Maass form invariants
| Level: | \( 29 \) |
| Weight: | \( 0 \) |
| Character: | 29.1 |
| Symmetry: | odd |
| Fricke sign: | $-1$ |
| Spectral parameter: | \(3.16057099990595423363267668125 \pm 3 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
| \(a_{1}= +1 \) | \(a_{2}= +0.38820748 \pm 4.4 \cdot 10^{-7} \) | \(a_{3}= +1.65977492 \pm 4.2 \cdot 10^{-7} \) |
| \(a_{4}= -0.84929495 \pm 4.4 \cdot 10^{-7} \) | \(a_{5}= +1.31517686 \pm 3.9 \cdot 10^{-7} \) | \(a_{6}= +0.64433704 \pm 5.1 \cdot 10^{-7} \) |
| \(a_{7}= +1.00965746 \pm 3.7 \cdot 10^{-7} \) | \(a_{8}= -0.71791014 \pm 3.6 \cdot 10^{-7} \) | \(a_{9}= +1.75485280 \pm 3.9 \cdot 10^{-7} \) |
| \(a_{10}= +0.51056150 \pm 4.8 \cdot 10^{-7} \) | \(a_{11}= -0.97489630 \pm 3.6 \cdot 10^{-7} \) | \(a_{12}= -1.40963846 \pm 5.1 \cdot 10^{-7} \) |
| \(a_{13}= -1.60171360 \pm 3.4 \cdot 10^{-7} \) | \(a_{14}= +0.39195658 \pm 4.8 \cdot 10^{-7} \) | \(a_{15}= +2.18289758 \pm 4.4 \cdot 10^{-7} \) |
| \(a_{16}= +0.57059687 \pm 3.8 \cdot 10^{-7} \) | \(a_{17}= -0.74368983 \pm 3.8 \cdot 10^{-7} \) | \(a_{18}= +0.68124699 \pm 5.0 \cdot 10^{-7} \) |
| \(a_{19}= +0.53150505 \pm 3.2 \cdot 10^{-7} \) | \(a_{20}= -1.11697307 \pm 4.6 \cdot 10^{-7} \) | \(a_{21}= +1.67580414 \pm 3.9 \cdot 10^{-7} \) |
| \(a_{22}= -0.37846204 \pm 4.5 \cdot 10^{-7} \) | \(a_{23}= -0.30235114 \pm 3.8 \cdot 10^{-7} \) | \(a_{24}= -1.19156924 \pm 4.0 \cdot 10^{-7} \) |
| \(a_{25}= +0.72969018 \pm 3.6 \cdot 10^{-7} \) | \(a_{26}= -0.62179720 \pm 3.7 \cdot 10^{-7} \) | \(a_{27}= +1.25288575 \pm 3.7 \cdot 10^{-7} \) |
| \(a_{28}= -0.85749698 \pm 4.8 \cdot 10^{-7} \) | \(a_{29}= +0.18569534 \pm 1.0 \cdot 10^{-8} \) | \(a_{30}= +0.84741717 \pm 4.7 \cdot 10^{-7} \) |
| \(a_{31}= +0.24394694 \pm 3.4 \cdot 10^{-7} \) | \(a_{32}= +0.93942011 \pm 3.8 \cdot 10^{-7} \) | \(a_{33}= -1.61810843 \pm 4.1 \cdot 10^{-7} \) |
| \(a_{34}= -0.28870596 \pm 3.8 \cdot 10^{-7} \) | \(a_{35}= +1.32787813 \pm 3.9 \cdot 10^{-7} \) | \(a_{36}= -1.49038762 \pm 5.0 \cdot 10^{-7} \) |
| \(a_{37}= -1.03433007 \pm 3.4 \cdot 10^{-7} \) | \(a_{38}= +0.20633424 \pm 3.3 \cdot 10^{-7} \) | \(a_{39}= -2.65848407 \pm 3.8 \cdot 10^{-7} \) |
| \(a_{40}= -0.94417880 \pm 4.0 \cdot 10^{-7} \) | \(a_{41}= +0.19983054 \pm 3.5 \cdot 10^{-7} \) | \(a_{42}= +0.65055970 \pm 5.1 \cdot 10^{-7} \) |
| \(a_{43}= +1.73371168 \pm 3.2 \cdot 10^{-7} \) | \(a_{44}= +0.82797450 \pm 4.1 \cdot 10^{-7} \) | \(a_{45}= +2.30794180 \pm 4.1 \cdot 10^{-7} \) |
| \(a_{46}= -0.11737497 \pm 4.9 \cdot 10^{-7} \) | \(a_{47}= -0.73880461 \pm 3.2 \cdot 10^{-7} \) | \(a_{48}= +0.94706237 \pm 4.0 \cdot 10^{-7} \) |
| \(a_{49}= +0.01940819 \pm 3.4 \cdot 10^{-7} \) | \(a_{50}= +0.28327119 \pm 4.1 \cdot 10^{-7} \) | \(a_{51}= -1.23435773 \pm 3.9 \cdot 10^{-7} \) |
| \(a_{52}= +1.36032728 \pm 4.3 \cdot 10^{-7} \) | \(a_{53}= +0.23970374 \pm 3.4 \cdot 10^{-7} \) | \(a_{54}= +0.48637962 \pm 4.6 \cdot 10^{-7} \) |
| \(a_{55}= -1.28216106 \pm 3.7 \cdot 10^{-7} \) | \(a_{56}= -0.72484333 \pm 4.2 \cdot 10^{-7} \) | \(a_{57}= +0.88217875 \pm 3.5 \cdot 10^{-7} \) |
| \(a_{58}= +0.07208832 \pm 4.5 \cdot 10^{-7} \) | \(a_{59}= +0.12465193 \pm 3.3 \cdot 10^{-7} \) | \(a_{60}= -1.85392389 \pm 4.9 \cdot 10^{-7} \) |
| \(a_{61}= -0.13556444 \pm 3.6 \cdot 10^{-7} \) | \(a_{62}= +0.09470203 \pm 4.0 \cdot 10^{-7} \) | \(a_{63}= +1.77180022 \pm 3.8 \cdot 10^{-7} \) |
| \(a_{64}= -0.20590695 \pm 4.0 \cdot 10^{-7} \) | \(a_{65}= -2.10653667 \pm 3.7 \cdot 10^{-7} \) | \(a_{66}= -0.62816180 \pm 5.3 \cdot 10^{-7} \) |
| \(a_{67}= -0.84818501 \pm 3.1 \cdot 10^{-7} \) | \(a_{68}= +0.63161202 \pm 3.8 \cdot 10^{-7} \) | \(a_{69}= -0.50183484 \pm 4.1 \cdot 10^{-7} \) |
| \(a_{70}= +0.51549223 \pm 5.1 \cdot 10^{-7} \) | \(a_{71}= +1.37360171 \pm 3.2 \cdot 10^{-7} \) | \(a_{72}= -1.25982661 \pm 3.8 \cdot 10^{-7} \) |
| \(a_{73}= +1.47562529 \pm 3.5 \cdot 10^{-7} \) | \(a_{74}= -0.40153467 \pm 4.7 \cdot 10^{-7} \) | \(a_{75}= +1.21112147 \pm 4.3 \cdot 10^{-7} \) |
| \(a_{76}= -0.45140455 \pm 3.2 \cdot 10^{-7} \) | \(a_{77}= -0.98431132 \pm 3.1 \cdot 10^{-7} \) | \(a_{78}= -1.03204341 \pm 3.7 \cdot 10^{-7} \) |
| \(a_{79}= +0.45993272 \pm 3.2 \cdot 10^{-7} \) | \(a_{80}= +0.75043580 \pm 4.0 \cdot 10^{-7} \) | \(a_{81}= +0.32465555 \pm 2.9 \cdot 10^{-7} \) |
| \(a_{82}= +0.07757571 \pm 4.1 \cdot 10^{-7} \) | \(a_{83}= +0.55602069 \pm 3.0 \cdot 10^{-7} \) | \(a_{84}= -1.42325199 \pm 5.4 \cdot 10^{-7} \) |
| \(a_{85}= -0.97808366 \pm 4.0 \cdot 10^{-7} \) | \(a_{86}= +0.67303985 \pm 3.8 \cdot 10^{-7} \) | \(a_{87}= +0.30821247 \pm 4.3 \cdot 10^{-7} \) |
| \(a_{88}= +0.69988793 \pm 2.8 \cdot 10^{-7} \) | \(a_{89}= +0.37613217 \pm 3.5 \cdot 10^{-7} \) | \(a_{90}= +0.89596027 \pm 4.8 \cdot 10^{-7} \) |
| \(a_{91}= -1.61718209 \pm 3.7 \cdot 10^{-7} \) | \(a_{92}= +0.25678530 \pm 4.4 \cdot 10^{-7} \) | \(a_{93}= +0.40489701 \pm 3.9 \cdot 10^{-7} \) |
| \(a_{94}= -0.28680948 \pm 3.4 \cdot 10^{-7} \) | \(a_{95}= +0.69902314 \pm 3.3 \cdot 10^{-7} \) | \(a_{96}= +1.55922594 \pm 4.3 \cdot 10^{-7} \) |
| \(a_{97}= -0.98842838 \pm 3.4 \cdot 10^{-7} \) | \(a_{98}= +0.00753440 \pm 4.8 \cdot 10^{-7} \) | \(a_{99}= -1.71079950 \pm 4.2 \cdot 10^{-7} \) |
| \(a_{100}= -0.61972219 \pm 4.2 \cdot 10^{-7} \) | \(a_{101}= +1.66372321 \pm 3.6 \cdot 10^{-7} \) | \(a_{102}= -0.47918691 \pm 3.7 \cdot 10^{-7} \) |
| \(a_{103}= -0.55052228 \pm 3.1 \cdot 10^{-7} \) | \(a_{104}= +1.14988643 \pm 4.1 \cdot 10^{-7} \) | \(a_{105}= +2.20397883 \pm 3.8 \cdot 10^{-7} \) |
| \(a_{106}= +0.09305479 \pm 4.2 \cdot 10^{-7} \) | \(a_{107}= +0.33790558 \pm 3.6 \cdot 10^{-7} \) | \(a_{108}= -1.06406954 \pm 4.5 \cdot 10^{-7} \) |
| \(a_{109}= +1.54614660 \pm 3.5 \cdot 10^{-7} \) | \(a_{110}= -0.49774452 \pm 5.1 \cdot 10^{-7} \) | \(a_{111}= -1.71675511 \pm 4.4 \cdot 10^{-7} \) |
| \(a_{112}= +0.57610738 \pm 4.1 \cdot 10^{-7} \) | \(a_{113}= +0.44179772 \pm 3.1 \cdot 10^{-7} \) | \(a_{114}= +0.34246839 \pm 4.0 \cdot 10^{-7} \) |
| \(a_{115}= -0.39764522 \pm 4.3 \cdot 10^{-7} \) | \(a_{116}= -0.15771011 \pm 4.5 \cdot 10^{-7} \) | \(a_{117}= -2.81077160 \pm 3.0 \cdot 10^{-7} \) |
| \(a_{118}= +0.04839081 \pm 4.1 \cdot 10^{-7} \) | \(a_{119}= -0.75087199 \pm 3.9 \cdot 10^{-7} \) | \(a_{120}= -1.56712430 \pm 4.3 \cdot 10^{-7} \) |
| \(a_{121}= -0.04957721 \pm 3.3 \cdot 10^{-7} \) | \(a_{122}= -0.05262713 \pm 4.5 \cdot 10^{-7} \) | \(a_{123}= +0.33167371 \pm 3.2 \cdot 10^{-7} \) |
| \(a_{124}= -0.20718290 \pm 3.7 \cdot 10^{-7} \) | \(a_{125}= -0.35550522 \pm 3.3 \cdot 10^{-7} \) | \(a_{126}= +0.68782610 \pm 5.4 \cdot 10^{-7} \) |
| \(a_{127}= -0.98977560 \pm 3.0 \cdot 10^{-7} \) | \(a_{128}= -1.01935473 \pm 3.8 \cdot 10^{-7} \) | \(a_{129}= +2.87757117 \pm 3.5 \cdot 10^{-7} \) |
| \(a_{130}= -0.81777330 \pm 4.1 \cdot 10^{-7} \) | \(a_{131}= -0.43307252 \pm 3.1 \cdot 10^{-7} \) | \(a_{132}= +1.37425132 \pm 4.7 \cdot 10^{-7} \) |
| \(a_{133}= +0.53663804 \pm 3.1 \cdot 10^{-7} \) | \(a_{134}= -0.32927177 \pm 4.1 \cdot 10^{-7} \) | \(a_{135}= +1.64776635 \pm 4.0 \cdot 10^{-7} \) |
| \(a_{136}= +0.53390247 \pm 2.8 \cdot 10^{-7} \) | \(a_{137}= +0.00013023 \pm 3.8 \cdot 10^{-7} \) | \(a_{138}= -0.19481604 \pm 5.6 \cdot 10^{-7} \) |
| \(a_{139}= -1.03590832 \pm 3.7 \cdot 10^{-7} \) | \(a_{140}= -1.12776020 \pm 5.0 \cdot 10^{-7} \) | \(a_{141}= -1.22624936 \pm 3.5 \cdot 10^{-7} \) |
| \(a_{142}= +0.53324246 \pm 3.5 \cdot 10^{-7} \) | \(a_{143}= +1.56150466 \pm 2.7 \cdot 10^{-7} \) | \(a_{144}= +1.00131351 \pm 3.2 \cdot 10^{-7} \) |
| \(a_{145}= +0.24422221 \pm 4.0 \cdot 10^{-7} \) | \(a_{146}= +0.57284878 \pm 4.2 \cdot 10^{-7} \) | \(a_{147}= +0.03221323 \pm 3.8 \cdot 10^{-7} \) |
| \(a_{148}= +0.87845130 \pm 4.8 \cdot 10^{-7} \) | \(a_{149}= +0.00667301 \pm 4.2 \cdot 10^{-7} \) | \(a_{150}= +0.47016642 \pm 4.4 \cdot 10^{-7} \) |
| \(a_{151}= -1.54555952 \pm 3.9 \cdot 10^{-7} \) | \(a_{152}= -0.38157286 \pm 3.2 \cdot 10^{-7} \) | \(a_{153}= -1.30506618 \pm 2.8 \cdot 10^{-7} \) |
| \(a_{154}= -0.38211702 \pm 3.8 \cdot 10^{-7} \) | \(a_{155}= +0.32083337 \pm 3.3 \cdot 10^{-7} \) | \(a_{156}= +2.25783710 \pm 4.5 \cdot 10^{-7} \) |
| \(a_{157}= -0.62684020 \pm 3.5 \cdot 10^{-7} \) | \(a_{158}= +0.17854932 \pm 3.7 \cdot 10^{-7} \) | \(a_{159}= +0.39785426 \pm 3.7 \cdot 10^{-7} \) |
| \(a_{160}= +1.23550359 \pm 3.9 \cdot 10^{-7} \) | \(a_{161}= -0.30527108 \pm 3.2 \cdot 10^{-7} \) | \(a_{162}= +0.12603371 \pm 3.0 \cdot 10^{-7} \) |
| \(a_{163}= -0.47379191 \pm 2.9 \cdot 10^{-7} \) | \(a_{164}= -0.16971507 \pm 3.8 \cdot 10^{-7} \) | \(a_{165}= -2.12809877 \pm 3.9 \cdot 10^{-7} \) |
| \(a_{166}= +0.21585139 \pm 3.2 \cdot 10^{-7} \) | \(a_{167}= +1.28077487 \pm 3.6 \cdot 10^{-7} \) | \(a_{168}= -1.20307678 \pm 4.5 \cdot 10^{-7} \) |
| \(a_{169}= +1.56548647 \pm 3.3 \cdot 10^{-7} \) | \(a_{170}= -0.37969939 \pm 4.2 \cdot 10^{-7} \) | \(a_{171}= +0.93271312 \pm 3.3 \cdot 10^{-7} \) |
| \(a_{172}= -1.47243258 \pm 3.9 \cdot 10^{-7} \) | \(a_{173}= +0.09835173 \pm 2.8 \cdot 10^{-7} \) | \(a_{174}= +0.11965039 \pm 8.7 \cdot 10^{-7} \) |
| \(a_{175}= +0.73673714 \pm 3.2 \cdot 10^{-7} \) | \(a_{176}= -0.55627277 \pm 3.0 \cdot 10^{-7} \) | \(a_{177}= +0.20689414 \pm 4.1 \cdot 10^{-7} \) |
| \(a_{178}= +0.14601732 \pm 4.0 \cdot 10^{-7} \) | \(a_{179}= -1.00143048 \pm 3.7 \cdot 10^{-7} \) | \(a_{180}= -1.96012332 \pm 5.3 \cdot 10^{-7} \) |
| \(a_{181}= +1.10999334 \pm 3.9 \cdot 10^{-7} \) | \(a_{182}= -0.62780219 \pm 4.5 \cdot 10^{-7} \) | \(a_{183}= -0.22500645 \pm 3.9 \cdot 10^{-7} \) |
| \(a_{184}= +0.21706095 \pm 3.7 \cdot 10^{-7} \) | \(a_{185}= -1.36032698 \pm 3.0 \cdot 10^{-7} \) | \(a_{186}= +0.15718405 \pm 4.8 \cdot 10^{-7} \) |
| \(a_{187}= +0.72502046 \pm 3.3 \cdot 10^{-7} \) | \(a_{188}= +0.62746302 \pm 3.2 \cdot 10^{-7} \) | \(a_{189}= +1.26498544 \pm 3.4 \cdot 10^{-7} \) |
| \(a_{190}= +0.27136601 \pm 3.8 \cdot 10^{-7} \) | \(a_{191}= +0.13875891 \pm 3.5 \cdot 10^{-7} \) | \(a_{192}= -0.34175919 \pm 4.5 \cdot 10^{-7} \) |
| \(a_{193}= +0.29575029 \pm 3.2 \cdot 10^{-7} \) | \(a_{194}= -0.38371529 \pm 4.2 \cdot 10^{-7} \) | \(a_{195}= -3.49637675 \pm 4.1 \cdot 10^{-7} \) |
| \(a_{196}= -0.01648328 \pm 5.0 \cdot 10^{-7} \) | \(a_{197}= +1.76809654 \pm 4.2 \cdot 10^{-7} \) | \(a_{198}= -0.66414516 \pm 5.5 \cdot 10^{-7} \) |
| \(a_{199}= -0.08179041 \pm 3.7 \cdot 10^{-7} \) | \(a_{200}= -0.52385198 \pm 3.5 \cdot 10^{-7} \) | \(a_{201}= -1.40779621 \pm 3.2 \cdot 10^{-7} \) |
| \(a_{202}= +0.64586980 \pm 3.9 \cdot 10^{-7} \) | \(a_{203}= +0.18748868 \pm 3.8 \cdot 10^{-7} \) | \(a_{204}= +1.04833379 \pm 4.1 \cdot 10^{-7} \) |
| \(a_{205}= +0.26281250 \pm 3.7 \cdot 10^{-7} \) | \(a_{206}= -0.21371687 \pm 3.7 \cdot 10^{-7} \) | \(a_{207}= -0.53058174 \pm 4.0 \cdot 10^{-7} \) |
| \(a_{208}= -0.91393276 \pm 4.3 \cdot 10^{-7} \) | \(a_{209}= -0.51816230 \pm 3.0 \cdot 10^{-7} \) | \(a_{210}= +0.85560107 \pm 4.1 \cdot 10^{-7} \) |
| \(a_{211}= -1.52470850 \pm 3.7 \cdot 10^{-7} \) | \(a_{212}= -0.20357918 \pm 3.8 \cdot 10^{-7} \) | \(a_{213}= +2.27986968 \pm 3.5 \cdot 10^{-7} \) |
| \(a_{214}= +0.13117748 \pm 4.8 \cdot 10^{-7} \) | \(a_{215}= +2.28013749 \pm 3.9 \cdot 10^{-7} \) | \(a_{216}= -0.89945938 \pm 3.7 \cdot 10^{-7} \) |
| \(a_{217}= +0.24630284 \pm 3.2 \cdot 10^{-7} \) | \(a_{218}= +0.60022568 \pm 4.0 \cdot 10^{-7} \) | \(a_{219}= +2.44920585 \pm 4.0 \cdot 10^{-7} \) |
| \(a_{220}= +1.08893291 \pm 4.6 \cdot 10^{-7} \) | \(a_{221}= +1.19117812 \pm 3.8 \cdot 10^{-7} \) | \(a_{222}= -0.66645718 \pm 6.2 \cdot 10^{-7} \) |
| \(a_{223}= +1.51750485 \pm 3.3 \cdot 10^{-7} \) | \(a_{224}= +0.94849252 \pm 3.7 \cdot 10^{-7} \) | \(a_{225}= +1.28049886 \pm 4.3 \cdot 10^{-7} \) |
| \(a_{226}= +0.17150918 \pm 3.3 \cdot 10^{-7} \) | \(a_{227}= -1.44671219 \pm 4.2 \cdot 10^{-7} \) | \(a_{228}= -0.74922996 \pm 4.0 \cdot 10^{-7} \) |
| \(a_{229}= -0.60500921 \pm 3.8 \cdot 10^{-7} \) | \(a_{230}= -0.15436885 \pm 5.8 \cdot 10^{-7} \) | \(a_{231}= -1.63373525 \pm 3.1 \cdot 10^{-7} \) |
| \(a_{232}= -0.13331257 \pm 3.8 \cdot 10^{-7} \) | \(a_{233}= -1.51108233 \pm 3.0 \cdot 10^{-7} \) | \(a_{234}= -1.09116256 \pm 3.3 \cdot 10^{-7} \) |
| \(a_{235}= -0.97165873 \pm 3.1 \cdot 10^{-7} \) | \(a_{236}= -0.10586625 \pm 3.9 \cdot 10^{-7} \) | \(a_{237}= +0.76338480 \pm 3.7 \cdot 10^{-7} \) |
| \(a_{238}= -0.29149412 \pm 4.7 \cdot 10^{-7} \) | \(a_{239}= -1.33953310 \pm 3.3 \cdot 10^{-7} \) | \(a_{240}= +1.24555452 \pm 4.3 \cdot 10^{-7} \) |
| \(a_{241}= +0.81297987 \pm 3.5 \cdot 10^{-7} \) | \(a_{242}= -0.01924624 \pm 4.2 \cdot 10^{-7} \) | \(a_{243}= -0.71403061 \pm 2.8 \cdot 10^{-7} \) |
| \(a_{244}= +0.11513419 \pm 4.8 \cdot 10^{-7} \) | \(a_{245}= +0.02552520 \pm 3.3 \cdot 10^{-7} \) | \(a_{246}= +0.12875822 \pm 3.7 \cdot 10^{-7} \) |
| \(a_{247}= -0.85131887 \pm 2.7 \cdot 10^{-7} \) | \(a_{248}= -0.17513198 \pm 3.2 \cdot 10^{-7} \) | \(a_{249}= +0.92286919 \pm 2.9 \cdot 10^{-7} \) |
| \(a_{250}= -0.13800978 \pm 3.3 \cdot 10^{-7} \) | \(a_{251}= +1.21602162 \pm 3.8 \cdot 10^{-7} \) | \(a_{252}= -1.50478098 \pm 5.6 \cdot 10^{-7} \) |
| \(a_{253}= +0.29476101 \pm 4.1 \cdot 10^{-7} \) | \(a_{254}= -0.38423829 \pm 3.4 \cdot 10^{-7} \) | \(a_{255}= -1.62339873 \pm 4.2 \cdot 10^{-7} \) |
| \(a_{256}= -0.18981418 \pm 3.9 \cdot 10^{-7} \) | \(a_{257}= -1.46909793 \pm 4.2 \cdot 10^{-7} \) | \(a_{258}= +1.11709466 \pm 3.7 \cdot 10^{-7} \) |
| \(a_{259}= -1.04431907 \pm 3.5 \cdot 10^{-7} \) | \(a_{260}= +1.78907096 \pm 4.3 \cdot 10^{-7} \) | \(a_{261}= +0.32586798 \pm 4.0 \cdot 10^{-7} \) |
| \(a_{262}= -0.16812199 \pm 3.6 \cdot 10^{-7} \) | \(a_{263}= +1.64502795 \pm 3.3 \cdot 10^{-7} \) | \(a_{264}= +1.16165644 \pm 2.8 \cdot 10^{-7} \) |
| \(a_{265}= +0.31525281 \pm 3.6 \cdot 10^{-7} \) | \(a_{266}= +0.20832690 \pm 3.3 \cdot 10^{-7} \) | \(a_{267}= +0.62429475 \pm 4.3 \cdot 10^{-7} \) |
| \(a_{268}= +0.72035925 \pm 4.1 \cdot 10^{-7} \) | \(a_{269}= -0.19209491 \pm 3.7 \cdot 10^{-7} \) | \(a_{270}= +0.63967522 \pm 4.7 \cdot 10^{-7} \) |
| \(a_{271}= +0.63551576 \pm 3.5 \cdot 10^{-7} \) | \(a_{272}= -0.42434709 \pm 3.6 \cdot 10^{-7} \) | \(a_{273}= -2.68415828 \pm 4.0 \cdot 10^{-7} \) |
| \(a_{274}= +0.00005056 \pm 4.6 \cdot 10^{-7} \) | \(a_{275}= -0.71137226 \pm 3.2 \cdot 10^{-7} \) | \(a_{276}= +0.42620579 \pm 5.1 \cdot 10^{-7} \) |
| \(a_{277}= -1.53350114 \pm 3.7 \cdot 10^{-7} \) | \(a_{278}= -0.40214736 \pm 3.7 \cdot 10^{-7} \) | \(a_{279}= +0.42809096 \pm 3.3 \cdot 10^{-7} \) |
| \(a_{280}= -0.95329717 \pm 4.5 \cdot 10^{-7} \) | \(a_{281}= -0.09226640 \pm 3.8 \cdot 10^{-7} \) | \(a_{282}= -0.47603918 \pm 3.9 \cdot 10^{-7} \) |
| \(a_{283}= -0.54784937 \pm 3.1 \cdot 10^{-7} \) | \(a_{284}= -1.16659300 \pm 3.3 \cdot 10^{-7} \) | \(a_{285}= +1.16022108 \pm 4.2 \cdot 10^{-7} \) |
| \(a_{286}= +0.60618779 \pm 2.6 \cdot 10^{-7} \) | \(a_{287}= +0.20176039 \pm 3.4 \cdot 10^{-7} \) | \(a_{288}= +1.64854401 \pm 3.8 \cdot 10^{-7} \) |
| \(a_{289}= -0.44692544 \pm 3.4 \cdot 10^{-7} \) | \(a_{290}= +0.09480889 \pm 8.5 \cdot 10^{-7} \) | \(a_{291}= -1.64056863 \pm 4.1 \cdot 10^{-7} \) |
| \(a_{292}= -1.25324111 \pm 4.4 \cdot 10^{-7} \) | \(a_{293}= +0.89643888 \pm 3.9 \cdot 10^{-7} \) | \(a_{294}= +0.01250542 \pm 5.7 \cdot 10^{-7} \) |
| \(a_{295}= +0.16393933 \pm 3.1 \cdot 10^{-7} \) | \(a_{296}= +0.74255604 \pm 4.1 \cdot 10^{-7} \) | \(a_{297}= -1.22143368 \pm 3.5 \cdot 10^{-7} \) |
| \(a_{298}= +0.00259051 \pm 4.6 \cdot 10^{-7} \) | \(a_{299}= +0.48427993 \pm 2.5 \cdot 10^{-7} \) | \(a_{300}= -1.02859935 \pm 4.8 \cdot 10^{-7} \) |
| \(a_{301}= +1.75045493 \pm 2.7 \cdot 10^{-7} \) | \(a_{302}= -0.59999777 \pm 4.9 \cdot 10^{-7} \) | \(a_{303}= +2.76140606 \pm 5.0 \cdot 10^{-7} \) |
| \(a_{304}= +0.30327511 \pm 3.1 \cdot 10^{-7} \) | \(a_{305}= -0.17829121 \pm 4.0 \cdot 10^{-7} \) | \(a_{306}= -0.50663646 \pm 3.3 \cdot 10^{-7} \) |
| \(a_{307}= -0.60692412 \pm 3.2 \cdot 10^{-7} \) | \(a_{308}= +0.83597064 \pm 3.5 \cdot 10^{-7} \) | \(a_{309}= -0.91374308 \pm 4.1 \cdot 10^{-7} \) |
| \(a_{310}= +0.12454991 \pm 3.7 \cdot 10^{-7} \) | \(a_{311}= -0.21215164 \pm 3.9 \cdot 10^{-7} \) | \(a_{312}= +1.90855266 \pm 4.1 \cdot 10^{-7} \) |
| \(a_{313}= +0.53193965 \pm 3.4 \cdot 10^{-7} \) | \(a_{314}= -0.24334406 \pm 4.7 \cdot 10^{-7} \) | \(a_{315}= +2.33023066 \pm 3.8 \cdot 10^{-7} \) |
| \(a_{316}= -0.39061854 \pm 3.3 \cdot 10^{-7} \) | \(a_{317}= +1.55387417 \pm 3.5 \cdot 10^{-7} \) | \(a_{318}= +0.15445000 \pm 4.7 \cdot 10^{-7} \) |
| \(a_{319}= -0.18103370 \pm 3.7 \cdot 10^{-7} \) | \(a_{320}= -0.27080406 \pm 4.0 \cdot 10^{-7} \) | \(a_{321}= +0.56084721 \pm 4.0 \cdot 10^{-7} \) |
| \(a_{322}= -0.11850852 \pm 3.9 \cdot 10^{-7} \) | \(a_{323}= -0.39527490 \pm 3.4 \cdot 10^{-7} \) | \(a_{324}= -0.27572832 \pm 3.4 \cdot 10^{-7} \) |
| \(a_{325}= -1.16875469 \pm 3.0 \cdot 10^{-7} \) | \(a_{326}= -0.18392956 \pm 4.3 \cdot 10^{-7} \) | \(a_{327}= +2.56625535 \pm 4.0 \cdot 10^{-7} \) |
| \(a_{328}= -0.14346037 \pm 3.0 \cdot 10^{-7} \) | \(a_{329}= -0.74593959 \pm 2.8 \cdot 10^{-7} \) | \(a_{330}= -0.82614387 \pm 4.9 \cdot 10^{-7} \) |
| \(a_{331}= -1.71701380 \pm 4.0 \cdot 10^{-7} \) | \(a_{332}= -0.47222556 \pm 3.4 \cdot 10^{-7} \) | \(a_{333}= -1.81509701 \pm 4.3 \cdot 10^{-7} \) |
| \(a_{334}= +0.49720639 \pm 4.3 \cdot 10^{-7} \) | \(a_{335}= -1.11551330 \pm 3.9 \cdot 10^{-7} \) | \(a_{336}= +0.95620859 \pm 4.1 \cdot 10^{-7} \) |
| \(a_{337}= +0.64879846 \pm 3.3 \cdot 10^{-7} \) | \(a_{338}= +0.60773356 \pm 3.5 \cdot 10^{-7} \) | \(a_{339}= +0.73328477 \pm 2.7 \cdot 10^{-7} \) |
| \(a_{340}= +0.83068151 \pm 3.5 \cdot 10^{-7} \) | \(a_{341}= -0.23782297 \pm 3.0 \cdot 10^{-7} \) | \(a_{342}= +0.36208621 \pm 4.1 \cdot 10^{-7} \) |
| \(a_{343}= -0.99006184 \pm 3.9 \cdot 10^{-7} \) | \(a_{344}= -1.24464919 \pm 3.0 \cdot 10^{-7} \) | \(a_{345}= -0.66000157 \pm 4.7 \cdot 10^{-7} \) |
| \(a_{346}= +0.03818088 \pm 3.6 \cdot 10^{-7} \) | \(a_{347}= +1.13589214 \pm 3.1 \cdot 10^{-7} \) | \(a_{348}= -0.26176329 \pm 8.7 \cdot 10^{-7} \) |
| \(a_{349}= -0.31727987 \pm 3.1 \cdot 10^{-7} \) | \(a_{350}= +0.28600687 \pm 4.3 \cdot 10^{-7} \) | \(a_{351}= -2.00676414 \pm 3.2 \cdot 10^{-7} \) |
| \(a_{352}= -0.91583719 \pm 4.0 \cdot 10^{-7} \) | \(a_{353}= +0.39175411 \pm 4.1 \cdot 10^{-7} \) | \(a_{354}= +0.08031785 \pm 5.5 \cdot 10^{-7} \) |
| \(a_{355}= +1.80652920 \pm 3.0 \cdot 10^{-7} \) | \(a_{356}= -0.31944716 \pm 4.1 \cdot 10^{-7} \) | \(a_{357}= -1.24627849 \pm 3.9 \cdot 10^{-7} \) |
| \(a_{358}= -0.38876280 \pm 4.5 \cdot 10^{-7} \) | \(a_{359}= -0.71586117 \pm 2.9 \cdot 10^{-7} \) | \(a_{360}= -1.65689481 \pm 4.2 \cdot 10^{-7} \) |
| \(a_{361}= -0.71750238 \pm 3.0 \cdot 10^{-7} \) | \(a_{362}= +0.43090772 \pm 4.4 \cdot 10^{-7} \) | \(a_{363}= -0.08228700 \pm 3.6 \cdot 10^{-7} \) |
| \(a_{364}= +1.37346459 \pm 5.3 \cdot 10^{-7} \) | \(a_{365}= +1.94070824 \pm 4.0 \cdot 10^{-7} \) | \(a_{366}= -0.08734919 \pm 4.5 \cdot 10^{-7} \) |
| \(a_{367}= -1.45952898 \pm 4.1 \cdot 10^{-7} \) | \(a_{368}= -0.17252061 \pm 3.6 \cdot 10^{-7} \) | \(a_{369}= +0.35067318 \pm 2.7 \cdot 10^{-7} \) |
| \(a_{370}= -0.52808911 \pm 3.9 \cdot 10^{-7} \) | \(a_{371}= +0.24201867 \pm 3.4 \cdot 10^{-7} \) | \(a_{372}= -0.34387698 \pm 4.4 \cdot 10^{-7} \) |
| \(a_{373}= +1.71843247 \pm 3.7 \cdot 10^{-7} \) | \(a_{374}= +0.28145837 \pm 3.6 \cdot 10^{-7} \) | \(a_{375}= -0.59005864 \pm 4.2 \cdot 10^{-7} \) |
| \(a_{376}= +0.53039532 \pm 2.6 \cdot 10^{-7} \) | \(a_{377}= -0.29743075 \pm 3.5 \cdot 10^{-7} \) | \(a_{378}= +0.49107681 \pm 4.4 \cdot 10^{-7} \) |
| \(a_{379}= +0.83522750 \pm 3.6 \cdot 10^{-7} \) | \(a_{380}= -0.59367683 \pm 3.6 \cdot 10^{-7} \) | \(a_{381}= -1.64280471 \pm 3.4 \cdot 10^{-7} \) |
| \(a_{382}= +0.05386725 \pm 4.6 \cdot 10^{-7} \) | \(a_{383}= +0.54735300 \pm 3.5 \cdot 10^{-7} \) | \(a_{384}= -1.69189941 \pm 4.4 \cdot 10^{-7} \) |
| \(a_{385}= -1.29454348 \pm 3.3 \cdot 10^{-7} \) | \(a_{386}= +0.11481248 \pm 3.8 \cdot 10^{-7} \) | \(a_{387}= +3.04240879 \pm 3.1 \cdot 10^{-7} \) |
| \(a_{388}= +0.83946723 \pm 4.6 \cdot 10^{-7} \) | \(a_{389}= +0.95398558 \pm 3.7 \cdot 10^{-7} \) | \(a_{390}= -1.35731961 \pm 3.5 \cdot 10^{-7} \) |
| \(a_{391}= +0.22485547 \pm 3.4 \cdot 10^{-7} \) | \(a_{392}= -0.01393334 \pm 3.9 \cdot 10^{-7} \) | \(a_{393}= -0.71880291 \pm 2.9 \cdot 10^{-7} \) |
| \(a_{394}= +0.68638831 \pm 5.2 \cdot 10^{-7} \) | \(a_{395}= +0.60489288 \pm 3.7 \cdot 10^{-7} \) | \(a_{396}= +1.45297338 \pm 4.9 \cdot 10^{-7} \) |
| \(a_{397}= -0.98290047 \pm 3.2 \cdot 10^{-7} \) | \(a_{398}= -0.03175165 \pm 4.3 \cdot 10^{-7} \) | \(a_{399}= +0.89069836 \pm 3.1 \cdot 10^{-7} \) |
| \(a_{400}= +0.41635893 \pm 3.0 \cdot 10^{-7} \) | \(a_{401}= +0.84773436 \pm 3.3 \cdot 10^{-7} \) | \(a_{402}= -0.54651702 \pm 3.9 \cdot 10^{-7} \) |
| \(a_{403}= -0.39073313 \pm 2.4 \cdot 10^{-7} \) | \(a_{404}= -1.41299172 \pm 3.8 \cdot 10^{-7} \) | \(a_{405}= +0.42697946 \pm 3.1 \cdot 10^{-7} \) |
| \(a_{406}= +0.07278451 \pm 8.2 \cdot 10^{-7} \) | \(a_{407}= +1.00836456 \pm 3.7 \cdot 10^{-7} \) | \(a_{408}= +0.88615793 \pm 3.1 \cdot 10^{-7} \) |
| \(a_{409}= +1.30642518 \pm 3.5 \cdot 10^{-7} \) | \(a_{410}= +0.10202578 \pm 5.0 \cdot 10^{-7} \) | \(a_{411}= +0.00021615 \pm 4.8 \cdot 10^{-7} \) |
| \(a_{412}= +0.46755579 \pm 4.1 \cdot 10^{-7} \) | \(a_{413}= +0.12585575 \pm 3.3 \cdot 10^{-7} \) | \(a_{414}= -0.20597580 \pm 5.5 \cdot 10^{-7} \) |
| \(a_{415}= +0.73126554 \pm 3.1 \cdot 10^{-7} \) | \(a_{416}= -1.50468197 \pm 3.8 \cdot 10^{-7} \) | \(a_{417}= -1.71937465 \pm 4.4 \cdot 10^{-7} \) |
| \(a_{418}= -0.20115448 \pm 2.9 \cdot 10^{-7} \) | \(a_{419}= +0.63910855 \pm 3.5 \cdot 10^{-7} \) | \(a_{420}= -1.87182809 \pm 3.9 \cdot 10^{-7} \) |
| \(a_{421}= +0.11485616 \pm 3.4 \cdot 10^{-7} \) | \(a_{422}= -0.59190325 \pm 4.5 \cdot 10^{-7} \) | \(a_{423}= -1.29649333 \pm 3.5 \cdot 10^{-7} \) |
| \(a_{424}= -0.17208574 \pm 3.0 \cdot 10^{-7} \) | \(a_{425}= -0.54266317 \pm 3.6 \cdot 10^{-7} \) | \(a_{426}= +0.88506247 \pm 3.6 \cdot 10^{-7} \) |
| \(a_{427}= -0.13687365 \pm 4.1 \cdot 10^{-7} \) | \(a_{428}= -0.28698151 \pm 4.6 \cdot 10^{-7} \) | \(a_{429}= +2.59174628 \pm 3.1 \cdot 10^{-7} \) |
| \(a_{430}= +0.88516643 \pm 5.0 \cdot 10^{-7} \) | \(a_{431}= -0.99991679 \pm 3.5 \cdot 10^{-7} \) | \(a_{432}= +0.71489268 \pm 3.9 \cdot 10^{-7} \) |
| \(a_{433}= -0.85035205 \pm 3.3 \cdot 10^{-7} \) | \(a_{434}= +0.09561661 \pm 4.2 \cdot 10^{-7} \) | \(a_{435}= +0.40535390 \pm 8.2 \cdot 10^{-7} \) |
| \(a_{436}= -1.31313450 \pm 4.4 \cdot 10^{-7} \) | \(a_{437}= -0.16070116 \pm 3.4 \cdot 10^{-7} \) | \(a_{438}= +0.95080004 \pm 4.6 \cdot 10^{-7} \) |
| \(a_{439}= +1.18224582 \pm 3.9 \cdot 10^{-7} \) | \(a_{440}= +0.92047642 \pm 3.1 \cdot 10^{-7} \) | \(a_{441}= +0.03405852 \pm 4.0 \cdot 10^{-7} \) |
| \(a_{442}= +0.46242426 \pm 3.2 \cdot 10^{-7} \) | \(a_{443}= -0.35744132 \pm 3.8 \cdot 10^{-7} \) | \(a_{444}= +1.45803145 \pm 6.1 \cdot 10^{-7} \) |
| \(a_{445}= +0.49468033 \pm 3.2 \cdot 10^{-7} \) | \(a_{446}= +0.58910673 \pm 4.3 \cdot 10^{-7} \) | \(a_{447}= +0.01107570 \pm 4.9 \cdot 10^{-7} \) |
| \(a_{448}= -0.20789549 \pm 4.1 \cdot 10^{-7} \) | \(a_{449}= +0.51889055 \pm 3.2 \cdot 10^{-7} \) | \(a_{450}= +0.49709924 \pm 4.7 \cdot 10^{-7} \) |
| \(a_{451}= -0.19481405 \pm 2.7 \cdot 10^{-7} \) | \(a_{452}= -0.37521657 \pm 3.0 \cdot 10^{-7} \) | \(a_{453}= -2.56528093 \pm 4.8 \cdot 10^{-7} \) |
| \(a_{454}= -0.56162450 \pm 4.4 \cdot 10^{-7} \) | \(a_{455}= -2.12688047 \pm 3.9 \cdot 10^{-7} \) | \(a_{456}= -0.63332507 \pm 3.6 \cdot 10^{-7} \) |
| \(a_{457}= +0.28653825 \pm 3.4 \cdot 10^{-7} \) | \(a_{458}= -0.23486910 \pm 5.1 \cdot 10^{-7} \) | \(a_{459}= -0.93175839 \pm 3.5 \cdot 10^{-7} \) |
| \(a_{460}= +0.33771808 \pm 5.4 \cdot 10^{-7} \) | \(a_{461}= +0.09457441 \pm 3.3 \cdot 10^{-7} \) | \(a_{462}= -0.63422825 \pm 3.6 \cdot 10^{-7} \) |
| \(a_{463}= -0.55121555 \pm 3.7 \cdot 10^{-7} \) | \(a_{464}= +0.10595718 \pm 3.9 \cdot 10^{-7} \) | \(a_{465}= +0.53251118 \pm 3.8 \cdot 10^{-7} \) |
| \(a_{466}= -0.58661346 \pm 3.7 \cdot 10^{-7} \) | \(a_{467}= -1.72121073 \pm 3.6 \cdot 10^{-7} \) | \(a_{468}= +2.38717413 \pm 3.8 \cdot 10^{-7} \) |
| \(a_{469}= -0.85637632 \pm 3.0 \cdot 10^{-7} \) | \(a_{470}= -0.37720519 \pm 3.5 \cdot 10^{-7} \) | \(a_{471}= -1.04041365 \pm 3.6 \cdot 10^{-7} \) |
| \(a_{472}= -0.08948888 \pm 3.1 \cdot 10^{-7} \) | \(a_{473}= -1.69018910 \pm 3.5 \cdot 10^{-7} \) | \(a_{474}= +0.29635169 \pm 4.0 \cdot 10^{-7} \) |
| \(a_{475}= +0.38783402 \pm 3.1 \cdot 10^{-7} \) | \(a_{476}= +0.63771179 \pm 4.4 \cdot 10^{-7} \) | \(a_{477}= +0.42064478 \pm 3.3 \cdot 10^{-7} \) |
| \(a_{478}= -0.52001677 \pm 3.1 \cdot 10^{-7} \) | \(a_{479}= +1.12658466 \pm 4.1 \cdot 10^{-7} \) | \(a_{480}= +2.05065788 \pm 4.0 \cdot 10^{-7} \) |
| \(a_{481}= +1.65670054 \pm 3.4 \cdot 10^{-7} \) | \(a_{482}= +0.31560487 \pm 3.5 \cdot 10^{-7} \) | \(a_{483}= -0.50668129 \pm 3.2 \cdot 10^{-7} \) |
| \(a_{484}= +0.04210567 \pm 4.1 \cdot 10^{-7} \) | \(a_{485}= -1.29995813 \pm 3.4 \cdot 10^{-7} \) | \(a_{486}= -0.27719203 \pm 3.4 \cdot 10^{-7} \) |
| \(a_{487}= -1.35493501 \pm 4.0 \cdot 10^{-7} \) | \(a_{488}= +0.09732308 \pm 4.3 \cdot 10^{-7} \) | \(a_{489}= -0.78638793 \pm 3.2 \cdot 10^{-7} \) |
| \(a_{490}= +0.00990907 \pm 4.8 \cdot 10^{-7} \) | \(a_{491}= +0.34399198 \pm 4.0 \cdot 10^{-7} \) | \(a_{492}= -0.28168881 \pm 3.5 \cdot 10^{-7} \) |
| \(a_{493}= -0.13809973 \pm 4.0 \cdot 10^{-7} \) | \(a_{494}= -0.33048835 \pm 2.4 \cdot 10^{-7} \) | \(a_{495}= -2.25000392 \pm 3.8 \cdot 10^{-7} \) |
| \(a_{496}= +0.13919536 \pm 3.9 \cdot 10^{-7} \) | \(a_{497}= +1.38686722 \pm 3.2 \cdot 10^{-7} \) | \(a_{498}= +0.35826472 \pm 3.0 \cdot 10^{-7} \) |
| \(a_{499}= -1.66417516 \pm 3.3 \cdot 10^{-7} \) | \(a_{500}= +0.30192878 \pm 3.6 \cdot 10^{-7} \) | \(a_{501}= +2.12579801 \pm 3.7 \cdot 10^{-7} \) |
| \(a_{502}= +0.47206869 \pm 4.3 \cdot 10^{-7} \) | \(a_{503}= +0.05263402 \pm 3.4 \cdot 10^{-7} \) | \(a_{504}= -1.27199334 \pm 4.4 \cdot 10^{-7} \) |
| \(a_{505}= +2.18809027 \pm 3.9 \cdot 10^{-7} \) | \(a_{506}= +0.11442843 \pm 5.8 \cdot 10^{-7} \) | \(a_{507}= +2.59835518 \pm 4.0 \cdot 10^{-7} \) |
| \(a_{508}= +0.84061142 \pm 3.8 \cdot 10^{-7} \) | \(a_{509}= +0.43097343 \pm 3.0 \cdot 10^{-7} \) | \(a_{510}= -0.63021553 \pm 3.7 \cdot 10^{-7} \) |
| \(a_{511}= +1.48987608 \pm 3.4 \cdot 10^{-7} \) | \(a_{512}= +0.94566744 \pm 3.2 \cdot 10^{-7} \) | \(a_{513}= +0.66591510 \pm 3.0 \cdot 10^{-7} \) |
| \(a_{514}= -0.57031481 \pm 5.0 \cdot 10^{-7} \) | \(a_{515}= -0.72403417 \pm 2.5 \cdot 10^{-7} \) | \(a_{516}= -2.44390667 \pm 4.1 \cdot 10^{-7} \) |
| \(a_{517}= +0.72025788 \pm 3.2 \cdot 10^{-7} \) | \(a_{518}= -0.40541248 \pm 5.2 \cdot 10^{-7} \) | \(a_{519}= +0.16324174 \pm 3.0 \cdot 10^{-7} \) |
| \(a_{520}= +1.51230403 \pm 4.3 \cdot 10^{-7} \) | \(a_{521}= -0.85548421 \pm 3.7 \cdot 10^{-7} \) | \(a_{522}= +0.12650439 \pm 8.4 \cdot 10^{-7} \) |
| \(a_{523}= -0.47587971 \pm 3.7 \cdot 10^{-7} \) | \(a_{524}= +0.36780630 \pm 3.2 \cdot 10^{-7} \) | \(a_{525}= +1.22281783 \pm 3.5 \cdot 10^{-7} \) |
| \(a_{526}= +0.63861216 \pm 3.9 \cdot 10^{-7} \) | \(a_{527}= -0.18142086 \pm 3.8 \cdot 10^{-7} \) | \(a_{528}= -0.92328760 \pm 3.6 \cdot 10^{-7} \) |
| \(a_{529}= -0.90858379 \pm 3.7 \cdot 10^{-7} \) | \(a_{530}= +0.12238350 \pm 4.6 \cdot 10^{-7} \) | \(a_{531}= +0.21874578 \pm 3.8 \cdot 10^{-7} \) |
| \(a_{532}= -0.45576398 \pm 2.9 \cdot 10^{-7} \) | \(a_{533}= -0.32007129 \pm 2.7 \cdot 10^{-7} \) | \(a_{534}= +0.24235589 \pm 5.4 \cdot 10^{-7} \) |
| \(a_{535}= +0.44440561 \pm 3.3 \cdot 10^{-7} \) | \(a_{536}= +0.60892062 \pm 3.3 \cdot 10^{-7} \) | \(a_{537}= -1.66214919 \pm 4.4 \cdot 10^{-7} \) |
| \(a_{538}= -0.07457268 \pm 4.2 \cdot 10^{-7} \) | \(a_{539}= -0.01892097 \pm 2.9 \cdot 10^{-7} \) | \(a_{540}= -1.39943964 \pm 4.7 \cdot 10^{-7} \) |
| \(a_{541}= -0.48960458 \pm 3.7 \cdot 10^{-7} \) | \(a_{542}= +0.24671197 \pm 4.0 \cdot 10^{-7} \) | \(a_{543}= +1.84233912 \pm 3.9 \cdot 10^{-7} \) |
| \(a_{544}= -0.69863718 \pm 3.3 \cdot 10^{-7} \) | \(a_{545}= +2.03345624 \pm 3.7 \cdot 10^{-7} \) | \(a_{546}= -1.04201033 \pm 4.6 \cdot 10^{-7} \) |
| \(a_{547}= -0.72895280 \pm 3.2 \cdot 10^{-7} \) | \(a_{548}= -0.00011060 \pm 4.4 \cdot 10^{-7} \) | \(a_{549}= -0.23789563 \pm 3.6 \cdot 10^{-7} \) |
| \(a_{550}= -0.27616003 \pm 4.3 \cdot 10^{-7} \) | \(a_{551}= +0.09869801 \pm 3.3 \cdot 10^{-7} \) | \(a_{552}= +0.36027232 \pm 4.1 \cdot 10^{-7} \) |
| \(a_{553}= +0.46437451 \pm 3.3 \cdot 10^{-7} \) | \(a_{554}= -0.59531662 \pm 4.4 \cdot 10^{-7} \) | \(a_{555}= -2.25783660 \pm 3.3 \cdot 10^{-7} \) |
| \(a_{556}= +0.87979170 \pm 4.2 \cdot 10^{-7} \) | \(a_{557}= +0.33289595 \pm 4.0 \cdot 10^{-7} \) | \(a_{558}= +0.16618811 \pm 4.4 \cdot 10^{-7} \) |
| \(a_{559}= -2.77690958 \pm 3.1 \cdot 10^{-7} \) | \(a_{560}= +0.75768310 \pm 4.3 \cdot 10^{-7} \) | \(a_{561}= +1.20337078 \pm 2.9 \cdot 10^{-7} \) |
| \(a_{562}= -0.03581851 \pm 5.1 \cdot 10^{-7} \) | \(a_{563}= +0.66284100 \pm 4.5 \cdot 10^{-7} \) | \(a_{564}= +1.04144739 \pm 3.6 \cdot 10^{-7} \) |
| \(a_{565}= +0.58104214 \pm 3.1 \cdot 10^{-7} \) | \(a_{566}= -0.21267923 \pm 3.7 \cdot 10^{-7} \) | \(a_{567}= +0.32779089 \pm 2.9 \cdot 10^{-7} \) |
| \(a_{568}= -0.98612259 \pm 3.0 \cdot 10^{-7} \) | \(a_{569}= +1.69518599 \pm 4.0 \cdot 10^{-7} \) | \(a_{570}= +0.45040651 \pm 4.9 \cdot 10^{-7} \) |
| \(a_{571}= +1.18255628 \pm 4.0 \cdot 10^{-7} \) | \(a_{572}= -1.32617803 \pm 2.8 \cdot 10^{-7} \) | \(a_{573}= +0.23030857 \pm 3.1 \cdot 10^{-7} \) |
| \(a_{574}= +0.07832489 \pm 4.5 \cdot 10^{-7} \) | \(a_{575}= -0.22062266 \pm 3.8 \cdot 10^{-7} \) | \(a_{576}= -0.36133639 \pm 4.1 \cdot 10^{-7} \) |
| \(a_{577}= +0.92710867 \pm 3.6 \cdot 10^{-7} \) | \(a_{578}= -0.17349980 \pm 3.9 \cdot 10^{-7} \) | \(a_{579}= +0.49087892 \pm 4.0 \cdot 10^{-7} \) |
| \(a_{580}= -0.20741669 \pm 8.4 \cdot 10^{-7} \) | \(a_{581}= +0.56139043 \pm 3.1 \cdot 10^{-7} \) | \(a_{582}= -0.63688102 \pm 5.5 \cdot 10^{-7} \) |
| \(a_{583}= -0.23368629 \pm 3.3 \cdot 10^{-7} \) | \(a_{584}= -1.05936635 \pm 3.8 \cdot 10^{-7} \) | \(a_{585}= -3.69666178 \pm 3.4 \cdot 10^{-7} \) |
| \(a_{586}= +0.34800428 \pm 4.7 \cdot 10^{-7} \) | \(a_{587}= -0.05358437 \pm 3.9 \cdot 10^{-7} \) | \(a_{588}= -0.02735853 \pm 6.0 \cdot 10^{-7} \) |
| \(a_{589}= +0.12965903 \pm 3.2 \cdot 10^{-7} \) | \(a_{590}= +0.06364248 \pm 3.5 \cdot 10^{-7} \) | \(a_{591}= +2.93464230 \pm 4.2 \cdot 10^{-7} \) |
| \(a_{592}= -0.59018549 \pm 4.1 \cdot 10^{-7} \) | \(a_{593}= -1.45644673 \pm 3.4 \cdot 10^{-7} \) | \(a_{594}= -0.47416969 \pm 4.6 \cdot 10^{-7} \) |
| \(a_{595}= -0.98752946 \pm 3.9 \cdot 10^{-7} \) | \(a_{596}= -0.00566736 \pm 5.0 \cdot 10^{-7} \) | \(a_{597}= -0.13575368 \pm 4.0 \cdot 10^{-7} \) |
| \(a_{598}= +0.18800109 \pm 3.1 \cdot 10^{-7} \) | \(a_{599}= -0.33051696 \pm 3.9 \cdot 10^{-7} \) | \(a_{600}= -0.86947638 \pm 3.8 \cdot 10^{-7} \) |
| \(a_{601}= -0.13814473 \pm 3.5 \cdot 10^{-7} \) | \(a_{602}= +0.67953970 \pm 3.3 \cdot 10^{-7} \) | \(a_{603}= -1.48843984 \pm 2.9 \cdot 10^{-7} \) |
| \(a_{604}= +1.31263589 \pm 4.6 \cdot 10^{-7} \) | \(a_{605}= -0.06520279 \pm 3.4 \cdot 10^{-7} \) | \(a_{606}= +1.07199849 \pm 5.6 \cdot 10^{-7} \) |
| \(a_{607}= +0.31014703 \pm 3.4 \cdot 10^{-7} \) | \(a_{608}= +0.49930653 \pm 2.9 \cdot 10^{-7} \) | \(a_{609}= +0.31118902 \pm 8.0 \cdot 10^{-7} \) |
| \(a_{610}= -0.06921398 \pm 5.3 \cdot 10^{-7} \) | \(a_{611}= +1.18335339 \pm 2.2 \cdot 10^{-7} \) | \(a_{612}= +1.10838612 \pm 3.3 \cdot 10^{-7} \) |
| \(a_{613}= -1.54537664 \pm 3.6 \cdot 10^{-7} \) | \(a_{614}= -0.23561248 \pm 3.7 \cdot 10^{-7} \) | \(a_{615}= +0.43620960 \pm 3.4 \cdot 10^{-7} \) |
| \(a_{616}= +0.70664708 \pm 2.3 \cdot 10^{-7} \) | \(a_{617}= -1.25491751 \pm 3.7 \cdot 10^{-7} \) | \(a_{618}= -0.35472190 \pm 5.5 \cdot 10^{-7} \) |
| \(a_{619}= -0.89470569 \pm 3.2 \cdot 10^{-7} \) | \(a_{620}= -0.27248216 \pm 3.1 \cdot 10^{-7} \) | \(a_{621}= -0.37881143 \pm 4.1 \cdot 10^{-7} \) |
| \(a_{622}= -0.08235885 \pm 4.8 \cdot 10^{-7} \) | \(a_{623}= +0.37976466 \pm 3.3 \cdot 10^{-7} \) | \(a_{624}= -1.51692268 \pm 4.2 \cdot 10^{-7} \) |
| \(a_{625}= -1.19724242 \pm 3.3 \cdot 10^{-7} \) | \(a_{626}= +0.20650295 \pm 4.0 \cdot 10^{-7} \) | \(a_{627}= -0.86003280 \pm 3.1 \cdot 10^{-7} \) |
| \(a_{628}= +0.53237222 \pm 4.7 \cdot 10^{-7} \) | \(a_{629}= +0.76922075 \pm 3.1 \cdot 10^{-7} \) | \(a_{630}= +0.90461298 \pm 4.7 \cdot 10^{-7} \) |
| \(a_{631}= +0.13921826 \pm 3.5 \cdot 10^{-7} \) | \(a_{632}= -0.33019036 \pm 3.0 \cdot 10^{-7} \) | \(a_{633}= -2.53067293 \pm 4.2 \cdot 10^{-7} \) |
| \(a_{634}= +0.60322558 \pm 4.0 \cdot 10^{-7} \) | \(a_{635}= -1.30172996 \pm 3.0 \cdot 10^{-7} \) | \(a_{636}= -0.33789561 \pm 4.7 \cdot 10^{-7} \) |
| \(a_{637}= -0.03108636 \pm 2.7 \cdot 10^{-7} \) | \(a_{638}= -0.07027864 \pm 8.1 \cdot 10^{-7} \) | \(a_{639}= +2.41046881 \pm 3.2 \cdot 10^{-7} \) |
| \(a_{640}= -1.34063175 \pm 4.4 \cdot 10^{-7} \) | \(a_{641}= +1.36278190 \pm 3.6 \cdot 10^{-7} \) | \(a_{642}= +0.21772508 \pm 5.8 \cdot 10^{-7} \) |
| \(a_{643}= +0.85279102 \pm 3.3 \cdot 10^{-7} \) | \(a_{644}= +0.25926519 \pm 3.1 \cdot 10^{-7} \) | \(a_{645}= +3.78451503 \pm 4.2 \cdot 10^{-7} \) |
| \(a_{646}= -0.15344867 \pm 3.0 \cdot 10^{-7} \) | \(a_{647}= -1.07801510 \pm 4.2 \cdot 10^{-7} \) | \(a_{648}= -0.23307351 \pm 3.1 \cdot 10^{-7} \) |
| \(a_{649}= -0.12152270 \pm 3.2 \cdot 10^{-7} \) | \(a_{650}= -0.45371932 \pm 3.4 \cdot 10^{-7} \) | \(a_{651}= +0.40880728 \pm 3.4 \cdot 10^{-7} \) |
| \(a_{652}= +0.40238907 \pm 4.8 \cdot 10^{-7} \) | \(a_{653}= +1.53770630 \pm 3.4 \cdot 10^{-7} \) | \(a_{654}= +0.99623953 \pm 4.1 \cdot 10^{-7} \) |
| \(a_{655}= -0.56956696 \pm 3.3 \cdot 10^{-7} \) | \(a_{656}= +0.11402268 \pm 3.5 \cdot 10^{-7} \) | \(a_{657}= +2.58950517 \pm 3.7 \cdot 10^{-7} \) |
| \(a_{658}= -0.28957933 \pm 3.2 \cdot 10^{-7} \) | \(a_{659}= +0.04500620 \pm 3.6 \cdot 10^{-7} \) | \(a_{660}= +1.80738354 \pm 4.5 \cdot 10^{-7} \) |
| \(a_{661}= -1.27707641 \pm 3.6 \cdot 10^{-7} \) | \(a_{662}= -0.66655761 \pm 5.0 \cdot 10^{-7} \) | \(a_{663}= +1.97708757 \pm 4.1 \cdot 10^{-7} \) |
| \(a_{664}= -0.39917289 \pm 3.1 \cdot 10^{-7} \) | \(a_{665}= +0.70577393 \pm 3.4 \cdot 10^{-7} \) | \(a_{666}= -0.70463424 \pm 6.1 \cdot 10^{-7} \) |
| \(a_{667}= -0.05614520 \pm 3.9 \cdot 10^{-7} \) | \(a_{668}= -1.08775563 \pm 4.1 \cdot 10^{-7} \) | \(a_{669}= +2.51871649 \pm 4.2 \cdot 10^{-7} \) |
| \(a_{670}= -0.43305061 \pm 5.2 \cdot 10^{-7} \) | \(a_{671}= +0.13216127 \pm 3.3 \cdot 10^{-7} \) | \(a_{672}= +1.57428410 \pm 3.8 \cdot 10^{-7} \) |
| \(a_{673}= +0.23181841 \pm 4.4 \cdot 10^{-7} \) | \(a_{674}= +0.25186842 \pm 4.2 \cdot 10^{-7} \) | \(a_{675}= +0.91421843 \pm 3.9 \cdot 10^{-7} \) |
| \(a_{676}= -1.32955975 \pm 3.9 \cdot 10^{-7} \) | \(a_{677}= -0.73672304 \pm 3.1 \cdot 10^{-7} \) | \(a_{678}= +0.28466664 \pm 2.9 \cdot 10^{-7} \) |
| \(a_{679}= -0.99797409 \pm 3.6 \cdot 10^{-7} \) | \(a_{680}= +0.70217617 \pm 3.1 \cdot 10^{-7} \) | \(a_{681}= -2.40121662 \pm 4.7 \cdot 10^{-7} \) |
| \(a_{682}= -0.09232465 \pm 3.9 \cdot 10^{-7} \) | \(a_{683}= +0.42859855 \pm 3.1 \cdot 10^{-7} \) | \(a_{684}= -0.79214854 \pm 4.2 \cdot 10^{-7} \) |
| \(a_{685}= +0.00017127 \pm 3.3 \cdot 10^{-7} \) | \(a_{686}= -0.38434941 \pm 4.9 \cdot 10^{-7} \) | \(a_{687}= -1.00417912 \pm 4.5 \cdot 10^{-7} \) |
| \(a_{688}= +0.98925045 \pm 2.7 \cdot 10^{-7} \) | \(a_{689}= -0.38393674 \pm 3.4 \cdot 10^{-7} \) | \(a_{690}= -0.25621755 \pm 6.3 \cdot 10^{-7} \) |
| \(a_{691}= +0.21532556 \pm 3.4 \cdot 10^{-7} \) | \(a_{692}= -0.08352963 \pm 3.6 \cdot 10^{-7} \) | \(a_{693}= -1.72732148 \pm 3.4 \cdot 10^{-7} \) |
| \(a_{694}= +0.44096183 \pm 4.1 \cdot 10^{-7} \) | \(a_{695}= -1.36240265 \pm 3.8 \cdot 10^{-7} \) | \(a_{696}= -0.22126885 \pm 8.0 \cdot 10^{-7} \) |
| \(a_{697}= -0.14861194 \pm 4.0 \cdot 10^{-7} \) | \(a_{698}= -0.12317042 \pm 3.8 \cdot 10^{-7} \) | \(a_{699}= -2.50805655 \pm 3.5 \cdot 10^{-7} \) |
| \(a_{700}= -0.62570713 \pm 4.4 \cdot 10^{-7} \) | \(a_{701}= -0.74988579 \pm 3.5 \cdot 10^{-7} \) | \(a_{702}= -0.77904085 \pm 3.6 \cdot 10^{-7} \) |
| \(a_{703}= -0.54975165 \pm 2.6 \cdot 10^{-7} \) | \(a_{704}= +0.20073792 \pm 4.0 \cdot 10^{-7} \) | \(a_{705}= -1.61273479 \pm 3.8 \cdot 10^{-7} \) |
| \(a_{706}= +0.15208188 \pm 5.3 \cdot 10^{-7} \) | \(a_{707}= +1.67979055 \pm 3.2 \cdot 10^{-7} \) | \(a_{708}= -0.17571415 \pm 5.3 \cdot 10^{-7} \) |
| \(a_{709}= +0.11520721 \pm 3.8 \cdot 10^{-7} \) | \(a_{710}= +0.70130815 \pm 2.9 \cdot 10^{-7} \) | \(a_{711}= +0.80711422 \pm 3.2 \cdot 10^{-7} \) |
| \(a_{712}= -0.27002910 \pm 3.6 \cdot 10^{-7} \) | \(a_{713}= -0.07375763 \pm 3.5 \cdot 10^{-7} \) | \(a_{714}= -0.48381464 \pm 4.8 \cdot 10^{-7} \) |
| \(a_{715}= +2.05365481 \pm 2.9 \cdot 10^{-7} \) | \(a_{716}= +0.85050985 \pm 4.0 \cdot 10^{-7} \) | \(a_{717}= -2.22332345 \pm 4.2 \cdot 10^{-7} \) |
| \(a_{718}= -0.27790266 \pm 3.8 \cdot 10^{-7} \) | \(a_{719}= +1.38925511 \pm 3.0 \cdot 10^{-7} \) | \(a_{720}= +1.31690436 \pm 3.6 \cdot 10^{-7} \) |
| \(a_{721}= -0.55583893 \pm 3.2 \cdot 10^{-7} \) | \(a_{722}= -0.27853979 \pm 3.9 \cdot 10^{-7} \) | \(a_{723}= +1.34936361 \pm 4.2 \cdot 10^{-7} \) |
| \(a_{724}= -0.94271174 \pm 4.6 \cdot 10^{-7} \) | \(a_{725}= +0.13550007 \pm 3.7 \cdot 10^{-7} \) | \(a_{726}= -0.03194443 \pm 4.8 \cdot 10^{-7} \) |
| \(a_{727}= +0.45731129 \pm 3.2 \cdot 10^{-7} \) | \(a_{728}= +1.16099142 \pm 4.9 \cdot 10^{-7} \) | \(a_{729}= -1.50978565 \pm 3.9 \cdot 10^{-7} \) |
| \(a_{730}= +0.75339746 \pm 4.9 \cdot 10^{-7} \) | \(a_{731}= -1.28934375 \pm 3.3 \cdot 10^{-7} \) | \(a_{732}= +0.19109684 \pm 4.8 \cdot 10^{-7} \) |
| \(a_{733}= +0.79638463 \pm 4.2 \cdot 10^{-7} \) | \(a_{734}= -0.56660007 \pm 4.1 \cdot 10^{-7} \) | \(a_{735}= +0.04236609 \pm 2.9 \cdot 10^{-7} \) |
| \(a_{736}= -0.28403474 \pm 4.1 \cdot 10^{-7} \) | \(a_{737}= +0.82689243 \pm 3.4 \cdot 10^{-7} \) | \(a_{738}= +0.13613395 \pm 3.7 \cdot 10^{-7} \) |
| \(a_{739}= -0.56088382 \pm 3.9 \cdot 10^{-7} \) | \(a_{740}= +1.15531883 \pm 4.0 \cdot 10^{-7} \) | \(a_{741}= -1.41299771 \pm 3.0 \cdot 10^{-7} \) |
| \(a_{742}= +0.09395346 \pm 4.3 \cdot 10^{-7} \) | \(a_{743}= +0.09159446 \pm 3.3 \cdot 10^{-7} \) | \(a_{744}= -0.29067967 \pm 3.5 \cdot 10^{-7} \) |
| \(a_{745}= +0.00877619 \pm 4.0 \cdot 10^{-7} \) | \(a_{746}= +0.66710834 \pm 4.3 \cdot 10^{-7} \) | \(a_{747}= +0.97573446 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{748}= -0.61575622 \pm 3.2 \cdot 10^{-7} \) | \(a_{749}= +0.34116889 \pm 4.0 \cdot 10^{-7} \) | \(a_{750}= -0.22906518 \pm 3.7 \cdot 10^{-7} \) |
| \(a_{751}= +0.12815556 \pm 3.9 \cdot 10^{-7} \) | \(a_{752}= -0.42155959 \pm 3.0 \cdot 10^{-7} \) | \(a_{753}= +2.01832218 \pm 4.1 \cdot 10^{-7} \) |
| \(a_{754}= -0.11546484 \pm 7.9 \cdot 10^{-7} \) | \(a_{755}= -2.03268412 \pm 4.0 \cdot 10^{-7} \) | \(a_{756}= -1.07434575 \pm 4.4 \cdot 10^{-7} \) |
| \(a_{757}= +1.12023235 \pm 2.4 \cdot 10^{-7} \) | \(a_{758}= +0.32424157 \pm 4.5 \cdot 10^{-7} \) | \(a_{759}= +0.48923693 \pm 4.6 \cdot 10^{-7} \) |
| \(a_{760}= -0.50183580 \pm 3.6 \cdot 10^{-7} \) | \(a_{761}= +0.19330431 \pm 2.8 \cdot 10^{-7} \) | \(a_{762}= -0.63774908 \pm 3.8 \cdot 10^{-7} \) |
| \(a_{763}= +1.56107845 \pm 3.7 \cdot 10^{-7} \) | \(a_{764}= -0.11784724 \pm 4.1 \cdot 10^{-7} \) | \(a_{765}= -1.71639285 \pm 3.0 \cdot 10^{-7} \) |
| \(a_{766}= +0.21248653 \pm 4.4 \cdot 10^{-7} \) | \(a_{767}= -0.19965669 \pm 2.7 \cdot 10^{-7} \) | \(a_{768}= -0.31504882 \pm 4.4 \cdot 10^{-7} \) |
| \(a_{769}= -0.33475826 \pm 3.2 \cdot 10^{-7} \) | \(a_{770}= -0.50255146 \pm 4.3 \cdot 10^{-7} \) | \(a_{771}= -2.43837191 \pm 5.0 \cdot 10^{-7} \) |
| \(a_{772}= -0.25117923 \pm 4.1 \cdot 10^{-7} \) | \(a_{773}= -0.28661285 \pm 4.3 \cdot 10^{-7} \) | \(a_{774}= +1.18108586 \pm 3.3 \cdot 10^{-7} \) |
| \(a_{775}= +0.17800568 \pm 3.2 \cdot 10^{-7} \) | \(a_{776}= +0.70960275 \pm 3.8 \cdot 10^{-7} \) | \(a_{777}= -1.73333461 \pm 4.2 \cdot 10^{-7} \) |
| \(a_{778}= +0.37034434 \pm 4.5 \cdot 10^{-7} \) | \(a_{779}= +0.10621094 \pm 3.1 \cdot 10^{-7} \) | \(a_{780}= +2.96945512 \pm 4.1 \cdot 10^{-7} \) |
| \(a_{781}= -1.33911923 \pm 2.6 \cdot 10^{-7} \) | \(a_{782}= +0.08729057 \pm 3.7 \cdot 10^{-7} \) | \(a_{783}= +0.23265504 \pm 3.8 \cdot 10^{-7} \) |
| \(a_{784}= +0.01107425 \pm 3.0 \cdot 10^{-7} \) | \(a_{785}= -0.82440573 \pm 4.0 \cdot 10^{-7} \) | \(a_{786}= -0.27904467 \pm 3.1 \cdot 10^{-7} \) |
| \(a_{787}= +0.32754619 \pm 3.8 \cdot 10^{-7} \) | \(a_{788}= -1.50163547 \pm 4.6 \cdot 10^{-7} \) | \(a_{789}= +2.73037614 \pm 4.3 \cdot 10^{-7} \) |
| \(a_{790}= +0.23482394 \pm 4.1 \cdot 10^{-7} \) | \(a_{791}= +0.44606436 \pm 2.9 \cdot 10^{-7} \) | \(a_{792}= +1.22820030 \pm 3.1 \cdot 10^{-7} \) |
| \(a_{793}= +0.21713540 \pm 3.7 \cdot 10^{-7} \) | \(a_{794}= -0.38156932 \pm 4.2 \cdot 10^{-7} \) | \(a_{795}= +0.52324871 \pm 3.7 \cdot 10^{-7} \) |
| \(a_{796}= +0.06946419 \pm 4.2 \cdot 10^{-7} \) | \(a_{797}= +1.11604025 \pm 3.5 \cdot 10^{-7} \) | \(a_{798}= +0.34577577 \pm 3.3 \cdot 10^{-7} \) |
| \(a_{799}= +0.54944147 \pm 3.3 \cdot 10^{-7} \) | \(a_{800}= +0.68548563 \pm 3.1 \cdot 10^{-7} \) | \(a_{801}= +0.66005660 \pm 4.2 \cdot 10^{-7} \) |
| \(a_{802}= +0.32909682 \pm 3.9 \cdot 10^{-7} \) | \(a_{803}= -1.43858163 \pm 3.5 \cdot 10^{-7} \) | \(a_{804}= +1.19563421 \pm 3.8 \cdot 10^{-7} \) |
| \(a_{805}= -0.40148547 \pm 3.4 \cdot 10^{-7} \) | \(a_{806}= -0.15168552 \pm 2.9 \cdot 10^{-7} \) | \(a_{807}= -0.31883431 \pm 4.0 \cdot 10^{-7} \) |
| \(a_{808}= -1.19440376 \pm 3.0 \cdot 10^{-7} \) | \(a_{809}= -0.39553423 \pm 3.8 \cdot 10^{-7} \) | \(a_{810}= +0.16575662 \pm 3.4 \cdot 10^{-7} \) |
| \(a_{811}= +1.69507350 \pm 3.0 \cdot 10^{-7} \) | \(a_{812}= -0.15923319 \pm 8.2 \cdot 10^{-7} \) | \(a_{813}= +1.05481313 \pm 3.6 \cdot 10^{-7} \) |
| \(a_{814}= +0.39145466 \pm 4.8 \cdot 10^{-7} \) | \(a_{815}= -0.62312015 \pm 3.4 \cdot 10^{-7} \) | \(a_{816}= -0.70432065 \pm 3.5 \cdot 10^{-7} \) |
| \(a_{817}= +0.92147651 \pm 2.3 \cdot 10^{-7} \) | \(a_{818}= +0.50716403 \pm 4.5 \cdot 10^{-7} \) | \(a_{819}= -2.83791652 \pm 3.5 \cdot 10^{-7} \) |
| \(a_{820}= -0.22320533 \pm 4.5 \cdot 10^{-7} \) | \(a_{821}= +0.22092624 \pm 3.7 \cdot 10^{-7} \) | \(a_{822}= +0.00008391 \pm 6.1 \cdot 10^{-7} \) |
| \(a_{823}= +1.83854014 \pm 4.0 \cdot 10^{-7} \) | \(a_{824}= +0.39522553 \pm 3.2 \cdot 10^{-7} \) | \(a_{825}= -1.18071784 \pm 3.4 \cdot 10^{-7} \) |
| \(a_{826}= +0.04885814 \pm 4.5 \cdot 10^{-7} \) | \(a_{827}= -1.77261760 \pm 4.3 \cdot 10^{-7} \) | \(a_{828}= +0.45062039 \pm 5.1 \cdot 10^{-7} \) |
| \(a_{829}= +1.68556975 \pm 3.6 \cdot 10^{-7} \) | \(a_{830}= +0.28388275 \pm 3.8 \cdot 10^{-7} \) | \(a_{831}= -2.54526674 \pm 4.7 \cdot 10^{-7} \) |
| \(a_{832}= +0.32980396 \pm 3.8 \cdot 10^{-7} \) | \(a_{833}= -0.01443367 \pm 3.6 \cdot 10^{-7} \) | \(a_{834}= -0.66747410 \pm 4.6 \cdot 10^{-7} \) |
| \(a_{835}= +1.68444547 \pm 4.3 \cdot 10^{-7} \) | \(a_{836}= +0.44007263 \pm 2.9 \cdot 10^{-7} \) | \(a_{837}= +0.30563764 \pm 3.4 \cdot 10^{-7} \) |
| \(a_{838}= +0.24810672 \pm 4.5 \cdot 10^{-7} \) | \(a_{839}= -1.54735571 \pm 4.2 \cdot 10^{-7} \) | \(a_{840}= -1.58225874 \pm 3.8 \cdot 10^{-7} \) |
| \(a_{841}= +0.03448276 \pm 1.5 \cdot 10^{-6} \) | \(a_{842}= +0.04458802 \pm 4.0 \cdot 10^{-7} \) | \(a_{843}= -0.15314145 \pm 4.9 \cdot 10^{-7} \) |
| \(a_{844}= +1.29492723 \pm 4.2 \cdot 10^{-7} \) | \(a_{845}= +2.05889158 \pm 3.5 \cdot 10^{-7} \) | \(a_{846}= -0.50330841 \pm 3.7 \cdot 10^{-7} \) |
| \(a_{847}= -0.05005600 \pm 3.1 \cdot 10^{-7} \) | \(a_{848}= +0.13677420 \pm 3.7 \cdot 10^{-7} \) | \(a_{849}= -0.90930665 \pm 3.7 \cdot 10^{-7} \) |
| \(a_{850}= -0.21066590 \pm 3.2 \cdot 10^{-7} \) | \(a_{851}= +0.31273087 \pm 2.7 \cdot 10^{-7} \) | \(a_{852}= -1.93628181 \pm 3.9 \cdot 10^{-7} \) |
| \(a_{853}= -1.15154324 \pm 4.0 \cdot 10^{-7} \) | \(a_{854}= -0.05313537 \pm 5.7 \cdot 10^{-7} \) | \(a_{855}= +1.22668272 \pm 3.8 \cdot 10^{-7} \) |
| \(a_{856}= -0.24258584 \pm 4.2 \cdot 10^{-7} \) | \(a_{857}= +1.81581910 \pm 3.3 \cdot 10^{-7} \) | \(a_{858}= +1.00613530 \pm 2.4 \cdot 10^{-7} \) |
| \(a_{859}= +0.70703154 \pm 3.2 \cdot 10^{-7} \) | \(a_{860}= -1.93650926 \pm 4.8 \cdot 10^{-7} \) | \(a_{861}= +0.33487684 \pm 2.7 \cdot 10^{-7} \) |
| \(a_{862}= -0.38817518 \pm 4.2 \cdot 10^{-7} \) | \(a_{863}= -1.14447582 \pm 3.1 \cdot 10^{-7} \) | \(a_{864}= +1.17698606 \pm 3.9 \cdot 10^{-7} \) |
| \(a_{865}= +0.12934992 \pm 3.8 \cdot 10^{-7} \) | \(a_{866}= -0.33011303 \pm 4.2 \cdot 10^{-7} \) | \(a_{867}= -0.74179563 \pm 3.6 \cdot 10^{-7} \) |
| \(a_{868}= -0.20918376 \pm 3.8 \cdot 10^{-7} \) | \(a_{869}= -0.44838671 \pm 3.1 \cdot 10^{-7} \) | \(a_{870}= +0.15736142 \pm 1.2 \cdot 10^{-6} \) |
| \(a_{871}= +1.35854947 \pm 2.6 \cdot 10^{-7} \) | \(a_{872}= -1.10999432 \pm 4.4 \cdot 10^{-7} \) | \(a_{873}= -1.73454630 \pm 4.1 \cdot 10^{-7} \) |
| \(a_{874}= -0.06238539 \pm 4.1 \cdot 10^{-7} \) | \(a_{875}= -0.35893849 \pm 3.1 \cdot 10^{-7} \) | \(a_{876}= -2.08009816 \pm 4.6 \cdot 10^{-7} \) |
| \(a_{877}= +0.02143253 \pm 4.2 \cdot 10^{-7} \) | \(a_{878}= +0.45895667 \pm 4.5 \cdot 10^{-7} \) | \(a_{879}= +1.48788678 \pm 4.3 \cdot 10^{-7} \) |
| \(a_{880}= -0.73159708 \pm 3.2 \cdot 10^{-7} \) | \(a_{881}= -0.88442979 \pm 3.3 \cdot 10^{-7} \) | \(a_{882}= +0.01322177 \pm 6.2 \cdot 10^{-7} \) |
| \(a_{883}= +1.18285606 \pm 3.1 \cdot 10^{-7} \) | \(a_{884}= -1.01166156 \pm 3.7 \cdot 10^{-7} \) | \(a_{885}= +0.27210239 \pm 3.6 \cdot 10^{-7} \) |
| \(a_{886}= -0.13876140 \pm 4.1 \cdot 10^{-7} \) | \(a_{887}= +0.76925410 \pm 3.1 \cdot 10^{-7} \) | \(a_{888}= +1.23247589 \pm 4.4 \cdot 10^{-7} \) |
| \(a_{889}= -0.99933432 \pm 2.9 \cdot 10^{-7} \) | \(a_{890}= +0.19203861 \pm 3.3 \cdot 10^{-7} \) | \(a_{891}= -0.31650549 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{892}= -1.28880920 \pm 4.2 \cdot 10^{-7} \) | \(a_{893}= -0.39267838 \pm 3.3 \cdot 10^{-7} \) | \(a_{894}= +0.00429967 \pm 5.8 \cdot 10^{-7} \) |
| \(a_{895}= -1.31705819 \pm 4.0 \cdot 10^{-7} \) | \(a_{896}= -1.02919911 \pm 4.6 \cdot 10^{-7} \) | \(a_{897}= +0.80379569 \pm 2.6 \cdot 10^{-7} \) |
| \(a_{898}= +0.20143719 \pm 3.8 \cdot 10^{-7} \) | \(a_{899}= +0.04529981 \pm 3.5 \cdot 10^{-7} \) | \(a_{900}= -1.08752122 \pm 5.4 \cdot 10^{-7} \) |
| \(a_{901}= -0.17826523 \pm 3.9 \cdot 10^{-7} \) | \(a_{902}= -0.07562827 \pm 3.5 \cdot 10^{-7} \) | \(a_{903}= +2.90536121 \pm 3.0 \cdot 10^{-7} \) |
| \(a_{904}= -0.31717106 \pm 2.9 \cdot 10^{-7} \) | \(a_{905}= +1.45983756 \pm 4.0 \cdot 10^{-7} \) | \(a_{906}= -0.99586125 \pm 6.1 \cdot 10^{-7} \) |
| \(a_{907}= -0.01680075 \pm 3.7 \cdot 10^{-7} \) | \(a_{908}= +1.22868536 \pm 4.2 \cdot 10^{-7} \) | \(a_{909}= +2.91958933 \pm 4.6 \cdot 10^{-7} \) |
| \(a_{910}= -0.82567091 \pm 5.0 \cdot 10^{-7} \) | \(a_{911}= +0.71383774 \pm 4.3 \cdot 10^{-7} \) | \(a_{912}= +0.50336843 \pm 3.4 \cdot 10^{-7} \) |
| \(a_{913}= -0.54206251 \pm 2.0 \cdot 10^{-7} \) | \(a_{914}= +0.11123629 \pm 4.0 \cdot 10^{-7} \) | \(a_{915}= -0.29592328 \pm 4.3 \cdot 10^{-7} \) |
| \(a_{916}= +0.51383127 \pm 4.7 \cdot 10^{-7} \) | \(a_{917}= -0.43725490 \pm 2.9 \cdot 10^{-7} \) | \(a_{918}= -0.36171558 \pm 3.6 \cdot 10^{-7} \) |
| \(a_{919}= +0.01385751 \pm 3.6 \cdot 10^{-7} \) | \(a_{920}= +0.28547354 \pm 4.2 \cdot 10^{-7} \) | \(a_{921}= -1.00735743 \pm 3.5 \cdot 10^{-7} \) |
| \(a_{922}= +0.03671449 \pm 4.5 \cdot 10^{-7} \) | \(a_{923}= -2.20011655 \pm 3.3 \cdot 10^{-7} \) | \(a_{924}= +1.38752310 \pm 3.0 \cdot 10^{-7} \) |
| \(a_{925}= -0.75474050 \pm 2.9 \cdot 10^{-7} \) | \(a_{926}= -0.21398600 \pm 4.4 \cdot 10^{-7} \) | \(a_{927}= -0.96608557 \pm 3.9 \cdot 10^{-7} \) |
| \(a_{928}= +0.17444593 \pm 3.9 \cdot 10^{-7} \) | \(a_{929}= -0.51956204 \pm 3.4 \cdot 10^{-7} \) | \(a_{930}= +0.20672482 \pm 3.9 \cdot 10^{-7} \) |
| \(a_{931}= +0.01031555 \pm 2.8 \cdot 10^{-7} \) | \(a_{932}= +1.28335459 \pm 4.1 \cdot 10^{-7} \) | \(a_{933}= -0.35212397 \pm 4.5 \cdot 10^{-7} \) |
| \(a_{934}= -0.66818688 \pm 4.5 \cdot 10^{-7} \) | \(a_{935}= +0.95353014 \pm 3.4 \cdot 10^{-7} \) | \(a_{936}= +2.01788142 \pm 3.2 \cdot 10^{-7} \) |
| \(a_{937}= -0.55763452 \pm 4.0 \cdot 10^{-7} \) | \(a_{938}= -0.33245170 \pm 4.3 \cdot 10^{-7} \) | \(a_{939}= +0.88290010 \pm 4.0 \cdot 10^{-7} \) |
| \(a_{940}= +0.82522485 \pm 3.2 \cdot 10^{-7} \) | \(a_{941}= -0.98124488 \pm 3.8 \cdot 10^{-7} \) | \(a_{942}= -0.40389636 \pm 4.8 \cdot 10^{-7} \) |
| \(a_{943}= -0.06041899 \pm 4.0 \cdot 10^{-7} \) | \(a_{944}= +0.07112600 \pm 3.1 \cdot 10^{-7} \) | \(a_{945}= +1.66367959 \pm 3.4 \cdot 10^{-7} \) |
| \(a_{946}= -0.65614405 \pm 4.8 \cdot 10^{-7} \) | \(a_{947}= +1.24269197 \pm 4.0 \cdot 10^{-7} \) | \(a_{948}= -0.64833886 \pm 3.7 \cdot 10^{-7} \) |
| \(a_{949}= -2.36352910 \pm 3.8 \cdot 10^{-7} \) | \(a_{950}= +0.15056007 \pm 3.1 \cdot 10^{-7} \) | \(a_{951}= +2.57908139 \pm 4.3 \cdot 10^{-7} \) |
| \(a_{952}= +0.53905861 \pm 3.3 \cdot 10^{-7} \) | \(a_{953}= +0.27110518 \pm 3.2 \cdot 10^{-7} \) | \(a_{954}= +0.16329745 \pm 4.7 \cdot 10^{-7} \) |
| \(a_{955}= +0.18249251 \pm 4.1 \cdot 10^{-7} \) | \(a_{956}= +1.13765870 \pm 3.2 \cdot 10^{-7} \) | \(a_{957}= -0.30047519 \pm 7.9 \cdot 10^{-7} \) |
| \(a_{958}= +0.43734860 \pm 5.4 \cdot 10^{-7} \) | \(a_{959}= +0.00013149 \pm 3.5 \cdot 10^{-7} \) | \(a_{960}= -0.44947378 \pm 3.9 \cdot 10^{-7} \) |
| \(a_{961}= -0.94048989 \pm 3.5 \cdot 10^{-7} \) | \(a_{962}= +0.64314354 \pm 4.2 \cdot 10^{-7} \) | \(a_{963}= +0.59297456 \pm 3.8 \cdot 10^{-7} \) |
| \(a_{964}= -0.69045970 \pm 3.7 \cdot 10^{-7} \) | \(a_{965}= +0.38896394 \pm 3.4 \cdot 10^{-7} \) | \(a_{966}= -0.19669747 \pm 3.9 \cdot 10^{-7} \) |
| \(a_{967}= +0.00642190 \pm 2.3 \cdot 10^{-7} \) | \(a_{968}= +0.03559198 \pm 3.2 \cdot 10^{-7} \) | \(a_{969}= -0.65606737 \pm 3.4 \cdot 10^{-7} \) |
| \(a_{970}= -0.50465347 \pm 4.5 \cdot 10^{-7} \) | \(a_{971}= +1.34226525 \pm 3.9 \cdot 10^{-7} \) | \(a_{972}= +0.60642259 \pm 2.9 \cdot 10^{-7} \) |
| \(a_{973}= -1.04591256 \pm 3.9 \cdot 10^{-7} \) | \(a_{974}= -0.52599591 \pm 4.5 \cdot 10^{-7} \) | \(a_{975}= -1.93986973 \pm 3.2 \cdot 10^{-7} \) |
| \(a_{976}= -0.07735264 \pm 4.5 \cdot 10^{-7} \) | \(a_{977}= -1.19540311 \pm 4.1 \cdot 10^{-7} \) | \(a_{978}= -0.30528168 \pm 4.9 \cdot 10^{-7} \) |
| \(a_{979}= -0.36668987 \pm 3.2 \cdot 10^{-7} \) | \(a_{980}= -0.02167843 \pm 4.8 \cdot 10^{-7} \) | \(a_{981}= +2.71325969 \pm 3.5 \cdot 10^{-7} \) |
| \(a_{982}= +0.13354026 \pm 4.9 \cdot 10^{-7} \) | \(a_{983}= +0.49639409 \pm 3.9 \cdot 10^{-7} \) | \(a_{984}= -0.23811192 \pm 2.9 \cdot 10^{-7} \) |
| \(a_{985}= +2.32535967 \pm 4.7 \cdot 10^{-7} \) | \(a_{986}= -0.05361135 \pm 8.4 \cdot 10^{-7} \) | \(a_{987}= -1.23809182 \pm 3.0 \cdot 10^{-7} \) |
| \(a_{988}= +0.72302081 \pm 2.9 \cdot 10^{-7} \) | \(a_{989}= -0.52418970 \pm 3.8 \cdot 10^{-7} \) | \(a_{990}= -0.87346836 \pm 4.9 \cdot 10^{-7} \) |
| \(a_{991}= +0.96598923 \pm 3.3 \cdot 10^{-7} \) | \(a_{992}= +0.22916866 \pm 4.0 \cdot 10^{-7} \) | \(a_{993}= -2.84985646 \pm 4.6 \cdot 10^{-7} \) |
| \(a_{994}= +0.53839223 \pm 3.7 \cdot 10^{-7} \) | \(a_{995}= -0.10756886 \pm 4.0 \cdot 10^{-7} \) | \(a_{996}= -0.78378814 \pm 2.9 \cdot 10^{-7} \) |
| \(a_{997}= +0.75394000 \pm 3.2 \cdot 10^{-7} \) | \(a_{998}= -0.64604525 \pm 4.1 \cdot 10^{-7} \) | \(a_{999}= -1.29589740 \pm 3.5 \cdot 10^{-7} \) |
| \(a_{1000}= +0.25522080 \pm 2.9 \cdot 10^{-7} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000