{769}= +0.65337734 \pm 5.4 \cdot 10^{-7} \) | \(a_{770}= -0.08500808 \pm 7.2 \cdot 10^{-7} \) | \(a_{771}= +0.68292658 \pm 8.4 \cdot 10^{-7} \) |
| \(a_{772}= -1.68600960 \pm 6.8 \cdot 10^{-7} \) | \(a_{773}= +0.24816616 \pm 7.2 \cdot 10^{-7} \) | \(a_{774}= -0.16333316 \pm 5.5 \cdot 10^{-7} \) |
| \(a_{775}= +2.13603452 \pm 5.4 \cdot 10^{-7} \) | \(a_{776}= -0.22320101 \pm 6.4 \cdot 10^{-7} \) | \(a_{777}= +0.14253084 \pm 7.1 \cdot 10^{-7} \) |
| \(a_{778}= -0.05732493 \pm 7.6 \cdot 10^{-7} \) | \(a_{779}= +0.28423650 \pm 5.2 \cdot 10^{-7} \) | \(a_{780}= +0.03009036 \pm 6.9 \cdot 10^{-7} \) |
| \(a_{781}= -0.12256853 \pm 4.3 \cdot 10^{-7} \) | \(a_{782}= -0.18458249 \pm 6.2 \cdot 10^{-7} \) | \(a_{783}= -0.31604351 \pm 6.2 \cdot 10^{-7} \) |
| \(a_{784}= -0.48759334 \pm 5.1 \cdot 10^{-7} \) | \(a_{785}= -1.19138635 \pm 6.6 \cdot 10^{-7} \) | \(a_{786}= +0.39312033 \pm 5.2 \cdot 10^{-7} \) |
| \(a_{787}= +1.53096887 \pm 6.3 \cdot 10^{-7} \) | \(a_{788}= -0.04488556 \pm 7.7 \cdot 10^{-7} \) | \(a_{789}= -0.65494856 \pm 7.1 \cdot 10^{-7} \) |
| \(a_{790}= +0.48723102 \pm 6.8 \cdot 10^{-7} \) | \(a_{791}= -0.15289398 \pm 4.9 \cdot 10^{-7} \) | \(a_{792}= -0.26432434 \pm 5.1 \cdot 10^{-7} \) |
| \(a_{793}= +0.01137386 \pm 6.2 \cdot 10^{-7} \) | \(a_{794}= -0.16908875 \pm 7.0 \cdot 10^{-7} \) | \(a_{795}= +1.54895765 \pm 6.3 \cdot 10^{-7} \) |
| \(a_{796}= +1.66160319 \pm 7.0 \cdot 10^{-7} \) | \(a_{797}= +0.39037017 \pm 5.9 \cdot 10^{-7} \) | \(a_{798}= +0.22712674 \pm 5.6 \cdot 10^{-7} \) |
| \(a_{799}= +1.15019985 \pm 5.6 \cdot 10^{-7} \) | \(a_{800}= +1.71066187 \pm 5.2 \cdot 10^{-7} \) | \(a_{801}= +3.08260469 \pm 7.0 \cdot 10^{-7} \) |
| \(a_{802}= +0.14824894 \pm 6.5 \cdot 10^{-7} \) | \(a_{803}= +0.09259466 \pm 5.9 \cdot 10^{-7} \) | \(a_{804}= +0.16692205 \pm 6.4 \cdot 10^{-7} \) |
| \(a_{805}= +1.15327764 \pm 5.7 \cdot 10^{-7} \) | \(a_{806}= +0.00177779 \pm 4.9 \cdot 10^{-7} \) | \(a_{807}= -2.92325972 \pm 6.7 \cdot 10^{-7} \) |
| \(a_{808}= +0.75719160 \pm 4.9 \cdot 10^{-7} \) | \(a_{809}= -0.54522643 \pm 6.3 \cdot 10^{-7} \) | \(a_{810}= +0.42116530 \pm 5.7 \cdot 10^{-7} \) |
| \(a_{811}= +0.76869566 \pm 5.0 \cdot 10^{-7} \) | \(a_{812}= +0.11422751 \pm 1.3 \cdot 10^{-6} \) | \(a_{813}= +1.16890794 \pm 6.0 \cdot 10^{-7} \) |
| \(a_{814}= +0.00868537 \pm 8.1 \cdot 10^{-7} \) | \(a_{815}= -1.28230056 \pm 5.6 \cdot 10^{-7} \) | \(a_{816}= -1.25850604 \pm 5.8 \cdot 10^{-7} \) |
| \(a_{817}= -0.31370560 \pm 3.8 \cdot 10^{-7} \) | \(a_{818}= +0.16406789 \pm 7.5 \cdot 10^{-7} \) | \(a_{819}= -0.01239580 \pm 5.9 \cdot 10^{-7} \) |
| \(a_{820}= -0.58628279 \pm 7.5 \cdot 10^{-7} \) | \(a_{821}= -0.20244287 \pm 6.1 \cdot 10^{-7} \) | \(a_{822}= +0.53386988 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{823}= -1.55748644 \pm 6.7 \cdot 10^{-7} \) | \(a_{824}= -0.37216065 \pm 5.4 \cdot 10^{-7} \) | \(a_{825}= -1.36477012 \pm 5.7 \cdot 10^{-7} \) |
| \(a_{826}= -0.11036598 \pm 7.6 \cdot 10^{-7} \) | \(a_{827}= -1.55250805 \pm 7.1 \cdot 10^{-7} \) | \(a_{828}= +1.74412096 \pm 8.5 \cdot 10^{-7} \) |
| \(a_{829}= -0.99414881 \pm 6.1 \cdot 10^{-7} \) | \(a_{830}= -0.18313557 \pm 6.4 \cdot 10^{-7} \) | \(a_{831}= -1.53915799 \pm 7.9 \cdot 10^{-7} \) |
| \(a_{832}= -0.00668531 \pm 6.4 \cdot 10^{-7} \) | \(a_{833}= -0.49908947 \pm 6.0 \cdot 10^{-7} \) | \(a_{834}= -0.63341524 \pm 7.7 \cdot 10^{-7} \) |
| \(a_{835}= -2.21229953 \pm 7.1 \cdot 10^{-7} \) | \(a_{836}= -0.24691691 \pm 4.8 \cdot 10^{-7} \) | \(a_{837}= -1.36624509 \pm 5.6 \cdot 10^{-7} \) |
| \(a_{838}= -0.12968821 \pm 7.5 \cdot 10^{-7} \) | \(a_{839}= +0.83738538 \pm 7.0 \cdot 10^{-7} \) | \(a_{840}= -0.96322958 \pm 6.3 \cdot 10^{-7} \) |
| \(a_{841}= +0.03448276 \pm 1.5 \cdot 10^{-6} \) | \(a_{842}= -0.03693976 \pm 6.6 \cdot 10^{-7} \) | \(a_{843}= +2.01668619 \pm 8.2 \cdot 10^{-7} \) |
| \(a_{844}= +0.78164457 \pm 7.0 \cdot 10^{-7} \) | \(a_{845}= -1.91316621 \pm 5.8 \cdot 10^{-7} \) | \(a_{846}= +0.60919466 \pm 6.2 \cdot 10^{-7} \) |
| \(a_{847}= +0.59236485 \pm 5.2 \cdot 10^{-7} \) | \(a_{848}= -0.39527361 \pm 6.2 \cdot 10^{-7} \) | \(a_{849}= +2.02132805 \pm 6.2 \cdot 10^{-7} \) |
| \(a_{850}= +0.52933463 \pm 5.4 \cdot 10^{-7} \) | \(a_{851}= -0.11783160 \pm 4.5 \cdot 10^{-7} \) | \(a_{852}= -0.67548291 \pm 6.5 \cdot 10^{-7} \) |
| \(a_{853}= +0.02810174 \pm 6.7 \cdot 10^{-7} \) | \(a_{854}= -0.17708267 \pm 9.5 \cdot 10^{-7} \) | \(a_{855}= +3.33617821 \pm 6.4 \cdot 10^{-7} \) |
| \(a_{856}= -0.07185837 \pm 7.1 \cdot 10^{-7} \) | \(a_{857}= -1.34903673 \pm 5.6 \cdot 10^{-7} \) | \(a_{858}= -0.00113588 \pm 4.0 \cdot 10^{-7} \) |
| \(a_{859}= +1.52228505 \pm 5.4 \cdot 10^{-7} \) | \(a_{860}= +0.64706749 \pm 8.0 \cdot 10^{-7} \) | \(a_{861}= +0.36318901 \pm 4.5 \cdot 10^{-7} \) |
| \(a_{862}= -0.18396660 \pm 7.1 \cdot 10^{-7} \) | \(a_{863}= -0.47376555 \pm 5.2 \cdot 10^{-7} \) | \(a_{864}= -1.09416929 \pm 6.5 \cdot 10^{-7} \) |
| \(a_{865}= +0.15288963 \pm 6.3 \cdot 10^{-7} \) | \(a_{866}= +0.14216260 \pm 7.1 \cdot 10^{-7} \) | \(a_{867}= +0.43955817 \pm 6.0 \cdot 10^{-7} \) |
| \(a_{868}= +0.49380155 \pm 6.4 \cdot 10^{-7} \) | \(a_{869}= +0.32812782 \pm 5.2 \cdot 10^{-7} \) | \(a_{870}= -0.14142522 \pm 2.1 \cdot 10^{-6} \) |
| \(a_{871}= +0.00098076 \pm 4.4 \cdot 10^{-7} \) | \(a_{872}= +0.27054156 \pm 7.3 \cdot 10^{-7} \) | \(a_{873}= +0.98779870 \pm 6.8 \cdot 10^{-7} \) |
| \(a_{874}= -0.18776783 \pm 6.8 \cdot 10^{-7} \) | \(a_{875}= -2.06436645 \pm 5.1 \cdot 10^{-7} \) | \(a_{876}= +0.51029499 \pm 7.8 \cdot 10^{-7} \) |
| \(a_{877}= +0.32704959 \pm 7.0 \cdot 10^{-7} \) | \(a_{878}= -0.19010075 \pm 7.5 \cdot 10^{-7} \) | \(a_{879}= +1.68056213 \pm 7.2 \cdot 10^{-7} \) |
| \(a_{880}= +0.47915710 \pm 5.3 \cdot 10^{-7} \) | \(a_{881}= -1.50872572 \pm 5.5 \cdot 10^{-7} \) | \(a_{882}= -0.26433896 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{883}= +0.73148754 \pm 5.2 \cdot 10^{-7} \) | \(a_{884}= -0.00785971 \pm 6.1 \cdot 10^{-7} \) | \(a_{885}= -2.43778098 \pm 6.0 \cdot 10^{-7} \) |
| \(a_{886}= +0.17139446 \pm 6.9 \cdot 10^{-7} \) | \(a_{887}= -1.24675192 \pm 5.2 \cdot 10^{-7} \) | \(a_{888}= +0.09841419 \pm 7.3 \cdot 10^{-7} \) |
| \(a_{889}= -0.08346585 \pm 4.9 \cdot 10^{-7} \) | \(a_{890}= +0.68452566 \pm 5.4 \cdot 10^{-7} \) | \(a_{891}= +0.28363558 \pm 3.7 \cdot 10^{-7} \) |
| \(a_{892}= +1.13545350 \pm 7.0 \cdot 10^{-7} \) | \(a_{893}= +1.17004887 \pm 5.5 \cdot 10^{-7} \) | \(a_{894}= -0.29305228 \pm 9.7 \cdot 10^{-7} \) |
| \(a_{895}= +2.29847845 \pm 6.6 \cdot 10^{-7} \) | \(a_{896}= +0.52171762 \pm 7.6 \cdot 10^{-7} \) | \(a_{897}= +0.01541011 \pm 4.3 \cdot 10^{-7} \) |
| \(a_{898}= -0.35434110 \pm 6.4 \cdot 10^{-7} \) | \(a_{899}= +0.14906776 \pm 5.8 \cdot 10^{-7} \) | \(a_{900}= -5.00168582 \pm 9.0 \cdot 10^{-7} \) |
| \(a_{901}= -0.40459310 \pm 6.5 \cdot 10^{-7} \) | \(a_{902}= +0.02213156 \pm 5.8 \cdot 10^{-7} \) | \(a_{903}= -0.40084377 \pm 5.0 \cdot 10^{-7} \) |
| \(a_{904}= -0.10556969 \pm 4.9 \cdot 10^{-7} \) | \(a_{905}= +1.11796312 \pm 6.7 \cdot 10^{-7} \) | \(a_{906}= -0.38121579 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{907}= -0.85434144 \pm 6.1 \cdot 10^{-7} \) | \(a_{908}= +1.20696924 \pm 7.0 \cdot 10^{-7} \) | \(a_{909}= -3.35102817 \pm 7.7 \cdot 10^{-7} \) |
| \(a_{910}= -0.00275262 \pm 8.3 \cdot 10^{-7} \) | \(a_{911}= +0.40362366 \pm 7.2 \cdot 10^{-7} \) | \(a_{912}= -1.28022410 \pm 5.7 \cdot 10^{-7} \) |
| \(a_{913}= -0.12333344 \pm 3.3 \cdot 10^{-7} \) | \(a_{914}= +0.09723725 \pm 6.6 \cdot 10^{-7} \) | \(a_{915}= -3.91142968 \pm 7.1 \cdot 10^{-7} \) |
| \(a_{916}= -0.86333578 \pm 7.9 \cdot 10^{-7} \) | \(a_{917}= +0.64157555 \pm 4.9 \cdot 10^{-7} \) | \(a_{918}= -0.33857170 \pm 6.0 \cdot 10^{-7} \) |
| \(a_{919}= +0.00007156 \pm 6.0 \cdot 10^{-7} \) | \(a_{920}= +0.79631105 \pm 7.1 \cdot 10^{-7} \) | \(a_{921}= +0.10639203 \pm 5.8 \cdot 10^{-7} \) |
| \(a_{922}= -0.03462084 \pm 7.5 \cdot 10^{-7} \) | \(a_{923}= -0.00396885 \pm 5.4 \cdot 10^{-7} \) | \(a_{924}= -0.31550314 \pm 5.1 \cdot 10^{-7} \) |
| \(a_{925}= +0.33791042 \pm 4.9 \cdot 10^{-7} \) | \(a_{926}= +0.12142193 \pm 7.3 \cdot 10^{-7} \) | \(a_{927}= +1.64703468 \pm 6.4 \cdot 10^{-7} \) |
| \(a_{928}= +0.11938222 \pm 6.5 \cdot 10^{-7} \) | \(a_{929}= -0.19366456 \pm 5.8 \cdot 10^{-7} \) | \(a_{930}= -0.61137628 \pm 6.5 \cdot 10^{-7} \) |
| \(a_{931}= -0.50770226 \pm 4.8 \cdot 10^{-7} \) | \(a_{932}= +0.75433678 \pm 6.8 \cdot 10^{-7} \) | \(a_{933}= +1.08287813 \pm 7.5 \cdot 10^{-7} \) |
| \(a_{934}= -0.34136513 \pm 7.6 \cdot 10^{-7} \) | \(a_{935}= +0.49045433 \pm 5.7 \cdot 10^{-7} \) | \(a_{936}= -0.00855900 \pm 5.4 \cdot 10^{-7} \) |
| \(a_{937}= +1.72530949 \pm 6.6 \cdot 10^{-7} \) | \(a_{938}= -0.01526978 \pm 7.2 \cdot 10^{-7} \) | \(a_{939}= +2.42391263 \pm 6.8 \cdot 10^{-7} \) |
| \(a_{940}= -2.41341110 \pm 5.4 \cdot 10^{-7} \) | \(a_{941}= +1.30469632 \pm 6.4 \cdot 10^{-7} \) | \(a_{942}= +0.24785221 \pm 8.0 \cdot 10^{-7} \) |
| \(a_{943}= -0.30025181 \pm 6.6 \cdot 10^{-7} \) | \(a_{944}= +0.62208964 \pm 5.1 \cdot 10^{-7} \) | \(a_{945}= +2.11540744 \pm 5.7 \cdot 10^{-7} \) |
| \(a_{946}= -0.02442611 \pm 8.1 \cdot 10^{-7} \) | \(a_{947}= +0.27493864 \pm 6.6 \cdot 10^{-7} \) | \(a_{948}= +1.80833312 \pm 6.2 \cdot 10^{-7} \) |
| \(a_{949}= +0.00299828 \pm 6.3 \cdot 10^{-7} \) | \(a_{950}= +0.53846937 \pm 5.2 \cdot 10^{-7} \) | \(a_{951}= -1.37443011 \pm 7.2 \cdot 10^{-7} \) |
| \(a_{952}= +0.25159890 \pm 5.5 \cdot 10^{-7} \) | \(a_{953}= -0.85063314 \pm 5.4 \cdot 10^{-7} \) | \(a_{954}= -0.21428968 \pm 7.9 \cdot 10^{-7} \) |
| \(a_{955}= +1.25139579 \pm 6.9 \cdot 10^{-7} \) | \(a_{956}= -1.81092930 \pm 5.4 \cdot 10^{-7} \) | \(a_{957}= -0.09524342 \pm 1.3 \cdot 10^{-6} \) |
| \(a_{958}= +0.10672868 \pm 9.1 \cdot 10^{-7} \) | \(a_{959}= +0.87127995 \pm 5.8 \cdot 10^{-7} \) | \(a_{960}= +2.29905539 \pm 6.5 \cdot 10^{-7} \) |
| \(a_{961}= -0.35558525 \pm 5.8 \cdot 10^{-7} \) | \(a_{962}= +0.00028124 \pm 7.1 \cdot 10^{-7} \) | \(a_{963}= +0.31801650 \pm 6.4 \cdot 10^{-7} \) |
| \(a_{964}= -1.62119907 \pm 6.3 \cdot 10^{-7} \) | \(a_{965}= +3.40673597 \pm 5.6 \cdot 10^{-7} \) | \(a_{966}= -0.23992420 \pm 6.6 \cdot 10^{-7} \) |
| \(a_{967}= +1.48080190 \pm 3.8 \cdot 10^{-7} \) | \(a_{968}= +0.40901398 \pm 5.4 \cdot 10^{-7} \) | \(a_{969}= -1.31040832 \pm 5.6 \cdot 10^{-7} \) |
| \(a_{970}= +0.21935137 \pm 7.5 \cdot 10^{-7} \) | \(a_{971}= -1.34599192 \pm 6.5 \cdot 10^{-7} \) | \(a_{972}= -0.04847767 \pm 4.9 \cdot 10^{-7} \) |
| \(a_{973}= -1.03373878 \pm 6.5 \cdot 10^{-7} \) | \(a_{974}= -0.15571287 \pm 7.6 \cdot 10^{-7} \) | \(a_{975}= -0.04419220 \pm 5.3 \cdot 10^{-7} \) |
| \(a_{976}= +0.99814540 \pm 7.6 \cdot 10^{-7} \) | \(a_{977}= -0.95661437 \pm 6.8 \cdot 10^{-7} \) | \(a_{978}= +0.26676571 \pm 8.3 \cdot 10^{-7} \) |
| \(a_{979}= +0.46099674 \pm 5.4 \cdot 10^{-7} \) | \(a_{980}= +1.04721633 \pm 8.1 \cdot 10^{-7} \) | \(a_{981}= -1.19730907 \pm 5.9 \cdot 10^{-7} \) |
| \(a_{982}= +0.01959326 \pm 8.2 \cdot 10^{-7} \) | \(a_{983}= -0.29477716 \pm 6.5 \cdot 10^{-7} \) | \(a_{984}= +0.25077346 \pm 4.9 \cdot 10^{-7} \) |
| \(a_{985}= +0.09069537 \pm 7.8 \cdot 10^{-7} \) | \(a_{986}= +0.03694076 \pm 1.3 \cdot 10^{-6} \) | \(a_{987}= +1.49505393 \pm 5.0 \cdot 10^{-7} \) |
| \(a_{988}= -0.00799534 \pm 4.9 \cdot 10^{-7} \) | \(a_{989}= +0.33138135 \pm 6.3 \cdot 10^{-7} \) | \(a_{990}= +0.25976543 \pm 8.2 \cdot 10^{-7} \) |
| \(a_{991}= +0.43419836 \pm 5.5 \cdot 10^{-7} \) | \(a_{992}= +0.51608517 \pm 6.6 \cdot 10^{-7} \) | \(a_{993}= -0.79391269 \pm 7.6 \cdot 10^{-7} \) |
| \(a_{994}= +0.06179216 \pm 6.2 \cdot 10^{-7} \) | \(a_{995}= -3.35742061 \pm 6.6 \cdot 10^{-7} \) | \(a_{996}= -0.67969834 \pm 4.8 \cdot 10^{-7} \) |
| \(a_{997}= +0.03880610 \pm 5.3 \cdot 10^{-7} \) | \(a_{998}= -0.07614628 \pm 6.9 \cdot 10^{-7} \) | \(a_{999}= -0.21613342 \pm 5.8 \cdot 10^{-7} \) |
| \(a_{1000}= -1.42539642 \pm 4.9 \cdot 10^{-7} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000