Maass form invariants
| Level: | \( 29 \) |
| Weight: | \( 0 \) |
| Character: | 29.1 |
| Symmetry: | even |
| Fricke sign: | $+1$ |
| Spectral parameter: | \(1.01726655080297786279547388594 \pm 2 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
| \(a_{1}= +1 \) | \(a_{2}= -1.06020148 \pm 3.6 \cdot 10^{-8} \) | \(a_{3}= -1.20080741 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{4}= +0.12402719 \pm 3.8 \cdot 10^{-8} \) | \(a_{5}= +1.42469458 \pm 3.1 \cdot 10^{-8} \) | \(a_{6}= +1.27309780 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{7}= -0.90972597 \pm 2.9 \cdot 10^{-8} \) | \(a_{8}= +0.92870768 \pm 4.4 \cdot 10^{-8} \) | \(a_{9}= +0.44193845 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{10}= -1.51046331 \pm 3.5 \cdot 10^{-8} \) | \(a_{11}= +0.10592285 \pm 2.9 \cdot 10^{-8} \) | \(a_{12}= -0.14893277 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{13}= +0.38892195 \pm 3.1 \cdot 10^{-8} \) | \(a_{14}= +0.96449282 \pm 2.7 \cdot 10^{-8} \) | \(a_{15}= -1.71078382 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{16}= -1.10864445 \pm 4.7 \cdot 10^{-8} \) | \(a_{17}= -0.36979700 \pm 2.9 \cdot 10^{-8} \) | \(a_{18}= -0.46854380 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{19}= +0.73686146 \pm 2.6 \cdot 10^{-8} \) | \(a_{20}= +0.17670086 \pm 3.5 \cdot 10^{-8} \) | \(a_{21}= +1.09240569 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{22}= -0.11229957 \pm 3.2 \cdot 10^{-8} \) | \(a_{23}= +0.74134540 \pm 3.0 \cdot 10^{-8} \) | \(a_{24}= -1.11519906 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{25}= +1.02975465 \pm 3.1 \cdot 10^{-8} \) | \(a_{26}= -0.41233563 \pm 3.7 \cdot 10^{-8} \) | \(a_{27}= +0.67012445 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{28}= -0.11283075 \pm 2.6 \cdot 10^{-8} \) | \(a_{29}= -0.18569534 \pm 1.0 \cdot 10^{-8} \) | \(a_{30}= +1.81377554 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{31}= -0.60778684 \pm 2.9 \cdot 10^{-8} \) | \(a_{32}= +0.24667881 \pm 5.0 \cdot 10^{-8} \) | \(a_{33}= -0.12719295 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{34}= +0.39205933 \pm 3.8 \cdot 10^{-8} \) | \(a_{35}= -1.29608166 \pm 3.3 \cdot 10^{-8} \) | \(a_{36}= +0.05481238 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{37}= -1.60816151 \pm 3.1 \cdot 10^{-8} \) | \(a_{38}= -0.78122162 \pm 2.7 \cdot 10^{-8} \) | \(a_{39}= -0.46702037 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{40}= +1.32312479 \pm 4.1 \cdot 10^{-8} \) | \(a_{41}= +1.33230545 \pm 2.9 \cdot 10^{-8} \) | \(a_{42}= -1.15817013 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{43}= +0.58681987 \pm 2.9 \cdot 10^{-8} \) | \(a_{44}= +0.01313731 \pm 3.2 \cdot 10^{-8} \) | \(a_{45}= +0.62962731 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{46}= -0.78597549 \pm 3.0 \cdot 10^{-8} \) | \(a_{47}= -1.22966560 \pm 2.7 \cdot 10^{-8} \) | \(a_{48}= +1.33126847 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{49}= -0.17239867 \pm 2.5 \cdot 10^{-8} \) | \(a_{50}= -1.09174741 \pm 3.3 \cdot 10^{-8} \) | \(a_{51}= +0.44405498 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{52}= +0.04823690 \pm 4.2 \cdot 10^{-8} \) | \(a_{53}= +1.70894944 \pm 3.2 \cdot 10^{-8} \) | \(a_{54}= -0.71046694 \pm 4.2 \cdot 10^{-8} \) |
| \(a_{55}= +0.15090772 \pm 2.9 \cdot 10^{-8} \) | \(a_{56}= -0.84486949 \pm 3.1 \cdot 10^{-8} \) | \(a_{57}= -0.88482871 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{58}= +0.19687447 \pm 4.7 \cdot 10^{-8} \) | \(a_{59}= -0.06036045 \pm 2.8 \cdot 10^{-8} \) | \(a_{60}= -0.21218371 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{61}= -0.23100442 \pm 2.9 \cdot 10^{-8} \) | \(a_{62}= +0.64437652 \pm 3.1 \cdot 10^{-8} \) | \(a_{63}= -0.40204288 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{64}= +0.84711520 \pm 5.6 \cdot 10^{-8} \) | \(a_{65}= +0.55409500 \pm 2.6 \cdot 10^{-8} \) | \(a_{66}= +0.13485015 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{67}= +0.18089604 \pm 2.5 \cdot 10^{-8} \) | \(a_{68}= -0.04586488 \pm 3.6 \cdot 10^{-8} \) | \(a_{69}= -0.89021305 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{70}= +1.37410770 \pm 3.1 \cdot 10^{-8} \) | \(a_{71}= +1.46314165 \pm 3.4 \cdot 10^{-8} \) | \(a_{72}= +0.41043163 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{73}= +0.26177476 \pm 3.0 \cdot 10^{-8} \) | \(a_{74}= +1.70497522 \pm 3.4 \cdot 10^{-8} \) | \(a_{75}= -1.23653702 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{76}= +0.09139086 \pm 2.9 \cdot 10^{-8} \) | \(a_{77}= -0.09636077 \pm 2.7 \cdot 10^{-8} \) | \(a_{78}= +0.49513569 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{79}= +0.76896088 \pm 3.0 \cdot 10^{-8} \) | \(a_{80}= -1.57947973 \pm 4.6 \cdot 10^{-8} \) | \(a_{81}= -1.24662886 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{82}= -1.41251221 \pm 3.6 \cdot 10^{-8} \) | \(a_{83}= -1.88431772 \pm 3.2 \cdot 10^{-8} \) | \(a_{84}= +0.13548801 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{85}= -0.52684779 \pm 2.5 \cdot 10^{-8} \) | \(a_{86}= -0.62214730 \pm 3.0 \cdot 10^{-8} \) | \(a_{87}= +0.22298434 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{88}= +0.09837137 \pm 3.2 \cdot 10^{-8} \) | \(a_{89}= -0.68914060 \pm 2.6 \cdot 10^{-8} \) | \(a_{90}= -0.66753181 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{91}= -0.35381240 \pm 2.8 \cdot 10^{-8} \) | \(a_{92}= +0.09194699 \pm 2.9 \cdot 10^{-8} \) | \(a_{93}= +0.72983495 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{94}= +1.30369329 \pm 3.0 \cdot 10^{-8} \) | \(a_{95}= +1.04980253 \pm 2.5 \cdot 10^{-8} \) | \(a_{96}= -0.29621375 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{97}= -0.09662100 \pm 2.9 \cdot 10^{-8} \) | \(a_{98}= +0.18277732 \pm 2.9 \cdot 10^{-8} \) | \(a_{99}= +0.04681138 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{100}= +0.12771757 \pm 3.0 \cdot 10^{-8} \) | \(a_{101}= +0.54556298 \pm 2.9 \cdot 10^{-8} \) | \(a_{102}= -0.47078775 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{103}= -1.02104083 \pm 3.1 \cdot 10^{-8} \) | \(a_{104}= +0.36119480 \pm 4.2 \cdot 10^{-8} \) | \(a_{105}= +1.55634446 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{106}= -1.81183073 \pm 3.5 \cdot 10^{-8} \) | \(a_{107}= +0.87759825 \pm 2.9 \cdot 10^{-8} \) | \(a_{108}= +0.08311365 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{109}= +0.05891441 \pm 2.9 \cdot 10^{-8} \) | \(a_{110}= -0.15999259 \pm 2.9 \cdot 10^{-8} \) | \(a_{111}= +1.93109227 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{112}= +1.00856264 \pm 3.1 \cdot 10^{-8} \) | \(a_{113}= -0.61840720 \pm 2.9 \cdot 10^{-8} \) | \(a_{114}= +0.93809671 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{115}= +1.05619077 \pm 2.4 \cdot 10^{-8} \) | \(a_{116}= -0.02303127 \pm 4.8 \cdot 10^{-8} \) | \(a_{117}= +0.17187956 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{118}= +0.06399424 \pm 3.9 \cdot 10^{-8} \) | \(a_{119}= +0.33641394 \pm 2.4 \cdot 10^{-8} \) | \(a_{120}= -1.58881806 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{121}= -0.98878035 \pm 2.6 \cdot 10^{-8} \) | \(a_{122}= +0.24491123 \pm 3.5 \cdot 10^{-8} \) | \(a_{123}= -1.59984226 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{124}= -0.07538209 \pm 2.5 \cdot 10^{-8} \) | \(a_{125}= +0.04239129 \pm 2.4 \cdot 10^{-8} \) | \(a_{126}= +0.42624646 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{127}= +1.56364754 \pm 3.1 \cdot 10^{-8} \) | \(a_{128}= -1.14479161 \pm 6.2 \cdot 10^{-8} \) | \(a_{129}= -0.70465765 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{130}= -0.58745234 \pm 2.8 \cdot 10^{-8} \) | \(a_{131}= +0.16798811 \pm 2.8 \cdot 10^{-8} \) | \(a_{132}= -0.01577538 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{133}= -0.67034201 \pm 2.7 \cdot 10^{-8} \) | \(a_{134}= -0.19178625 \pm 2.9 \cdot 10^{-8} \) | \(a_{135}= +0.95472268 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{136}= -0.34343331 \pm 3.5 \cdot 10^{-8} \) | \(a_{137}= -0.48979617 \pm 2.6 \cdot 10^{-8} \) | \(a_{138}= +0.94380519 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{139}= -0.25004958 \pm 2.9 \cdot 10^{-8} \) | \(a_{140}= -0.16074936 \pm 2.7 \cdot 10^{-8} \) | \(a_{141}= +1.47659157 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{142}= -1.55122495 \pm 4.1 \cdot 10^{-8} \) | \(a_{143}= +0.04119572 \pm 3.1 \cdot 10^{-8} \) | \(a_{144}= -0.48995260 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{145}= -0.26455914 \pm 4.2 \cdot 10^{-8} \) | \(a_{146}= -0.27753398 \pm 3.1 \cdot 10^{-8} \) | \(a_{147}= +0.20701760 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{148}= -0.19945575 \pm 3.5 \cdot 10^{-8} \) | \(a_{149}= +0.57064370 \pm 2.8 \cdot 10^{-8} \) | \(a_{150}= +1.31097839 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{151}= -0.08827601 \pm 3.4 \cdot 10^{-8} \) | \(a_{152}= +0.68432890 \pm 3.2 \cdot 10^{-8} \) | \(a_{153}= -0.16342751 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{154}= +0.10216183 \pm 2.2 \cdot 10^{-8} \) | \(a_{155}= -0.86591063 \pm 2.8 \cdot 10^{-8} \) | \(a_{156}= -0.05792322 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{157}= -1.26151889 \pm 3.3 \cdot 10^{-8} \) | \(a_{158}= -0.81525347 \pm 4.0 \cdot 10^{-8} \) | \(a_{159}= -2.05211916 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{160}= +0.35144197 \pm 4.6 \cdot 10^{-8} \) | \(a_{161}= -0.67442116 \pm 2.9 \cdot 10^{-8} \) | \(a_{162}= +1.32167776 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{163}= +0.13070581 \pm 2.9 \cdot 10^{-8} \) | \(a_{164}= +0.16524210 \pm 4.2 \cdot 10^{-8} \) | \(a_{165}= -0.18121111 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{166}= +1.99775644 \pm 3.4 \cdot 10^{-8} \) | \(a_{167}= +0.15689214 \pm 2.5 \cdot 10^{-8} \) | \(a_{168}= +1.01452555 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{169}= -0.84873971 \pm 3.0 \cdot 10^{-8} \) | \(a_{170}= +0.55856481 \pm 2.6 \cdot 10^{-8} \) | \(a_{171}= +0.32564741 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{172}= +0.07278162 \pm 3.0 \cdot 10^{-8} \) | \(a_{173}= +1.40467423 \pm 3.0 \cdot 10^{-8} \) | \(a_{174}= -0.23640833 \pm 7.9 \cdot 10^{-8} \) |
| \(a_{175}= -0.93679455 \pm 3.3 \cdot 10^{-8} \) | \(a_{176}= -0.11743078 \pm 3.2 \cdot 10^{-8} \) | \(a_{177}= +0.07248127 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{178}= +0.73062789 \pm 3.2 \cdot 10^{-8} \) | \(a_{179}= +1.51331968 \pm 3.5 \cdot 10^{-8} \) | \(a_{180}= +0.07809091 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{181}= +0.04833230 \pm 2.6 \cdot 10^{-8} \) | \(a_{182}= +0.37511243 \pm 2.2 \cdot 10^{-8} \) | \(a_{183}= +0.27739182 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{184}= +0.68849316 \pm 3.3 \cdot 10^{-8} \) | \(a_{185}= -2.29113899 \pm 3.3 \cdot 10^{-8} \) | \(a_{186}= -0.77377210 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{187}= -0.03916995 \pm 2.7 \cdot 10^{-8} \) | \(a_{188}= -0.15251197 \pm 2.5 \cdot 10^{-8} \) | \(a_{189}= -0.60962961 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{190}= -1.11300221 \pm 2.4 \cdot 10^{-8} \) | \(a_{191}= +0.19458314 \pm 2.7 \cdot 10^{-8} \) | \(a_{192}= -1.01722222 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{193}= +0.92966701 \pm 2.9 \cdot 10^{-8} \) | \(a_{194}= +0.10243773 \pm 2.8 \cdot 10^{-8} \) | \(a_{195}= -0.66536139 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{196}= -0.02138212 \pm 3.2 \cdot 10^{-8} \) | \(a_{197}= +1.59207589 \pm 3.1 \cdot 10^{-8} \) | \(a_{198}= -0.04962950 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{199}= -0.37557753 \pm 2.5 \cdot 10^{-8} \) | \(a_{200}= +0.95634105 \pm 3.2 \cdot 10^{-8} \) | \(a_{201}= -0.21722130 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{202}= -0.57840668 \pm 3.6 \cdot 10^{-8} \) | \(a_{203}= +0.16893187 \pm 4.0 \cdot 10^{-8} \) | \(a_{204}= +0.05507489 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{205}= +1.89812835 \pm 3.1 \cdot 10^{-8} \) | \(a_{206}= +1.08250900 \pm 3.6 \cdot 10^{-8} \) | \(a_{207}= +0.32762903 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{208}= -0.43117616 \pm 3.7 \cdot 10^{-8} \) | \(a_{209}= +0.07805047 \pm 2.6 \cdot 10^{-8} \) | \(a_{210}= -1.65003871 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{211}= +0.16722201 \pm 3.4 \cdot 10^{-8} \) | \(a_{212}= +0.21195619 \pm 2.4 \cdot 10^{-8} \) | \(a_{213}= -1.75695134 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{214}= -0.93043096 \pm 3.5 \cdot 10^{-8} \) | \(a_{215}= +0.83603909 \pm 3.2 \cdot 10^{-8} \) | \(a_{216}= +0.62234972 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{217}= +0.55291948 \pm 2.8 \cdot 10^{-8} \) | \(a_{218}= -0.06246114 \pm 3.3 \cdot 10^{-8} \) | \(a_{219}= -0.31434107 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{220}= +0.01871666 \pm 3.0 \cdot 10^{-8} \) | \(a_{221}= -0.14382217 \pm 3.4 \cdot 10^{-8} \) | \(a_{222}= -2.04734689 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{223}= -1.41126523 \pm 2.7 \cdot 10^{-8} \) | \(a_{224}= -0.22441012 \pm 2.9 \cdot 10^{-8} \) | \(a_{225}= +0.45508817 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{226}= +0.65563623 \pm 3.4 \cdot 10^{-8} \) | \(a_{227}= -0.26843645 \pm 2.8 \cdot 10^{-8} \) | \(a_{228}= -0.10974282 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{229}= +1.30904840 \pm 2.9 \cdot 10^{-8} \) | \(a_{230}= -1.11977502 \pm 2.8 \cdot 10^{-8} \) | \(a_{231}= +0.11571073 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{232}= -0.17245669 \pm 5.4 \cdot 10^{-8} \) | \(a_{233}= +0.12074343 \pm 3.0 \cdot 10^{-8} \) | \(a_{234}= -0.18222697 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{235}= -1.75189791 \pm 2.9 \cdot 10^{-8} \) | \(a_{236}= -0.00748634 \pm 4.7 \cdot 10^{-8} \) | \(a_{237}= -0.92337393 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{238}= -0.35666655 \pm 2.5 \cdot 10^{-8} \) | \(a_{239}= -1.87030192 \pm 3.3 \cdot 10^{-8} \) | \(a_{240}= +1.89665098 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{241}= +1.28466971 \pm 3.2 \cdot 10^{-8} \) | \(a_{242}= +1.04830639 \pm 3.0 \cdot 10^{-8} \) | \(a_{243}= +0.82683672 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{244}= -0.02865083 \pm 3.6 \cdot 10^{-8} \) | \(a_{245}= -0.24561544 \pm 2.7 \cdot 10^{-8} \) | \(a_{246}= +1.69615514 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{247}= +0.28658160 \pm 2.8 \cdot 10^{-8} \) | \(a_{248}= -0.56445631 \pm 2.8 \cdot 10^{-8} \) | \(a_{249}= +2.26270269 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{250}= -0.04494331 \pm 2.9 \cdot 10^{-8} \) | \(a_{251}= -1.06524543 \pm 2.7 \cdot 10^{-8} \) | \(a_{252}= -0.04986425 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{253}= +0.07852542 \pm 2.9 \cdot 10^{-8} \) | \(a_{254}= -1.65778145 \pm 3.5 \cdot 10^{-8} \) | \(a_{255}= +0.63264273 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{256}= +0.36659456 \pm 6.5 \cdot 10^{-8} \) | \(a_{257}= -0.06339533 \pm 2.5 \cdot 10^{-8} \) | \(a_{258}= +0.74707909 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{259}= +1.46298629 \pm 2.7 \cdot 10^{-8} \) | \(a_{260}= +0.06872285 \pm 3.2 \cdot 10^{-8} \) | \(a_{261}= -0.08206591 \pm 4.2 \cdot 10^{-8} \) |
| \(a_{262}= -0.17810124 \pm 3.9 \cdot 10^{-8} \) | \(a_{263}= -0.79369132 \pm 2.6 \cdot 10^{-8} \) | \(a_{264}= -0.11812507 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{265}= +2.43473101 \pm 3.6 \cdot 10^{-8} \) | \(a_{266}= +0.71069759 \pm 2.1 \cdot 10^{-8} \) | \(a_{267}= +0.82752514 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{268}= +0.02243603 \pm 2.8 \cdot 10^{-8} \) | \(a_{269}= -1.44251187 \pm 3.2 \cdot 10^{-8} \) | \(a_{270}= -1.01219840 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{271}= +0.61762315 \pm 2.5 \cdot 10^{-8} \) | \(a_{272}= +0.40997339 \pm 3.0 \cdot 10^{-8} \) | \(a_{273}= +0.42486055 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{274}= +0.51928263 \pm 3.1 \cdot 10^{-8} \) | \(a_{275}= +0.10907455 \pm 3.0 \cdot 10^{-8} \) | \(a_{276}= -0.11041062 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{277}= +1.71337707 \pm 3.4 \cdot 10^{-8} \) | \(a_{278}= +0.26510294 \pm 3.8 \cdot 10^{-8} \) | \(a_{279}= -0.26860437 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{280}= -1.20368098 \pm 3.4 \cdot 10^{-8} \) | \(a_{281}= -0.39623865 \pm 2.9 \cdot 10^{-8} \) | \(a_{282}= -1.56548457 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{283}= -0.70860879 \pm 3.3 \cdot 10^{-8} \) | \(a_{284}= +0.18146935 \pm 3.9 \cdot 10^{-8} \) | \(a_{285}= -1.26061067 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{286}= -0.04367577 \pm 3.5 \cdot 10^{-8} \) | \(a_{287}= -1.21203286 \pm 2.6 \cdot 10^{-8} \) | \(a_{288}= +0.10901685 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{289}= -0.86325018 \pm 2.9 \cdot 10^{-8} \) | \(a_{290}= +0.28048600 \pm 7.8 \cdot 10^{-8} \) | \(a_{291}= +0.11602322 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{292}= +0.03246719 \pm 3.0 \cdot 10^{-8} \) | \(a_{293}= -0.10109642 \pm 2.4 \cdot 10^{-8} \) | \(a_{294}= -0.21948036 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{295}= -0.08599520 \pm 2.9 \cdot 10^{-8} \) | \(a_{296}= -1.49351194 \pm 4.6 \cdot 10^{-8} \) | \(a_{297}= +0.07098149 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{298}= -0.60499730 \pm 2.7 \cdot 10^{-8} \) | \(a_{299}= +0.28832550 \pm 3.2 \cdot 10^{-8} \) | \(a_{300}= -0.15336421 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{301}= -0.53384527 \pm 3.1 \cdot 10^{-8} \) | \(a_{302}= +0.09359036 \pm 3.3 \cdot 10^{-8} \) | \(a_{303}= -0.65511607 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{304}= -0.81691737 \pm 3.1 \cdot 10^{-8} \) | \(a_{305}= -0.32911074 \pm 2.5 \cdot 10^{-8} \) | \(a_{306}= +0.17326609 \pm 4.9 \cdot 10^{-8} \) |
| \(a_{307}= -0.86565293 \pm 3.0 \cdot 10^{-8} \) | \(a_{308}= -0.01195136 \pm 2.4 \cdot 10^{-8} \) | \(a_{309}= +1.22607339 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{310}= +0.91803973 \pm 2.4 \cdot 10^{-8} \) | \(a_{311}= +0.90766853 \pm 3.2 \cdot 10^{-8} \) | \(a_{312}= -0.43372540 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{313}= -0.09916748 \pm 2.8 \cdot 10^{-8} \) | \(a_{314}= +1.33746420 \pm 3.8 \cdot 10^{-8} \) | \(a_{315}= -0.57278831 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{316}= +0.09537206 \pm 4.7 \cdot 10^{-8} \) | \(a_{317}= -0.11323250 \pm 2.7 \cdot 10^{-8} \) | \(a_{318}= +2.17565978 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{319}= -0.01966938 \pm 3.9 \cdot 10^{-8} \) | \(a_{320}= +1.20688044 \pm 5.4 \cdot 10^{-8} \) | \(a_{321}= -1.05382648 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{322}= +0.71502231 \pm 2.4 \cdot 10^{-8} \) | \(a_{323}= -0.27248916 \pm 2.3 \cdot 10^{-8} \) | \(a_{324}= -0.15461587 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{325}= +0.40049419 \pm 3.2 \cdot 10^{-8} \) | \(a_{326}= -0.13857450 \pm 3.1 \cdot 10^{-8} \) | \(a_{327}= -0.07074486 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{328}= +1.23732229 \pm 5.3 \cdot 10^{-8} \) | \(a_{329}= +1.11865872 \pm 2.7 \cdot 10^{-8} \) | \(a_{330}= +0.19212028 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{331}= -1.34639713 \pm 3.4 \cdot 10^{-8} \) | \(a_{332}= -0.23370663 \pm 2.6 \cdot 10^{-8} \) | \(a_{333}= -0.71070840 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{334}= -0.16633728 \pm 2.4 \cdot 10^{-8} \) | \(a_{335}= +0.25772160 \pm 2.3 \cdot 10^{-8} \) | \(a_{336}= -1.21108950 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{337}= +0.02187528 \pm 3.0 \cdot 10^{-8} \) | \(a_{338}= +0.89983510 \pm 3.9 \cdot 10^{-8} \) | \(a_{339}= +0.74258795 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{340}= -0.06534345 \pm 2.0 \cdot 10^{-8} \) | \(a_{341}= -0.06437852 \pm 2.9 \cdot 10^{-8} \) | \(a_{342}= -0.34525187 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{343}= +1.06656151 \pm 2.6 \cdot 10^{-8} \) | \(a_{344}= +0.54498412 \pm 3.3 \cdot 10^{-8} \) | \(a_{345}= -1.26828171 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{346}= -1.48923771 \pm 3.4 \cdot 10^{-8} \) | \(a_{347}= +0.20805842 \pm 2.9 \cdot 10^{-8} \) | \(a_{348}= +0.02765612 \pm 8.1 \cdot 10^{-8} \) |
| \(a_{349}= -1.32631541 \pm 3.3 \cdot 10^{-8} \) | \(a_{350}= +0.99319097 \pm 2.9 \cdot 10^{-8} \) | \(a_{351}= +0.26062611 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{352}= +0.02612892 \pm 3.5 \cdot 10^{-8} \) | \(a_{353}= -0.33598040 \pm 2.8 \cdot 10^{-8} \) | \(a_{354}= -0.07684475 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{355}= +2.08452999 \pm 3.0 \cdot 10^{-8} \) | \(a_{356}= -0.08547217 \pm 3.4 \cdot 10^{-8} \) | \(a_{357}= -0.40396835 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{358}= -1.60442377 \pm 4.1 \cdot 10^{-8} \) | \(a_{359}= +0.19984295 \pm 3.6 \cdot 10^{-8} \) | \(a_{360}= +0.58473972 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{361}= -0.45703518 \pm 2.0 \cdot 10^{-8} \) | \(a_{362}= -0.05124197 \pm 3.5 \cdot 10^{-8} \) | \(a_{363}= +1.18733477 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{364}= -0.04388236 \pm 2.5 \cdot 10^{-8} \) | \(a_{365}= +0.37294908 \pm 2.0 \cdot 10^{-8} \) | \(a_{366}= -0.29409122 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{367}= +1.36830187 \pm 3.6 \cdot 10^{-8} \) | \(a_{368}= -0.82188845 \pm 2.7 \cdot 10^{-8} \) | \(a_{369}= +0.58879700 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{370}= +2.42906896 \pm 3.8 \cdot 10^{-8} \) | \(a_{371}= -1.55467568 \pm 3.3 \cdot 10^{-8} \) | \(a_{372}= +0.09051938 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{373}= -0.28446696 \pm 2.9 \cdot 10^{-8} \) | \(a_{374}= +0.04152804 \pm 3.5 \cdot 10^{-8} \) | \(a_{375}= -0.05090378 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{376}= -1.14199988 \pm 2.8 \cdot 10^{-8} \) | \(a_{377}= -0.07222099 \pm 4.2 \cdot 10^{-8} \) | \(a_{378}= +0.64633022 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{379}= -1.18538869 \pm 2.9 \cdot 10^{-8} \) | \(a_{380}= +0.13020406 \pm 2.6 \cdot 10^{-8} \) | \(a_{381}= -1.87763956 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{382}= -0.20629734 \pm 2.6 \cdot 10^{-8} \) | \(a_{383}= +0.72650370 \pm 2.9 \cdot 10^{-8} \) | \(a_{384}= +1.37467425 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{385}= -0.13728467 \pm 3.1 \cdot 10^{-8} \) | \(a_{386}= -0.98563434 \pm 3.2 \cdot 10^{-8} \) | \(a_{387}= +0.25933826 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{388}= -0.01198363 \pm 2.7 \cdot 10^{-8} \) | \(a_{389}= +1.90975082 \pm 3.5 \cdot 10^{-8} \) | \(a_{390}= +0.70541713 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{391}= -0.27414731 \pm 2.2 \cdot 10^{-8} \) | \(a_{392}= -0.16010796 \pm 3.4 \cdot 10^{-8} \) | \(a_{393}= -0.20172137 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{394}= -1.68792122 \pm 3.5 \cdot 10^{-8} \) | \(a_{395}= +1.09553441 \pm 2.9 \cdot 10^{-8} \) | \(a_{396}= +0.00580588 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{397}= +0.12276061 \pm 2.7 \cdot 10^{-8} \) | \(a_{398}= +0.39818786 \pm 3.0 \cdot 10^{-8} \) | \(a_{399}= +0.80495165 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{400}= -1.14163178 \pm 3.1 \cdot 10^{-8} \) | \(a_{401}= -0.17123934 \pm 3.6 \cdot 10^{-8} \) | \(a_{402}= +0.23029835 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{403}= -0.23638165 \pm 2.8 \cdot 10^{-8} \) | \(a_{404}= +0.06766464 \pm 4.1 \cdot 10^{-8} \) | \(a_{405}= -1.77606538 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{406}= -0.17910182 \pm 7.7 \cdot 10^{-8} \) | \(a_{407}= -0.17034106 \pm 2.5 \cdot 10^{-8} \) | \(a_{408}= +0.41239727 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{409}= -0.65229180 \pm 3.4 \cdot 10^{-8} \) | \(a_{410}= -2.01239850 \pm 3.9 \cdot 10^{-8} \) | \(a_{411}= +0.58815088 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{412}= -0.12663682 \pm 4.2 \cdot 10^{-8} \) | \(a_{413}= +0.05491147 \pm 2.6 \cdot 10^{-8} \) | \(a_{414}= -0.34735279 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{415}= -2.68457724 \pm 3.6 \cdot 10^{-8} \) | \(a_{416}= +0.09593881 \pm 3.6 \cdot 10^{-8} \) | \(a_{417}= +0.30026139 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{418}= -0.08274922 \pm 2.7 \cdot 10^{-8} \) | \(a_{419}= +0.88269544 \pm 2.5 \cdot 10^{-8} \) | \(a_{420}= +0.19302903 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{421}= +0.92553060 \pm 3.1 \cdot 10^{-8} \) | \(a_{422}= -0.17728902 \pm 4.6 \cdot 10^{-8} \) | \(a_{423}= -0.54343650 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{424}= +1.58711446 \pm 3.4 \cdot 10^{-8} \) | \(a_{425}= -0.38080018 \pm 3.0 \cdot 10^{-8} \) | \(a_{426}= +1.86272242 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{427}= +0.21015072 \pm 2.2 \cdot 10^{-8} \) | \(a_{428}= +0.10884604 \pm 3.5 \cdot 10^{-8} \) | \(a_{429}= -0.04946813 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{430}= -0.88636989 \pm 2.8 \cdot 10^{-8} \) | \(a_{431}= -0.44906390 \pm 3.1 \cdot 10^{-8} \) | \(a_{432}= -0.74292975 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{433}= +1.16132947 \pm 3.3 \cdot 10^{-8} \) | \(a_{434}= -0.58620605 \pm 2.3 \cdot 10^{-8} \) | \(a_{435}= +0.31768458 \pm 7.4 \cdot 10^{-8} \) |
| \(a_{436}= +0.00730699 \pm 3.2 \cdot 10^{-8} \) | \(a_{437}= +0.54626885 \pm 2.6 \cdot 10^{-8} \) | \(a_{438}= +0.33326487 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{439}= -0.24824470 \pm 2.9 \cdot 10^{-8} \) | \(a_{440}= +0.14014915 \pm 2.6 \cdot 10^{-8} \) | \(a_{441}= -0.07618960 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{442}= +0.15248048 \pm 5.0 \cdot 10^{-8} \) | \(a_{443}= +1.62512958 \pm 3.1 \cdot 10^{-8} \) | \(a_{444}= +0.23950794 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{445}= -0.98181488 \pm 2.8 \cdot 10^{-8} \) | \(a_{446}= +1.49622549 \pm 3.4 \cdot 10^{-8} \) | \(a_{447}= -0.68523318 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{448}= -0.77064270 \pm 3.4 \cdot 10^{-8} \) | \(a_{449}= -0.40603239 \pm 2.9 \cdot 10^{-8} \) | \(a_{450}= -0.48248515 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{451}= +0.14112160 \pm 2.5 \cdot 10^{-8} \) | \(a_{452}= -0.07669931 \pm 3.2 \cdot 10^{-8} \) | \(a_{453}= +0.10600249 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{454}= +0.28459672 \pm 3.7 \cdot 10^{-8} \) | \(a_{455}= -0.50407461 \pm 2.2 \cdot 10^{-8} \) | \(a_{456}= -0.82174721 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{457}= +0.10403593 \pm 2.2 \cdot 10^{-8} \) | \(a_{458}= -1.38785506 \pm 3.5 \cdot 10^{-8} \) | \(a_{459}= -0.24781001 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{460}= +0.13099637 \pm 2.4 \cdot 10^{-8} \) | \(a_{461}= +1.52259714 \pm 3.7 \cdot 10^{-8} \) | \(a_{462}= -0.12267669 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{463}= +0.44778862 \pm 2.9 \cdot 10^{-8} \) | \(a_{464}= +0.20587011 \pm 5.7 \cdot 10^{-8} \) | \(a_{465}= +1.03979190 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{466}= -0.12801236 \pm 3.8 \cdot 10^{-8} \) | \(a_{467}= +0.00855131 \pm 3.3 \cdot 10^{-8} \) | \(a_{468}= +0.02131774 \pm 4.6 \cdot 10^{-8} \) |
| \(a_{469}= -0.16456582 \pm 2.5 \cdot 10^{-8} \) | \(a_{470}= +1.85736477 \pm 3.3 \cdot 10^{-8} \) | \(a_{471}= +1.51484124 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{472}= -0.05605721 \pm 5.3 \cdot 10^{-8} \) | \(a_{473}= +0.06215764 \pm 2.7 \cdot 10^{-8} \) | \(a_{474}= +0.97896241 \pm 3.9 \cdot 10^{-8} \) |
| \(a_{475}= +0.75878652 \pm 2.6 \cdot 10^{-8} \) | \(a_{476}= +0.04172447 \pm 2.0 \cdot 10^{-8} \) | \(a_{477}= +0.75525046 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{478}= +1.98289687 \pm 3.6 \cdot 10^{-8} \) | \(a_{479}= -1.38876208 \pm 3.2 \cdot 10^{-8} \) | \(a_{480}= -0.42201412 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{481}= -0.62544932 \pm 2.5 \cdot 10^{-8} \) | \(a_{482}= -1.36200874 \pm 4.1 \cdot 10^{-8} \) | \(a_{483}= +0.80984993 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{484}= -0.12263565 \pm 2.7 \cdot 10^{-8} \) | \(a_{485}= -0.13765542 \pm 2.3 \cdot 10^{-8} \) | \(a_{486}= -0.87661352 \pm 4.7 \cdot 10^{-8} \) |
| \(a_{487}= -0.96337982 \pm 3.0 \cdot 10^{-8} \) | \(a_{488}= -0.21453557 \pm 3.5 \cdot 10^{-8} \) | \(a_{489}= -0.15695251 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{490}= +0.26040186 \pm 2.5 \cdot 10^{-8} \) | \(a_{491}= +0.60520310 \pm 3.0 \cdot 10^{-8} \) | \(a_{492}= -0.19842394 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{493}= +0.06866958 \pm 3.9 \cdot 10^{-8} \) | \(a_{494}= -0.30383424 \pm 3.1 \cdot 10^{-8} \) | \(a_{495}= +0.06669192 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{496}= +0.67381951 \pm 3.2 \cdot 10^{-8} \) | \(a_{497}= -1.33105795 \pm 3.0 \cdot 10^{-8} \) | \(a_{498}= -2.39892075 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{499}= -1.33560041 \pm 2.9 \cdot 10^{-8} \) | \(a_{500}= +0.00525767 \pm 3.5 \cdot 10^{-8} \) | \(a_{501}= -0.18839724 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{502}= +1.12937478 \pm 3.0 \cdot 10^{-8} \) | \(a_{503}= -0.07356967 \pm 3.0 \cdot 10^{-8} \) | \(a_{504}= -0.37338031 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{505}= +0.77726062 \pm 3.1 \cdot 10^{-8} \) | \(a_{506}= -0.08325277 \pm 2.9 \cdot 10^{-8} \) | \(a_{507}= +1.01917294 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{508}= +0.19393481 \pm 2.9 \cdot 10^{-8} \) | \(a_{509}= +0.41285016 \pm 3.2 \cdot 10^{-8} \) | \(a_{510}= -0.67072876 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{511}= -0.23814329 \pm 2.7 \cdot 10^{-8} \) | \(a_{512}= +0.75612751 \pm 7.1 \cdot 10^{-8} \) | \(a_{513}= +0.49378888 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{514}= +0.06721182 \pm 3.6 \cdot 10^{-8} \) | \(a_{515}= -1.45467133 \pm 3.4 \cdot 10^{-8} \) | \(a_{516}= -0.08739671 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{517}= -0.13024969 \pm 2.8 \cdot 10^{-8} \) | \(a_{518}= -1.55106023 \pm 2.5 \cdot 10^{-8} \) | \(a_{519}= -1.68674323 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{520}= +0.51459228 \pm 3.0 \cdot 10^{-8} \) | \(a_{521}= +1.06064447 \pm 3.1 \cdot 10^{-8} \) | \(a_{522}= +0.08700640 \pm 7.8 \cdot 10^{-8} \) |
| \(a_{523}= -0.40019353 \pm 2.9 \cdot 10^{-8} \) | \(a_{524}= +0.02083509 \pm 4.8 \cdot 10^{-8} \) | \(a_{525}= +1.12490984 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{526}= +0.84147272 \pm 3.5 \cdot 10^{-8} \) | \(a_{527}= +0.22475775 \pm 2.9 \cdot 10^{-8} \) | \(a_{528}= +0.14101176 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{529}= -0.45040700 \pm 3.1 \cdot 10^{-8} \) | \(a_{530}= -2.58130543 \pm 3.9 \cdot 10^{-8} \) | \(a_{531}= -0.02667560 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{532}= -0.08314063 \pm 2.5 \cdot 10^{-8} \) | \(a_{533}= +0.51816284 \pm 2.8 \cdot 10^{-8} \) | \(a_{534}= -0.87734338 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{535}= +1.25030947 \pm 3.2 \cdot 10^{-8} \) | \(a_{536}= +0.16799954 \pm 3.1 \cdot 10^{-8} \) | \(a_{537}= -1.81720549 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{538}= +1.52935323 \pm 3.4 \cdot 10^{-8} \) | \(a_{539}= -0.01826096 \pm 2.3 \cdot 10^{-8} \) | \(a_{540}= +0.11841157 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{541}= -1.47445477 \pm 3.0 \cdot 10^{-8} \) | \(a_{542}= -0.65480498 \pm 2.9 \cdot 10^{-8} \) | \(a_{543}= -0.05803778 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{544}= -0.09122109 \pm 2.6 \cdot 10^{-8} \) | \(a_{545}= +0.08393504 \pm 2.7 \cdot 10^{-8} \) | \(a_{546}= -0.45043779 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{547}= +1.21966324 \pm 3.5 \cdot 10^{-8} \) | \(a_{548}= -0.06074804 \pm 3.4 \cdot 10^{-8} \) | \(a_{549}= -0.10208973 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{550}= -0.11564100 \pm 2.8 \cdot 10^{-8} \) | \(a_{551}= -0.13683174 \pm 3.6 \cdot 10^{-8} \) | \(a_{552}= -0.82674769 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{553}= -0.69954368 \pm 2.4 \cdot 10^{-8} \) | \(a_{554}= -1.81652491 \pm 3.5 \cdot 10^{-8} \) | \(a_{555}= +2.75121669 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{556}= -0.03101295 \pm 4.0 \cdot 10^{-8} \) | \(a_{557}= -1.37043007 \pm 2.9 \cdot 10^{-8} \) | \(a_{558}= +0.28477476 \pm 4.2 \cdot 10^{-8} \) |
| \(a_{559}= +0.22822713 \pm 3.0 \cdot 10^{-8} \) | \(a_{560}= +1.43689373 \pm 3.5 \cdot 10^{-8} \) | \(a_{561}= +0.04703557 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{562}= +0.42009280 \pm 4.0 \cdot 10^{-8} \) | \(a_{563}= +0.48670567 \pm 2.9 \cdot 10^{-8} \) | \(a_{564}= +0.18313750 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{565}= -0.88104139 \pm 2.9 \cdot 10^{-8} \) | \(a_{566}= +0.75126809 \pm 3.0 \cdot 10^{-8} \) | \(a_{567}= +1.13409064 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{568}= +1.35883088 \pm 4.0 \cdot 10^{-8} \) | \(a_{569}= -0.19790590 \pm 3.0 \cdot 10^{-8} \) | \(a_{570}= +1.33650130 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{571}= +0.79371365 \pm 2.6 \cdot 10^{-8} \) | \(a_{572}= +0.00510939 \pm 4.0 \cdot 10^{-8} \) | \(a_{573}= -0.23365688 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{574}= +1.28499904 \pm 2.6 \cdot 10^{-8} \) | \(a_{575}= +0.76340387 \pm 2.8 \cdot 10^{-8} \) | \(a_{576}= +0.37437278 \pm 4.5 \cdot 10^{-8} \) |
| \(a_{577}= +1.38527332 \pm 3.3 \cdot 10^{-8} \) | \(a_{578}= +0.91521912 \pm 4.0 \cdot 10^{-8} \) | \(a_{579}= -1.11635104 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{580}= -0.03281253 \pm 8.0 \cdot 10^{-8} \) | \(a_{581}= +1.71421276 \pm 3.1 \cdot 10^{-8} \) | \(a_{582}= -0.12300799 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{583}= +0.18101680 \pm 2.4 \cdot 10^{-8} \) | \(a_{584}= +0.24311222 \pm 3.3 \cdot 10^{-8} \) | \(a_{585}= +0.24487588 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{586}= +0.10718258 \pm 3.0 \cdot 10^{-8} \) | \(a_{587}= -1.30363622 \pm 2.6 \cdot 10^{-8} \) | \(a_{588}= +0.02567581 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{589}= -0.44785470 \pm 2.4 \cdot 10^{-8} \) | \(a_{590}= +0.09117224 \pm 3.7 \cdot 10^{-8} \) | \(a_{591}= -1.91177653 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{592}= +1.78287933 \pm 5.3 \cdot 10^{-8} \) | \(a_{593}= -1.11558049 \pm 2.7 \cdot 10^{-8} \) | \(a_{594}= -0.07525469 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{595}= +0.47928711 \pm 2.8 \cdot 10^{-8} \) | \(a_{596}= +0.07077533 \pm 2.2 \cdot 10^{-8} \) | \(a_{597}= +0.45099629 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{598}= -0.30568312 \pm 3.2 \cdot 10^{-8} \) | \(a_{599}= -0.20091469 \pm 2.6 \cdot 10^{-8} \) | \(a_{600}= -1.14838142 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{601}= -1.37486592 \pm 2.8 \cdot 10^{-8} \) | \(a_{602}= +0.56598355 \pm 2.6 \cdot 10^{-8} \) | \(a_{603}= +0.07994491 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{604}= -0.01094863 \pm 3.1 \cdot 10^{-8} \) | \(a_{605}= -1.40871001 \pm 2.7 \cdot 10^{-8} \) | \(a_{606}= +0.69455503 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{607}= -1.52681901 \pm 3.5 \cdot 10^{-8} \) | \(a_{608}= +0.18176811 \pm 3.3 \cdot 10^{-8} \) | \(a_{609}= -0.20285464 \pm 7.3 \cdot 10^{-8} \) |
| \(a_{610}= +0.34892370 \pm 2.5 \cdot 10^{-8} \) | \(a_{611}= -0.47824395 \pm 2.2 \cdot 10^{-8} \) | \(a_{612}= -0.02026945 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{613}= -0.54251050 \pm 3.0 \cdot 10^{-8} \) | \(a_{614}= +0.91776652 \pm 3.0 \cdot 10^{-8} \) | \(a_{615}= -2.27928660 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{616}= -0.08949099 \pm 2.6 \cdot 10^{-8} \) | \(a_{617}= -1.07819748 \pm 2.9 \cdot 10^{-8} \) | \(a_{618}= -1.29988483 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{619}= +0.34994855 \pm 2.6 \cdot 10^{-8} \) | \(a_{620}= -0.10739646 \pm 2.8 \cdot 10^{-8} \) | \(a_{621}= +0.49679368 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{622}= -0.96231153 \pm 3.1 \cdot 10^{-8} \) | \(a_{623}= +0.62692910 \pm 2.6 \cdot 10^{-8} \) | \(a_{624}= +0.51775953 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{625}= -0.96936001 \pm 2.4 \cdot 10^{-8} \) | \(a_{626}= +0.10513751 \pm 3.5 \cdot 10^{-8} \) | \(a_{627}= -0.09372358 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{628}= -0.15646264 \pm 4.0 \cdot 10^{-8} \) | \(a_{629}= +0.59469331 \pm 1.8 \cdot 10^{-8} \) | \(a_{630}= +0.60727102 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{631}= +1.04190478 \pm 2.7 \cdot 10^{-8} \) | \(a_{632}= +0.71413988 \pm 5.8 \cdot 10^{-8} \) | \(a_{633}= -0.20080143 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{634}= +0.12004926 \pm 3.7 \cdot 10^{-8} \) | \(a_{635}= +2.22772018 \pm 3.4 \cdot 10^{-8} \) | \(a_{636}= -0.25451857 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{637}= -0.06704963 \pm 2.6 \cdot 10^{-8} \) | \(a_{638}= +0.02085351 \pm 7.6 \cdot 10^{-8} \) | \(a_{639}= +0.64661855 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{640}= -1.63097840 \pm 5.7 \cdot 10^{-8} \) | \(a_{641}= +1.31457977 \pm 2.7 \cdot 10^{-8} \) | \(a_{642}= +1.11726840 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{643}= -0.33931552 \pm 2.6 \cdot 10^{-8} \) | \(a_{644}= -0.08364656 \pm 2.5 \cdot 10^{-8} \) | \(a_{645}= -1.00392194 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{646}= +0.28889341 \pm 3.0 \cdot 10^{-8} \) | \(a_{647}= -0.10374647 \pm 2.1 \cdot 10^{-8} \) | \(a_{648}= -1.15775379 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{649}= -0.00639355 \pm 2.7 \cdot 10^{-8} \) | \(a_{650}= -0.42460454 \pm 3.6 \cdot 10^{-8} \) | \(a_{651}= -0.66394981 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{652}= +0.01621107 \pm 2.8 \cdot 10^{-8} \) | \(a_{653}= +1.23257869 \pm 3.6 \cdot 10^{-8} \) | \(a_{654}= +0.07500380 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{655}= +0.23933175 \pm 3.2 \cdot 10^{-8} \) | \(a_{656}= -1.47705303 \pm 6.0 \cdot 10^{-8} \) | \(a_{657}= +0.11568833 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{658}= -1.18600364 \pm 2.5 \cdot 10^{-8} \) | \(a_{659}= -0.55251538 \pm 3.0 \cdot 10^{-8} \) | \(a_{660}= -0.02247510 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{661}= +1.27144010 \pm 2.4 \cdot 10^{-8} \) | \(a_{662}= +1.42745223 \pm 3.9 \cdot 10^{-8} \) | \(a_{663}= +0.17270273 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{664}= -1.74998033 \pm 3.3 \cdot 10^{-8} \) | \(a_{665}= -0.95503263 \pm 3.0 \cdot 10^{-8} \) | \(a_{666}= +0.75349410 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{667}= -0.13766438 \pm 4.1 \cdot 10^{-8} \) | \(a_{668}= +0.01945889 \pm 2.1 \cdot 10^{-8} \) | \(a_{669}= +1.69465775 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{670}= -0.27323683 \pm 2.5 \cdot 10^{-8} \) | \(a_{671}= -0.02446865 \pm 2.7 \cdot 10^{-8} \) | \(a_{672}= +0.26947334 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{673}= +1.33015316 \pm 3.3 \cdot 10^{-8} \) | \(a_{674}= -0.02319220 \pm 3.5 \cdot 10^{-8} \) | \(a_{675}= +0.69006377 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{676}= -0.10526680 \pm 4.5 \cdot 10^{-8} \) | \(a_{677}= +0.82073877 \pm 3.1 \cdot 10^{-8} \) | \(a_{678}= -0.78729285 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{679}= +0.08789864 \pm 2.6 \cdot 10^{-8} \) | \(a_{680}= -0.48928758 \pm 2.4 \cdot 10^{-8} \) | \(a_{681}= +0.32234048 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{682}= +0.06825420 \pm 2.9 \cdot 10^{-8} \) | \(a_{683}= -1.73595031 \pm 3.7 \cdot 10^{-8} \) | \(a_{684}= +0.04038913 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{685}= -0.69780996 \pm 2.4 \cdot 10^{-8} \) | \(a_{686}= -1.13077010 \pm 2.9 \cdot 10^{-8} \) | \(a_{687}= -1.57191502 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{688}= -0.65057459 \pm 3.6 \cdot 10^{-8} \) | \(a_{689}= +0.66464796 \pm 2.7 \cdot 10^{-8} \) | \(a_{690}= +1.34463415 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{691}= -0.75718098 \pm 3.2 \cdot 10^{-8} \) | \(a_{692}= +0.17421780 \pm 3.0 \cdot 10^{-8} \) | \(a_{693}= -0.04258553 \pm 1.9 \cdot 10^{-8} \) |
| \(a_{694}= -0.22058385 \pm 3.8 \cdot 10^{-8} \) | \(a_{695}= -0.35624428 \pm 2.4 \cdot 10^{-8} \) | \(a_{696}= +0.20708727 \pm 8.7 \cdot 10^{-8} \) |
| \(a_{697}= -0.49268256 \pm 2.0 \cdot 10^{-8} \) | \(a_{698}= +1.40616157 \pm 3.9 \cdot 10^{-8} \) | \(a_{699}= -0.14498960 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{700}= -0.11618799 \pm 2.6 \cdot 10^{-8} \) | \(a_{701}= +1.15988241 \pm 3.6 \cdot 10^{-8} \) | \(a_{702}= -0.27631619 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{703}= -1.18499224 \pm 2.5 \cdot 10^{-8} \) | \(a_{704}= +0.08972886 \pm 3.7 \cdot 10^{-8} \) | \(a_{705}= +2.10369200 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{706}= +0.35620692 \pm 3.3 \cdot 10^{-8} \) | \(a_{707}= -0.49631281 \pm 3.0 \cdot 10^{-8} \) | \(a_{708}= +0.00898965 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{709}= +1.72979675 \pm 3.0 \cdot 10^{-8} \) | \(a_{710}= -2.21002179 \pm 3.4 \cdot 10^{-8} \) | \(a_{711}= +0.33983338 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{712}= -0.64001016 \pm 4.3 \cdot 10^{-8} \) | \(a_{713}= -0.45057998 \pm 2.3 \cdot 10^{-8} \) | \(a_{714}= +0.42828784 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{715}= +0.05869132 \pm 2.6 \cdot 10^{-8} \) | \(a_{716}= +0.18769279 \pm 4.5 \cdot 10^{-8} \) | \(a_{717}= +2.24587241 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{718}= -0.21187379 \pm 4.6 \cdot 10^{-8} \) | \(a_{719}= +1.11591284 \pm 3.1 \cdot 10^{-8} \) | \(a_{720}= -0.69803282 \pm 4.1 \cdot 10^{-8} \) |
| \(a_{721}= +0.92886735 \pm 3.1 \cdot 10^{-8} \) | \(a_{722}= +0.48454938 \pm 2.2 \cdot 10^{-8} \) | \(a_{723}= -1.54264092 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{724}= +0.00599452 \pm 4.2 \cdot 10^{-8} \) | \(a_{725}= -0.19122064 \pm 4.2 \cdot 10^{-8} \) | \(a_{726}= -1.25881409 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{727}= +1.85190372 \pm 3.2 \cdot 10^{-8} \) | \(a_{728}= -0.32858829 \pm 2.7 \cdot 10^{-8} \) | \(a_{729}= +0.25375719 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{730}= -0.39540116 \pm 2.3 \cdot 10^{-8} \) | \(a_{731}= -0.21700423 \pm 2.9 \cdot 10^{-8} \) | \(a_{732}= +0.03440413 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{733}= -0.33813299 \pm 3.0 \cdot 10^{-8} \) | \(a_{734}= -1.45067567 \pm 4.0 \cdot 10^{-8} \) | \(a_{735}= +0.29493685 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{736}= +0.18287420 \pm 3.1 \cdot 10^{-8} \) | \(a_{737}= +0.01916102 \pm 2.5 \cdot 10^{-8} \) | \(a_{738}= -0.62424345 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{739}= +1.72014193 \pm 3.2 \cdot 10^{-8} \) | \(a_{740}= -0.28416353 \pm 3.4 \cdot 10^{-8} \) | \(a_{741}= -0.34412931 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{742}= +1.64826946 \pm 3.2 \cdot 10^{-8} \) | \(a_{743}= +0.09570987 \pm 3.1 \cdot 10^{-8} \) | \(a_{744}= +0.67780332 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{745}= +0.81299299 \pm 2.2 \cdot 10^{-8} \) | \(a_{746}= +0.30159229 \pm 3.8 \cdot 10^{-8} \) | \(a_{747}= -0.83275244 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{748}= -0.00485814 \pm 3.5 \cdot 10^{-8} \) | \(a_{749}= -0.79837391 \pm 2.9 \cdot 10^{-8} \) | \(a_{750}= +0.05396826 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{751}= -1.20379482 \pm 2.8 \cdot 10^{-8} \) | \(a_{752}= +1.36326193 \pm 3.0 \cdot 10^{-8} \) | \(a_{753}= +1.27915461 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{754}= +0.07656880 \pm 7.9 \cdot 10^{-8} \) | \(a_{755}= -0.12576636 \pm 3.0 \cdot 10^{-8} \) | \(a_{756}= -0.07561065 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{757}= -1.06994742 \pm 3.1 \cdot 10^{-8} \) | \(a_{758}= +1.25675085 \pm 3.2 \cdot 10^{-8} \) | \(a_{759}= -0.09429391 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{760}= +0.97495967 \pm 2.9 \cdot 10^{-8} \) | \(a_{761}= +1.84409712 \pm 3.7 \cdot 10^{-8} \) | \(a_{762}= +1.99067625 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{763}= -0.05359597 \pm 2.5 \cdot 10^{-8} \) | \(a_{764}= +0.02413360 \pm 2.9 \cdot 10^{-8} \) | \(a_{765}= -0.23283429 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{766}= -0.77024031 \pm 3.4 \cdot 10^{-8} \) | \(a_{767}= -0.02347550 \pm 2.9 \cdot 10^{-8} \) | \(a_{768}= -0.44020946 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{769}= -1.58553820 \pm 2.8 \cdot 10^{-8} \) | \(a_{770}= +0.14554941 \pm 2.4 \cdot 10^{-8} \) | \(a_{771}= +0.07612558 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{772}= +0.11530399 \pm 3.4 \cdot 10^{-8} \) | \(a_{773}= -0.79886784 \pm 2.6 \cdot 10^{-8} \) | \(a_{774}= -0.27495081 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{775}= -0.62587133 \pm 3.1 \cdot 10^{-8} \) | \(a_{776}= -0.08973267 \pm 2.6 \cdot 10^{-8} \) | \(a_{777}= -1.75676478 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{778}= -2.02472065 \pm 3.4 \cdot 10^{-8} \) | \(a_{779}= +0.98172454 \pm 2.4 \cdot 10^{-8} \) | \(a_{780}= -0.08252290 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{781}= +0.15498014 \pm 3.2 \cdot 10^{-8} \) | \(a_{782}= +0.29065138 \pm 2.9 \cdot 10^{-8} \) | \(a_{783}= -0.12443899 \pm 4.3 \cdot 10^{-8} \) |
| \(a_{784}= +0.19112882 \pm 3.7 \cdot 10^{-8} \) | \(a_{785}= -1.79727913 \pm 3.7 \cdot 10^{-8} \) | \(a_{786}= +0.21386529 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{787}= -0.93374565 \pm 3.1 \cdot 10^{-8} \) | \(a_{788}= +0.19746070 \pm 3.4 \cdot 10^{-8} \) | \(a_{789}= +0.95307042 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{790}= -1.16148720 \pm 4.0 \cdot 10^{-8} \) | \(a_{791}= +0.56258109 \pm 2.9 \cdot 10^{-8} \) | \(a_{792}= +0.04347409 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{793}= -0.08984269 \pm 3.3 \cdot 10^{-8} \) | \(a_{794}= -0.13015098 \pm 3.3 \cdot 10^{-8} \) | \(a_{795}= -2.92364304 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{796}= -0.04658183 \pm 2.7 \cdot 10^{-8} \) | \(a_{797}= -1.95215820 \pm 3.4 \cdot 10^{-8} \) | \(a_{798}= -0.85341094 \pm 2.1 \cdot 10^{-8} \) |
| \(a_{799}= +0.45472665 \pm 1.9 \cdot 10^{-8} \) | \(a_{800}= +0.25401865 \pm 2.3 \cdot 10^{-8} \) | \(a_{801}= -0.30455773 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{802}= +0.18154820 \pm 3.7 \cdot 10^{-8} \) | \(a_{803}= +0.02772793 \pm 2.9 \cdot 10^{-8} \) | \(a_{804}= -0.02694135 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{805}= -0.96084417 \pm 2.3 \cdot 10^{-8} \) | \(a_{806}= +0.25061217 \pm 2.7 \cdot 10^{-8} \) | \(a_{807}= +1.73217895 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{808}= +0.50666852 \pm 4.4 \cdot 10^{-8} \) | \(a_{809}= -0.13122162 \pm 2.9 \cdot 10^{-8} \) | \(a_{810}= +1.88298715 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{811}= -1.16763232 \pm 2.8 \cdot 10^{-8} \) | \(a_{812}= +0.02095215 \pm 7.8 \cdot 10^{-8} \) | \(a_{813}= -0.74164645 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{814}= +0.18059584 \pm 2.5 \cdot 10^{-8} \) | \(a_{815}= +0.18621586 \pm 2.4 \cdot 10^{-8} \) | \(a_{816}= -0.49229909 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{817}= +0.43240495 \pm 2.3 \cdot 10^{-8} \) | \(a_{818}= +0.69156073 \pm 4.1 \cdot 10^{-8} \) | \(a_{819}= -0.15636330 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{820}= +0.23541952 \pm 4.1 \cdot 10^{-8} \) | \(a_{821}= +1.88912627 \pm 3.6 \cdot 10^{-8} \) | \(a_{822}= -0.62355843 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{823}= +0.72497675 \pm 3.6 \cdot 10^{-8} \) | \(a_{824}= -0.94824845 \pm 5.2 \cdot 10^{-8} \) | \(a_{825}= -0.13097753 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{826}= -0.05821722 \pm 2.5 \cdot 10^{-8} \) | \(a_{827}= -0.17438188 \pm 2.5 \cdot 10^{-8} \) | \(a_{828}= +0.04063491 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{829}= +1.14689627 \pm 3.2 \cdot 10^{-8} \) | \(a_{830}= +2.84619278 \pm 4.0 \cdot 10^{-8} \) | \(a_{831}= -2.05743589 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{832}= +0.32946170 \pm 3.9 \cdot 10^{-8} \) | \(a_{833}= +0.06375251 \pm 2.5 \cdot 10^{-8} \) | \(a_{834}= -0.31833757 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{835}= +0.22352338 \pm 2.5 \cdot 10^{-8} \) | \(a_{836}= +0.00968038 \pm 2.8 \cdot 10^{-8} \) | \(a_{837}= -0.40729283 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{838}= -0.93583502 \pm 3.0 \cdot 10^{-8} \) | \(a_{839}= +1.22082383 \pm 3.1 \cdot 10^{-8} \) | \(a_{840}= +1.44538905 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{841}= +0.03448276 \pm 1.5 \cdot 10^{-6} \) | \(a_{842}= -0.98124892 \pm 3.7 \cdot 10^{-8} \) | \(a_{843}= +0.47580630 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{844}= +0.02074008 \pm 5.2 \cdot 10^{-8} \) | \(a_{845}= -1.20919487 \pm 2.9 \cdot 10^{-8} \) | \(a_{846}= +0.57615219 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{847}= +0.89951916 \pm 2.2 \cdot 10^{-8} \) | \(a_{848}= -1.89461730 \pm 3.5 \cdot 10^{-8} \) | \(a_{849}= +0.85090269 \pm 3.6 \cdot 10^{-8} \) |
| \(a_{850}= +0.40372492 \pm 3.6 \cdot 10^{-8} \) | \(a_{851}= -1.19220313 \pm 3.3 \cdot 10^{-8} \) | \(a_{852}= -0.21790974 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{853}= -1.37696532 \pm 2.8 \cdot 10^{-8} \) | \(a_{854}= -0.22280210 \pm 2.0 \cdot 10^{-8} \) | \(a_{855}= +0.46394810 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{856}= +0.81503223 \pm 4.3 \cdot 10^{-8} \) | \(a_{857}= -0.31365359 \pm 3.2 \cdot 10^{-8} \) | \(a_{858}= +0.05244619 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{859}= -0.04267193 \pm 3.1 \cdot 10^{-8} \) | \(a_{860}= +0.10369158 \pm 3.1 \cdot 10^{-8} \) | \(a_{861}= +1.45541805 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{862}= +0.47609822 \pm 3.3 \cdot 10^{-8} \) | \(a_{863}= +0.90239615 \pm 3.0 \cdot 10^{-8} \) | \(a_{864}= +0.16530550 \pm 5.3 \cdot 10^{-8} \) |
| \(a_{865}= +2.00123177 \pm 3.6 \cdot 10^{-8} \) | \(a_{866}= -1.23124323 \pm 3.7 \cdot 10^{-8} \) | \(a_{867}= +1.03659721 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{868}= +0.06857705 \pm 2.3 \cdot 10^{-8} \) | \(a_{869}= +0.08145053 \pm 2.7 \cdot 10^{-8} \) | \(a_{870}= -0.33680966 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{871}= +0.07035444 \pm 2.5 \cdot 10^{-8} \) | \(a_{872}= +0.05471426 \pm 3.8 \cdot 10^{-8} \) | \(a_{873}= -0.04270054 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{874}= -0.57915505 \pm 2.4 \cdot 10^{-8} \) | \(a_{875}= -0.03856446 \pm 2.2 \cdot 10^{-8} \) | \(a_{876}= -0.03898684 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{877}= +0.47671333 \pm 3.1 \cdot 10^{-8} \) | \(a_{878}= +0.26318940 \pm 2.9 \cdot 10^{-8} \) | \(a_{879}= +0.12139734 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{880}= -0.16730300 \pm 3.2 \cdot 10^{-8} \) | \(a_{881}= +0.39084472 \pm 3.1 \cdot 10^{-8} \) | \(a_{882}= +0.08077633 \pm 3.5 \cdot 10^{-8} \) |
| \(a_{883}= +0.27819843 \pm 3.3 \cdot 10^{-8} \) | \(a_{884}= -0.01783786 \pm 5.5 \cdot 10^{-8} \) | \(a_{885}= +0.10326368 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{886}= -1.72296479 \pm 3.2 \cdot 10^{-8} \) | \(a_{887}= -1.35718774 \pm 3.5 \cdot 10^{-8} \) | \(a_{888}= +1.79342021 \pm 3.7 \cdot 10^{-8} \) |
| \(a_{889}= -1.42249077 \pm 3.0 \cdot 10^{-8} \) | \(a_{890}= +1.04092159 \pm 3.3 \cdot 10^{-8} \) | \(a_{891}= -0.13204649 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{892}= -0.17503526 \pm 3.3 \cdot 10^{-8} \) | \(a_{893}= -0.90609319 \pm 2.2 \cdot 10^{-8} \) | \(a_{894}= +0.72648524 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{895}= +2.15601835 \pm 4.0 \cdot 10^{-8} \) | \(a_{896}= +1.04144665 \pm 3.6 \cdot 10^{-8} \) | \(a_{897}= -0.34622340 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{898}= +0.43047615 \pm 3.9 \cdot 10^{-8} \) | \(a_{899}= +0.11286318 \pm 4.0 \cdot 10^{-8} \) | \(a_{900}= +0.05644331 \pm 3.4 \cdot 10^{-8} \) |
| \(a_{901}= -0.63196438 \pm 2.9 \cdot 10^{-8} \) | \(a_{902}= -0.14961733 \pm 2.7 \cdot 10^{-8} \) | \(a_{903}= +0.64104536 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{904}= -0.57431951 \pm 3.4 \cdot 10^{-8} \) | \(a_{905}= +0.06885876 \pm 2.1 \cdot 10^{-8} \) | \(a_{906}= -0.11238400 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{907}= -1.37762512 \pm 3.5 \cdot 10^{-8} \) | \(a_{908}= -0.03329342 \pm 4.1 \cdot 10^{-8} \) | \(a_{909}= +0.24110525 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{910}= +0.53442065 \pm 2.1 \cdot 10^{-8} \) | \(a_{911}= -0.21338462 \pm 2.5 \cdot 10^{-8} \) | \(a_{912}= +0.98096043 \pm 2.9 \cdot 10^{-8} \) |
| \(a_{913}= -0.19959231 \pm 2.6 \cdot 10^{-8} \) | \(a_{914}= -0.11029905 \pm 2.7 \cdot 10^{-8} \) | \(a_{915}= +0.39519862 \pm 2.0 \cdot 10^{-8} \) |
| \(a_{916}= +0.16235759 \pm 4.0 \cdot 10^{-8} \) | \(a_{917}= -0.15282315 \pm 2.8 \cdot 10^{-8} \) | \(a_{918}= +0.26272854 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{919}= -0.75928435 \pm 2.7 \cdot 10^{-8} \) | \(a_{920}= +0.98089247 \pm 2.5 \cdot 10^{-8} \) | \(a_{921}= +1.03948246 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{922}= -1.61425974 \pm 3.7 \cdot 10^{-8} \) | \(a_{923}= +0.56904791 \pm 4.0 \cdot 10^{-8} \) | \(a_{924}= +0.01435128 \pm 2.3 \cdot 10^{-8} \) |
| \(a_{925}= -1.65601180 \pm 2.9 \cdot 10^{-8} \) | \(a_{926}= -0.47474616 \pm 3.4 \cdot 10^{-8} \) | \(a_{927}= -0.45123720 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{928}= -0.04580711 \pm 6.0 \cdot 10^{-8} \) | \(a_{929}= -1.66760383 \pm 3.0 \cdot 10^{-8} \) | \(a_{930}= -1.10238892 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{931}= -0.12703393 \pm 2.2 \cdot 10^{-8} \) | \(a_{932}= +0.01497547 \pm 3.7 \cdot 10^{-8} \) | \(a_{933}= -1.08993511 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{934}= -0.00906612 \pm 4.2 \cdot 10^{-8} \) | \(a_{935}= -0.05580522 \pm 2.4 \cdot 10^{-8} \) | \(a_{936}= +0.15962587 \pm 4.4 \cdot 10^{-8} \) |
| \(a_{937}= +0.05482083 \pm 2.9 \cdot 10^{-8} \) | \(a_{938}= +0.17447293 \pm 2.3 \cdot 10^{-8} \) | \(a_{939}= +0.11908105 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{940}= -0.21728297 \pm 2.6 \cdot 10^{-8} \) | \(a_{941}= +0.02181582 \pm 2.3 \cdot 10^{-8} \) | \(a_{942}= -1.60603693 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{943}= +0.98769851 \pm 3.0 \cdot 10^{-8} \) | \(a_{944}= +0.06691827 \pm 5.7 \cdot 10^{-8} \) | \(a_{945}= -0.86853601 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{946}= -0.06589962 \pm 2.7 \cdot 10^{-8} \) | \(a_{947}= +0.01802738 \pm 3.1 \cdot 10^{-8} \) | \(a_{948}= -0.11452347 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{949}= +0.10180995 \pm 3.4 \cdot 10^{-8} \) | \(a_{950}= -0.80446660 \pm 2.3 \cdot 10^{-8} \) | \(a_{951}= +0.13597042 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{952}= +0.31243020 \pm 2.6 \cdot 10^{-8} \) | \(a_{953}= -0.23062251 \pm 2.7 \cdot 10^{-8} \) | \(a_{954}= -0.80071766 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{955}= +0.27722155 \pm 2.4 \cdot 10^{-8} \) | \(a_{956}= -0.23196829 \pm 3.6 \cdot 10^{-8} \) | \(a_{957}= +0.02361914 \pm 7.2 \cdot 10^{-8} \) |
| \(a_{958}= +1.47236761 \pm 3.6 \cdot 10^{-8} \) | \(a_{959}= +0.44558030 \pm 2.5 \cdot 10^{-8} \) | \(a_{960}= -1.44923098 \pm 3.3 \cdot 10^{-8} \) |
| \(a_{961}= -0.63059515 \pm 3.2 \cdot 10^{-8} \) | \(a_{962}= +0.66310230 \pm 2.4 \cdot 10^{-8} \) | \(a_{963}= +0.38784441 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{964}= +0.15933397 \pm 4.5 \cdot 10^{-8} \) | \(a_{965}= +1.32449155 \pm 3.3 \cdot 10^{-8} \) | \(a_{966}= -0.85860409 \pm 2.5 \cdot 10^{-8} \) |
| \(a_{967}= +0.30892004 \pm 2.9 \cdot 10^{-8} \) | \(a_{968}= -0.91828790 \pm 3.0 \cdot 10^{-8} \) | \(a_{969}= +0.32720700 \pm 2.4 \cdot 10^{-8} \) |
| \(a_{970}= +0.14594248 \pm 2.1 \cdot 10^{-8} \) | \(a_{971}= +0.08023087 \pm 2.5 \cdot 10^{-8} \) | \(a_{972}= +0.10255023 \pm 4.0 \cdot 10^{-8} \) |
| \(a_{973}= +0.22747660 \pm 2.5 \cdot 10^{-8} \) | \(a_{974}= +1.02137671 \pm 3.9 \cdot 10^{-8} \) | \(a_{975}= -0.48091640 \pm 2.8 \cdot 10^{-8} \) |
| \(a_{976}= +0.25610176 \pm 3.2 \cdot 10^{-8} \) | \(a_{977}= -0.85972899 \pm 2.2 \cdot 10^{-8} \) | \(a_{978}= +0.16640128 \pm 3.2 \cdot 10^{-8} \) |
| \(a_{979}= -0.07299574 \pm 2.2 \cdot 10^{-8} \) | \(a_{980}= -0.03046299 \pm 2.8 \cdot 10^{-8} \) | \(a_{981}= +0.02603654 \pm 3.8 \cdot 10^{-8} \) |
| \(a_{982}= -0.64163722 \pm 3.3 \cdot 10^{-8} \) | \(a_{983}= -0.51202198 \pm 2.7 \cdot 10^{-8} \) | \(a_{984}= -1.48578578 \pm 4.2 \cdot 10^{-8} \) |
| \(a_{985}= +2.26822190 \pm 3.5 \cdot 10^{-8} \) | \(a_{986}= -0.07280359 \pm 7.6 \cdot 10^{-8} \) | \(a_{987}= -1.34329369 \pm 3.1 \cdot 10^{-8} \) |
| \(a_{988}= +0.03554391 \pm 3.6 \cdot 10^{-8} \) | \(a_{989}= +0.43503621 \pm 2.5 \cdot 10^{-8} \) | \(a_{990}= -0.07070687 \pm 2.7 \cdot 10^{-8} \) |
| \(a_{991}= +1.80610383 \pm 3.4 \cdot 10^{-8} \) | \(a_{992}= -0.14992814 \pm 2.7 \cdot 10^{-8} \) | \(a_{993}= +1.61676365 \pm 3.0 \cdot 10^{-8} \) |
| \(a_{994}= +1.41118962 \pm 2.8 \cdot 10^{-8} \) | \(a_{995}= -0.53508328 \pm 1.5 \cdot 10^{-8} \) | \(a_{996}= +0.28063665 \pm 2.6 \cdot 10^{-8} \) |
| \(a_{997}= -1.11634181 \pm 3.2 \cdot 10^{-8} \) | \(a_{998}= +1.41600553 \pm 3.4 \cdot 10^{-8} \) | \(a_{999}= -1.07766835 \pm 2.2 \cdot 10^{-8} \) |
| \(a_{1000}= +0.03936912 \pm 3.8 \cdot 10^{-8} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000