Maass form invariants
| Level: | \( 29 \) |
| Weight: | \( 0 \) |
| Character: | 29.1 |
| Symmetry: | odd |
| Fricke sign: | $+1$ |
| Spectral parameter: | \(3.92021463299001056757884602947 \pm 4 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
| \(a_{1}= +1 \) | \(a_{2}= -1.16471155 \pm 7.9 \cdot 10^{-7} \) | \(a_{3}= +0.89855403 \pm 7.5 \cdot 10^{-7} \) |
| \(a_{4}= +0.35655299 \pm 7.9 \cdot 10^{-7} \) | \(a_{5}= +1.16749461 \pm 7.1 \cdot 10^{-7} \) | \(a_{6}= -1.04655625 \pm 9.1 \cdot 10^{-7} \) |
| \(a_{7}= -1.79463362 \pm 6.6 \cdot 10^{-7} \) | \(a_{8}= +0.74943017 \pm 6.6 \cdot 10^{-7} \) | \(a_{9}= -0.19260065 \pm 7.0 \cdot 10^{-7} \) |
| \(a_{10}= -1.35979446 \pm 8.7 \cdot 10^{-7} \) | \(a_{11}= -0.23873791 \pm 6.5 \cdot 10^{-7} \) | \(a_{12}= +0.32038212 \pm 9.2 \cdot 10^{-7} \) |
| \(a_{13}= -0.42302497 \pm 6.1 \cdot 10^{-7} \) | \(a_{14}= +2.09023050 \pm 8.7 \cdot 10^{-7} \) | \(a_{15}= +1.04905699 \pm 7.9 \cdot 10^{-7} \) |
| \(a_{16}= -1.22942295 \pm 6.9 \cdot 10^{-7} \) | \(a_{17}= -1.18105996 \pm 7.0 \cdot 10^{-7} \) | \(a_{18}= +0.22432421 \pm 9.1 \cdot 10^{-7} \) |
| \(a_{19}= -1.47482995 \pm 5.7 \cdot 10^{-7} \) | \(a_{20}= +0.41627369 \pm 8.4 \cdot 10^{-7} \) | \(a_{21}= -1.61257527 \pm 7.1 \cdot 10^{-7} \) |
| \(a_{22}= +0.27806080 \pm 8.1 \cdot 10^{-7} \) | \(a_{23}= +1.09171771 \pm 6.8 \cdot 10^{-7} \) | \(a_{24}= +0.67340350 \pm 7.2 \cdot 10^{-7} \) |
| \(a_{25}= +0.36304367 \pm 6.5 \cdot 10^{-7} \) | \(a_{26}= +0.49270206 \pm 6.6 \cdot 10^{-7} \) | \(a_{27}= -1.07161612 \pm 6.6 \cdot 10^{-7} \) |
| \(a_{28}= -0.63988198 \pm 8.7 \cdot 10^{-7} \) | \(a_{29}= -0.18569534 \pm 1.0 \cdot 10^{-8} \) | \(a_{30}= -1.22184879 \pm 8.6 \cdot 10^{-7} \) |
| \(a_{31}= +1.39730023 \pm 6.2 \cdot 10^{-7} \) | \(a_{32}= +0.68249294 \pm 6.9 \cdot 10^{-7} \) | \(a_{33}= -0.21451891 \pm 7.5 \cdot 10^{-7} \) |
| \(a_{34}= +1.37559417 \pm 6.9 \cdot 10^{-7} \) | \(a_{35}= -2.09522508 \pm 7.0 \cdot 10^{-7} \) | \(a_{36}= -0.06867234 \pm 9.1 \cdot 10^{-7} \) |
| \(a_{37}= -0.76189270 \pm 6.2 \cdot 10^{-7} \) | \(a_{38}= +1.71775147 \pm 6.0 \cdot 10^{-7} \) | \(a_{39}= -0.38011079 \pm 6.9 \cdot 10^{-7} \) |
| \(a_{40}= +0.87495568 \pm 7.3 \cdot 10^{-7} \) | \(a_{41}= -1.05187351 \pm 6.4 \cdot 10^{-7} \) | \(a_{42}= +1.87818504 \pm 9.3 \cdot 10^{-7} \) |
| \(a_{43}= +0.28469827 \pm 5.7 \cdot 10^{-7} \) | \(a_{44}= -0.08512271 \pm 7.4 \cdot 10^{-7} \) | \(a_{45}= -0.22486023 \pm 7.3 \cdot 10^{-7} \) |
| \(a_{46}= -1.27153622 \pm 8.9 \cdot 10^{-7} \) | \(a_{47}= +0.41535887 \pm 5.7 \cdot 10^{-7} \) | \(a_{48}= -1.10470295 \pm 7.3 \cdot 10^{-7} \) |
| \(a_{49}= +2.22070983 \pm 6.1 \cdot 10^{-7} \) | \(a_{50}= -0.42284115 \pm 7.4 \cdot 10^{-7} \) | \(a_{51}= -1.06124619 \pm 7.0 \cdot 10^{-7} \) |
| \(a_{52}= -0.15083082 \pm 7.7 \cdot 10^{-7} \) | \(a_{53}= -0.49589302 \pm 6.2 \cdot 10^{-7} \) | \(a_{54}= +1.24812367 \pm 8.2 \cdot 10^{-7} \) |
| \(a_{55}= -0.27872522 \pm 6.7 \cdot 10^{-7} \) | \(a_{56}= -1.34495257 \pm 7.7 \cdot 10^{-7} \) | \(a_{57}= -1.32521439 \pm 6.3 \cdot 10^{-7} \) |
| \(a_{58}= +0.21628150 \pm 8.1 \cdot 10^{-7} \) | \(a_{59}= +0.64036426 \pm 6.0 \cdot 10^{-7} \) | \(a_{60}= +0.37404440 \pm 8.8 \cdot 10^{-7} \) |
| \(a_{61}= +0.52453938 \pm 6.6 \cdot 10^{-7} \) | \(a_{62}= -1.62745171 \pm 7.3 \cdot 10^{-7} \) | \(a_{63}= +0.34564761 \pm 6.9 \cdot 10^{-7} \) |
| \(a_{64}= +0.43451554 \pm 7.2 \cdot 10^{-7} \) | \(a_{65}= -0.49387937 \pm 6.8 \cdot 10^{-7} \) | \(a_{66}= +0.24985265 \pm 9.6 \cdot 10^{-7} \) |
| \(a_{67}= -1.12379790 \pm 5.6 \cdot 10^{-7} \) | \(a_{68}= -0.42111046 \pm 6.8 \cdot 10^{-7} \) | \(a_{69}= +0.98096735 \pm 7.5 \cdot 10^{-7} \) |
| \(a_{70}= +2.44033285 \pm 9.2 \cdot 10^{-7} \) | \(a_{71}= +0.10266976 \pm 5.7 \cdot 10^{-7} \) | \(a_{72}= -0.14434074 \pm 6.8 \cdot 10^{-7} \) |
| \(a_{73}= +0.62397146 \pm 6.4 \cdot 10^{-7} \) | \(a_{74}= +0.88738522 \pm 8.4 \cdot 10^{-7} \) | \(a_{75}= +0.32621435 \pm 7.8 \cdot 10^{-7} \) |
| \(a_{76}= -0.52585502 \pm 5.9 \cdot 10^{-7} \) | \(a_{77}= +0.42844707 \pm 5.6 \cdot 10^{-7} \) | \(a_{78}= +0.44271942 \pm 6.7 \cdot 10^{-7} \) |
| \(a_{79}= -0.19281581 \pm 5.9 \cdot 10^{-7} \) | \(a_{80}= -1.43534468 \pm 7.2 \cdot 10^{-7} \) | \(a_{81}= -0.77030433 \pm 5.3 \cdot 10^{-7} \) |
| \(a_{82}= +1.22512922 \pm 7.5 \cdot 10^{-7} \) | \(a_{83}= +1.03481006 \pm 5.4 \cdot 10^{-7} \) | \(a_{84}= -0.57496853 \pm 9.7 \cdot 10^{-7} \) |
| \(a_{85}= -1.37888114 \pm 7.3 \cdot 10^{-7} \) | \(a_{86}= -0.33159137 \pm 6.9 \cdot 10^{-7} \) | \(a_{87}= -0.16685729 \pm 7.6 \cdot 10^{-7} \) |
| \(a_{88}= -0.17891739 \pm 5.0 \cdot 10^{-7} \) | \(a_{89}= +0.31951999 \pm 6.2 \cdot 10^{-7} \) | \(a_{90}= +0.26189730 \pm 8.6 \cdot 10^{-7} \) |
| \(a_{91}= +0.75917483 \pm 6.6 \cdot 10^{-7} \) | \(a_{92}= +0.38925521 \pm 7.9 \cdot 10^{-7} \) | \(a_{93}= +1.25554975 \pm 7.1 \cdot 10^{-7} \) |
| \(a_{94}= -0.48377328 \pm 6.2 \cdot 10^{-7} \) | \(a_{95}= -1.72185602 \pm 6.0 \cdot 10^{-7} \) | \(a_{96}= +0.61325679 \pm 7.7 \cdot 10^{-7} \) |
| \(a_{97}= -0.69512036 \pm 6.2 \cdot 10^{-7} \) | \(a_{98}= -2.58648638 \pm 8.7 \cdot 10^{-7} \) | \(a_{99}= +0.04598108 \pm 7.5 \cdot 10^{-7} \) |
| \(a_{100}= +0.12944431 \pm 7.6 \cdot 10^{-7} \) | \(a_{101}= -1.22692148 \pm 6.4 \cdot 10^{-7} \) | \(a_{102}= +1.23604569 \pm 6.7 \cdot 10^{-7} \) |
| \(a_{103}= -0.68796487 \pm 5.7 \cdot 10^{-7} \) | \(a_{104}= -0.31702767 \pm 7.4 \cdot 10^{-7} \) | \(a_{105}= -1.88267294 \pm 6.9 \cdot 10^{-7} \) |
| \(a_{106}= +0.57757233 \pm 7.7 \cdot 10^{-7} \) | \(a_{107}= +1.32496499 \pm 6.5 \cdot 10^{-7} \) | \(a_{108}= -0.38208793 \pm 8.1 \cdot 10^{-7} \) |
| \(a_{109}= -0.92580996 \pm 6.4 \cdot 10^{-7} \) | \(a_{110}= +0.32463448 \pm 9.1 \cdot 10^{-7} \) | \(a_{111}= -0.68460175 \pm 8.0 \cdot 10^{-7} \) |
| \(a_{112}= +2.20636377 \pm 7.3 \cdot 10^{-7} \) | \(a_{113}= +1.65784905 \pm 5.5 \cdot 10^{-7} \) | \(a_{114}= +1.54349251 \pm 7.3 \cdot 10^{-7} \) |
| \(a_{115}= +1.27457454 \pm 7.7 \cdot 10^{-7} \) | \(a_{116}= -0.06621023 \pm 8.0 \cdot 10^{-7} \) | \(a_{117}= +0.08147489 \pm 5.5 \cdot 10^{-7} \) |
| \(a_{118}= -0.74583965 \pm 7.3 \cdot 10^{-7} \) | \(a_{119}= +2.11956991 \pm 7.1 \cdot 10^{-7} \) | \(a_{120}= +0.78619495 \pm 7.8 \cdot 10^{-7} \) |
| \(a_{121}= -0.94300421 \pm 6.0 \cdot 10^{-7} \) | \(a_{122}= -0.61093708 \pm 8.1 \cdot 10^{-7} \) | \(a_{123}= -0.94516518 \pm 5.9 \cdot 10^{-7} \) |
| \(a_{124}= +0.49821157 \pm 6.7 \cdot 10^{-7} \) | \(a_{125}= -0.74364308 \pm 6.0 \cdot 10^{-7} \) | \(a_{126}= -0.40257976 \pm 9.7 \cdot 10^{-7} \) |
| \(a_{127}= -0.02963217 \pm 5.5 \cdot 10^{-7} \) | \(a_{128}= -1.18857821 \pm 6.9 \cdot 10^{-7} \) | \(a_{129}= +0.25581678 \pm 6.2 \cdot 10^{-7} \) |
| \(a_{130}= +0.57522700 \pm 7.3 \cdot 10^{-7} \) | \(a_{131}= -0.79419859 \pm 5.7 \cdot 10^{-7} \) | \(a_{132}= -0.07648736 \pm 8.6 \cdot 10^{-7} \) |
| \(a_{133}= +2.64677941 \pm 5.6 \cdot 10^{-7} \) | \(a_{134}= +1.30890039 \pm 7.5 \cdot 10^{-7} \) | \(a_{135}= -1.25110605 \pm 7.2 \cdot 10^{-7} \) |
| \(a_{136}= -0.88512196 \pm 5.1 \cdot 10^{-7} \) | \(a_{137}= -0.36567760 \pm 6.8 \cdot 10^{-7} \) | \(a_{138}= -1.14254399 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{139}= -0.87138911 \pm 6.6 \cdot 10^{-7} \) | \(a_{140}= -0.74705876 \pm 9.0 \cdot 10^{-7} \) | \(a_{141}= +0.37322239 \pm 6.4 \cdot 10^{-7} \) |
| \(a_{142}= -0.11958066 \pm 6.3 \cdot 10^{-7} \) | \(a_{143}= +0.10099209 \pm 5.0 \cdot 10^{-7} \) | \(a_{144}= +0.23678767 \pm 5.7 \cdot 10^{-7} \) |
| \(a_{145}= -0.21679831 \pm 7.2 \cdot 10^{-7} \) | \(a_{146}= -0.72674677 \pm 7.6 \cdot 10^{-7} \) | \(a_{147}= +1.99542777 \pm 6.9 \cdot 10^{-7} \) |
| \(a_{148}= -0.27165512 \pm 8.7 \cdot 10^{-7} \) | \(a_{149}= -1.38608584 \pm 7.6 \cdot 10^{-7} \) | \(a_{150}= -0.37994562 \pm 8.0 \cdot 10^{-7} \) |
| \(a_{151}= +1.46087832 \pm 7.1 \cdot 10^{-7} \) | \(a_{152}= -1.10528205 \pm 5.7 \cdot 10^{-7} \) | \(a_{153}= +0.22747292 \pm 5.1 \cdot 10^{-7} \) |
| \(a_{154}= -0.49901725 \pm 6.9 \cdot 10^{-7} \) | \(a_{155}= +1.63134049 \pm 6.1 \cdot 10^{-7} \) | \(a_{156}= -0.13552964 \pm 8.2 \cdot 10^{-7} \) |
| \(a_{157}= +1.46510440 \pm 6.4 \cdot 10^{-7} \) | \(a_{158}= +0.22457480 \pm 6.6 \cdot 10^{-7} \) | \(a_{159}= -0.44558668 \pm 6.7 \cdot 10^{-7} \) |
| \(a_{160}= +0.79680684 \pm 7.1 \cdot 10^{-7} \) | \(a_{161}= -1.95923330 \pm 5.8 \cdot 10^{-7} \) | \(a_{162}= +0.89718235 \pm 5.4 \cdot 10^{-7} \) |
| \(a_{163}= -0.25555236 \pm 5.3 \cdot 10^{-7} \) | \(a_{164}= -0.37504864 \pm 6.8 \cdot 10^{-7} \) | \(a_{165}= -0.25044967 \pm 7.0 \cdot 10^{-7} \) |
| \(a_{166}= -1.20525522 \pm 5.7 \cdot 10^{-7} \) | \(a_{167}= +0.95625148 \pm 6.6 \cdot 10^{-7} \) | \(a_{168}= -1.20851255 \pm 8.2 \cdot 10^{-7} \) |
| \(a_{169}= -0.82104988 \pm 6.0 \cdot 10^{-7} \) | \(a_{170}= +1.60599878 \pm 7.6 \cdot 10^{-7} \) | \(a_{171}= +0.28405321 \pm 6.0 \cdot 10^{-7} \) |
| \(a_{172}= +0.10151002 \pm 7.0 \cdot 10^{-7} \) | \(a_{173}= -0.59591510 \pm 5.1 \cdot 10^{-7} \) | \(a_{174}= +0.19434062 \pm 1.5 \cdot 10^{-6} \) |
| \(a_{175}= -0.65153038 \pm 5.8 \cdot 10^{-7} \) | \(a_{176}= +0.29350986 \pm 5.5 \cdot 10^{-7} \) | \(a_{177}= +0.57540189 \pm 7.4 \cdot 10^{-7} \) |
| \(a_{178}= -0.37214862 \pm 7.2 \cdot 10^{-7} \) | \(a_{179}= -0.98685383 \pm 6.6 \cdot 10^{-7} \) | \(a_{180}= -0.08017459 \pm 9.5 \cdot 10^{-7} \) |
| \(a_{181}= +0.87760829 \pm 7.0 \cdot 10^{-7} \) | \(a_{182}= -0.88421969 \pm 8.2 \cdot 10^{-7} \) | \(a_{183}= +0.47132698 \pm 7.0 \cdot 10^{-7} \) |
| \(a_{184}= +0.81816618 \pm 6.6 \cdot 10^{-7} \) | \(a_{185}= -0.88950562 \pm 5.5 \cdot 10^{-7} \) | \(a_{186}= -1.46235329 \pm 8.6 \cdot 10^{-7} \) |
| \(a_{187}= +0.28196378 \pm 6.0 \cdot 10^{-7} \) | \(a_{188}= +0.14809745 \pm 5.8 \cdot 10^{-7} \) | \(a_{189}= +1.92315833 \pm 6.1 \cdot 10^{-7} \) |
| \(a_{190}= +2.00546559 \pm 6.9 \cdot 10^{-7} \) | \(a_{191}= -0.35771337 \pm 6.3 \cdot 10^{-7} \) | \(a_{192}= +0.39043569 \pm 8.2 \cdot 10^{-7} \) |
| \(a_{193}= +0.61194129 \pm 5.9 \cdot 10^{-7} \) | \(a_{194}= +0.80961471 \pm 7.6 \cdot 10^{-7} \) | \(a_{195}= -0.44377730 \pm 7.4 \cdot 10^{-7} \) |
| \(a_{196}= +0.79180072 \pm 9.0 \cdot 10^{-7} \) | \(a_{197}= -0.49443564 \pm 7.6 \cdot 10^{-7} \) | \(a_{198}= -0.05355469 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{199}= -1.68213047 \pm 6.7 \cdot 10^{-7} \) | \(a_{200}= +0.27207588 \pm 6.4 \cdot 10^{-7} \) | \(a_{201}= -1.00979313 \pm 5.7 \cdot 10^{-7} \) |
| \(a_{202}= +1.42900961 \pm 7.1 \cdot 10^{-7} \) | \(a_{203}= +0.33325510 \pm 6.7 \cdot 10^{-7} \) | \(a_{204}= -0.37839050 \pm 7.4 \cdot 10^{-7} \) |
| \(a_{205}= -1.22805665 \pm 6.7 \cdot 10^{-7} \) | \(a_{206}= +0.80128063 \pm 6.7 \cdot 10^{-7} \) | \(a_{207}= -0.21026554 \pm 7.2 \cdot 10^{-7} \) |
| \(a_{208}= +0.52007660 \pm 7.7 \cdot 10^{-7} \) | \(a_{209}= +0.35209781 \pm 5.4 \cdot 10^{-7} \) | \(a_{210}= +2.19277092 \pm 7.3 \cdot 10^{-7} \) |
| \(a_{211}= +0.32777988 \pm 6.6 \cdot 10^{-7} \) | \(a_{212}= -0.17681214 \pm 6.9 \cdot 10^{-7} \) | \(a_{213}= +0.09225433 \pm 6.3 \cdot 10^{-7} \) |
| \(a_{214}= -1.54320202 \pm 8.7 \cdot 10^{-7} \) | \(a_{215}= +0.33238370 \pm 7.0 \cdot 10^{-7} \) | \(a_{216}= -0.80310145 \pm 6.7 \cdot 10^{-7} \) |
| \(a_{217}= -2.50764197 \pm 5.8 \cdot 10^{-7} \) | \(a_{218}= +1.07830156 \pm 7.2 \cdot 10^{-7} \) | \(a_{219}= +0.56067207 \pm 7.3 \cdot 10^{-7} \) |
| \(a_{220}= -0.09938031 \pm 8.3 \cdot 10^{-7} \) | \(a_{221}= +0.49961785 \pm 6.8 \cdot 10^{-7} \) | \(a_{222}= +0.79736357 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{223}= -0.64525406 \pm 6.0 \cdot 10^{-7} \) | \(a_{224}= -1.22482478 \pm 6.8 \cdot 10^{-7} \) | \(a_{225}= -0.06992245 \pm 7.7 \cdot 10^{-7} \) |
| \(a_{226}= -1.93091593 \pm 6.0 \cdot 10^{-7} \) | \(a_{227}= +1.09868699 \pm 7.6 \cdot 10^{-7} \) | \(a_{228}= -0.47250915 \pm 7.2 \cdot 10^{-7} \) |
| \(a_{229}= -0.17737848 \pm 6.8 \cdot 10^{-7} \) | \(a_{230}= -1.48451168 \pm 1.0 \cdot 10^{-6} \) | \(a_{231}= +0.38498284 \pm 5.7 \cdot 10^{-7} \) |
| \(a_{232}= -0.13916569 \pm 6.7 \cdot 10^{-7} \) | \(a_{233}= -0.77560515 \pm 5.5 \cdot 10^{-7} \) | \(a_{234}= -0.09489474 \pm 6.0 \cdot 10^{-7} \) |
| \(a_{235}= +0.48492925 \pm 5.6 \cdot 10^{-7} \) | \(a_{236}= +0.22832379 \pm 7.0 \cdot 10^{-7} \) | \(a_{237}= -0.17325542 \pm 6.7 \cdot 10^{-7} \) |
| \(a_{238}= -2.46868755 \pm 8.5 \cdot 10^{-7} \) | \(a_{239}= +0.00141212 \pm 5.9 \cdot 10^{-7} \) | \(a_{240}= -1.28973474 \pm 7.8 \cdot 10^{-7} \) |
| \(a_{241}= -1.75867790 \pm 6.3 \cdot 10^{-7} \) | \(a_{242}= +1.09832789 \pm 7.7 \cdot 10^{-7} \) | \(a_{243}= +0.37945606 \pm 5.0 \cdot 10^{-7} \) |
| \(a_{244}= +0.18702608 \pm 8.7 \cdot 10^{-7} \) | \(a_{245}= +2.59266676 \pm 6.0 \cdot 10^{-7} \) | \(a_{246}= +1.10084480 \pm 6.6 \cdot 10^{-7} \) |
| \(a_{247}= +0.62388989 \pm 4.9 \cdot 10^{-7} \) | \(a_{248}= +1.04717894 \pm 5.8 \cdot 10^{-7} \) | \(a_{249}= +0.92983275 \pm 5.3 \cdot 10^{-7} \) |
| \(a_{250}= +0.86612969 \pm 5.9 \cdot 10^{-7} \) | \(a_{251}= +0.68542698 \pm 6.8 \cdot 10^{-7} \) | \(a_{252}= +0.12324169 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{253}= -0.26063440 \pm 7.5 \cdot 10^{-7} \) | \(a_{254}= +0.03451293 \pm 6.1 \cdot 10^{-7} \) | \(a_{255}= -1.23899920 \pm 7.6 \cdot 10^{-7} \) |
| \(a_{256}= +0.94983523 \pm 7.0 \cdot 10^{-7} \) | \(a_{257}= -0.35471292 \pm 7.5 \cdot 10^{-7} \) | \(a_{258}= -0.29795276 \pm 6.7 \cdot 10^{-7} \) |
| \(a_{259}= +1.36731825 \pm 6.3 \cdot 10^{-7} \) | \(a_{260}= -0.17609416 \pm 7.8 \cdot 10^{-7} \) | \(a_{261}= +0.03576504 \pm 7.1 \cdot 10^{-7} \) |
| \(a_{262}= +0.92501227 \pm 6.5 \cdot 10^{-7} \) | \(a_{263}= -0.26455000 \pm 5.9 \cdot 10^{-7} \) | \(a_{264}= -0.16076694 \pm 5.1 \cdot 10^{-7} \) |
| \(a_{265}= -0.57895243 \pm 6.6 \cdot 10^{-7} \) | \(a_{266}= -3.08273454 \pm 6.0 \cdot 10^{-7} \) | \(a_{267}= +0.28710597 \pm 7.8 \cdot 10^{-7} \) |
| \(a_{268}= -0.40069350 \pm 7.4 \cdot 10^{-7} \) | \(a_{269}= -1.80252803 \pm 6.7 \cdot 10^{-7} \) | \(a_{270}= +1.45717767 \pm 8.5 \cdot 10^{-7} \) |
| \(a_{271}= +1.80131339 \pm 6.4 \cdot 10^{-7} \) | \(a_{272}= +1.45202222 \pm 6.6 \cdot 10^{-7} \) | \(a_{273}= +0.68215960 \pm 7.3 \cdot 10^{-7} \) |
| \(a_{274}= +0.42590892 \pm 8.2 \cdot 10^{-7} \) | \(a_{275}= -0.08667229 \pm 5.8 \cdot 10^{-7} \) | \(a_{276}= +0.34976684 \pm 9.3 \cdot 10^{-7} \) |
| \(a_{277}= +0.40849334 \pm 6.6 \cdot 10^{-7} \) | \(a_{278}= +1.01491696 \pm 6.8 \cdot 10^{-7} \) | \(a_{279}= -0.26912094 \pm 6.0 \cdot 10^{-7} \) |
| \(a_{280}= -1.57022488 \pm 8.1 \cdot 10^{-7} \) | \(a_{281}= +0.13101644 \pm 6.8 \cdot 10^{-7} \) | \(a_{282}= -0.43469643 \pm 7.0 \cdot 10^{-7} \) |
| \(a_{283}= +1.19416965 \pm 5.7 \cdot 10^{-7} \) | \(a_{284}= +0.03660721 \pm 5.9 \cdot 10^{-7} \) | \(a_{285}= -1.54718067 \pm 7.6 \cdot 10^{-7} \) |
| \(a_{286}= -0.11762666 \pm 4.7 \cdot 10^{-7} \) | \(a_{287}= +1.88772756 \pm 6.1 \cdot 10^{-7} \) | \(a_{288}= -0.13144859 \pm 6.9 \cdot 10^{-7} \) |
| \(a_{289}= +0.39490262 \pm 6.1 \cdot 10^{-7} \) | \(a_{290}= +0.25250749 \pm 1.5 \cdot 10^{-6} \) | \(a_{291}= -0.62460320 \pm 7.4 \cdot 10^{-7} \) |
| \(a_{292}= +0.22247889 \pm 8.0 \cdot 10^{-7} \) | \(a_{293}= -1.26095724 \pm 7.1 \cdot 10^{-7} \) | \(a_{294}= -2.32409776 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{295}= +0.74762182 \pm 5.7 \cdot 10^{-7} \) | \(a_{296}= -0.57098537 \pm 7.5 \cdot 10^{-7} \) | \(a_{297}= +0.25583539 \pm 6.3 \cdot 10^{-7} \) |
| \(a_{298}= +1.61439018 \pm 8.3 \cdot 10^{-7} \) | \(a_{299}= -0.46182385 \pm 4.6 \cdot 10^{-7} \) | \(a_{300}= +0.11631270 \pm 8.7 \cdot 10^{-7} \) |
| \(a_{301}= -0.51092909 \pm 4.9 \cdot 10^{-7} \) | \(a_{302}= -1.70150184 \pm 8.8 \cdot 10^{-7} \) | \(a_{303}= -1.10245524 \pm 9.0 \cdot 10^{-7} \) |
| \(a_{304}= +1.81318979 \pm 5.5 \cdot 10^{-7} \) | \(a_{305}= +0.61239690 \pm 7.2 \cdot 10^{-7} \) | \(a_{306}= -0.26494034 \pm 5.9 \cdot 10^{-7} \) |
| \(a_{307}= -0.59560184 \pm 5.8 \cdot 10^{-7} \) | \(a_{308}= +0.15276408 \pm 6.3 \cdot 10^{-7} \) | \(a_{309}= -0.61817361 \pm 7.4 \cdot 10^{-7} \) |
| \(a_{310}= -1.90004110 \pm 6.7 \cdot 10^{-7} \) | \(a_{311}= -1.70525393 \pm 7.0 \cdot 10^{-7} \) | \(a_{312}= -0.28486649 \pm 7.4 \cdot 10^{-7} \) |
| \(a_{313}= +0.12050606 \pm 6.2 \cdot 10^{-7} \) | \(a_{314}= -1.70642401 \pm 8.6 \cdot 10^{-7} \) | \(a_{315}= +0.40354172 \pm 6.8 \cdot 10^{-7} \) |
| \(a_{316}= -0.06874905 \pm 6.0 \cdot 10^{-7} \) | \(a_{317}= +0.52197176 \pm 6.3 \cdot 10^{-7} \) | \(a_{318}= +0.51897995 \pm 8.6 \cdot 10^{-7} \) |
| \(a_{319}= +0.04433252 \pm 6.6 \cdot 10^{-7} \) | \(a_{320}= +0.50729455 \pm 7.3 \cdot 10^{-7} \) | \(a_{321}= +1.19055263 \pm 7.3 \cdot 10^{-7} \) |
| \(a_{322}= +2.28194165 \pm 7.0 \cdot 10^{-7} \) | \(a_{323}= +1.74186260 \pm 6.1 \cdot 10^{-7} \) | \(a_{324}= -0.27465431 \pm 6.1 \cdot 10^{-7} \) |
| \(a_{325}= -0.15357654 \pm 5.5 \cdot 10^{-7} \) | \(a_{326}= +0.29764479 \pm 7.8 \cdot 10^{-7} \) | \(a_{327}= -0.83189028 \pm 7.2 \cdot 10^{-7} \) |
| \(a_{328}= -0.78830574 \pm 5.5 \cdot 10^{-7} \) | \(a_{329}= -0.74541700 \pm 5.1 \cdot 10^{-7} \) | \(a_{330}= +0.29170162 \pm 8.8 \cdot 10^{-7} \) |
| \(a_{331}= -0.43354850 \pm 7.2 \cdot 10^{-7} \) | \(a_{332}= +0.36896462 \pm 6.1 \cdot 10^{-7} \) | \(a_{333}= +0.14674103 \pm 7.7 \cdot 10^{-7} \) |
| \(a_{334}= -1.11375714 \pm 7.7 \cdot 10^{-7} \) | \(a_{335}= -1.31202799 \pm 7.0 \cdot 10^{-7} \) | \(a_{336}= +1.98253706 \pm 7.3 \cdot 10^{-7} \) |
| \(a_{337}= +0.58656365 \pm 6.0 \cdot 10^{-7} \) | \(a_{338}= +0.95628627 \pm 6.3 \cdot 10^{-7} \) | \(a_{339}= +1.48966695 \pm 4.8 \cdot 10^{-7} \) |
| \(a_{340}= -0.49164419 \pm 6.3 \cdot 10^{-7} \) | \(a_{341}= -0.33358853 \pm 5.5 \cdot 10^{-7} \) | \(a_{342}= -0.33084006 \pm 7.4 \cdot 10^{-7} \) |
| \(a_{343}= -2.19072690 \pm 7.1 \cdot 10^{-7} \) | \(a_{344}= +0.21336148 \pm 5.4 \cdot 10^{-7} \) | \(a_{345}= +1.14527409 \pm 8.6 \cdot 10^{-7} \) |
| \(a_{346}= +0.69406920 \pm 6.5 \cdot 10^{-7} \) | \(a_{347}= -0.47157803 \pm 5.7 \cdot 10^{-7} \) | \(a_{348}= -0.05949347 \pm 1.5 \cdot 10^{-6} \) |
| \(a_{349}= -0.94722541 \pm 5.5 \cdot 10^{-7} \) | \(a_{350}= +0.75884495 \pm 7.7 \cdot 10^{-7} \) | \(a_{351}= +0.45332037 \pm 5.8 \cdot 10^{-7} \) |
| \(a_{352}= -0.16293694 \pm 7.2 \cdot 10^{-7} \) | \(a_{353}= +0.73817013 \pm 7.4 \cdot 10^{-7} \) | \(a_{354}= -0.67017722 \pm 9.9 \cdot 10^{-7} \) |
| \(a_{355}= +0.11986639 \pm 5.4 \cdot 10^{-7} \) | \(a_{356}= +0.11392581 \pm 7.4 \cdot 10^{-7} \) | \(a_{357}= +1.90454808 \pm 7.0 \cdot 10^{-7} \) |
| \(a_{358}= +1.14940005 \pm 8.2 \cdot 10^{-7} \) | \(a_{359}= -1.83009134 \pm 5.2 \cdot 10^{-7} \) | \(a_{360}= -0.16851704 \pm 7.6 \cdot 10^{-7} \) |
| \(a_{361}= +1.17512337 \pm 5.5 \cdot 10^{-7} \) | \(a_{362}= -1.02216050 \pm 7.9 \cdot 10^{-7} \) | \(a_{363}= -0.84734024 \pm 6.5 \cdot 10^{-7} \) |
| \(a_{364}= +0.27068605 \pm 9.6 \cdot 10^{-7} \) | \(a_{365}= +0.72848332 \pm 7.2 \cdot 10^{-7} \) | \(a_{366}= -0.54895997 \pm 8.2 \cdot 10^{-7} \) |
| \(a_{367}= +1.48078826 \pm 7.4 \cdot 10^{-7} \) | \(a_{368}= -1.34218281 \pm 6.5 \cdot 10^{-7} \) | \(a_{369}= +0.20259153 \pm 5.0 \cdot 10^{-7} \) |
| \(a_{370}= +1.03601747 \pm 7.1 \cdot 10^{-7} \) | \(a_{371}= +0.88994629 \pm 6.2 \cdot 10^{-7} \) | \(a_{372}= +0.44767001 \pm 8.0 \cdot 10^{-7} \) |
| \(a_{373}= -0.74609417 \pm 6.6 \cdot 10^{-7} \) | \(a_{374}= -0.32840647 \pm 6.5 \cdot 10^{-7} \) | \(a_{375}= -0.66820349 \pm 7.7 \cdot 10^{-7} \) |
| \(a_{376}= +0.31128247 \pm 4.7 \cdot 10^{-7} \) | \(a_{377}= +0.07855376 \pm 6.3 \cdot 10^{-7} \) | \(a_{378}= -2.23992471 \pm 8.0 \cdot 10^{-7} \) |
| \(a_{379}= +1.05039391 \pm 6.5 \cdot 10^{-7} \) | \(a_{380}= -0.61393291 \pm 6.6 \cdot 10^{-7} \) | \(a_{381}= -0.02662611 \pm 6.2 \cdot 10^{-7} \) |
| \(a_{382}= +0.41663289 \pm 8.3 \cdot 10^{-7} \) | \(a_{383}= -0.44793422 \pm 6.3 \cdot 10^{-7} \) | \(a_{384}= -1.06800174 \pm 7.9 \cdot 10^{-7} \) |
| \(a_{385}= +0.50020965 \pm 5.9 \cdot 10^{-7} \) | \(a_{386}= -0.71273509 \pm 6.8 \cdot 10^{-7} \) | \(a_{387}= -0.05483307 \pm 5.7 \cdot 10^{-7} \) |
| \(a_{388}= -0.24784724 \pm 8.2 \cdot 10^{-7} \) | \(a_{389}= -0.75051012 \pm 6.8 \cdot 10^{-7} \) | \(a_{390}= +0.51687254 \pm 6.3 \cdot 10^{-7} \) |
| \(a_{391}= -1.28938407 \pm 6.1 \cdot 10^{-7} \) | \(a_{392}= +1.66426694 \pm 7.1 \cdot 10^{-7} \) | \(a_{393}= -0.71363035 \pm 5.2 \cdot 10^{-7} \) |
| \(a_{394}= +0.57587490 \pm 9.4 \cdot 10^{-7} \) | \(a_{395}= -0.22511141 \pm 6.7 \cdot 10^{-7} \) | \(a_{396}= +0.01639469 \pm 8.8 \cdot 10^{-7} \) |
| \(a_{397}= -1.08385178 \pm 5.8 \cdot 10^{-7} \) | \(a_{398}= +1.95919678 \pm 7.7 \cdot 10^{-7} \) | \(a_{399}= +2.37827431 \pm 5.6 \cdot 10^{-7} \) |
| \(a_{400}= -0.44633422 \pm 5.5 \cdot 10^{-7} \) | \(a_{401}= +0.94469952 \pm 6.1 \cdot 10^{-7} \) | \(a_{402}= +1.17611772 \pm 7.0 \cdot 10^{-7} \) |
| \(a_{403}= -0.59109288 \pm 4.3 \cdot 10^{-7} \) | \(a_{404}= -0.43746252 \pm 6.8 \cdot 10^{-7} \) | \(a_{405}= -0.89932616 \pm 5.7 \cdot 10^{-7} \) |
| \(a_{406}= -0.38814606 \pm 1.4 \cdot 10^{-6} \) | \(a_{407}= +0.18189267 \pm 6.7 \cdot 10^{-7} \) | \(a_{408}= -0.79532990 \pm 5.5 \cdot 10^{-7} \) |
| \(a_{409}= +0.84891875 \pm 6.3 \cdot 10^{-7} \) | \(a_{410}= +1.43033176 \pm 9.0 \cdot 10^{-7} \) | \(a_{411}= -0.32858108 \pm 8.6 \cdot 10^{-7} \) |
| \(a_{412}= -0.24529593 \pm 7.4 \cdot 10^{-7} \) | \(a_{413}= -1.14921923 \pm 5.9 \cdot 10^{-7} \) | \(a_{414}= +0.24489871 \pm 9.9 \cdot 10^{-7} \) |
| \(a_{415}= +1.20813517 \pm 5.6 \cdot 10^{-7} \) | \(a_{416}= -0.28871155 \pm 6.9 \cdot 10^{-7} \) | \(a_{417}= -0.78299020 \pm 7.9 \cdot 10^{-7} \) |
| \(a_{418}= -0.41009239 \pm 5.3 \cdot 10^{-7} \) | \(a_{419}= -1.28608137 \pm 6.3 \cdot 10^{-7} \) | \(a_{420}= -0.67127266 \pm 7.0 \cdot 10^{-7} \) |
| \(a_{421}= +0.51464036 \pm 6.1 \cdot 10^{-7} \) | \(a_{422}= -0.38176901 \pm 8.1 \cdot 10^{-7} \) | \(a_{423}= -0.07999839 \pm 6.4 \cdot 10^{-7} \) |
| \(a_{424}= -0.37163719 \pm 5.4 \cdot 10^{-7} \) | \(a_{425}= -0.42877634 \pm 6.4 \cdot 10^{-7} \) | \(a_{426}= -0.10744968 \pm 6.6 \cdot 10^{-7} \) |
| \(a_{427}= -0.94135601 \pm 7.5 \cdot 10^{-7} \) | \(a_{428}= +0.47242022 \pm 8.3 \cdot 10^{-7} \) | \(a_{429}= +0.09074685 \pm 5.6 \cdot 10^{-7} \) |
| \(a_{430}= -0.38713114 \pm 9.0 \cdot 10^{-7} \) | \(a_{431}= +0.08748208 \pm 6.3 \cdot 10^{-7} \) | \(a_{432}= +1.31746946 \pm 7.1 \cdot 10^{-7} \) |
| \(a_{433}= +0.15170558 \pm 6.0 \cdot 10^{-7} \) | \(a_{434}= +2.92067955 \pm 7.7 \cdot 10^{-7} \) | \(a_{435}= -0.19480499 \pm 1.4 \cdot 10^{-6} \) |
| \(a_{436}= -0.33010031 \pm 7.9 \cdot 10^{-7} \) | \(a_{437}= -1.61009797 \pm 6.2 \cdot 10^{-7} \) | \(a_{438}= -0.65302124 \pm 8.4 \cdot 10^{-7} \) |
| \(a_{439}= -1.32599506 \pm 7.0 \cdot 10^{-7} \) | \(a_{440}= -0.20888509 \pm 5.6 \cdot 10^{-7} \) | \(a_{441}= -0.42771017 \pm 7.3 \cdot 10^{-7} \) |
| \(a_{442}= -0.58191068 \pm 5.7 \cdot 10^{-7} \) | \(a_{443}= -1.41816439 \pm 6.8 \cdot 10^{-7} \) | \(a_{444}= -0.24409680 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{445}= +0.37303786 \pm 5.8 \cdot 10^{-7} \) | \(a_{446}= +0.75153485 \pm 7.8 \cdot 10^{-7} \) | \(a_{447}= -1.24547302 \pm 8.8 \cdot 10^{-7} \) |
| \(a_{448}= -0.77979620 \pm 7.5 \cdot 10^{-7} \) | \(a_{449}= +0.37474430 \pm 5.8 \cdot 10^{-7} \) | \(a_{450}= +0.08143948 \pm 8.4 \cdot 10^{-7} \) |
| \(a_{451}= +0.25112208 \pm 4.9 \cdot 10^{-7} \) | \(a_{452}= +0.59111103 \pm 5.5 \cdot 10^{-7} \) | \(a_{453}= +1.31267810 \pm 8.6 \cdot 10^{-7} \) |
| \(a_{454}= -1.27965342 \pm 8.0 \cdot 10^{-7} \) | \(a_{455}= +0.88633252 \pm 7.1 \cdot 10^{-7} \) | \(a_{456}= -0.99315564 \pm 6.4 \cdot 10^{-7} \) |
| \(a_{457}= -1.24203034 \pm 6.2 \cdot 10^{-7} \) | \(a_{458}= +0.20659476 \pm 9.1 \cdot 10^{-7} \) | \(a_{459}= +1.26564290 \pm 6.4 \cdot 10^{-7} \) |
| \(a_{460}= +0.45445336 \pm 9.7 \cdot 10^{-7} \) | \(a_{461}= +1.08280666 \pm 6.1 \cdot 10^{-7} \) | \(a_{462}= -0.44839396 \pm 6.5 \cdot 10^{-7} \) |
| \(a_{463}= +0.20767210 \pm 6.7 \cdot 10^{-7} \) | \(a_{464}= +0.22829811 \pm 7.0 \cdot 10^{-7} \) | \(a_{465}= +1.46584757 \pm 6.9 \cdot 10^{-7} \) |
| \(a_{466}= +0.90335628 \pm 6.6 \cdot 10^{-7} \) | \(a_{467}= +0.71618552 \pm 6.4 \cdot 10^{-7} \) | \(a_{468}= +0.02905011 \pm 6.9 \cdot 10^{-7} \) |
| \(a_{469}= +2.01680549 \pm 5.4 \cdot 10^{-7} \) | \(a_{470}= -0.56480269 \pm 6.3 \cdot 10^{-7} \) | \(a_{471}= +1.31647546 \pm 6.5 \cdot 10^{-7} \) |
| \(a_{472}= +0.47990829 \pm 5.5 \cdot 10^{-7} \) | \(a_{473}= -0.06796827 \pm 6.4 \cdot 10^{-7} \) | \(a_{474}= +0.20179259 \pm 7.2 \cdot 10^{-7} \) |
| \(a_{475}= -0.53542768 \pm 5.6 \cdot 10^{-7} \) | \(a_{476}= +0.75573898 \pm 7.9 \cdot 10^{-7} \) | \(a_{477}= +0.09550932 \pm 5.9 \cdot 10^{-7} \) |
| \(a_{478}= -0.00164471 \pm 5.6 \cdot 10^{-7} \) | \(a_{479}= +1.72796133 \pm 7.4 \cdot 10^{-7} \) | \(a_{480}= +0.71597399 \pm 7.3 \cdot 10^{-7} \) |
| \(a_{481}= +0.32229963 \pm 6.1 \cdot 10^{-7} \) | \(a_{482}= +2.04835246 \pm 6.3 \cdot 10^{-7} \) | \(a_{483}= -1.76047698 \pm 5.7 \cdot 10^{-7} \) |
| \(a_{484}= -0.33623097 \pm 7.4 \cdot 10^{-7} \) | \(a_{485}= -0.81154928 \pm 6.1 \cdot 10^{-7} \) | \(a_{486}= -0.44195686 \pm 6.1 \cdot 10^{-7} \) |
| \(a_{487}= +1.47727514 \pm 7.2 \cdot 10^{-7} \) | \(a_{488}= +0.39310564 \pm 7.7 \cdot 10^{-7} \) | \(a_{489}= -0.22962761 \pm 5.9 \cdot 10^{-7} \) |
| \(a_{490}= -3.01970892 \pm 8.7 \cdot 10^{-7} \) | \(a_{491}= -0.19619702 \pm 7.3 \cdot 10^{-7} \) | \(a_{492}= -0.33700147 \pm 6.4 \cdot 10^{-7} \) |
| \(a_{493}= +0.21931733 \pm 7.1 \cdot 10^{-7} \) | \(a_{494}= -0.72665176 \pm 4.4 \cdot 10^{-7} \) | \(a_{495}= +0.05368266 \pm 6.8 \cdot 10^{-7} \) |
| \(a_{496}= -1.71787297 \pm 7.0 \cdot 10^{-7} \) | \(a_{497}= -0.18425461 \pm 5.9 \cdot 10^{-7} \) | \(a_{498}= -1.08298694 \pm 5.3 \cdot 10^{-7} \) |
| \(a_{499}= +0.95217366 \pm 6.0 \cdot 10^{-7} \) | \(a_{500}= -0.26514816 \pm 6.5 \cdot 10^{-7} \) | \(a_{501}= +0.85924362 \pm 6.7 \cdot 10^{-7} \) |
| \(a_{502}= -0.79832471 \pm 7.8 \cdot 10^{-7} \) | \(a_{503}= +1.40359775 \pm 6.1 \cdot 10^{-7} \) | \(a_{504}= +0.25903875 \pm 7.9 \cdot 10^{-7} \) |
| \(a_{505}= -1.43242422 \pm 7.1 \cdot 10^{-7} \) | \(a_{506}= +0.30356389 \pm 1.0 \cdot 10^{-6} \) | \(a_{507}= -0.73775768 \pm 7.3 \cdot 10^{-7} \) |
| \(a_{508}= -0.01056544 \pm 6.9 \cdot 10^{-7} \) | \(a_{509}= -1.39270583 \pm 5.5 \cdot 10^{-7} \) | \(a_{510}= +1.44307668 \pm 6.8 \cdot 10^{-7} \) |
| \(a_{511}= -1.11980017 \pm 6.1 \cdot 10^{-7} \) | \(a_{512}= +0.08229416 \pm 5.8 \cdot 10^{-7} \) | \(a_{513}= +1.58045155 \pm 5.5 \cdot 10^{-7} \) |
| \(a_{514}= +0.41313823 \pm 9.0 \cdot 10^{-7} \) | \(a_{515}= -0.80319528 \pm 4.5 \cdot 10^{-7} \) | \(a_{516}= +0.09121224 \pm 7.4 \cdot 10^{-7} \) |
| \(a_{517}= -0.09916191 \pm 5.8 \cdot 10^{-7} \) | \(a_{518}= -1.59253135 \pm 9.4 \cdot 10^{-7} \) | \(a_{519}= -0.53546192 \pm 5.4 \cdot 10^{-7} \) |
| \(a_{520}= -0.37012810 \pm 7.8 \cdot 10^{-7} \) | \(a_{521}= +0.45484701 \pm 6.7 \cdot 10^{-7} \) | \(a_{522}= -0.04165596 \pm 1.5 \cdot 10^{-6} \) |
| \(a_{523}= +0.03361120 \pm 6.8 \cdot 10^{-7} \) | \(a_{524}= -0.28317388 \pm 5.7 \cdot 10^{-7} \) | \(a_{525}= -0.58543525 \pm 6.3 \cdot 10^{-7} \) |
| \(a_{526}= +0.30812444 \pm 7.1 \cdot 10^{-7} \) | \(a_{527}= -1.65029535 \pm 6.8 \cdot 10^{-7} \) | \(a_{528}= +0.26373447 \pm 6.6 \cdot 10^{-7} \) |
| \(a_{529}= +0.19184755 \pm 6.7 \cdot 10^{-7} \) | \(a_{530}= +0.67431258 \pm 8.3 \cdot 10^{-7} \) | \(a_{531}= -0.12333458 \pm 6.8 \cdot 10^{-7} \) |
| \(a_{532}= +0.94371710 \pm 5.2 \cdot 10^{-7} \) | \(a_{533}= +0.44496875 \pm 4.9 \cdot 10^{-7} \) | \(a_{534}= -0.33439564 \pm 9.7 \cdot 10^{-7} \) |
| \(a_{535}= +1.54688949 \pm 6.0 \cdot 10^{-7} \) | \(a_{536}= -0.84220804 \pm 5.9 \cdot 10^{-7} \) | \(a_{537}= -0.88674149 \pm 8.0 \cdot 10^{-7} \) |
| \(a_{538}= +2.09942520 \pm 7.6 \cdot 10^{-7} \) | \(a_{539}= -0.53016761 \pm 5.3 \cdot 10^{-7} \) | \(a_{540}= -0.44608560 \pm 8.5 \cdot 10^{-7} \) |
| \(a_{541}= -1.52424175 \pm 6.7 \cdot 10^{-7} \) | \(a_{542}= -2.09801051 \pm 7.2 \cdot 10^{-7} \) | \(a_{543}= +0.78857846 \pm 7.1 \cdot 10^{-7} \) |
| \(a_{544}= -0.80606509 \pm 5.9 \cdot 10^{-7} \) | \(a_{545}= -1.08087815 \pm 6.8 \cdot 10^{-7} \) | \(a_{546}= -0.79451916 \pm 8.4 \cdot 10^{-7} \) |
| \(a_{547}= +0.39304878 \pm 5.8 \cdot 10^{-7} \) | \(a_{548}= -0.13038344 \pm 7.9 \cdot 10^{-7} \) | \(a_{549}= -0.10102663 \pm 6.5 \cdot 10^{-7} \) |
| \(a_{550}= +0.10094821 \pm 7.8 \cdot 10^{-7} \) | \(a_{551}= +0.27386905 \pm 5.8 \cdot 10^{-7} \) | \(a_{552}= +0.73516652 \pm 7.5 \cdot 10^{-7} \) |
| \(a_{553}= +0.34603373 \pm 6.1 \cdot 10^{-7} \) | \(a_{554}= -0.47577692 \pm 7.9 \cdot 10^{-7} \) | \(a_{555}= -0.79926886 \pm 6.0 \cdot 10^{-7} \) |
| \(a_{556}= -0.31069639 \pm 7.6 \cdot 10^{-7} \) | \(a_{557}= +1.29328178 \pm 7.2 \cdot 10^{-7} \) | \(a_{558}= +0.31344826 \pm 7.9 \cdot 10^{-7} \) |
| \(a_{559}= -0.12043448 \pm 5.6 \cdot 10^{-7} \) | \(a_{560}= +2.57591781 \pm 7.8 \cdot 10^{-7} \) | \(a_{561}= +0.25335969 \pm 5.2 \cdot 10^{-7} \) |
| \(a_{562}= -0.15259635 \pm 9.3 \cdot 10^{-7} \) | \(a_{563}= +0.89004159 \pm 8.2 \cdot 10^{-7} \) | \(a_{564}= +0.13307356 \pm 6.5 \cdot 10^{-7} \) |
| \(a_{565}= +1.93552984 \pm 5.6 \cdot 10^{-7} \) | \(a_{566}= -1.39086318 \pm 6.8 \cdot 10^{-7} \) | \(a_{567}= +1.38241406 \pm 5.2 \cdot 10^{-7} \) |
| \(a_{568}= +0.07694382 \pm 5.4 \cdot 10^{-7} \) | \(a_{569}= +0.08012444 \pm 7.2 \cdot 10^{-7} \) | \(a_{570}= +1.80201919 \pm 8.9 \cdot 10^{-7} \) |
| \(a_{571}= +0.05847525 \pm 7.2 \cdot 10^{-7} \) | \(a_{572}= +0.03600903 \pm 5.1 \cdot 10^{-7} \) | \(a_{573}= -0.32142479 \pm 5.5 \cdot 10^{-7} \) |
| \(a_{574}= -2.19865809 \pm 8.2 \cdot 10^{-7} \) | \(a_{575}= +0.39634120 \pm 6.9 \cdot 10^{-7} \) | \(a_{576}= -0.08368798 \pm 7.4 \cdot 10^{-7} \) |
| \(a_{577}= +0.68841875 \pm 6.5 \cdot 10^{-7} \) | \(a_{578}= -0.45994765 \pm 7.1 \cdot 10^{-7} \) | \(a_{579}= +0.54986231 \pm 7.3 \cdot 10^{-7} \) |
| \(a_{580}= -0.07730008 \pm 1.5 \cdot 10^{-6} \) | \(a_{581}= -1.85710492 \pm 5.6 \cdot 10^{-7} \) | \(a_{582}= +0.72748256 \pm 9.9 \cdot 10^{-7} \) |
| \(a_{583}= +0.11838846 \pm 5.9 \cdot 10^{-7} \) | \(a_{584}= +0.46762304 \pm 6.8 \cdot 10^{-7} \) | \(a_{585}= +0.09512149 \pm 6.1 \cdot 10^{-7} \) |
| \(a_{586}= +1.46865146 \pm 8.5 \cdot 10^{-7} \) | \(a_{587}= +0.55920256 \pm 7.1 \cdot 10^{-7} \) | \(a_{588}= +0.71147573 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{589}= -2.06078022 \pm 5.7 \cdot 10^{-7} \) | \(a_{590}= -0.87076377 \pm 6.3 \cdot 10^{-7} \) | \(a_{591}= -0.44427713 \pm 7.6 \cdot 10^{-7} \) |
| \(a_{592}= +0.93668837 \pm 7.5 \cdot 10^{-7} \) | \(a_{593}= -0.11957744 \pm 6.2 \cdot 10^{-7} \) | \(a_{594}= -0.29797443 \pm 8.4 \cdot 10^{-7} \) |
| \(a_{595}= +2.47458645 \pm 7.0 \cdot 10^{-7} \) | \(a_{596}= -0.49421305 \pm 9.1 \cdot 10^{-7} \) | \(a_{597}= -1.51148511 \pm 7.3 \cdot 10^{-7} \) |
| \(a_{598}= +0.53789157 \pm 5.6 \cdot 10^{-7} \) | \(a_{599}= -0.31757807 \pm 7.1 \cdot 10^{-7} \) | \(a_{600}= +0.24447488 \pm 6.9 \cdot 10^{-7} \) |
| \(a_{601}= -1.04823101 \pm 6.4 \cdot 10^{-7} \) | \(a_{602}= +0.59508502 \pm 6.0 \cdot 10^{-7} \) | \(a_{603}= +0.21644421 \pm 5.2 \cdot 10^{-7} \) |
| \(a_{604}= +0.52088053 \pm 8.2 \cdot 10^{-7} \) | \(a_{605}= -1.10095234 \pm 6.1 \cdot 10^{-7} \) | \(a_{606}= +1.28404235 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{607}= -0.80982226 \pm 6.1 \cdot 10^{-7} \) | \(a_{608}= -1.00656103 \pm 5.2 \cdot 10^{-7} \) | \(a_{609}= +0.29944771 \pm 1.4 \cdot 10^{-6} \) |
| \(a_{610}= -0.71326575 \pm 9.6 \cdot 10^{-7} \) | \(a_{611}= -0.17570717 \pm 3.9 \cdot 10^{-7} \) | \(a_{612}= +0.08110615 \pm 6.1 \cdot 10^{-7} \) |
| \(a_{613}= +0.07318556 \pm 6.5 \cdot 10^{-7} \) | \(a_{614}= +0.69370434 \pm 6.8 \cdot 10^{-7} \) | \(a_{615}= -1.10347526 \pm 6.1 \cdot 10^{-7} \) |
| \(a_{616}= +0.32109116 \pm 4.2 \cdot 10^{-7} \) | \(a_{617}= +0.31745223 \pm 6.7 \cdot 10^{-7} \) | \(a_{618}= +0.71999394 \pm 9.9 \cdot 10^{-7} \) |
| \(a_{619}= -0.69590892 \pm 5.8 \cdot 10^{-7} \) | \(a_{620}= +0.58165932 \pm 5.6 \cdot 10^{-7} \) | \(a_{621}= -1.16990230 \pm 7.4 \cdot 10^{-7} \) |
| \(a_{622}= +1.98612895 \pm 8.6 \cdot 10^{-7} \) | \(a_{623}= -0.57342131 \pm 5.9 \cdot 10^{-7} \) | \(a_{624}= +0.46731693 \pm 7.5 \cdot 10^{-7} \) |
| \(a_{625}= -1.23124296 \pm 6.0 \cdot 10^{-7} \) | \(a_{626}= -0.14035480 \pm 7.2 \cdot 10^{-7} \) | \(a_{627}= +0.31637891 \pm 5.7 \cdot 10^{-7} \) |
| \(a_{628}= +0.52238735 \pm 8.4 \cdot 10^{-7} \) | \(a_{629}= +0.89984096 \pm 5.5 \cdot 10^{-7} \) | \(a_{630}= -0.47000970 \pm 8.4 \cdot 10^{-7} \) |
| \(a_{631}= +1.92578327 \pm 6.3 \cdot 10^{-7} \) | \(a_{632}= -0.14450198 \pm 5.4 \cdot 10^{-7} \) | \(a_{633}= +0.29452793 \pm 7.7 \cdot 10^{-7} \) |
| \(a_{634}= -0.60794654 \pm 7.3 \cdot 10^{-7} \) | \(a_{635}= -0.03459540 \pm 5.4 \cdot 10^{-7} \) | \(a_{636}= -0.15887526 \pm 8.4 \cdot 10^{-7} \) |
| \(a_{637}= -0.93941570 \pm 4.9 \cdot 10^{-7} \) | \(a_{638}= -0.05163459 \pm 1.4 \cdot 10^{-6} \) | \(a_{639}= -0.01977426 \pm 5.8 \cdot 10^{-7} \) |
| \(a_{640}= -1.38765866 \pm 8.0 \cdot 10^{-7} \) | \(a_{641}= +0.86806960 \pm 6.5 \cdot 10^{-7} \) | \(a_{642}= -1.38665040 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{643}= +1.85253245 \pm 6.0 \cdot 10^{-7} \) | \(a_{644}= -0.69857048 \pm 5.5 \cdot 10^{-7} \) | \(a_{645}= +0.29866471 \pm 7.6 \cdot 10^{-7} \) |
| \(a_{646}= -2.02876748 \pm 5.4 \cdot 10^{-7} \) | \(a_{647}= -1.01357847 \pm 7.5 \cdot 10^{-7} \) | \(a_{648}= -0.57728930 \pm 5.6 \cdot 10^{-7} \) |
| \(a_{649}= -0.15287922 \pm 5.8 \cdot 10^{-7} \) | \(a_{650}= +0.17887237 \pm 6.2 \cdot 10^{-7} \) | \(a_{651}= -2.25325180 \pm 6.1 \cdot 10^{-7} \) |
| \(a_{652}= -0.09111796 \pm 8.8 \cdot 10^{-7} \) | \(a_{653}= -1.23946956 \pm 6.2 \cdot 10^{-7} \) | \(a_{654}= +0.96891221 \pm 7.5 \cdot 10^{-7} \) |
| \(a_{655}= -0.92722258 \pm 6.0 \cdot 10^{-7} \) | \(a_{656}= +1.29319744 \pm 6.4 \cdot 10^{-7} \) | \(a_{657}= -0.12017731 \pm 6.6 \cdot 10^{-7} \) |
| \(a_{658}= +0.86819579 \pm 5.8 \cdot 10^{-7} \) | \(a_{659}= +0.57112288 \pm 6.5 \cdot 10^{-7} \) | \(a_{660}= -0.08929858 \pm 8.1 \cdot 10^{-7} \) |
| \(a_{661}= +0.47933225 \pm 6.5 \cdot 10^{-7} \) | \(a_{662}= +0.50495894 \pm 9.0 \cdot 10^{-7} \) | \(a_{663}= +0.44893363 \pm 7.5 \cdot 10^{-7} \) |
| \(a_{664}= +0.77551787 \pm 5.7 \cdot 10^{-7} \) | \(a_{665}= +3.09010070 \pm 6.1 \cdot 10^{-7} \) | \(a_{666}= -0.17091097 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{667}= -0.20272689 \pm 6.9 \cdot 10^{-7} \) | \(a_{668}= +0.34095432 \pm 7.4 \cdot 10^{-7} \) | \(a_{669}= -0.57979563 \pm 7.6 \cdot 10^{-7} \) |
| \(a_{670}= +1.52813415 \pm 9.4 \cdot 10^{-7} \) | \(a_{671}= -0.12522743 \pm 6.0 \cdot 10^{-7} \) | \(a_{672}= -1.10057125 \pm 6.8 \cdot 10^{-7} \) |
| \(a_{673}= -1.60668750 \pm 7.9 \cdot 10^{-7} \) | \(a_{674}= -0.68317746 \pm 7.6 \cdot 10^{-7} \) | \(a_{675}= -0.38904345 \pm 7.1 \cdot 10^{-7} \) |
| \(a_{676}= -0.29274779 \pm 7.0 \cdot 10^{-7} \) | \(a_{677}= +0.11526059 \pm 5.7 \cdot 10^{-7} \) | \(a_{678}= -1.73503230 \pm 5.3 \cdot 10^{-7} \) |
| \(a_{679}= +1.24748637 \pm 6.6 \cdot 10^{-7} \) | \(a_{680}= -1.03337512 \pm 5.6 \cdot 10^{-7} \) | \(a_{681}= +0.98722962 \pm 8.4 \cdot 10^{-7} \) |
| \(a_{682}= +0.38853441 \pm 7.0 \cdot 10^{-7} \) | \(a_{683}= -0.89686929 \pm 5.7 \cdot 10^{-7} \) | \(a_{684}= +0.10128002 \pm 7.6 \cdot 10^{-7} \) |
| \(a_{685}= -0.42692662 \pm 5.9 \cdot 10^{-7} \) | \(a_{686}= +2.55156492 \pm 8.8 \cdot 10^{-7} \) | \(a_{687}= -0.15938414 \pm 8.2 \cdot 10^{-7} \) |
| \(a_{688}= -0.35001459 \pm 4.9 \cdot 10^{-7} \) | \(a_{689}= +0.20977513 \pm 6.1 \cdot 10^{-7} \) | \(a_{690}= -1.33391396 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{691}= -1.85279397 \pm 6.1 \cdot 10^{-7} \) | \(a_{692}= -0.21247531 \pm 6.4 \cdot 10^{-7} \) | \(a_{693}= -0.08251919 \pm 6.1 \cdot 10^{-7} \) |
| \(a_{694}= +0.54925238 \pm 7.4 \cdot 10^{-7} \) | \(a_{695}= -1.01734209 \pm 6.9 \cdot 10^{-7} \) | \(a_{696}= -0.12504789 \pm 1.4 \cdot 10^{-6} \) |
| \(a_{697}= +1.24232568 \pm 7.2 \cdot 10^{-7} \) | \(a_{698}= +1.10324438 \pm 6.8 \cdot 10^{-7} \) | \(a_{699}= -0.69692314 \pm 6.2 \cdot 10^{-7} \) |
| \(a_{700}= -0.23230510 \pm 8.0 \cdot 10^{-7} \) | \(a_{701}= -0.88965078 \pm 6.4 \cdot 10^{-7} \) | \(a_{702}= -0.52798747 \pm 6.6 \cdot 10^{-7} \) |
| \(a_{703}= +1.12366217 \pm 4.7 \cdot 10^{-7} \) | \(a_{704}= -0.10373533 \pm 7.2 \cdot 10^{-7} \) | \(a_{705}= +0.43573513 \pm 6.9 \cdot 10^{-7} \) |
| \(a_{706}= -0.85975527 \pm 9.6 \cdot 10^{-7} \) | \(a_{707}= +2.20187453 \pm 5.7 \cdot 10^{-7} \) | \(a_{708}= +0.20516126 \pm 9.5 \cdot 10^{-7} \) |
| \(a_{709}= +1.66438897 \pm 6.9 \cdot 10^{-7} \) | \(a_{710}= -0.13960977 \pm 5.3 \cdot 10^{-7} \) | \(a_{711}= +0.03713645 \pm 5.8 \cdot 10^{-7} \) |
| \(a_{712}= +0.23945792 \pm 6.6 \cdot 10^{-7} \) | \(a_{713}= +1.52545740 \pm 6.4 \cdot 10^{-7} \) | \(a_{714}= -2.21824914 \pm 8.6 \cdot 10^{-7} \) |
| \(a_{715}= +0.11790773 \pm 5.2 \cdot 10^{-7} \) | \(a_{716}= -0.35186568 \pm 7.2 \cdot 10^{-7} \) | \(a_{717}= +0.00126887 \pm 7.5 \cdot 10^{-7} \) |
| \(a_{718}= +2.13152851 \pm 6.9 \cdot 10^{-7} \) | \(a_{719}= -0.90393044 \pm 5.5 \cdot 10^{-7} \) | \(a_{720}= +0.27644832 \pm 6.6 \cdot 10^{-7} \) |
| \(a_{721}= +1.23464489 \pm 5.9 \cdot 10^{-7} \) | \(a_{722}= -1.36867976 \pm 7.0 \cdot 10^{-7} \) | \(a_{723}= -1.58026712 \pm 7.5 \cdot 10^{-7} \) |
| \(a_{724}= +0.31291386 \pm 8.4 \cdot 10^{-7} \) | \(a_{725}= -0.06741552 \pm 6.6 \cdot 10^{-7} \) | \(a_{726}= +0.98690696 \pm 8.8 \cdot 10^{-7} \) |
| \(a_{727}= -1.02197356 \pm 5.8 \cdot 10^{-7} \) | \(a_{728}= +0.56894852 \pm 8.9 \cdot 10^{-7} \) | \(a_{729}= +1.11126611 \pm 7.1 \cdot 10^{-7} \) |
| \(a_{730}= -0.84847294 \pm 8.8 \cdot 10^{-7} \) | \(a_{731}= -0.33624573 \pm 6.0 \cdot 10^{-7} \) | \(a_{732}= +0.16805304 \pm 8.6 \cdot 10^{-7} \) |
| \(a_{733}= -0.22285938 \pm 7.6 \cdot 10^{-7} \) | \(a_{734}= -1.72469119 \pm 7.5 \cdot 10^{-7} \) | \(a_{735}= +2.32965117 \pm 5.3 \cdot 10^{-7} \) |
| \(a_{736}= +0.74508963 \pm 7.4 \cdot 10^{-7} \) | \(a_{737}= +0.26829316 \pm 6.1 \cdot 10^{-7} \) | \(a_{738}= -0.23596069 \pm 6.6 \cdot 10^{-7} \) |
| \(a_{739}= -0.03280503 \pm 7.0 \cdot 10^{-7} \) | \(a_{740}= -0.31715589 \pm 7.3 \cdot 10^{-7} \) | \(a_{741}= +0.56059877 \pm 5.4 \cdot 10^{-7} \) |
| \(a_{742}= -1.03653072 \pm 7.8 \cdot 10^{-7} \) | \(a_{743}= +0.31012699 \pm 6.0 \cdot 10^{-7} \) | \(a_{744}= +0.94094686 \pm 6.4 \cdot 10^{-7} \) |
| \(a_{745}= -1.61824775 \pm 7.2 \cdot 10^{-7} \) | \(a_{746}= +0.86898450 \pm 7.8 \cdot 10^{-7} \) | \(a_{747}= -0.19930509 \pm 4.6 \cdot 10^{-7} \) |
| \(a_{748}= +0.10053503 \pm 5.8 \cdot 10^{-7} \) | \(a_{749}= -2.37782672 \pm 7.3 \cdot 10^{-7} \) | \(a_{750}= +0.77826432 \pm 6.7 \cdot 10^{-7} \) |
| \(a_{751}= -0.12489191 \pm 7.0 \cdot 10^{-7} \) | \(a_{752}= -0.51065173 \pm 5.5 \cdot 10^{-7} \) | \(a_{753}= +0.61589317 \pm 7.5 \cdot 10^{-7} \) |
| \(a_{754}= -0.09149248 \pm 1.4 \cdot 10^{-6} \) | \(a_{755}= +1.70556756 \pm 7.2 \cdot 10^{-7} \) | \(a_{756}= +0.68570785 \pm 8.0 \cdot 10^{-7} \) |
| \(a_{757}= +0.54826668 \pm 4.4 \cdot 10^{-7} \) | \(a_{758}= -1.22340592 \pm 8.0 \cdot 10^{-7} \) | \(a_{759}= -0.23419409 \pm 8.3 \cdot 10^{-7} \) |
| \(a_{760}= -1.29041084 \pm 6.5 \cdot 10^{-7} \) | \(a_{761}= +0.06154088 \pm 5.1 \cdot 10^{-7} \) | \(a_{762}= +0.03101174 \pm 6.8 \cdot 10^{-7} \) |
| \(a_{763}= +1.66148969 \pm 6.8 \cdot 10^{-7} \) | \(a_{764}= -0.12754377 \pm 7.5 \cdot 10^{-7} \) | \(a_{765}= +0.26557341 \pm 5.5 \cdot 10^{-7} \) |
| \(a_{766}= +0.52171416 \pm 7.9 \cdot 10^{-7} \) | \(a_{767}= -0.27089007 \pm 5.0 \cdot 10^{-7} \) | \(a_{768}= +0.85347827 \pm 7.9 \cdot 10^{-7} \) |
| \(a_{769}= -0.66054806 \pm 5.8 \cdot 10^{-7} \) | \(a_{770}= -0.58259995 \pm 7.7 \cdot 10^{-7} \) | \(a_{771}= -0.31872872 \pm 9.1 \cdot 10^{-7} \) |
| \(a_{772}= +0.21818950 \pm 7.3 \cdot 10^{-7} \) | \(a_{773}= +0.64956883 \pm 7.8 \cdot 10^{-7} \) | \(a_{774}= +0.06386471 \pm 6.0 \cdot 10^{-7} \) |
| \(a_{775}= +0.50728100 \pm 5.8 \cdot 10^{-7} \) | \(a_{776}= -0.52094417 \pm 7.0 \cdot 10^{-7} \) | \(a_{777}= +1.22860932 \pm 7.7 \cdot 10^{-7} \) |
| \(a_{778}= +0.87412780 \pm 8.2 \cdot 10^{-7} \) | \(a_{779}= +1.55133455 \pm 5.7 \cdot 10^{-7} \) | \(a_{780}= -0.15823012 \pm 7.5 \cdot 10^{-7} \) |
| \(a_{781}= -0.02451116 \pm 4.6 \cdot 10^{-7} \) | \(a_{782}= +1.50176051 \pm 6.7 \cdot 10^{-7} \) | \(a_{783}= +0.19899412 \pm 6.7 \cdot 10^{-7} \) |
| \(a_{784}= -2.73019164 \pm 5.5 \cdot 10^{-7} \) | \(a_{785}= +1.71050149 \pm 7.2 \cdot 10^{-7} \) | \(a_{786}= +0.83117350 \pm 5.6 \cdot 10^{-7} \) |
| \(a_{787}= -0.21836174 \pm 6.9 \cdot 10^{-7} \) | \(a_{788}= -0.17629250 \pm 8.3 \cdot 10^{-7} \) | \(a_{789}= -0.23771247 \pm 7.7 \cdot 10^{-7} \) |
| \(a_{790}= +0.26218986 \pm 7.4 \cdot 10^{-7} \) | \(a_{791}= -2.97523165 \pm 5.3 \cdot 10^{-7} \) | \(a_{792}= +0.03445961 \pm 5.6 \cdot 10^{-7} \) |
| \(a_{793}= -0.22189325 \pm 6.7 \cdot 10^{-7} \) | \(a_{794}= +1.26237468 \pm 7.6 \cdot 10^{-7} \) | \(a_{795}= -0.52022004 \pm 6.8 \cdot 10^{-7} \) |
| \(a_{796}= -0.59976864 \pm 7.6 \cdot 10^{-7} \) | \(a_{797}= -0.02338371 \pm 6.4 \cdot 10^{-7} \) | \(a_{798}= -2.77000354 \pm 6.1 \cdot 10^{-7} \) |
| \(a_{799}= -0.49056373 \pm 6.1 \cdot 10^{-7} \) | \(a_{800}= +0.24777474 \pm 5.6 \cdot 10^{-7} \) | \(a_{801}= -0.06153976 \pm 7.6 \cdot 10^{-7} \) |
| \(a_{802}= -1.10030244 \pm 7.0 \cdot 10^{-7} \) | \(a_{803}= -0.14896564 \pm 6.4 \cdot 10^{-7} \) | \(a_{804}= -0.36004476 \pm 7.0 \cdot 10^{-7} \) |
| \(a_{805}= -2.28739432 \pm 6.2 \cdot 10^{-7} \) | \(a_{806}= +0.68845270 \pm 5.3 \cdot 10^{-7} \) | \(a_{807}= -1.61966882 \pm 7.3 \cdot 10^{-7} \) |
| \(a_{808}= -0.91949197 \pm 5.4 \cdot 10^{-7} \) | \(a_{809}= -0.00072368 \pm 6.8 \cdot 10^{-7} \) | \(a_{810}= +1.04745556 \pm 6.2 \cdot 10^{-7} \) |
| \(a_{811}= -0.65687184 \pm 5.4 \cdot 10^{-7} \) | \(a_{812}= +0.11882310 \pm 1.4 \cdot 10^{-6} \) | \(a_{813}= +1.61857741 \pm 6.5 \cdot 10^{-7} \) |
| \(a_{814}= -0.21185249 \pm 8.7 \cdot 10^{-7} \) | \(a_{815}= -0.29835601 \pm 6.1 \cdot 10^{-7} \) | \(a_{816}= +1.30472042 \pm 6.3 \cdot 10^{-7} \) |
| \(a_{817}= -0.41988154 \pm 4.2 \cdot 10^{-7} \) | \(a_{818}= -0.98874547 \pm 8.1 \cdot 10^{-7} \) | \(a_{819}= -0.14621757 \pm 6.4 \cdot 10^{-7} \) |
| \(a_{820}= -0.43786727 \pm 8.1 \cdot 10^{-7} \) | \(a_{821}= -0.77325567 \pm 6.6 \cdot 10^{-7} \) | \(a_{822}= +0.38270218 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{823}= -0.80972913 \pm 7.3 \cdot 10^{-7} \) | \(a_{824}= -0.51558163 \pm 5.8 \cdot 10^{-7} \) | \(a_{825}= -0.07787973 \pm 6.1 \cdot 10^{-7} \) |
| \(a_{826}= +1.33850890 \pm 8.2 \cdot 10^{-7} \) | \(a_{827}= +0.86054900 \pm 7.7 \cdot 10^{-7} \) | \(a_{828}= -0.07497081 \pm 9.3 \cdot 10^{-7} \) |
| \(a_{829}= +0.25409705 \pm 6.6 \cdot 10^{-7} \) | \(a_{830}= -1.40712898 \pm 6.9 \cdot 10^{-7} \) | \(a_{831}= +0.36705334 \pm 8.5 \cdot 10^{-7} \) |
| \(a_{832}= -0.18381092 \pm 6.9 \cdot 10^{-7} \) | \(a_{833}= -2.62279146 \pm 6.5 \cdot 10^{-7} \) | \(a_{834}= +0.91195772 \pm 8.3 \cdot 10^{-7} \) |
| \(a_{835}= +1.11641845 \pm 7.7 \cdot 10^{-7} \) | \(a_{836}= +0.12554153 \pm 5.2 \cdot 10^{-7} \) | \(a_{837}= -1.49736945 \pm 6.1 \cdot 10^{-7} \) |
| \(a_{838}= +1.49791382 \pm 8.1 \cdot 10^{-7} \) | \(a_{839}= +1.80785739 \pm 7.6 \cdot 10^{-7} \) | \(a_{840}= -1.41093190 \pm 6.8 \cdot 10^{-7} \) |
| \(a_{841}= +0.03448276 \pm 1.5 \cdot 10^{-6} \) | \(a_{842}= -0.59940758 \pm 7.2 \cdot 10^{-7} \) | \(a_{843}= +0.11772535 \pm 8.9 \cdot 10^{-7} \) |
| \(a_{844}= +0.11687089 \pm 7.5 \cdot 10^{-7} \) | \(a_{845}= -0.95857131 \pm 6.3 \cdot 10^{-7} \) | \(a_{846}= +0.09317505 \pm 6.8 \cdot 10^{-7} \) |
| \(a_{847}= +1.69234706 \pm 5.6 \cdot 10^{-7} \) | \(a_{848}= +0.60966227 \pm 6.7 \cdot 10^{-7} \) | \(a_{849}= +1.07302596 \pm 6.7 \cdot 10^{-7} \) |
| \(a_{850}= +0.49940076 \pm 5.8 \cdot 10^{-7} \) | \(a_{851}= -0.83177175 \pm 4.9 \cdot 10^{-7} \) | \(a_{852}= +0.03289356 \pm 7.1 \cdot 10^{-7} \) |
| \(a_{853}= +1.03208130 \pm 7.2 \cdot 10^{-7} \) | \(a_{854}= +1.09640822 \pm 1.0 \cdot 10^{-6} \) | \(a_{855}= +0.33163060 \pm 7.0 \cdot 10^{-7} \) |
| \(a_{856}= +0.99296873 \pm 7.7 \cdot 10^{-7} \) | \(a_{857}= -0.16776113 \pm 6.0 \cdot 10^{-7} \) | \(a_{858}= -0.10569391 \pm 4.4 \cdot 10^{-7} \) |
| \(a_{859}= -0.02454705 \pm 5.8 \cdot 10^{-7} \) | \(a_{860}= +0.11851240 \pm 8.6 \cdot 10^{-7} \) | \(a_{861}= +1.69622521 \pm 4.8 \cdot 10^{-7} \) |
| \(a_{862}= -0.10189139 \pm 7.6 \cdot 10^{-7} \) | \(a_{863}= +0.37300479 \pm 5.7 \cdot 10^{-7} \) | \(a_{864}= -0.73137044 \pm 7.0 \cdot 10^{-7} \) |
| \(a_{865}= -0.69572767 \pm 6.8 \cdot 10^{-7} \) | \(a_{866}= -0.17669324 \pm 7.7 \cdot 10^{-7} \) | \(a_{867}= +0.35484134 \pm 6.5 \cdot 10^{-7} \) |
| \(a_{868}= -0.89410723 \pm 6.9 \cdot 10^{-7} \) | \(a_{869}= +0.04603244 \pm 5.6 \cdot 10^{-7} \) | \(a_{870}= +0.22689162 \pm 2.2 \cdot 10^{-6} \) |
| \(a_{871}= +0.47539457 \pm 4.8 \cdot 10^{-7} \) | \(a_{872}= -0.69382992 \pm 7.9 \cdot 10^{-7} \) | \(a_{873}= +0.13388064 \pm 7.4 \cdot 10^{-7} \) |
| \(a_{874}= +1.87529969 \pm 7.4 \cdot 10^{-7} \) | \(a_{875}= +1.33456688 \pm 5.6 \cdot 10^{-7} \) | \(a_{876}= +0.19990930 \pm 8.4 \cdot 10^{-7} \) |
| \(a_{877}= -0.99138304 \pm 7.5 \cdot 10^{-7} \) | \(a_{878}= +1.54440176 \pm 8.2 \cdot 10^{-7} \) | \(a_{879}= -1.13303821 \pm 7.8 \cdot 10^{-7} \) |
| \(a_{880}= +0.34267118 \pm 5.7 \cdot 10^{-7} \) | \(a_{881}= -1.02058393 \pm 6.0 \cdot 10^{-7} \) | \(a_{882}= +0.49815897 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{883}= -1.46214619 \pm 5.7 \cdot 10^{-7} \) | \(a_{884}= +0.17814024 \pm 6.6 \cdot 10^{-7} \) | \(a_{885}= +0.67177860 \pm 6.5 \cdot 10^{-7} \) |
| \(a_{886}= +1.65175244 \pm 7.5 \cdot 10^{-7} \) | \(a_{887}= +0.30729417 \pm 5.7 \cdot 10^{-7} \) | \(a_{888}= -0.51306121 \pm 7.9 \cdot 10^{-7} \) |
| \(a_{889}= +0.05317889 \pm 5.3 \cdot 10^{-7} \) | \(a_{890}= -0.43448151 \pm 5.9 \cdot 10^{-7} \) | \(a_{891}= +0.18390084 \pm 4.0 \cdot 10^{-7} \) |
| \(a_{892}= -0.23006726 \pm 7.6 \cdot 10^{-7} \) | \(a_{893}= -0.61258371 \pm 5.9 \cdot 10^{-7} \) | \(a_{894}= +1.45061681 \pm 1.0 \cdot 10^{-6} \) |
| \(a_{895}= -1.15214653 \pm 7.2 \cdot 10^{-7} \) | \(a_{896}= +2.13306242 \pm 8.3 \cdot 10^{-7} \) | \(a_{897}= -0.41497368 \pm 4.7 \cdot 10^{-7} \) |
| \(a_{898}= -0.43646901 \pm 6.9 \cdot 10^{-7} \) | \(a_{899}= -0.25947214 \pm 6.3 \cdot 10^{-7} \) | \(a_{900}= -0.02493106 \pm 9.7 \cdot 10^{-7} \) |
| \(a_{901}= +0.58567939 \pm 7.1 \cdot 10^{-7} \) | \(a_{902}= -0.29248478 \pm 6.3 \cdot 10^{-7} \) | \(a_{903}= -0.45909740 \pm 5.4 \cdot 10^{-7} \) |
| \(a_{904}= +1.24244209 \pm 5.3 \cdot 10^{-7} \) | \(a_{905}= +1.02460295 \pm 7.3 \cdot 10^{-7} \) | \(a_{906}= -1.52889134 \pm 1.1 \cdot 10^{-6} \) |
| \(a_{907}= +0.38843683 \pm 6.6 \cdot 10^{-7} \) | \(a_{908}= +0.39174013 \pm 7.6 \cdot 10^{-7} \) | \(a_{909}= +0.23630588 \pm 8.3 \cdot 10^{-7} \) |
| \(a_{910}= -1.03232172 \pm 9.0 \cdot 10^{-7} \) | \(a_{911}= -1.49944515 \pm 7.8 \cdot 10^{-7} \) | \(a_{912}= +1.62924900 \pm 6.1 \cdot 10^{-7} \) |
| \(a_{913}= -0.24704839 \pm 3.6 \cdot 10^{-7} \) | \(a_{914}= +1.44660708 \pm 7.2 \cdot 10^{-7} \) | \(a_{915}= +0.55027171 \pm 7.7 \cdot 10^{-7} \) |
| \(a_{916}= -0.06324483 \pm 8.6 \cdot 10^{-7} \) | \(a_{917}= +1.42529550 \pm 5.3 \cdot 10^{-7} \) | \(a_{918}= -1.47410889 \pm 6.5 \cdot 10^{-7} \) |
| \(a_{919}= -1.10091576 \pm 6.5 \cdot 10^{-7} \) | \(a_{920}= +0.95520461 \pm 7.6 \cdot 10^{-7} \) | \(a_{921}= -0.53518043 \pm 6.3 \cdot 10^{-7} \) |
| \(a_{922}= -1.26115742 \pm 8.1 \cdot 10^{-7} \) | \(a_{923}= -0.04343187 \pm 5.9 \cdot 10^{-7} \) | \(a_{924}= +0.13726678 \pm 5.5 \cdot 10^{-7} \) |
| \(a_{925}= -0.27660032 \pm 5.3 \cdot 10^{-7} \) | \(a_{926}= -0.24187809 \pm 7.9 \cdot 10^{-7} \) | \(a_{927}= +0.13250248 \pm 7.0 \cdot 10^{-7} \) |
| \(a_{928}= -0.12673576 \pm 7.0 \cdot 10^{-7} \) | \(a_{929}= -0.27440250 \pm 6.2 \cdot 10^{-7} \) | \(a_{930}= -1.70728959 \pm 7.1 \cdot 10^{-7} \) |
| \(a_{931}= -3.27516936 \pm 5.1 \cdot 10^{-7} \) | \(a_{932}= -0.27654433 \pm 7.3 \cdot 10^{-7} \) | \(a_{933}= -1.53226280 \pm 8.1 \cdot 10^{-7} \) |
| \(a_{934}= -0.83414954 \pm 8.2 \cdot 10^{-7} \) | \(a_{935}= +0.32919119 \pm 6.1 \cdot 10^{-7} \) | \(a_{936}= +0.06105974 \pm 5.9 \cdot 10^{-7} \) |
| \(a_{937}= +1.19962163 \pm 7.2 \cdot 10^{-7} \) | \(a_{938}= -2.34899664 \pm 7.8 \cdot 10^{-7} \) | \(a_{939}= +0.10828120 \pm 7.3 \cdot 10^{-7} \) |
| \(a_{940}= +0.17290297 \pm 5.8 \cdot 10^{-7} \) | \(a_{941}= +0.26640065 \pm 6.9 \cdot 10^{-7} \) | \(a_{942}= -1.53331417 \pm 8.7 \cdot 10^{-7} \) |
| \(a_{943}= -1.14834893 \pm 7.2 \cdot 10^{-7} \) | \(a_{944}= -0.78727852 \pm 5.5 \cdot 10^{-7} \) | \(a_{945}= +2.24527698 \pm 6.2 \cdot 10^{-7} \) |
| \(a_{946}= +0.07916343 \pm 8.8 \cdot 10^{-7} \) | \(a_{947}= +0.17174752 \pm 7.2 \cdot 10^{-7} \) | \(a_{948}= -0.06177474 \pm 6.7 \cdot 10^{-7} \) |
| \(a_{949}= -0.26395551 \pm 6.8 \cdot 10^{-7} \) | \(a_{950}= +0.62361880 \pm 5.6 \cdot 10^{-7} \) | \(a_{951}= +0.46901983 \pm 7.8 \cdot 10^{-7} \) |
| \(a_{952}= +1.58846963 \pm 5.9 \cdot 10^{-7} \) | \(a_{953}= -0.53783092 \pm 5.9 \cdot 10^{-7} \) | \(a_{954}= -0.11124081 \pm 8.5 \cdot 10^{-7} \) |
| \(a_{955}= -0.41762843 \pm 7.5 \cdot 10^{-7} \) | \(a_{956}= +0.00050350 \pm 5.8 \cdot 10^{-7} \) | \(a_{957}= +0.03983516 \pm 1.4 \cdot 10^{-6} \) |
| \(a_{958}= -2.01257652 \pm 9.8 \cdot 10^{-7} \) | \(a_{959}= +0.65625731 \pm 6.3 \cdot 10^{-7} \) | \(a_{960}= +0.45583157 \pm 7.1 \cdot 10^{-7} \) |
| \(a_{961}= +0.95244793 \pm 6.3 \cdot 10^{-7} \) | \(a_{962}= -0.37538610 \pm 7.6 \cdot 10^{-7} \) | \(a_{963}= -0.25518912 \pm 7.0 \cdot 10^{-7} \) |
| \(a_{964}= -0.62706186 \pm 6.8 \cdot 10^{-7} \) | \(a_{965}= +0.71443816 \pm 6.1 \cdot 10^{-7} \) | \(a_{966}= +2.05044786 \pm 7.1 \cdot 10^{-7} \) |
| \(a_{967}= +0.85916892 \pm 4.2 \cdot 10^{-7} \) | \(a_{968}= -0.70671580 \pm 5.9 \cdot 10^{-7} \) | \(a_{969}= +1.56515766 \pm 6.1 \cdot 10^{-7} \) |
| \(a_{970}= +0.94522082 \pm 8.1 \cdot 10^{-7} \) | \(a_{971}= +0.94446504 \pm 7.0 \cdot 10^{-7} \) | \(a_{972}= +0.13529619 \pm 5.3 \cdot 10^{-7} \) |
| \(a_{973}= +1.56382419 \pm 7.0 \cdot 10^{-7} \) | \(a_{974}= -1.72059941 \pm 8.2 \cdot 10^{-7} \) | \(a_{975}= -0.13799682 \pm 5.8 \cdot 10^{-7} \) |
| \(a_{976}= -0.64488076 \pm 8.2 \cdot 10^{-7} \) | \(a_{977}= +0.98564044 \pm 7.3 \cdot 10^{-7} \) | \(a_{978}= +0.26744992 \pm 8.9 \cdot 10^{-7} \) |
| \(a_{979}= -0.07628153 \pm 5.9 \cdot 10^{-7} \) | \(a_{980}= +0.92442308 \pm 8.8 \cdot 10^{-7} \) | \(a_{981}= +0.17831160 \pm 6.4 \cdot 10^{-7} \) |
| \(a_{982}= +0.22851293 \pm 8.9 \cdot 10^{-7} \) | \(a_{983}= -1.04887772 \pm 7.0 \cdot 10^{-7} \) | \(a_{984}= -0.70833530 \pm 5.3 \cdot 10^{-7} \) |
| \(a_{985}= -0.57725094 \pm 8.5 \cdot 10^{-7} \) | \(a_{986}= -0.25544142 \pm 1.5 \cdot 10^{-6} \) | \(a_{987}= -0.66979745 \pm 5.4 \cdot 10^{-7} \) |
| \(a_{988}= +0.22244980 \pm 5.3 \cdot 10^{-7} \) | \(a_{989}= +0.31081015 \pm 6.8 \cdot 10^{-7} \) | \(a_{990}= -0.06252481 \pm 8.9 \cdot 10^{-7} \) |
| \(a_{991}= +0.47690287 \pm 5.9 \cdot 10^{-7} \) | \(a_{992}= +0.95364755 \pm 7.2 \cdot 10^{-7} \) | \(a_{993}= -0.38956675 \pm 8.2 \cdot 10^{-7} \) |
| \(a_{994}= +0.21460347 \pm 6.7 \cdot 10^{-7} \) | \(a_{995}= -1.96387826 \pm 7.2 \cdot 10^{-7} \) | \(a_{996}= +0.33153464 \pm 5.2 \cdot 10^{-7} \) |
| \(a_{997}= +0.78785640 \pm 5.8 \cdot 10^{-7} \) | \(a_{998}= -1.10900766 \pm 7.5 \cdot 10^{-7} \) | \(a_{999}= +0.81645650 \pm 6.3 \cdot 10^{-7} \) |
| \(a_{1000}= -0.55730856 \pm 5.3 \cdot 10^{-7} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000