Maass form invariants
| Level: | \( 23 \) |
| Weight: | \( 0 \) |
| Character: | 23.1 |
| Symmetry: | odd |
| Fricke sign: | $+1$ |
| Spectral parameter: | \(3.52454363827765669937957334759 \pm 10 \cdot 10^{-11}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
| \(a_{1}= +1 \) | \(a_{2}= -0.35025558 \pm 2.7 \cdot 10^{-7} \) | \(a_{3}= +1.20836683 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{4}= -0.87732103 \pm 2.9 \cdot 10^{-7} \) | \(a_{5}= -1.07017002 \pm 2.0 \cdot 10^{-7} \) | \(a_{6}= -0.42323723 \pm 3.3 \cdot 10^{-7} \) |
| \(a_{7}= -1.52369010 \pm 2.0 \cdot 10^{-7} \) | \(a_{8}= +0.65754217 \pm 2.6 \cdot 10^{-7} \) | \(a_{9}= +0.46015038 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{10}= +0.37483302 \pm 2.2 \cdot 10^{-7} \) | \(a_{11}= +1.13275866 \pm 2.3 \cdot 10^{-7} \) | \(a_{12}= -1.06012562 \pm 3.5 \cdot 10^{-7} \) |
| \(a_{13}= -1.08860264 \pm 1.8 \cdot 10^{-7} \) | \(a_{14}= +0.53368096 \pm 2.3 \cdot 10^{-7} \) | \(a_{15}= -1.29315795 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{16}= +0.64701321 \pm 2.4 \cdot 10^{-7} \) | \(a_{17}= -0.47608018 \pm 2.2 \cdot 10^{-7} \) | \(a_{18}= -0.16117024 \pm 2.9 \cdot 10^{-7} \) |
| \(a_{19}= +0.99295676 \pm 1.8 \cdot 10^{-7} \) | \(a_{20}= +0.93888266 \pm 2.6 \cdot 10^{-7} \) | \(a_{21}= -1.84117657 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{22}= -0.39675504 \pm 2.3 \cdot 10^{-7} \) | \(a_{23}= -0.20851441 \pm 1.0 \cdot 10^{-8} \) | \(a_{24}= +0.79455214 \pm 2.9 \cdot 10^{-7} \) |
| \(a_{25}= +0.14526388 \pm 2.0 \cdot 10^{-7} \) | \(a_{26}= +0.38128915 \pm 2.2 \cdot 10^{-7} \) | \(a_{27}= -0.65233637 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{28}= +1.33676536 \pm 2.7 \cdot 10^{-7} \) | \(a_{29}= -0.94917996 \pm 1.9 \cdot 10^{-7} \) | \(a_{30}= +0.45293579 \pm 2.8 \cdot 10^{-7} \) |
| \(a_{31}= +0.34826645 \pm 1.9 \cdot 10^{-7} \) | \(a_{32}= -0.88416216 \pm 2.6 \cdot 10^{-7} \) | \(a_{33}= +1.36878798 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{34}= +0.16674974 \pm 2.6 \cdot 10^{-7} \) | \(a_{35}= +1.63060747 \pm 2.2 \cdot 10^{-7} \) | \(a_{36}= -0.40369961 \pm 3.0 \cdot 10^{-7} \) |
| \(a_{37}= -1.53801214 \pm 2.0 \cdot 10^{-7} \) | \(a_{38}= -0.34778865 \pm 2.1 \cdot 10^{-7} \) | \(a_{39}= -1.31543132 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{40}= -0.70368192 \pm 2.4 \cdot 10^{-7} \) | \(a_{41}= -1.07602831 \pm 2.3 \cdot 10^{-7} \) | \(a_{42}= +0.64488237 \pm 2.9 \cdot 10^{-7} \) |
| \(a_{43}= +1.65311699 \pm 2.3 \cdot 10^{-7} \) | \(a_{44}= -0.99379299 \pm 2.5 \cdot 10^{-7} \) | \(a_{45}= -0.49243915 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{46}= +0.07303334 \pm 2.8 \cdot 10^{-7} \) | \(a_{47}= -0.10876275 \pm 2.2 \cdot 10^{-7} \) | \(a_{48}= +0.78182930 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{49}= +1.32163152 \pm 1.7 \cdot 10^{-7} \) | \(a_{50}= -0.05087948 \pm 2.2 \cdot 10^{-7} \) | \(a_{51}= -0.57527950 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{52}= +0.95505399 \pm 2.7 \cdot 10^{-7} \) | \(a_{53}= -0.32152298 \pm 2.0 \cdot 10^{-7} \) | \(a_{54}= +0.22848445 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{55}= -1.21224436 \pm 1.7 \cdot 10^{-7} \) | \(a_{56}= -1.00189050 \pm 2.5 \cdot 10^{-7} \) | \(a_{57}= +1.19985601 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{58}= +0.33245558 \pm 2.5 \cdot 10^{-7} \) | \(a_{59}= +0.34001749 \pm 2.0 \cdot 10^{-7} \) | \(a_{60}= +1.13451466 \pm 3.0 \cdot 10^{-7} \) |
| \(a_{61}= +0.42106539 \pm 1.7 \cdot 10^{-7} \) | \(a_{62}= -0.12198227 \pm 2.5 \cdot 10^{-7} \) | \(a_{63}= -0.70112659 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{64}= -0.33733048 \pm 2.7 \cdot 10^{-7} \) | \(a_{65}= +1.16498991 \pm 1.8 \cdot 10^{-7} \) | \(a_{66}= -0.47942563 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{67}= -0.56025208 \pm 2.2 \cdot 10^{-7} \) | \(a_{68}= +0.41767516 \pm 2.4 \cdot 10^{-7} \) | \(a_{69}= -0.25196190 \pm 2.6 \cdot 10^{-7} \) |
| \(a_{70}= -0.57112937 \pm 1.8 \cdot 10^{-7} \) | \(a_{71}= -0.17286845 \pm 2.3 \cdot 10^{-7} \) | \(a_{72}= +0.30256828 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{73}= -0.87698381 \pm 1.9 \cdot 10^{-7} \) | \(a_{74}= +0.53869734 \pm 2.0 \cdot 10^{-7} \) | \(a_{75}= +0.17553205 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{76}= -0.87114185 \pm 2.1 \cdot 10^{-7} \) | \(a_{77}= -1.72597315 \pm 1.8 \cdot 10^{-7} \) | \(a_{78}= +0.46073716 \pm 2.7 \cdot 10^{-7} \) |
| \(a_{79}= +1.01397202 \pm 2.0 \cdot 10^{-7} \) | \(a_{80}= -0.69241414 \pm 2.5 \cdot 10^{-7} \) | \(a_{81}= -1.24841201 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{82}= +0.37688492 \pm 2.8 \cdot 10^{-7} \) | \(a_{83}= -0.57386268 \pm 1.8 \cdot 10^{-7} \) | \(a_{84}= +1.61530292 \pm 3.3 \cdot 10^{-7} \) |
| \(a_{85}= +0.50948674 \pm 1.7 \cdot 10^{-7} \) | \(a_{86}= -0.57901345 \pm 2.8 \cdot 10^{-7} \) | \(a_{87}= -1.14695758 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{88}= +0.74483659 \pm 2.0 \cdot 10^{-7} \) | \(a_{89}= +1.03287960 \pm 2.1 \cdot 10^{-7} \) | \(a_{90}= +0.17247956 \pm 3.0 \cdot 10^{-7} \) |
| \(a_{91}= +1.65869307 \pm 1.8 \cdot 10^{-7} \) | \(a_{92}= +0.18293408 \pm 3.0 \cdot 10^{-7} \) | \(a_{93}= +0.42083362 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{94}= +0.03809476 \pm 3.2 \cdot 10^{-7} \) | \(a_{95}= -1.06263256 \pm 1.5 \cdot 10^{-7} \) | \(a_{96}= -1.06839222 \pm 2.8 \cdot 10^{-7} \) |
| \(a_{97}= +0.70838702 \pm 1.7 \cdot 10^{-7} \) | \(a_{98}= -0.46290882 \pm 1.6 \cdot 10^{-7} \) | \(a_{99}= +0.52123933 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{100}= -0.12744305 \pm 2.4 \cdot 10^{-7} \) | \(a_{101}= +0.47742692 \pm 2.1 \cdot 10^{-7} \) | \(a_{102}= +0.20149486 \pm 3.0 \cdot 10^{-7} \) |
| \(a_{103}= +1.35612657 \pm 2.1 \cdot 10^{-7} \) | \(a_{104}= -0.71580214 \pm 2.4 \cdot 10^{-7} \) | \(a_{105}= +1.97037197 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{106}= +0.11261522 \pm 2.5 \cdot 10^{-7} \) | \(a_{107}= -1.44846155 \pm 2.1 \cdot 10^{-7} \) | \(a_{108}= +0.57230841 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{109}= -0.89692667 \pm 2.2 \cdot 10^{-7} \) | \(a_{110}= +0.42459535 \pm 1.6 \cdot 10^{-7} \) | \(a_{111}= -1.85848284 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{112}= -0.98584762 \pm 2.3 \cdot 10^{-7} \) | \(a_{113}= -0.94035172 \pm 2.4 \cdot 10^{-7} \) | \(a_{114}= -0.42025627 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{115}= +0.22314588 \pm 2.1 \cdot 10^{-7} \) | \(a_{116}= +0.83273554 \pm 2.4 \cdot 10^{-7} \) | \(a_{117}= -0.50092092 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{118}= -0.11909303 \pm 2.3 \cdot 10^{-7} \) | \(a_{119}= +0.72539866 \pm 1.7 \cdot 10^{-7} \) | \(a_{120}= -0.85030589 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{121}= +0.28314217 \pm 2.5 \cdot 10^{-7} \) | \(a_{122}= -0.14748051 \pm 2.0 \cdot 10^{-7} \) | \(a_{123}= -1.30023691 \pm 2.7 \cdot 10^{-7} \) |
| \(a_{124}= -0.30554148 \pm 2.5 \cdot 10^{-7} \) | \(a_{125}= +0.91471298 \pm 1.7 \cdot 10^{-7} \) | \(a_{126}= +0.24557350 \pm 2.4 \cdot 10^{-7} \) |
| \(a_{127}= +1.53683925 \pm 2.2 \cdot 10^{-7} \) | \(a_{128}= +1.00231404 \pm 2.8 \cdot 10^{-7} \) | \(a_{129}= +1.99757173 \pm 2.9 \cdot 10^{-7} \) |
| \(a_{130}= -0.40804422 \pm 1.9 \cdot 10^{-7} \) | \(a_{131}= -0.22488768 \pm 1.6 \cdot 10^{-7} \) | \(a_{132}= -1.20086648 \pm 2.6 \cdot 10^{-7} \) |
| \(a_{133}= -1.51295839 \pm 1.6 \cdot 10^{-7} \) | \(a_{134}= +0.19623142 \pm 2.8 \cdot 10^{-7} \) | \(a_{135}= +0.69811082 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{136}= -0.31304280 \pm 2.2 \cdot 10^{-7} \) | \(a_{137}= +0.38250808 \pm 1.7 \cdot 10^{-7} \) | \(a_{138}= +0.08825106 \pm 5.3 \cdot 10^{-7} \) |
| \(a_{139}= -1.70247329 \pm 2.6 \cdot 10^{-7} \) | \(a_{140}= -1.43056622 \pm 2.6 \cdot 10^{-7} \) | \(a_{141}= -0.13142530 \pm 2.6 \cdot 10^{-7} \) |
| \(a_{142}= +0.06054814 \pm 3.0 \cdot 10^{-7} \) | \(a_{143}= -1.23312406 \pm 1.6 \cdot 10^{-7} \) | \(a_{144}= +0.29772338 \pm 2.4 \cdot 10^{-7} \) |
| \(a_{145}= +1.01578394 \pm 1.5 \cdot 10^{-7} \) | \(a_{146}= +0.30716848 \pm 2.8 \cdot 10^{-7} \) | \(a_{147}= +1.59701569 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{148}= +1.34933039 \pm 2.3 \cdot 10^{-7} \) | \(a_{149}= +1.20189181 \pm 1.6 \cdot 10^{-7} \) | \(a_{150}= -0.06148108 \pm 2.7 \cdot 10^{-7} \) |
| \(a_{151}= -0.24031993 \pm 2.0 \cdot 10^{-7} \) | \(a_{152}= +0.65291095 \pm 1.7 \cdot 10^{-7} \) | \(a_{153}= -0.21906848 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{154}= +0.60453173 \pm 1.9 \cdot 10^{-7} \) | \(a_{155}= -0.37270431 \pm 1.9 \cdot 10^{-7} \) | \(a_{156}= +1.15405555 \pm 3.2 \cdot 10^{-7} \) |
| \(a_{157}= -1.09158295 \pm 1.8 \cdot 10^{-7} \) | \(a_{158}= -0.35514936 \pm 2.2 \cdot 10^{-7} \) | \(a_{159}= -0.38851770 \pm 2.4 \cdot 10^{-7} \) |
| \(a_{160}= +0.94620384 \pm 2.6 \cdot 10^{-7} \) | \(a_{161}= +0.31771135 \pm 2.1 \cdot 10^{-7} \) | \(a_{162}= +0.43726328 \pm 2.4 \cdot 10^{-7} \) |
| \(a_{163}= -0.42012120 \pm 2.2 \cdot 10^{-7} \) | \(a_{164}= +0.94402226 \pm 2.9 \cdot 10^{-7} \) | \(a_{165}= -1.46483587 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{166}= +0.20099861 \pm 2.1 \cdot 10^{-7} \) | \(a_{167}= -0.42551976 \pm 2.3 \cdot 10^{-7} \) | \(a_{168}= -1.21065124 \pm 2.6 \cdot 10^{-7} \) |
| \(a_{169}= +0.18505571 \pm 1.5 \cdot 10^{-7} \) | \(a_{170}= -0.17845058 \pm 2.0 \cdot 10^{-7} \) | \(a_{171}= +0.45690944 \pm 1.5 \cdot 10^{-7} \) |
| \(a_{172}= -1.45031429 \pm 3.1 \cdot 10^{-7} \) | \(a_{173}= -1.59813951 \pm 2.0 \cdot 10^{-7} \) | \(a_{174}= +0.40172830 \pm 2.9 \cdot 10^{-7} \) |
| \(a_{175}= -0.22133713 \pm 2.0 \cdot 10^{-7} \) | \(a_{176}= +0.73290982 \pm 1.6 \cdot 10^{-7} \) | \(a_{177}= +0.41086586 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{178}= -0.36177185 \pm 3.2 \cdot 10^{-7} \) | \(a_{179}= -1.26035352 \pm 1.5 \cdot 10^{-7} \) | \(a_{180}= +0.43202722 \pm 3.0 \cdot 10^{-7} \) |
| \(a_{181}= -1.10615742 \pm 2.0 \cdot 10^{-7} \) | \(a_{182}= -0.58096651 \pm 2.0 \cdot 10^{-7} \) | \(a_{183}= +0.50880145 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{184}= -0.13710702 \pm 2.7 \cdot 10^{-7} \) | \(a_{185}= +1.64593448 \pm 1.8 \cdot 10^{-7} \) | \(a_{186}= -0.14739933 \pm 3.1 \cdot 10^{-7} \) |
| \(a_{187}= -0.53928395 \pm 2.4 \cdot 10^{-7} \) | \(a_{188}= +0.09541985 \pm 3.4 \cdot 10^{-7} \) | \(a_{189}= +0.99395846 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{190}= +0.37219299 \pm 1.5 \cdot 10^{-7} \) | \(a_{191}= -0.87607658 \pm 2.0 \cdot 10^{-7} \) | \(a_{192}= -0.40761896 \pm 3.2 \cdot 10^{-7} \) |
| \(a_{193}= +0.47946087 \pm 1.6 \cdot 10^{-7} \) | \(a_{194}= -0.24811651 \pm 1.9 \cdot 10^{-7} \) | \(a_{195}= +1.40773516 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{196}= -1.15949513 \pm 1.8 \cdot 10^{-7} \) | \(a_{197}= +0.70984366 \pm 2.0 \cdot 10^{-7} \) | \(a_{198}= -0.18256699 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{199}= +0.43521253 \pm 2.6 \cdot 10^{-7} \) | \(a_{200}= +0.09551713 \pm 1.7 \cdot 10^{-7} \) | \(a_{201}= -0.67699003 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{202}= -0.16722145 \pm 2.9 \cdot 10^{-7} \) | \(a_{203}= +1.44625612 \pm 1.8 \cdot 10^{-7} \) | \(a_{204}= +0.50470480 \pm 2.9 \cdot 10^{-7} \) |
| \(a_{205}= +1.15153324 \pm 2.4 \cdot 10^{-7} \) | \(a_{206}= -0.47499090 \pm 2.2 \cdot 10^{-7} \) | \(a_{207}= -0.09594799 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{208}= -0.70434029 \pm 2.3 \cdot 10^{-7} \) | \(a_{209}= +1.12478037 \pm 1.7 \cdot 10^{-7} \) | \(a_{210}= -0.69013378 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{211}= +0.28094872 \pm 1.9 \cdot 10^{-7} \) | \(a_{212}= +0.28207887 \pm 2.7 \cdot 10^{-7} \) | \(a_{213}= -0.20888851 \pm 2.6 \cdot 10^{-7} \) |
| \(a_{214}= +0.50733174 \pm 2.6 \cdot 10^{-7} \) | \(a_{215}= -1.76911625 \pm 2.1 \cdot 10^{-7} \) | \(a_{216}= -0.42893867 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{217}= -0.53065014 \pm 1.8 \cdot 10^{-7} \) | \(a_{218}= +0.31415357 \pm 2.6 \cdot 10^{-7} \) | \(a_{219}= -1.05971815 \pm 2.4 \cdot 10^{-7} \) |
| \(a_{220}= +1.06352746 \pm 1.6 \cdot 10^{-7} \) | \(a_{221}= +0.51826215 \pm 1.8 \cdot 10^{-7} \) | \(a_{222}= +0.65094399 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{223}= +0.74467252 \pm 2.1 \cdot 10^{-7} \) | \(a_{224}= +1.34718913 \pm 2.3 \cdot 10^{-7} \) | \(a_{225}= +0.06684323 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{226}= +0.32936344 \pm 2.8 \cdot 10^{-7} \) | \(a_{227}= +0.00774665 \pm 2.3 \cdot 10^{-7} \) | \(a_{228}= -1.05265891 \pm 2.6 \cdot 10^{-7} \) |
| \(a_{229}= +1.58333170 \pm 1.9 \cdot 10^{-7} \) | \(a_{230}= -0.07815809 \pm 4.8 \cdot 10^{-7} \) | \(a_{231}= -2.08560870 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{232}= -0.62412585 \pm 2.1 \cdot 10^{-7} \) | \(a_{233}= +0.11456704 \pm 2.3 \cdot 10^{-7} \) | \(a_{234}= +0.17545035 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{235}= +0.11639463 \pm 1.7 \cdot 10^{-7} \) | \(a_{236}= -0.29830450 \pm 2.5 \cdot 10^{-7} \) | \(a_{237}= +1.22525015 \pm 2.4 \cdot 10^{-7} \) |
| \(a_{238}= -0.25407493 \pm 2.0 \cdot 10^{-7} \) | \(a_{239}= -0.78289183 \pm 2.1 \cdot 10^{-7} \) | \(a_{240}= -0.83669028 \pm 2.4 \cdot 10^{-7} \) |
| \(a_{241}= +0.26764284 \pm 1.8 \cdot 10^{-7} \) | \(a_{242}= -0.09917213 \pm 2.4 \cdot 10^{-7} \) | \(a_{243}= -0.85620329 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{244}= -0.36940952 \pm 2.4 \cdot 10^{-7} \) | \(a_{245}= -1.41437044 \pm 1.7 \cdot 10^{-7} \) | \(a_{246}= +0.45541524 \pm 3.6 \cdot 10^{-7} \) |
| \(a_{247}= -1.08093535 \pm 1.5 \cdot 10^{-7} \) | \(a_{248}= +0.22899988 \pm 2.1 \cdot 10^{-7} \) | \(a_{249}= -0.69343663 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{250}= -0.32038333 \pm 1.9 \cdot 10^{-7} \) | \(a_{251}= +1.90038083 \pm 1.8 \cdot 10^{-7} \) | \(a_{252}= +0.61511310 \pm 2.6 \cdot 10^{-7} \) |
| \(a_{253}= -0.23619651 \pm 2.4 \cdot 10^{-7} \) | \(a_{254}= -0.53828653 \pm 2.6 \cdot 10^{-7} \) | \(a_{255}= +0.61564688 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{256}= -0.01373561 \pm 2.5 \cdot 10^{-7} \) | \(a_{257}= -1.64361610 \pm 2.3 \cdot 10^{-7} \) | \(a_{258}= -0.69966065 \pm 3.8 \cdot 10^{-7} \) |
| \(a_{259}= +2.34345387 \pm 1.9 \cdot 10^{-7} \) | \(a_{260}= -1.02207015 \pm 2.5 \cdot 10^{-7} \) | \(a_{261}= -0.43676552 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{262}= +0.07876816 \pm 1.6 \cdot 10^{-7} \) | \(a_{263}= -1.13655441 \pm 2.2 \cdot 10^{-7} \) | \(a_{264}= +0.90003582 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{265}= +0.34408425 \pm 2.3 \cdot 10^{-7} \) | \(a_{266}= +0.52992212 \pm 1.7 \cdot 10^{-7} \) | \(a_{267}= +1.24809744 \pm 2.8 \cdot 10^{-7} \) |
| \(a_{268}= +0.49152093 \pm 3.2 \cdot 10^{-7} \) | \(a_{269}= -1.70332265 \pm 1.9 \cdot 10^{-7} \) | \(a_{270}= -0.24451721 \pm 2.4 \cdot 10^{-7} \) |
| \(a_{271}= +0.15660724 \pm 2.3 \cdot 10^{-7} \) | \(a_{272}= -0.30803017 \pm 2.1 \cdot 10^{-7} \) | \(a_{273}= +2.00430968 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{274}= -0.13397559 \pm 2.2 \cdot 10^{-7} \) | \(a_{275}= +0.16454891 \pm 2.0 \cdot 10^{-7} \) | \(a_{276}= +0.22105147 \pm 5.5 \cdot 10^{-7} \) |
| \(a_{277}= +0.88431873 \pm 2.2 \cdot 10^{-7} \) | \(a_{278}= +0.59630077 \pm 3.0 \cdot 10^{-7} \) | \(a_{279}= +0.16025494 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{280}= +1.07219317 \pm 2.4 \cdot 10^{-7} \) | \(a_{281}= +0.25474132 \pm 2.6 \cdot 10^{-7} \) | \(a_{282}= +0.04603244 \pm 4.0 \cdot 10^{-7} \) |
| \(a_{283}= -0.97753477 \pm 1.8 \cdot 10^{-7} \) | \(a_{284}= +0.15166113 \pm 3.1 \cdot 10^{-7} \) | \(a_{285}= -1.28404993 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{286}= +0.43190859 \pm 1.5 \cdot 10^{-7} \) | \(a_{287}= +1.63953369 \pm 2.3 \cdot 10^{-7} \) | \(a_{288}= -0.40684756 \pm 3.0 \cdot 10^{-7} \) |
| \(a_{289}= -0.77334766 \pm 2.0 \cdot 10^{-7} \) | \(a_{290}= -0.35578400 \pm 1.8 \cdot 10^{-7} \) | \(a_{291}= +0.85599138 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{292}= +0.76939634 \pm 2.8 \cdot 10^{-7} \) | \(a_{293}= -0.05217320 \pm 2.2 \cdot 10^{-7} \) | \(a_{294}= -0.55936366 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{295}= -0.36387653 \pm 1.8 \cdot 10^{-7} \) | \(a_{296}= -1.01130784 \pm 2.0 \cdot 10^{-7} \) | \(a_{297}= -0.73893967 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{298}= -0.42096932 \pm 1.7 \cdot 10^{-7} \) | \(a_{299}= +0.22698934 \pm 1.9 \cdot 10^{-7} \) | \(a_{300}= -0.15399796 \pm 2.8 \cdot 10^{-7} \) |
| \(a_{301}= -2.51883799 \pm 2.2 \cdot 10^{-7} \) | \(a_{302}= +0.08417340 \pm 2.6 \cdot 10^{-7} \) | \(a_{303}= +0.57690686 \pm 2.4 \cdot 10^{-7} \) |
| \(a_{304}= +0.64245614 \pm 1.5 \cdot 10^{-7} \) | \(a_{305}= -0.45061156 \pm 1.7 \cdot 10^{-7} \) | \(a_{306}= +0.07672996 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{307}= +1.71792031 \pm 2.5 \cdot 10^{-7} \) | \(a_{308}= +1.51423254 \pm 2.0 \cdot 10^{-7} \) | \(a_{309}= +1.63869836 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{310}= +0.13054177 \pm 2.1 \cdot 10^{-7} \) | \(a_{311}= -0.63086190 \pm 2.1 \cdot 10^{-7} \) | \(a_{312}= -0.86495156 \pm 2.7 \cdot 10^{-7} \) |
| \(a_{313}= -0.31919921 \pm 2.1 \cdot 10^{-7} \) | \(a_{314}= +0.38233302 \pm 2.6 \cdot 10^{-7} \) | \(a_{315}= +0.75032465 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{316}= -0.88957897 \pm 2.7 \cdot 10^{-7} \) | \(a_{317}= +0.10337342 \pm 1.9 \cdot 10^{-7} \) | \(a_{318}= +0.13608049 \pm 3.1 \cdot 10^{-7} \) |
| \(a_{319}= -1.07519182 \pm 2.0 \cdot 10^{-7} \) | \(a_{320}= +0.36100097 \pm 2.7 \cdot 10^{-7} \) | \(a_{321}= -1.75027288 \pm 2.6 \cdot 10^{-7} \) |
| \(a_{322}= -0.11128017 \pm 4.8 \cdot 10^{-7} \) | \(a_{323}= -0.47272704 \pm 1.8 \cdot 10^{-7} \) | \(a_{324}= +1.09525810 \pm 2.7 \cdot 10^{-7} \) |
| \(a_{325}= -0.15813464 \pm 1.5 \cdot 10^{-7} \) | \(a_{326}= +0.14714980 \pm 2.6 \cdot 10^{-7} \) | \(a_{327}= -1.08381644 \pm 2.4 \cdot 10^{-7} \) |
| \(a_{328}= -0.70753399 \pm 2.8 \cdot 10^{-7} \) | \(a_{329}= +0.16572072 \pm 1.7 \cdot 10^{-7} \) | \(a_{330}= +0.51306694 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{331}= +0.02818619 \pm 1.7 \cdot 10^{-7} \) | \(a_{332}= +0.50346180 \pm 2.0 \cdot 10^{-7} \) | \(a_{333}= -0.70771688 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{334}= +0.14904067 \pm 2.8 \cdot 10^{-7} \) | \(a_{335}= +0.59956498 \pm 1.9 \cdot 10^{-7} \) | \(a_{336}= -1.19126556 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{337}= +0.16728084 \pm 2.1 \cdot 10^{-7} \) | \(a_{338}= -0.06481680 \pm 1.7 \cdot 10^{-7} \) | \(a_{339}= -1.13628982 \pm 2.8 \cdot 10^{-7} \) |
| \(a_{340}= -0.44698343 \pm 1.9 \cdot 10^{-7} \) | \(a_{341}= +0.39450183 \pm 1.9 \cdot 10^{-7} \) | \(a_{342}= -0.16003508 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{343}= -0.49006677 \pm 1.6 \cdot 10^{-7} \) | \(a_{344}= +1.08699413 \pm 2.5 \cdot 10^{-7} \) | \(a_{345}= +0.26964207 \pm 4.6 \cdot 10^{-7} \) |
| \(a_{346}= +0.55975729 \pm 2.0 \cdot 10^{-7} \) | \(a_{347}= -0.83600884 \pm 1.8 \cdot 10^{-7} \) | \(a_{348}= +1.00625000 \pm 3.0 \cdot 10^{-7} \) |
| \(a_{349}= +0.40489624 \pm 2.3 \cdot 10^{-7} \) | \(a_{350}= +0.07752457 \pm 1.7 \cdot 10^{-7} \) | \(a_{351}= +0.71013509 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{352}= -1.00154234 \pm 2.1 \cdot 10^{-7} \) | \(a_{353}= -0.39872698 \pm 2.5 \cdot 10^{-7} \) | \(a_{354}= -0.14390806 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{355}= +0.18499864 \pm 2.2 \cdot 10^{-7} \) | \(a_{356}= -0.90616699 \pm 3.4 \cdot 10^{-7} \) | \(a_{357}= +0.87654768 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{358}= +0.44144586 \pm 2.2 \cdot 10^{-7} \) | \(a_{359}= +0.55621713 \pm 1.9 \cdot 10^{-7} \) | \(a_{360}= -0.32379951 \pm 2.4 \cdot 10^{-7} \) |
| \(a_{361}= -0.01403687 \pm 1.7 \cdot 10^{-7} \) | \(a_{362}= +0.38743781 \pm 2.6 \cdot 10^{-7} \) | \(a_{363}= +0.34213961 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{364}= -1.45520631 \pm 2.6 \cdot 10^{-7} \) | \(a_{365}= +0.93852179 \pm 1.7 \cdot 10^{-7} \) | \(a_{366}= -0.17821055 \pm 2.7 \cdot 10^{-7} \) |
| \(a_{367}= +0.67099505 \pm 1.8 \cdot 10^{-7} \) | \(a_{368}= -0.13491158 \pm 2.5 \cdot 10^{-7} \) | \(a_{369}= -0.49513484 \pm 2.7 \cdot 10^{-7} \) |
| \(a_{370}= -0.57649774 \pm 1.9 \cdot 10^{-7} \) | \(a_{371}= +0.48990138 \pm 1.8 \cdot 10^{-7} \) | \(a_{372}= -0.36920619 \pm 3.0 \cdot 10^{-7} \) |
| \(a_{373}= +0.73656393 \pm 2.2 \cdot 10^{-7} \) | \(a_{374}= +0.18888721 \pm 2.3 \cdot 10^{-7} \) | \(a_{375}= +1.10530881 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{376}= -0.07151609 \pm 3.1 \cdot 10^{-7} \) | \(a_{377}= +1.03327982 \pm 1.2 \cdot 10^{-7} \) | \(a_{378}= -0.34813950 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{379}= -1.30682537 \pm 1.8 \cdot 10^{-7} \) | \(a_{380}= +0.93226989 \pm 1.8 \cdot 10^{-7} \) | \(a_{381}= +1.85706556 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{382}= +0.30685071 \pm 2.7 \cdot 10^{-7} \) | \(a_{383}= -0.83092418 \pm 2.1 \cdot 10^{-7} \) | \(a_{384}= +1.21116304 \pm 3.3 \cdot 10^{-7} \) |
| \(a_{385}= +1.84708473 \pm 1.9 \cdot 10^{-7} \) | \(a_{386}= -0.16793385 \pm 1.6 \cdot 10^{-7} \) | \(a_{387}= +0.76068242 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{388}= -0.62148283 \pm 1.7 \cdot 10^{-7} \) | \(a_{389}= -0.77731920 \pm 2.1 \cdot 10^{-7} \) | \(a_{390}= -0.49306710 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{391}= +0.09926958 \pm 2.3 \cdot 10^{-7} \) | \(a_{392}= +0.86902846 \pm 1.4 \cdot 10^{-7} \) | \(a_{393}= -0.27174681 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{394}= -0.24862670 \pm 2.6 \cdot 10^{-7} \) | \(a_{395}= -1.08512245 \pm 2.1 \cdot 10^{-7} \) | \(a_{396}= -0.45729422 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{397}= -0.89034058 \pm 1.8 \cdot 10^{-7} \) | \(a_{398}= -0.15243562 \pm 3.7 \cdot 10^{-7} \) | \(a_{399}= -1.82820873 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{400}= +0.09398765 \pm 1.7 \cdot 10^{-7} \) | \(a_{401}= -0.10170729 \pm 2.3 \cdot 10^{-7} \) | \(a_{402}= +0.23711954 \pm 3.3 \cdot 10^{-7} \) |
| \(a_{403}= -0.37912378 \pm 1.6 \cdot 10^{-7} \) | \(a_{404}= -0.41885668 \pm 3.3 \cdot 10^{-7} \) | \(a_{405}= +1.33601311 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{406}= -0.50655928 \pm 2.0 \cdot 10^{-7} \) | \(a_{407}= -1.74219656 \pm 2.6 \cdot 10^{-7} \) | \(a_{408}= -0.37827053 \pm 2.4 \cdot 10^{-7} \) |
| \(a_{409}= +1.65513658 \pm 1.6 \cdot 10^{-7} \) | \(a_{410}= -0.40333095 \pm 2.8 \cdot 10^{-7} \) | \(a_{411}= +0.46221007 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{412}= -1.18975836 \pm 2.6 \cdot 10^{-7} \) | \(a_{413}= -0.51808129 \pm 1.6 \cdot 10^{-7} \) | \(a_{414}= +0.03360632 \pm 5.0 \cdot 10^{-7} \) |
| \(a_{415}= +0.61413064 \pm 1.7 \cdot 10^{-7} \) | \(a_{416}= +0.96250126 \pm 2.2 \cdot 10^{-7} \) | \(a_{417}= -2.05721224 \pm 3.0 \cdot 10^{-7} \) |
| \(a_{418}= -0.39396060 \pm 2.0 \cdot 10^{-7} \) | \(a_{419}= -0.24398421 \pm 2.0 \cdot 10^{-7} \) | \(a_{420}= -1.72864876 \pm 2.6 \cdot 10^{-7} \) |
| \(a_{421}= +1.61083381 \pm 2.3 \cdot 10^{-7} \) | \(a_{422}= -0.09840386 \pm 2.3 \cdot 10^{-7} \) | \(a_{423}= -0.05004722 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{424}= -0.21141492 \pm 2.3 \cdot 10^{-7} \) | \(a_{425}= -0.06915725 \pm 1.9 \cdot 10^{-7} \) | \(a_{426}= +0.07316437 \pm 3.9 \cdot 10^{-7} \) |
| \(a_{427}= -0.64157317 \pm 1.6 \cdot 10^{-7} \) | \(a_{428}= +1.27076577 \pm 2.8 \cdot 10^{-7} \) | \(a_{429}= -1.49006621 \pm 1.5 \cdot 10^{-7} \) |
| \(a_{430}= +0.61964284 \pm 2.3 \cdot 10^{-7} \) | \(a_{431}= +0.33991076 \pm 1.9 \cdot 10^{-7} \) | \(a_{432}= -0.42207025 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{433}= -0.28011039 \pm 1.6 \cdot 10^{-7} \) | \(a_{434}= +0.18586317 \pm 2.1 \cdot 10^{-7} \) | \(a_{435}= +1.22743962 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{436}= +0.78689263 \pm 2.6 \cdot 10^{-7} \) | \(a_{437}= -0.20704580 \pm 1.9 \cdot 10^{-7} \) | \(a_{438}= +0.37117220 \pm 3.5 \cdot 10^{-7} \) |
| \(a_{439}= +1.22129172 \pm 1.9 \cdot 10^{-7} \) | \(a_{440}= -0.79710179 \pm 1.6 \cdot 10^{-7} \) | \(a_{441}= +0.60814925 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{442}= -0.18152421 \pm 2.2 \cdot 10^{-7} \) | \(a_{443}= +0.48569953 \pm 1.9 \cdot 10^{-7} \) | \(a_{444}= +1.63048608 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{445}= -1.10535679 \pm 1.7 \cdot 10^{-7} \) | \(a_{446}= -0.26082571 \pm 2.3 \cdot 10^{-7} \) | \(a_{447}= +1.45232619 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{448}= +0.51398711 \pm 2.4 \cdot 10^{-7} \) | \(a_{449}= +0.44926064 \pm 1.6 \cdot 10^{-7} \) | \(a_{450}= -0.02341221 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{451}= -1.21888038 \pm 2.1 \cdot 10^{-7} \) | \(a_{452}= +0.82499033 \pm 3.1 \cdot 10^{-7} \) | \(a_{453}= -0.29039463 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{454}= -0.00271331 \pm 3.3 \cdot 10^{-7} \) | \(a_{455}= -1.77508360 \pm 2.1 \cdot 10^{-7} \) | \(a_{456}= +0.78895593 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{457}= -1.44087141 \pm 1.5 \cdot 10^{-7} \) | \(a_{458}= -0.55457077 \pm 1.9 \cdot 10^{-7} \) | \(a_{459}= +0.31056442 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{460}= -0.19577057 \pm 5.1 \cdot 10^{-7} \) | \(a_{461}= +1.08130810 \pm 2.0 \cdot 10^{-7} \) | \(a_{462}= +0.73049609 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{463}= -0.65377801 \pm 2.2 \cdot 10^{-7} \) | \(a_{464}= -0.61413198 \pm 1.8 \cdot 10^{-7} \) | \(a_{465}= -0.45036353 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{466}= -0.04012775 \pm 2.7 \cdot 10^{-7} \) | \(a_{467}= -1.05613546 \pm 2.4 \cdot 10^{-7} \) | \(a_{468}= +0.43946846 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{469}= +0.85365055 \pm 1.8 \cdot 10^{-7} \) | \(a_{470}= -0.04076787 \pm 2.5 \cdot 10^{-7} \) | \(a_{471}= -1.31903262 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{472}= +0.22357584 \pm 2.6 \cdot 10^{-7} \) | \(a_{473}= +1.87258258 \pm 2.2 \cdot 10^{-7} \) | \(a_{474}= -0.42915070 \pm 2.8 \cdot 10^{-7} \) |
| \(a_{475}= +0.14424075 \pm 1.7 \cdot 10^{-7} \) | \(a_{476}= -0.63640750 \pm 2.1 \cdot 10^{-7} \) | \(a_{477}= -0.14794892 \pm 2.4 \cdot 10^{-7} \) |
| \(a_{478}= +0.27421223 \pm 2.3 \cdot 10^{-7} \) | \(a_{479}= +0.86852216 \pm 2.1 \cdot 10^{-7} \) | \(a_{480}= +1.14336133 \pm 2.6 \cdot 10^{-7} \) |
| \(a_{481}= +1.67428407 \pm 1.8 \cdot 10^{-7} \) | \(a_{482}= -0.09374340 \pm 1.9 \cdot 10^{-7} \) | \(a_{483}= +0.38391185 \pm 4.6 \cdot 10^{-7} \) |
| \(a_{484}= -0.24840658 \pm 2.9 \cdot 10^{-7} \) | \(a_{485}= -0.75809455 \pm 1.2 \cdot 10^{-7} \) | \(a_{486}= +0.29988998 \pm 2.7 \cdot 10^{-7} \) |
| \(a_{487}= -1.26254301 \pm 2.3 \cdot 10^{-7} \) | \(a_{488}= +0.27686825 \pm 2.3 \cdot 10^{-7} \) | \(a_{489}= -0.50766052 \pm 2.6 \cdot 10^{-7} \) |
| \(a_{490}= +0.49539114 \pm 1.4 \cdot 10^{-7} \) | \(a_{491}= +1.85085207 \pm 2.1 \cdot 10^{-7} \) | \(a_{492}= +1.14072518 \pm 3.6 \cdot 10^{-7} \) |
| \(a_{493}= +0.45188577 \pm 1.9 \cdot 10^{-7} \) | \(a_{494}= +0.37860364 \pm 1.4 \cdot 10^{-7} \) | \(a_{495}= -0.55781471 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{496}= +0.22533299 \pm 2.1 \cdot 10^{-7} \) | \(a_{497}= +0.26339795 \pm 2.1 \cdot 10^{-7} \) | \(a_{498}= +0.24288005 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{499}= -0.10082764 \pm 1.7 \cdot 10^{-7} \) | \(a_{500}= -0.80249693 \pm 2.3 \cdot 10^{-7} \) | \(a_{501}= -0.51418396 \pm 2.6 \cdot 10^{-7} \) |
| \(a_{502}= -0.66561899 \pm 2.0 \cdot 10^{-7} \) | \(a_{503}= -1.23796375 \pm 2.3 \cdot 10^{-7} \) | \(a_{504}= -0.46102030 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{505}= -0.51092798 \pm 1.9 \cdot 10^{-7} \) | \(a_{506}= +0.08272915 \pm 5.1 \cdot 10^{-7} \) | \(a_{507}= +0.22361518 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{508}= -1.34830139 \pm 3.0 \cdot 10^{-7} \) | \(a_{509}= +0.37127744 \pm 2.3 \cdot 10^{-7} \) | \(a_{510}= -0.21563376 \pm 2.4 \cdot 10^{-7} \) |
| \(a_{511}= +1.33625155 \pm 1.6 \cdot 10^{-7} \) | \(a_{512}= -0.99750307 \pm 2.3 \cdot 10^{-7} \) | \(a_{513}= -0.64774181 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{514}= +0.57568571 \pm 3.1 \cdot 10^{-7} \) | \(a_{515}= -1.45128601 \pm 1.8 \cdot 10^{-7} \) | \(a_{516}= -1.75251168 \pm 4.2 \cdot 10^{-7} \) |
| \(a_{517}= -0.12320194 \pm 2.1 \cdot 10^{-7} \) | \(a_{518}= -0.82080780 \pm 1.8 \cdot 10^{-7} \) | \(a_{519}= -1.93113877 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{520}= +0.76603000 \pm 2.3 \cdot 10^{-7} \) | \(a_{521}= -1.40554677 \pm 2.5 \cdot 10^{-7} \) | \(a_{522}= +0.15297956 \pm 2.4 \cdot 10^{-7} \) |
| \(a_{523}= +1.63406752 \pm 2.1 \cdot 10^{-7} \) | \(a_{524}= +0.19729869 \pm 1.8 \cdot 10^{-7} \) | \(a_{525}= -0.26745645 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{526}= +0.39808453 \pm 2.6 \cdot 10^{-7} \) | \(a_{527}= -0.16580276 \pm 2.0 \cdot 10^{-7} \) | \(a_{528}= +0.88562391 \pm 1.5 \cdot 10^{-7} \) |
| \(a_{529}= +0.04347826 \pm 1.0 \cdot 10^{-6} \) | \(a_{530}= -0.12051743 \pm 2.6 \cdot 10^{-7} \) | \(a_{531}= +0.15645918 \pm 1.5 \cdot 10^{-7} \) |
| \(a_{532}= +1.32735021 \pm 2.0 \cdot 10^{-7} \) | \(a_{533}= +1.17136726 \pm 1.7 \cdot 10^{-7} \) | \(a_{534}= -0.43715310 \pm 4.3 \cdot 10^{-7} \) |
| \(a_{535}= +1.55010013 \pm 1.8 \cdot 10^{-7} \) | \(a_{536}= -0.36838937 \pm 3.2 \cdot 10^{-7} \) | \(a_{537}= -1.52296938 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{538}= +0.59659827 \pm 2.3 \cdot 10^{-7} \) | \(a_{539}= +1.49708955 \pm 1.8 \cdot 10^{-7} \) | \(a_{540}= -0.61246730 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{541}= +0.10612427 \pm 1.9 \cdot 10^{-7} \) | \(a_{542}= -0.05485256 \pm 3.1 \cdot 10^{-7} \) | \(a_{543}= -1.33664393 \pm 2.4 \cdot 10^{-7} \) |
| \(a_{544}= +0.42093208 \pm 2.2 \cdot 10^{-7} \) | \(a_{545}= +0.95986404 \pm 1.9 \cdot 10^{-7} \) | \(a_{546}= -0.70202065 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{547}= +0.08868392 \pm 2.1 \cdot 10^{-7} \) | \(a_{548}= -0.33558238 \pm 2.2 \cdot 10^{-7} \) | \(a_{549}= +0.19375340 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{550}= -0.05763418 \pm 2.0 \cdot 10^{-7} \) | \(a_{551}= -0.94249466 \pm 1.7 \cdot 10^{-7} \) | \(a_{552}= -0.16567557 \pm 5.2 \cdot 10^{-7} \) |
| \(a_{553}= -1.54497912 \pm 2.2 \cdot 10^{-7} \) | \(a_{554}= -0.30973757 \pm 2.7 \cdot 10^{-7} \) | \(a_{555}= +1.98889263 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{556}= +1.49361561 \pm 3.2 \cdot 10^{-7} \) | \(a_{557}= -0.77892039 \pm 2.5 \cdot 10^{-7} \) | \(a_{558}= -0.05613019 \pm 2.8 \cdot 10^{-7} \) |
| \(a_{559}= -1.79958752 \pm 2.1 \cdot 10^{-7} \) | \(a_{560}= +1.05502457 \pm 2.7 \cdot 10^{-7} \) | \(a_{561}= -0.65165283 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{562}= -0.08922457 \pm 3.3 \cdot 10^{-7} \) | \(a_{563}= +1.27639507 \pm 2.0 \cdot 10^{-7} \) | \(a_{564}= +0.11530218 \pm 4.4 \cdot 10^{-7} \) |
| \(a_{565}= +1.00633622 \pm 2.5 \cdot 10^{-7} \) | \(a_{566}= +0.34238701 \pm 2.5 \cdot 10^{-7} \) | \(a_{567}= +1.90219302 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{568}= -0.11366830 \pm 3.0 \cdot 10^{-7} \) | \(a_{569}= -0.73840944 \pm 2.0 \cdot 10^{-7} \) | \(a_{570}= +0.44974566 \pm 1.5 \cdot 10^{-7} \) |
| \(a_{571}= +0.04505846 \pm 2.2 \cdot 10^{-7} \) | \(a_{572}= +1.08184567 \pm 1.8 \cdot 10^{-7} \) | \(a_{573}= -1.05862188 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{574}= -0.57425583 \pm 2.4 \cdot 10^{-7} \) | \(a_{575}= -0.03028961 \pm 2.1 \cdot 10^{-7} \) | \(a_{576}= -0.15522275 \pm 3.1 \cdot 10^{-7} \) |
| \(a_{577}= +0.25738102 \pm 1.8 \cdot 10^{-7} \) | \(a_{578}= +0.27086933 \pm 2.4 \cdot 10^{-7} \) | \(a_{579}= +0.57936461 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{580}= -0.89116861 \pm 1.9 \cdot 10^{-7} \) | \(a_{581}= +0.87438889 \pm 1.8 \cdot 10^{-7} \) | \(a_{582}= -0.29981576 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{583}= -0.36420794 \pm 1.9 \cdot 10^{-7} \) | \(a_{584}= -0.57665384 \pm 2.1 \cdot 10^{-7} \) | \(a_{585}= +0.53607056 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{586}= +0.01827396 \pm 2.7 \cdot 10^{-7} \) | \(a_{587}= +0.01802530 \pm 2.4 \cdot 10^{-7} \) | \(a_{588}= -1.40109544 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{589}= +0.34581353 \pm 1.7 \cdot 10^{-7} \) | \(a_{590}= +0.12744979 \pm 2.0 \cdot 10^{-7} \) | \(a_{591}= +0.85775153 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{592}= -0.99511417 \pm 1.9 \cdot 10^{-7} \) | \(a_{593}= +1.84675321 \pm 2.1 \cdot 10^{-7} \) | \(a_{594}= +0.25881774 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{595}= -0.77629990 \pm 1.7 \cdot 10^{-7} \) | \(a_{596}= -1.05444495 \pm 1.7 \cdot 10^{-7} \) | \(a_{597}= +0.52589638 \pm 3.1 \cdot 10^{-7} \) |
| \(a_{598}= -0.07950428 \pm 4.6 \cdot 10^{-7} \) | \(a_{599}= -0.56025787 \pm 2.3 \cdot 10^{-7} \) | \(a_{600}= +0.11541973 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{601}= -0.18910668 \pm 1.5 \cdot 10^{-7} \) | \(a_{602}= +0.88223707 \pm 2.3 \cdot 10^{-7} \) | \(a_{603}= -0.25780021 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{604}= +0.21083773 \pm 2.5 \cdot 10^{-7} \) | \(a_{605}= -0.30301027 \pm 1.9 \cdot 10^{-7} \) | \(a_{606}= -0.20206485 \pm 3.6 \cdot 10^{-7} \) |
| \(a_{607}= +0.02281430 \pm 2.5 \cdot 10^{-7} \) | \(a_{608}= -0.87793480 \pm 1.7 \cdot 10^{-7} \) | \(a_{609}= +1.74760791 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{610}= +0.15782922 \pm 1.8 \cdot 10^{-7} \) | \(a_{611}= +0.11839941 \pm 2.0 \cdot 10^{-7} \) | \(a_{612}= +0.19219338 \pm 2.4 \cdot 10^{-7} \) |
| \(a_{613}= +0.04790510 \pm 2.2 \cdot 10^{-7} \) | \(a_{614}= -0.60171118 \pm 3.1 \cdot 10^{-7} \) | \(a_{615}= +1.39147457 \pm 2.8 \cdot 10^{-7} \) |
| \(a_{616}= -1.13490013 \pm 1.9 \cdot 10^{-7} \) | \(a_{617}= +0.21649192 \pm 1.7 \cdot 10^{-7} \) | \(a_{618}= -0.57396325 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{619}= +1.10222527 \pm 2.3 \cdot 10^{-7} \) | \(a_{620}= +0.32698133 \pm 2.4 \cdot 10^{-7} \) | \(a_{621}= +0.13602154 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{622}= +0.22096290 \pm 1.9 \cdot 10^{-7} \) | \(a_{623}= -1.57378842 \pm 2.0 \cdot 10^{-7} \) | \(a_{624}= -0.85110144 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{625}= -1.12416228 \pm 2.0 \cdot 10^{-7} \) | \(a_{626}= +0.11180131 \pm 2.6 \cdot 10^{-7} \) | \(a_{627}= +1.35914728 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{628}= +0.95766867 \pm 3.0 \cdot 10^{-7} \) | \(a_{629}= +0.73221710 \pm 2.0 \cdot 10^{-7} \) | \(a_{630}= -0.26280540 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{631}= -1.73250767 \pm 1.9 \cdot 10^{-7} \) | \(a_{632}= +0.66672936 \pm 2.3 \cdot 10^{-7} \) | \(a_{633}= +0.33948911 \pm 2.4 \cdot 10^{-7} \) |
| \(a_{634}= -0.03620712 \pm 2.4 \cdot 10^{-7} \) | \(a_{635}= -1.64467929 \pm 2.3 \cdot 10^{-7} \) | \(a_{636}= +0.34085475 \pm 2.9 \cdot 10^{-7} \) |
| \(a_{637}= -1.43873157 \pm 1.3 \cdot 10^{-7} \) | \(a_{638}= +0.37659194 \pm 2.6 \cdot 10^{-7} \) | \(a_{639}= -0.07954549 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{640}= -1.07264644 \pm 2.5 \cdot 10^{-7} \) | \(a_{641}= +0.80203429 \pm 2.2 \cdot 10^{-7} \) | \(a_{642}= +0.61304285 \pm 3.4 \cdot 10^{-7} \) |
| \(a_{643}= +0.08763154 \pm 1.8 \cdot 10^{-7} \) | \(a_{644}= -0.27873485 \pm 5.1 \cdot 10^{-7} \) | \(a_{645}= -2.13774138 \pm 2.9 \cdot 10^{-7} \) |
| \(a_{646}= +0.16557528 \pm 2.1 \cdot 10^{-7} \) | \(a_{647}= -0.74485488 \pm 2.1 \cdot 10^{-7} \) | \(a_{648}= -0.82088354 \pm 2.4 \cdot 10^{-7} \) |
| \(a_{649}= +0.38515776 \pm 2.2 \cdot 10^{-7} \) | \(a_{650}= +0.05538754 \pm 1.4 \cdot 10^{-7} \) | \(a_{651}= -0.64122003 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{652}= +0.36858116 \pm 2.9 \cdot 10^{-7} \) | \(a_{653}= -0.86357716 \pm 2.3 \cdot 10^{-7} \) | \(a_{654}= +0.37961276 \pm 3.3 \cdot 10^{-7} \) |
| \(a_{655}= +0.24066805 \pm 1.9 \cdot 10^{-7} \) | \(a_{656}= -0.69620453 \pm 2.5 \cdot 10^{-7} \) | \(a_{657}= -0.40354444 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{658}= -0.05804461 \pm 2.6 \cdot 10^{-7} \) | \(a_{659}= -0.40326051 \pm 2.4 \cdot 10^{-7} \) | \(a_{660}= +1.28513131 \pm 1.5 \cdot 10^{-7} \) |
| \(a_{661}= -1.35391250 \pm 2.0 \cdot 10^{-7} \) | \(a_{662}= -0.00987237 \pm 2.4 \cdot 10^{-7} \) | \(a_{663}= +0.62625078 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{664}= -0.37733891 \pm 1.9 \cdot 10^{-7} \) | \(a_{665}= +1.61912272 \pm 1.6 \cdot 10^{-7} \) | \(a_{666}= +0.24788179 \pm 2.4 \cdot 10^{-7} \) |
| \(a_{667}= +0.19791770 \pm 2.0 \cdot 10^{-7} \) | \(a_{668}= +0.37331743 \pm 2.8 \cdot 10^{-7} \) | \(a_{669}= +0.89983756 \pm 2.7 \cdot 10^{-7} \) |
| \(a_{670}= -0.21000098 \pm 2.5 \cdot 10^{-7} \) | \(a_{671}= +0.47696547 \pm 2.0 \cdot 10^{-7} \) | \(a_{672}= +1.62789865 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{673}= +0.58356612 \pm 2.7 \cdot 10^{-7} \) | \(a_{674}= -0.05859105 \pm 2.6 \cdot 10^{-7} \) | \(a_{675}= -0.09476091 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{676}= -0.16235326 \pm 1.8 \cdot 10^{-7} \) | \(a_{677}= -1.23023675 \pm 1.7 \cdot 10^{-7} \) | \(a_{678}= +0.39799185 \pm 3.5 \cdot 10^{-7} \) |
| \(a_{679}= -1.07936229 \pm 1.4 \cdot 10^{-7} \) | \(a_{680}= +0.33500902 \pm 1.8 \cdot 10^{-7} \) | \(a_{681}= +0.00936080 \pm 3.2 \cdot 10^{-7} \) |
| \(a_{682}= -0.13817647 \pm 2.4 \cdot 10^{-7} \) | \(a_{683}= -0.30232737 \pm 1.9 \cdot 10^{-7} \) | \(a_{684}= -0.40085626 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{685}= -0.40934868 \pm 1.7 \cdot 10^{-7} \) | \(a_{686}= +0.17164862 \pm 2.3 \cdot 10^{-7} \) | \(a_{687}= +1.91324550 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{688}= +1.06958853 \pm 2.3 \cdot 10^{-7} \) | \(a_{689}= +0.35001076 \pm 1.5 \cdot 10^{-7} \) | \(a_{690}= -0.09444364 \pm 7.3 \cdot 10^{-7} \) |
| \(a_{691}= +1.66328727 \pm 2.2 \cdot 10^{-7} \) | \(a_{692}= +1.40208140 \pm 2.3 \cdot 10^{-7} \) | \(a_{693}= -0.79420721 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{694}= +0.29281676 \pm 2.5 \cdot 10^{-7} \) | \(a_{695}= +1.82193588 \pm 2.1 \cdot 10^{-7} \) | \(a_{696}= -0.75417298 \pm 2.6 \cdot 10^{-7} \) |
| \(a_{697}= +0.51227576 \pm 2.2 \cdot 10^{-7} \) | \(a_{698}= -0.14181717 \pm 3.1 \cdot 10^{-7} \) | \(a_{699}= +0.13843901 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{700}= +0.19418372 \pm 2.4 \cdot 10^{-7} \) | \(a_{701}= -1.15943061 \pm 2.4 \cdot 10^{-7} \) | \(a_{702}= -0.24872878 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{703}= -1.52717955 \pm 1.2 \cdot 10^{-7} \) | \(a_{704}= -0.38211402 \pm 2.0 \cdot 10^{-7} \) | \(a_{705}= +0.14064741 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{706}= +0.13965635 \pm 2.7 \cdot 10^{-7} \) | \(a_{707}= -0.72745068 \pm 1.8 \cdot 10^{-7} \) | \(a_{708}= -0.36046126 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{709}= +0.80013277 \pm 2.1 \cdot 10^{-7} \) | \(a_{710}= -0.06479681 \pm 2.6 \cdot 10^{-7} \) | \(a_{711}= +0.46657961 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{712}= +0.67916189 \pm 2.9 \cdot 10^{-7} \) | \(a_{713}= -0.07261857 \pm 2.0 \cdot 10^{-7} \) | \(a_{714}= -0.30701572 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{715}= +1.31965241 \pm 1.0 \cdot 10^{-7} \) | \(a_{716}= +1.10573465 \pm 2.6 \cdot 10^{-7} \) | \(a_{717}= -0.94602051 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{718}= -0.19481815 \pm 2.9 \cdot 10^{-7} \) | \(a_{719}= -0.19081167 \pm 2.3 \cdot 10^{-7} \) | \(a_{720}= -0.31861463 \pm 2.6 \cdot 10^{-7} \) |
| \(a_{721}= -2.06631664 \pm 1.8 \cdot 10^{-7} \) | \(a_{722}= +0.00491649 \pm 1.9 \cdot 10^{-7} \) | \(a_{723}= +0.32341072 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{724}= +0.97045516 \pm 2.5 \cdot 10^{-7} \) | \(a_{725}= -0.13788156 \pm 1.6 \cdot 10^{-7} \) | \(a_{726}= -0.11983631 \pm 2.8 \cdot 10^{-7} \) |
| \(a_{727}= +1.08327163 \pm 2.4 \cdot 10^{-7} \) | \(a_{728}= +1.09066064 \pm 2.4 \cdot 10^{-7} \) | \(a_{729}= +0.21380436 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{730}= -0.32872250 \pm 2.4 \cdot 10^{-7} \) | \(a_{731}= -0.78701624 \pm 2.1 \cdot 10^{-7} \) | \(a_{732}= -0.44638221 \pm 3.1 \cdot 10^{-7} \) |
| \(a_{733}= -0.11184714 \pm 2.2 \cdot 10^{-7} \) | \(a_{734}= -0.23501976 \pm 2.5 \cdot 10^{-7} \) | \(a_{735}= -1.70907832 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{736}= +0.18436055 \pm 2.7 \cdot 10^{-7} \) | \(a_{737}= -0.63463040 \pm 2.4 \cdot 10^{-7} \) | \(a_{738}= +0.17342374 \pm 3.6 \cdot 10^{-7} \) |
| \(a_{739}= -1.71261399 \pm 2.3 \cdot 10^{-7} \) | \(a_{740}= -1.44401293 \pm 2.1 \cdot 10^{-7} \) | \(a_{741}= -1.30616642 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{742}= -0.17159069 \pm 1.7 \cdot 10^{-7} \) | \(a_{743}= +1.85317780 \pm 2.5 \cdot 10^{-7} \) | \(a_{744}= +0.27671585 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{745}= -1.28622858 \pm 1.4 \cdot 10^{-7} \) | \(a_{746}= -0.25798563 \pm 3.2 \cdot 10^{-7} \) | \(a_{747}= -0.26406313 \pm 1.4 \cdot 10^{-7} \) |
| \(a_{748}= +0.47312515 \pm 2.2 \cdot 10^{-7} \) | \(a_{749}= +2.20700652 \pm 2.1 \cdot 10^{-7} \) | \(a_{750}= -0.38714058 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{751}= +0.76162846 \pm 2.2 \cdot 10^{-7} \) | \(a_{752}= -0.07037093 \pm 2.7 \cdot 10^{-7} \) | \(a_{753}= +2.29635715 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{754}= -0.36191202 \pm 1.5 \cdot 10^{-7} \) | \(a_{755}= +0.25718318 \pm 1.5 \cdot 10^{-7} \) | \(a_{756}= -0.87202066 \pm 1.5 \cdot 10^{-7} \) |
| \(a_{757}= -0.50795279 \pm 2.3 \cdot 10^{-7} \) | \(a_{758}= +0.45772288 \pm 2.1 \cdot 10^{-7} \) | \(a_{759}= -0.28541202 \pm 4.9 \cdot 10^{-7} \) |
| \(a_{760}= -0.69872572 \pm 1.5 \cdot 10^{-7} \) | \(a_{761}= -1.04147187 \pm 1.7 \cdot 10^{-7} \) | \(a_{762}= -0.65044758 \pm 3.2 \cdot 10^{-7} \) |
| \(a_{763}= +1.36663829 \pm 2.2 \cdot 10^{-7} \) | \(a_{764}= +0.76860041 \pm 2.7 \cdot 10^{-7} \) | \(a_{765}= +0.23444052 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{766}= +0.29103583 \pm 2.9 \cdot 10^{-7} \) | \(a_{767}= -0.37014394 \pm 1.7 \cdot 10^{-7} \) | \(a_{768}= -0.01659766 \pm 2.9 \cdot 10^{-7} \) |
| \(a_{769}= -1.37685219 \pm 2.7 \cdot 10^{-7} \) | \(a_{770}= -0.64695174 \pm 1.5 \cdot 10^{-7} \) | \(a_{771}= -1.98609116 \pm 3.0 \cdot 10^{-7} \) |
| \(a_{772}= -0.42064110 \pm 1.7 \cdot 10^{-7} \) | \(a_{773}= +0.24299738 \pm 1.9 \cdot 10^{-7} \) | \(a_{774}= -0.26643326 \pm 3.5 \cdot 10^{-7} \) |
| \(a_{775}= +0.05059053 \pm 1.9 \cdot 10^{-7} \) | \(a_{776}= +0.46579434 \pm 1.6 \cdot 10^{-7} \) | \(a_{777}= +2.83175191 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{778}= +0.27226039 \pm 2.2 \cdot 10^{-7} \) | \(a_{779}= -1.06844959 \pm 1.9 \cdot 10^{-7} \) | \(a_{780}= -1.23503566 \pm 2.9 \cdot 10^{-7} \) |
| \(a_{781}= -0.19581824 \pm 2.2 \cdot 10^{-7} \) | \(a_{782}= -0.03476972 \pm 5.0 \cdot 10^{-7} \) | \(a_{783}= +0.61918461 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{784}= +0.85511306 \pm 1.5 \cdot 10^{-7} \) | \(a_{785}= +1.16817935 \pm 2.1 \cdot 10^{-7} \) | \(a_{786}= +0.09518084 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{787}= -0.09701793 \pm 2.4 \cdot 10^{-7} \) | \(a_{788}= -0.62276077 \pm 2.7 \cdot 10^{-7} \) | \(a_{789}= -1.37337464 \pm 2.6 \cdot 10^{-7} \) |
| \(a_{790}= +0.38007020 \pm 1.7 \cdot 10^{-7} \) | \(a_{791}= +1.43280460 \pm 2.2 \cdot 10^{-7} \) | \(a_{792}= +0.34273684 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{793}= -0.45837290 \pm 1.4 \cdot 10^{-7} \) | \(a_{794}= +0.31184676 \pm 2.3 \cdot 10^{-7} \) | \(a_{795}= +0.41577999 \pm 2.8 \cdot 10^{-7} \) |
| \(a_{796}= -0.38182111 \pm 3.9 \cdot 10^{-7} \) | \(a_{797}= -0.36384000 \pm 2.2 \cdot 10^{-7} \) | \(a_{798}= +0.64034031 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{799}= +0.05177979 \pm 2.6 \cdot 10^{-7} \) | \(a_{800}= -0.12843682 \pm 1.9 \cdot 10^{-7} \) | \(a_{801}= +0.47527994 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{802}= +0.03562355 \pm 2.3 \cdot 10^{-7} \) | \(a_{803}= -0.99341101 \pm 1.7 \cdot 10^{-7} \) | \(a_{804}= +0.59393759 \pm 3.6 \cdot 10^{-7} \) |
| \(a_{805}= -0.34000516 \pm 4.2 \cdot 10^{-7} \) | \(a_{806}= +0.13279022 \pm 1.7 \cdot 10^{-7} \) | \(a_{807}= -2.05823858 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{808}= +0.31392834 \pm 3.2 \cdot 10^{-7} \) | \(a_{809}= +0.02897486 \pm 2.1 \cdot 10^{-7} \) | \(a_{810}= -0.46794605 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{811}= +1.36168122 \pm 1.8 \cdot 10^{-7} \) | \(a_{812}= -1.26883090 \pm 2.0 \cdot 10^{-7} \) | \(a_{813}= +0.18923899 \pm 2.7 \cdot 10^{-7} \) |
| \(a_{814}= +0.61021407 \pm 1.7 \cdot 10^{-7} \) | \(a_{815}= +0.44960112 \pm 2.1 \cdot 10^{-7} \) | \(a_{816}= -0.37221344 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{817}= +1.64147370 \pm 1.9 \cdot 10^{-7} \) | \(a_{818}= -0.57972083 \pm 1.9 \cdot 10^{-7} \) | \(a_{819}= +0.76324825 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{820}= -1.01026433 \pm 3.1 \cdot 10^{-7} \) | \(a_{821}= +0.26761538 \pm 1.9 \cdot 10^{-7} \) | \(a_{822}= -0.16189166 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{823}= -1.09404363 \pm 1.9 \cdot 10^{-7} \) | \(a_{824}= +0.89171041 \pm 2.8 \cdot 10^{-7} \) | \(a_{825}= +0.19883545 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{826}= +0.18146086 \pm 1.7 \cdot 10^{-7} \) | \(a_{827}= +0.84448459 \pm 2.2 \cdot 10^{-7} \) | \(a_{828}= +0.08417719 \pm 5.2 \cdot 10^{-7} \) |
| \(a_{829}= +1.17606045 \pm 2.5 \cdot 10^{-7} \) | \(a_{830}= -0.21510269 \pm 1.3 \cdot 10^{-7} \) | \(a_{831}= +1.06858142 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{832}= +0.36721885 \pm 2.2 \cdot 10^{-7} \) | \(a_{833}= -0.62920258 \pm 1.7 \cdot 10^{-7} \) | \(a_{834}= +0.72055007 \pm 4.2 \cdot 10^{-7} \) |
| \(a_{835}= +0.45537849 \pm 2.1 \cdot 10^{-7} \) | \(a_{836}= -0.98679347 \pm 2.0 \cdot 10^{-7} \) | \(a_{837}= -0.22718687 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{838}= +0.08545683 \pm 2.3 \cdot 10^{-7} \) | \(a_{839}= -0.81348507 \pm 2.1 \cdot 10^{-7} \) | \(a_{840}= +1.29560266 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{841}= -0.09905740 \pm 2.0 \cdot 10^{-7} \) | \(a_{842}= -0.56420353 \pm 2.5 \cdot 10^{-7} \) | \(a_{843}= +0.30782097 \pm 3.2 \cdot 10^{-7} \) |
| \(a_{844}= -0.24648222 \pm 2.4 \cdot 10^{-7} \) | \(a_{845}= -0.19804107 \pm 1.6 \cdot 10^{-7} \) | \(a_{846}= +0.01752932 \pm 2.9 \cdot 10^{-7} \) |
| \(a_{847}= -0.43142093 \pm 1.7 \cdot 10^{-7} \) | \(a_{848}= -0.20802961 \pm 2.4 \cdot 10^{-7} \) | \(a_{849}= -1.18122059 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{850}= +0.02422271 \pm 2.2 \cdot 10^{-7} \) | \(a_{851}= +0.32069770 \pm 2.1 \cdot 10^{-7} \) | \(a_{852}= +0.18326228 \pm 4.1 \cdot 10^{-7} \) |
| \(a_{853}= -0.17449201 \pm 1.8 \cdot 10^{-7} \) | \(a_{854}= +0.22471459 \pm 1.4 \cdot 10^{-7} \) | \(a_{855}= -0.48897078 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{856}= -0.95242455 \pm 2.2 \cdot 10^{-7} \) | \(a_{857}= -1.15466916 \pm 2.2 \cdot 10^{-7} \) | \(a_{858}= +0.52190401 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{859}= +1.31061589 \pm 2.1 \cdot 10^{-7} \) | \(a_{860}= +1.55208288 \pm 2.8 \cdot 10^{-7} \) | \(a_{861}= +1.98115811 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{862}= -0.11905564 \pm 2.3 \cdot 10^{-7} \) | \(a_{863}= -0.79676813 \pm 1.9 \cdot 10^{-7} \) | \(a_{864}= +0.57677113 \pm 2.4 \cdot 10^{-7} \) |
| \(a_{865}= +1.71028100 \pm 1.9 \cdot 10^{-7} \) | \(a_{866}= +0.09811023 \pm 2.0 \cdot 10^{-7} \) | \(a_{867}= -0.93448765 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{868}= +0.46555053 \pm 2.3 \cdot 10^{-7} \) | \(a_{869}= +1.14858558 \pm 1.7 \cdot 10^{-7} \) | \(a_{870}= -0.42991758 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{871}= +0.60989190 \pm 1.9 \cdot 10^{-7} \) | \(a_{872}= -0.58976711 \pm 2.2 \cdot 10^{-7} \) | \(a_{873}= +0.32596456 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{874}= +0.07251895 \pm 4.6 \cdot 10^{-7} \) | \(a_{875}= -1.39373911 \pm 1.9 \cdot 10^{-7} \) | \(a_{876}= +0.92971301 \pm 3.4 \cdot 10^{-7} \) |
| \(a_{877}= +0.72579844 \pm 2.2 \cdot 10^{-7} \) | \(a_{878}= -0.42776424 \pm 2.3 \cdot 10^{-7} \) | \(a_{879}= -0.06304437 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{880}= -0.78433811 \pm 1.3 \cdot 10^{-7} \) | \(a_{881}= -0.25425431 \pm 2.2 \cdot 10^{-7} \) | \(a_{882}= -0.21300767 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{883}= -0.53078884 \pm 1.4 \cdot 10^{-7} \) | \(a_{884}= -0.45468228 \pm 2.3 \cdot 10^{-7} \) | \(a_{885}= -0.43969632 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{886}= -0.17011897 \pm 2.3 \cdot 10^{-7} \) | \(a_{887}= -0.64959773 \pm 2.0 \cdot 10^{-7} \) | \(a_{888}= -1.22203084 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{889}= -2.34166675 \pm 2.4 \cdot 10^{-7} \) | \(a_{890}= +0.38715739 \pm 2.4 \cdot 10^{-7} \) | \(a_{891}= -1.41414951 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{892}= -0.65331686 \pm 2.6 \cdot 10^{-7} \) | \(a_{893}= -0.10799671 \pm 1.9 \cdot 10^{-7} \) | \(a_{894}= -0.50868536 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{895}= +1.34879256 \pm 1.3 \cdot 10^{-7} \) | \(a_{896}= -1.52721599 \pm 2.5 \cdot 10^{-7} \) | \(a_{897}= +0.27428639 \pm 4.5 \cdot 10^{-7} \) |
| \(a_{898}= -0.15735605 \pm 1.5 \cdot 10^{-7} \) | \(a_{899}= -0.33056754 \pm 1.8 \cdot 10^{-7} \) | \(a_{900}= -0.05864297 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{901}= +0.15307072 \pm 2.0 \cdot 10^{-7} \) | \(a_{902}= +0.42691966 \pm 2.0 \cdot 10^{-7} \) | \(a_{903}= -3.04368027 \pm 2.9 \cdot 10^{-7} \) |
| \(a_{904}= -0.61832091 \pm 2.7 \cdot 10^{-7} \) | \(a_{905}= +1.18377651 \pm 1.7 \cdot 10^{-7} \) | \(a_{906}= +0.10171234 \pm 3.1 \cdot 10^{-7} \) |
| \(a_{907}= +1.71831181 \pm 2.1 \cdot 10^{-7} \) | \(a_{908}= -0.00679630 \pm 3.7 \cdot 10^{-7} \) | \(a_{909}= +0.21968818 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{910}= +0.62173294 \pm 1.7 \cdot 10^{-7} \) | \(a_{911}= +0.67199580 \pm 2.0 \cdot 10^{-7} \) | \(a_{912}= +0.77632269 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{913}= -0.65004792 \pm 1.6 \cdot 10^{-7} \) | \(a_{914}= +0.50467326 \pm 1.6 \cdot 10^{-7} \) | \(a_{915}= -0.54450406 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{916}= -1.38909019 \pm 1.8 \cdot 10^{-7} \) | \(a_{917}= +0.34265913 \pm 1.7 \cdot 10^{-7} \) | \(a_{918}= -0.10877692 \pm 2.3 \cdot 10^{-7} \) |
| \(a_{919}= -1.53067743 \pm 1.8 \cdot 10^{-7} \) | \(a_{920}= +0.14672782 \pm 4.7 \cdot 10^{-7} \) | \(a_{921}= +2.07587792 \pm 3.0 \cdot 10^{-7} \) |
| \(a_{922}= -0.37873420 \pm 2.6 \cdot 10^{-7} \) | \(a_{923}= +0.18818506 \pm 1.8 \cdot 10^{-7} \) | \(a_{924}= +1.82974836 \pm 2.5 \cdot 10^{-7} \) |
| \(a_{925}= -0.22341761 \pm 1.7 \cdot 10^{-7} \) | \(a_{926}= +0.22898940 \pm 3.1 \cdot 10^{-7} \) | \(a_{927}= +0.62402216 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{928}= +0.83922901 \pm 2.4 \cdot 10^{-7} \) | \(a_{929}= -0.01205198 \pm 2.4 \cdot 10^{-7} \) | \(a_{930}= +0.15774234 \pm 2.6 \cdot 10^{-7} \) |
| \(a_{931}= +1.31232296 \pm 1.4 \cdot 10^{-7} \) | \(a_{932}= -0.10051207 \pm 3.0 \cdot 10^{-7} \) | \(a_{933}= -0.76231259 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{934}= +0.36991734 \pm 2.5 \cdot 10^{-7} \) | \(a_{935}= +0.57712552 \pm 1.8 \cdot 10^{-7} \) | \(a_{936}= -0.32937663 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{937}= -0.12625994 \pm 2.2 \cdot 10^{-7} \) | \(a_{938}= -0.29899587 \pm 2.5 \cdot 10^{-7} \) | \(a_{939}= -0.38570974 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{940}= -0.10211546 \pm 2.8 \cdot 10^{-7} \) | \(a_{941}= +1.40911669 \pm 2.5 \cdot 10^{-7} \) | \(a_{942}= +0.46199854 \pm 3.3 \cdot 10^{-7} \) |
| \(a_{943}= +0.22436741 \pm 2.4 \cdot 10^{-7} \) | \(a_{944}= +0.21999581 \pm 2.7 \cdot 10^{-7} \) | \(a_{945}= -1.06370455 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{946}= -0.65588250 \pm 2.3 \cdot 10^{-7} \) | \(a_{947}= -1.49236153 \pm 2.1 \cdot 10^{-7} \) | \(a_{948}= -1.07493772 \pm 3.6 \cdot 10^{-7} \) |
| \(a_{949}= +0.95468689 \pm 1.3 \cdot 10^{-7} \) | \(a_{950}= -0.05052113 \pm 2.0 \cdot 10^{-7} \) | \(a_{951}= +0.12491301 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{952}= +0.47698021 \pm 2.0 \cdot 10^{-7} \) | \(a_{953}= +0.60983540 \pm 2.1 \cdot 10^{-7} \) | \(a_{954}= +0.05181994 \pm 3.4 \cdot 10^{-7} \) |
| \(a_{955}= +0.93755090 \pm 1.7 \cdot 10^{-7} \) | \(a_{956}= +0.68684746 \pm 2.4 \cdot 10^{-7} \) | \(a_{957}= -1.29922613 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{958}= -0.30420473 \pm 2.2 \cdot 10^{-7} \) | \(a_{959}= -0.58282377 \pm 1.4 \cdot 10^{-7} \) | \(a_{960}= +0.43622159 \pm 3.0 \cdot 10^{-7} \) |
| \(a_{961}= -0.87871048 \pm 1.5 \cdot 10^{-7} \) | \(a_{962}= -0.58642734 \pm 1.9 \cdot 10^{-7} \) | \(a_{963}= -0.66651014 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{964}= -0.23480869 \pm 2.2 \cdot 10^{-7} \) | \(a_{965}= -0.51310465 \pm 1.3 \cdot 10^{-7} \) | \(a_{966}= -0.13446727 \pm 7.4 \cdot 10^{-7} \) |
| \(a_{967}= +0.67613251 \pm 1.8 \cdot 10^{-7} \) | \(a_{968}= +0.18617792 \pm 2.4 \cdot 10^{-7} \) | \(a_{969}= -0.57122767 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{970}= +0.26552685 \pm 1.4 \cdot 10^{-7} \) | \(a_{971}= -0.07669691 \pm 1.8 \cdot 10^{-7} \) | \(a_{972}= +0.75116515 \pm 3.3 \cdot 10^{-7} \) |
| \(a_{973}= +2.59404170 \pm 2.3 \cdot 10^{-7} \) | \(a_{974}= +0.44221274 \pm 2.7 \cdot 10^{-7} \) | \(a_{975}= -0.19108465 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{976}= +0.27243487 \pm 2.3 \cdot 10^{-7} \) | \(a_{977}= -0.95341785 \pm 2.3 \cdot 10^{-7} \) | \(a_{978}= +0.17781093 \pm 3.3 \cdot 10^{-7} \) |
| \(a_{979}= +1.17000331 \pm 1.8 \cdot 10^{-7} \) | \(a_{980}= +1.24085693 \pm 1.9 \cdot 10^{-7} \) | \(a_{981}= -0.41272115 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{982}= -0.64827127 \pm 2.9 \cdot 10^{-7} \) | \(a_{983}= -0.51091868 \pm 2.1 \cdot 10^{-7} \) | \(a_{984}= -0.85496060 \pm 2.6 \cdot 10^{-7} \) |
| \(a_{985}= -0.75965340 \pm 1.6 \cdot 10^{-7} \) | \(a_{986}= -0.15827551 \pm 2.3 \cdot 10^{-7} \) | \(a_{987}= +0.20025142 \pm 2.2 \cdot 10^{-7} \) |
| \(a_{988}= +0.94832732 \pm 1.6 \cdot 10^{-7} \) | \(a_{989}= -0.34469872 \pm 2.4 \cdot 10^{-7} \) | \(a_{990}= +0.19537772 \pm 1.5 \cdot 10^{-7} \) |
| \(a_{991}= +0.64448198 \pm 2.5 \cdot 10^{-7} \) | \(a_{992}= -0.30792402 \pm 2.4 \cdot 10^{-7} \) | \(a_{993}= +0.03405926 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{994}= -0.09225660 \pm 2.7 \cdot 10^{-7} \) | \(a_{995}= -0.46575140 \pm 1.8 \cdot 10^{-7} \) | \(a_{996}= +0.60836654 \pm 2.6 \cdot 10^{-7} \) |
| \(a_{997}= +0.14298194 \pm 2.3 \cdot 10^{-7} \) | \(a_{998}= +0.03531544 \pm 1.9 \cdot 10^{-7} \) | \(a_{999}= +1.00330125 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{1000}= +0.60146236 \pm 2.1 \cdot 10^{-7} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000