Maass form invariants
| Level: | \( 22 = 2 \cdot 11 \) |
| Weight: | \( 0 \) |
| Character: | 22.1 |
| Symmetry: | odd |
| Fricke sign: | $-1$ |
| Spectral parameter: | \(3.71136347889612880409892633242 \pm 10 \cdot 10^{-11}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
| \(a_{1}= +1 \) | \(a_{2}= +0.70710678 \pm 1.0 \cdot 10^{-8} \) | \(a_{3}= +0.58623992 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{4}= +0.5 \) | \(a_{5}= +0.98738911 \pm 8.3 \cdot 10^{-8} \) | \(a_{6}= +0.41453422 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{7}= +1.05540735 \pm 8.3 \cdot 10^{-8} \) | \(a_{8}= +0.35355339 \pm 4.2 \cdot 10^{-8} \) | \(a_{9}= -0.65632276 \pm 9.2 \cdot 10^{-8} \) |
| \(a_{10}= +0.69818954 \pm 9.3 \cdot 10^{-8} \) | \(a_{11}= -0.30151134 \pm 1.0 \cdot 10^{-8} \) | \(a_{12}= +0.29311996 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{13}= -1.53918875 \pm 8.0 \cdot 10^{-8} \) | \(a_{14}= +0.74628569 \pm 9.4 \cdot 10^{-8} \) | \(a_{15}= +0.57884691 \pm 9.9 \cdot 10^{-8} \) |
| \(a_{16}= +0.25 \) | \(a_{17}= +0.88397777 \pm 7.5 \cdot 10^{-8} \) | \(a_{18}= -0.46409027 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{19}= -0.18377385 \pm 9.4 \cdot 10^{-8} \) | \(a_{20}= +0.49369456 \pm 9.3 \cdot 10^{-8} \) | \(a_{21}= +0.61872192 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{22}= -0.21320072 \pm 1.0 \cdot 10^{-8} \) | \(a_{23}= +0.06863902 \pm 7.5 \cdot 10^{-8} \) | \(a_{24}= +0.20726711 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{25}= -0.02506274 \pm 7.7 \cdot 10^{-8} \) | \(a_{26}= -1.08837080 \pm 9.1 \cdot 10^{-8} \) | \(a_{27}= -0.97100252 \pm 9.2 \cdot 10^{-8} \) |
| \(a_{28}= +0.52770367 \pm 9.4 \cdot 10^{-8} \) | \(a_{29}= -1.38430419 \pm 9.6 \cdot 10^{-8} \) | \(a_{30}= +0.40930658 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{31}= -0.21602443 \pm 6.9 \cdot 10^{-8} \) | \(a_{32}= +0.17677670 \pm 1.1 \cdot 10^{-7} \) | \(a_{33}= -0.17675799 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{34}= +0.62506668 \pm 8.6 \cdot 10^{-8} \) | \(a_{35}= +1.04209773 \pm 6.0 \cdot 10^{-8} \) | \(a_{36}= -0.32816138 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{37}= +1.00442886 \pm 8.9 \cdot 10^{-8} \) | \(a_{38}= -0.12994774 \pm 1.0 \cdot 10^{-7} \) | \(a_{39}= -0.90233389 \pm 8.4 \cdot 10^{-8} \) |
| \(a_{40}= +0.34909477 \pm 9.3 \cdot 10^{-8} \) | \(a_{41}= +1.83476154 \pm 9.8 \cdot 10^{-8} \) | \(a_{42}= +0.43750246 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{43}= -0.58402499 \pm 9.0 \cdot 10^{-8} \) | \(a_{44}= -0.15075567 \pm 1.4 \cdot 10^{-7} \) | \(a_{45}= -0.64804595 \pm 8.6 \cdot 10^{-8} \) |
| \(a_{46}= +0.04853512 \pm 8.6 \cdot 10^{-8} \) | \(a_{47}= -1.18472106 \pm 9.6 \cdot 10^{-8} \) | \(a_{48}= +0.14655998 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{49}= +0.11388467 \pm 6.2 \cdot 10^{-8} \) | \(a_{50}= -0.01772203 \pm 8.7 \cdot 10^{-8} \) | \(a_{51}= +0.51822306 \pm 9.0 \cdot 10^{-8} \) |
| \(a_{52}= -0.76959438 \pm 9.1 \cdot 10^{-8} \) | \(a_{53}= -0.43341932 \pm 6.8 \cdot 10^{-8} \) | \(a_{54}= -0.68660247 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{55}= -0.29770902 \pm 9.3 \cdot 10^{-8} \) | \(a_{56}= +0.37314285 \pm 9.4 \cdot 10^{-8} \) | \(a_{57}= -0.10773557 \pm 9.8 \cdot 10^{-8} \) |
| \(a_{58}= -0.97885088 \pm 1.0 \cdot 10^{-7} \) | \(a_{59}= +1.63431212 \pm 8.6 \cdot 10^{-8} \) | \(a_{60}= +0.28942346 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{61}= +1.77546439 \pm 5.4 \cdot 10^{-8} \) | \(a_{62}= -0.15275234 \pm 7.9 \cdot 10^{-8} \) | \(a_{63}= -0.69268786 \pm 9.1 \cdot 10^{-8} \) |
| \(a_{64}= +0.125 \) | \(a_{65}= -1.51977822 \pm 7.4 \cdot 10^{-8} \) | \(a_{66}= -0.12498677 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{67}= -0.27383723 \pm 7.6 \cdot 10^{-8} \) | \(a_{68}= +0.44198889 \pm 8.6 \cdot 10^{-8} \) | \(a_{69}= +0.04023894 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{70}= +0.73687437 \pm 1.7 \cdot 10^{-7} \) | \(a_{71}= -1.14948533 \pm 8.1 \cdot 10^{-8} \) | \(a_{72}= -0.23204514 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{73}= +1.70620879 \pm 8.7 \cdot 10^{-8} \) | \(a_{74}= +0.71023846 \pm 1.0 \cdot 10^{-7} \) | \(a_{75}= -0.01469278 \pm 8.3 \cdot 10^{-8} \) |
| \(a_{76}= -0.09188693 \pm 1.0 \cdot 10^{-7} \) | \(a_{77}= -0.31821729 \pm 9.4 \cdot 10^{-8} \) | \(a_{78}= -0.63804641 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{79}= +0.84214266 \pm 7.8 \cdot 10^{-8} \) | \(a_{80}= +0.24684728 \pm 9.3 \cdot 10^{-8} \) | \(a_{81}= +0.08708232 \pm 9.7 \cdot 10^{-8} \) |
| \(a_{82}= +1.29737232 \pm 1.0 \cdot 10^{-7} \) | \(a_{83}= -0.92023973 \pm 7.1 \cdot 10^{-8} \) | \(a_{84}= +0.30936096 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{85}= +0.87283003 \pm 9.1 \cdot 10^{-8} \) | \(a_{86}= -0.41296803 \pm 1.0 \cdot 10^{-7} \) | \(a_{87}= -0.81153437 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{88}= -0.10660036 \pm 2.4 \cdot 10^{-7} \) | \(a_{89}= -0.26587397 \pm 7.3 \cdot 10^{-8} \) | \(a_{90}= -0.45823768 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{91}= -1.62447112 \pm 8.3 \cdot 10^{-8} \) | \(a_{92}= +0.03431951 \pm 8.6 \cdot 10^{-8} \) | \(a_{93}= -0.12664214 \pm 8.7 \cdot 10^{-8} \) |
| \(a_{94}= -0.83772429 \pm 1.0 \cdot 10^{-7} \) | \(a_{95}= -0.18145630 \pm 7.8 \cdot 10^{-8} \) | \(a_{96}= +0.10363356 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{97}= -0.07868770 \pm 9.4 \cdot 10^{-8} \) | \(a_{98}= +0.08052863 \pm 7.2 \cdot 10^{-8} \) | \(a_{99}= +0.19788876 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{100}= -0.01253137 \pm 8.7 \cdot 10^{-8} \) | \(a_{101}= +0.96059488 \pm 7.7 \cdot 10^{-8} \) | \(a_{102}= +0.36643904 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{103}= -0.21932995 \pm 9.3 \cdot 10^{-8} \) | \(a_{104}= -0.54418540 \pm 9.1 \cdot 10^{-8} \) | \(a_{105}= +0.61091929 \pm 6.5 \cdot 10^{-8} \) |
| \(a_{106}= -0.30647374 \pm 7.8 \cdot 10^{-8} \) | \(a_{107}= +0.38070983 \pm 9.2 \cdot 10^{-8} \) | \(a_{108}= -0.48550126 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{109}= +1.09069316 \pm 9.1 \cdot 10^{-8} \) | \(a_{110}= -0.21051207 \pm 9.3 \cdot 10^{-8} \) | \(a_{111}= +0.58883629 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{112}= +0.26385184 \pm 9.4 \cdot 10^{-8} \) | \(a_{113}= -1.83270688 \pm 8.1 \cdot 10^{-8} \) | \(a_{114}= -0.07618055 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{115}= +0.06777342 \pm 7.4 \cdot 10^{-8} \) | \(a_{116}= -0.69215209 \pm 1.0 \cdot 10^{-7} \) | \(a_{117}= +1.01020461 \pm 7.8 \cdot 10^{-8} \) |
| \(a_{118}= +1.15563318 \pm 9.7 \cdot 10^{-8} \) | \(a_{119}= +0.93295664 \pm 4.8 \cdot 10^{-8} \) | \(a_{120}= +0.20465329 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{121}= +0.09090909 \pm 3.1 \cdot 10^{-7} \) | \(a_{122}= +1.25544291 \pm 6.4 \cdot 10^{-8} \) | \(a_{123}= +1.07561045 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{124}= -0.10801221 \pm 7.9 \cdot 10^{-8} \) | \(a_{125}= -1.01213579 \pm 7.8 \cdot 10^{-8} \) | \(a_{126}= -0.48980429 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{127}= +0.99941817 \pm 6.7 \cdot 10^{-8} \) | \(a_{128}= +0.08838835 \pm 3.2 \cdot 10^{-7} \) | \(a_{129}= -0.34237876 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{130}= -1.07464548 \pm 1.7 \cdot 10^{-7} \) | \(a_{131}= -1.52391337 \pm 9.9 \cdot 10^{-8} \) | \(a_{132}= -0.08837899 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{133}= -0.19395628 \pm 9.4 \cdot 10^{-8} \) | \(a_{134}= -0.19363216 \pm 8.7 \cdot 10^{-8} \) | \(a_{135}= -0.95875731 \pm 8.6 \cdot 10^{-8} \) |
| \(a_{136}= +0.31253334 \pm 8.6 \cdot 10^{-8} \) | \(a_{137}= +0.68237386 \pm 9.6 \cdot 10^{-8} \) | \(a_{138}= +0.02845322 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{139}= -0.91788909 \pm 6.1 \cdot 10^{-8} \) | \(a_{140}= +0.52104886 \pm 1.7 \cdot 10^{-7} \) | \(a_{141}= -0.69453078 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{142}= -0.81280887 \pm 9.2 \cdot 10^{-8} \) | \(a_{143}= +0.46408287 \pm 9.1 \cdot 10^{-8} \) | \(a_{144}= -0.16408069 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{145}= -1.36684688 \pm 8.4 \cdot 10^{-8} \) | \(a_{146}= +1.20647180 \pm 9.8 \cdot 10^{-8} \) | \(a_{147}= +0.06676374 \pm 8.8 \cdot 10^{-8} \) |
| \(a_{148}= +0.50221443 \pm 1.0 \cdot 10^{-7} \) | \(a_{149}= +0.03821717 \pm 9.3 \cdot 10^{-8} \) | \(a_{150}= -0.01038936 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{151}= +0.53555873 \pm 9.3 \cdot 10^{-8} \) | \(a_{152}= -0.06497387 \pm 1.0 \cdot 10^{-7} \) | \(a_{153}= -0.58017473 \pm 6.3 \cdot 10^{-8} \) |
| \(a_{154}= -0.22501360 \pm 9.4 \cdot 10^{-8} \) | \(a_{155}= -0.21330017 \pm 7.0 \cdot 10^{-8} \) | \(a_{156}= -0.45116694 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{157}= +0.40660039 \pm 9.4 \cdot 10^{-8} \) | \(a_{158}= +0.59548478 \pm 8.8 \cdot 10^{-8} \) | \(a_{159}= -0.25408771 \pm 9.3 \cdot 10^{-8} \) |
| \(a_{160}= +0.17454738 \pm 9.3 \cdot 10^{-8} \) | \(a_{161}= +0.07244213 \pm 5.9 \cdot 10^{-8} \) | \(a_{162}= +0.06157650 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{163}= +0.37620075 \pm 8.2 \cdot 10^{-8} \) | \(a_{164}= +0.91738077 \pm 1.0 \cdot 10^{-7} \) | \(a_{165}= -0.17452891 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{166}= -0.65070775 \pm 8.1 \cdot 10^{-8} \) | \(a_{167}= +1.78651637 \pm 8.4 \cdot 10^{-8} \) | \(a_{168}= +0.21875123 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{169}= +1.36910201 \pm 7.8 \cdot 10^{-8} \) | \(a_{170}= +0.61718403 \pm 1.6 \cdot 10^{-7} \) | \(a_{171}= +0.12061496 \pm 5.6 \cdot 10^{-8} \) |
| \(a_{172}= -0.29201250 \pm 1.0 \cdot 10^{-7} \) | \(a_{173}= -1.49958081 \pm 1.1 \cdot 10^{-7} \) | \(a_{174}= -0.57384146 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{175}= -0.02645140 \pm 6.8 \cdot 10^{-8} \) | \(a_{176}= -0.07537784 \pm 4.2 \cdot 10^{-7} \) | \(a_{177}= +0.95809900 \pm 8.6 \cdot 10^{-8} \) |
| \(a_{178}= -0.18800128 \pm 8.4 \cdot 10^{-8} \) | \(a_{179}= -0.49981162 \pm 8.2 \cdot 10^{-8} \) | \(a_{180}= -0.32402297 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{181}= -0.43591661 \pm 9.6 \cdot 10^{-8} \) | \(a_{182}= -1.14867455 \pm 1.7 \cdot 10^{-7} \) | \(a_{183}= +1.04084810 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{184}= +0.02426756 \pm 8.6 \cdot 10^{-8} \) | \(a_{185}= +0.99176212 \pm 7.6 \cdot 10^{-8} \) | \(a_{186}= -0.08954952 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{187}= -0.26652933 \pm 8.6 \cdot 10^{-8} \) | \(a_{188}= -0.59236053 \pm 1.0 \cdot 10^{-7} \) | \(a_{189}= -1.02480319 \pm 8.1 \cdot 10^{-8} \) |
| \(a_{190}= -0.12830898 \pm 1.8 \cdot 10^{-7} \) | \(a_{191}= +0.41029419 \pm 1.0 \cdot 10^{-7} \) | \(a_{192}= +0.07327999 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{193}= +1.23349169 \pm 9.4 \cdot 10^{-8} \) | \(a_{194}= -0.05564060 \pm 1.0 \cdot 10^{-7} \) | \(a_{195}= -0.89095466 \pm 7.2 \cdot 10^{-8} \) |
| \(a_{196}= +0.05694234 \pm 7.2 \cdot 10^{-8} \) | \(a_{197}= +0.22242614 \pm 8.0 \cdot 10^{-8} \) | \(a_{198}= +0.13992848 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{199}= -1.20999915 \pm 8.9 \cdot 10^{-8} \) | \(a_{200}= -0.00886102 \pm 8.7 \cdot 10^{-8} \) | \(a_{201}= -0.16053431 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{202}= +0.67924315 \pm 8.7 \cdot 10^{-8} \) | \(a_{203}= -1.46100481 \pm 1.0 \cdot 10^{-7} \) | \(a_{204}= +0.25911153 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{205}= +1.81162356 \pm 9.5 \cdot 10^{-8} \) | \(a_{206}= -0.15508969 \pm 1.0 \cdot 10^{-7} \) | \(a_{207}= -0.04504935 \pm 9.1 \cdot 10^{-8} \) |
| \(a_{208}= -0.38479719 \pm 9.1 \cdot 10^{-8} \) | \(a_{209}= +0.05540990 \pm 1.0 \cdot 10^{-7} \) | \(a_{210}= +0.43198517 \pm 2.8 \cdot 10^{-7} \) |
| \(a_{211}= -0.72579080 \pm 6.7 \cdot 10^{-8} \) | \(a_{212}= -0.21670966 \pm 7.8 \cdot 10^{-8} \) | \(a_{213}= -0.67387418 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{214}= +0.26920250 \pm 1.0 \cdot 10^{-7} \) | \(a_{215}= -0.57665992 \pm 7.6 \cdot 10^{-8} \) | \(a_{216}= -0.34330123 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{217}= -0.22799377 \pm 6.4 \cdot 10^{-8} \) | \(a_{218}= +0.77123653 \pm 1.0 \cdot 10^{-7} \) | \(a_{219}= +1.00024770 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{220}= -0.14885451 \pm 9.3 \cdot 10^{-8} \) | \(a_{221}= -1.36060864 \pm 6.6 \cdot 10^{-8} \) | \(a_{222}= +0.41637014 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{223}= +0.45096100 \pm 8.9 \cdot 10^{-8} \) | \(a_{224}= +0.18657142 \pm 9.4 \cdot 10^{-8} \) | \(a_{225}= +0.01644925 \pm 6.0 \cdot 10^{-8} \) |
| \(a_{226}= -1.29591946 \pm 9.1 \cdot 10^{-8} \) | \(a_{227}= -0.20008104 \pm 5.7 \cdot 10^{-8} \) | \(a_{228}= -0.05386778 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{229}= +1.54329800 \pm 9.4 \cdot 10^{-8} \) | \(a_{230}= +0.04792305 \pm 1.6 \cdot 10^{-7} \) | \(a_{231}= -0.18655168 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{232}= -0.48942544 \pm 1.0 \cdot 10^{-7} \) | \(a_{233}= +0.22688800 \pm 6.4 \cdot 10^{-8} \) | \(a_{234}= +0.71432253 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{235}= -1.16978067 \pm 9.5 \cdot 10^{-8} \) | \(a_{236}= +0.81715606 \pm 9.7 \cdot 10^{-8} \) | \(a_{237}= +0.49369764 \pm 9.5 \cdot 10^{-8} \) |
| \(a_{238}= +0.65969997 \pm 1.7 \cdot 10^{-7} \) | \(a_{239}= +0.98208869 \pm 7.9 \cdot 10^{-8} \) | \(a_{240}= +0.14471173 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{241}= -0.37161231 \pm 6.3 \cdot 10^{-8} \) | \(a_{242}= +0.06428243 \pm 5.5 \cdot 10^{-7} \) | \(a_{243}= +1.02205365 \pm 9.7 \cdot 10^{-8} \) |
| \(a_{244}= +0.88773220 \pm 6.4 \cdot 10^{-8} \) | \(a_{245}= +0.11244849 \pm 6.8 \cdot 10^{-8} \) | \(a_{246}= +0.76057144 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{247}= +0.28286265 \pm 8.7 \cdot 10^{-8} \) | \(a_{248}= -0.07637617 \pm 7.9 \cdot 10^{-8} \) | \(a_{249}= -0.53948126 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{250}= -0.71568808 \pm 8.8 \cdot 10^{-8} \) | \(a_{251}= -1.65963043 \pm 6.7 \cdot 10^{-8} \) | \(a_{252}= -0.34634393 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{253}= -0.02069544 \pm 8.6 \cdot 10^{-8} \) | \(a_{254}= +0.70669536 \pm 7.8 \cdot 10^{-8} \) | \(a_{255}= +0.51168780 \pm 9.9 \cdot 10^{-8} \) |
| \(a_{256}= +0.0625 \) | \(a_{257}= +0.10865765 \pm 8.7 \cdot 10^{-8} \) | \(a_{258}= -0.24209834 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{259}= +1.06008160 \pm 9.1 \cdot 10^{-8} \) | \(a_{260}= -0.75988911 \pm 1.7 \cdot 10^{-7} \) | \(a_{261}= +0.90855034 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{262}= -1.07756948 \pm 1.1 \cdot 10^{-7} \) | \(a_{263}= -0.93754500 \pm 8.2 \cdot 10^{-8} \) | \(a_{264}= -0.06249339 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{265}= -0.42795352 \pm 6.4 \cdot 10^{-8} \) | \(a_{266}= -0.13714780 \pm 1.8 \cdot 10^{-7} \) | \(a_{267}= -0.15586593 \pm 9.6 \cdot 10^{-8} \) |
| \(a_{268}= -0.13691861 \pm 8.7 \cdot 10^{-8} \) | \(a_{269}= -0.18826246 \pm 6.9 \cdot 10^{-8} \) | \(a_{270}= -0.67794380 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{271}= -0.57226473 \pm 8.0 \cdot 10^{-8} \) | \(a_{272}= +0.22099444 \pm 8.6 \cdot 10^{-8} \) | \(a_{273}= -0.95232982 \pm 8.4 \cdot 10^{-8} \) |
| \(a_{274}= +0.48251119 \pm 1.0 \cdot 10^{-7} \) | \(a_{275}= +0.00755670 \pm 8.7 \cdot 10^{-8} \) | \(a_{276}= +0.02011947 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{277}= -0.34761751 \pm 5.8 \cdot 10^{-8} \) | \(a_{278}= -0.64904560 \pm 7.1 \cdot 10^{-8} \) | \(a_{279}= +0.14178175 \pm 6.9 \cdot 10^{-8} \) |
| \(a_{280}= +0.36843718 \pm 1.7 \cdot 10^{-7} \) | \(a_{281}= -0.61024458 \pm 9.6 \cdot 10^{-8} \) | \(a_{282}= -0.49110742 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{283}= -0.73339202 \pm 7.2 \cdot 10^{-8} \) | \(a_{284}= -0.57474266 \pm 9.2 \cdot 10^{-8} \) | \(a_{285}= -0.10637693 \pm 6.6 \cdot 10^{-8} \) |
| \(a_{286}= +0.32815614 \pm 9.1 \cdot 10^{-8} \) | \(a_{287}= +1.93642081 \pm 8.4 \cdot 10^{-8} \) | \(a_{288}= -0.11602257 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{289}= -0.21858330 \pm 1.0 \cdot 10^{-7} \) | \(a_{290}= -0.96650670 \pm 1.9 \cdot 10^{-7} \) | \(a_{291}= -0.04612987 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{292}= +0.85310439 \pm 9.8 \cdot 10^{-8} \) | \(a_{293}= +0.69904501 \pm 5.5 \cdot 10^{-8} \) | \(a_{294}= +0.04720909 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{295}= +1.61370199 \pm 7.1 \cdot 10^{-8} \) | \(a_{296}= +0.35511923 \pm 1.0 \cdot 10^{-7} \) | \(a_{297}= +0.29276827 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{298}= +0.02702362 \pm 1.0 \cdot 10^{-7} \) | \(a_{299}= -0.10564841 \pm 6.3 \cdot 10^{-8} \) | \(a_{300}= -0.00734639 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{301}= -0.61638427 \pm 8.1 \cdot 10^{-8} \) | \(a_{302}= +0.37869721 \pm 1.0 \cdot 10^{-7} \) | \(a_{303}= +0.56313906 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{304}= -0.04594346 \pm 1.0 \cdot 10^{-7} \) | \(a_{305}= +1.75307421 \pm 5.3 \cdot 10^{-8} \) | \(a_{306}= -0.41024549 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{307}= +0.41644596 \pm 7.7 \cdot 10^{-8} \) | \(a_{308}= -0.15910864 \pm 9.4 \cdot 10^{-8} \) | \(a_{309}= -0.12857997 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{310}= -0.15082599 \pm 1.6 \cdot 10^{-7} \) | \(a_{311}= -0.86385264 \pm 8.1 \cdot 10^{-8} \) | \(a_{312}= -0.31902321 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{313}= -0.31951375 \pm 8.7 \cdot 10^{-8} \) | \(a_{314}= +0.28750989 \pm 1.0 \cdot 10^{-7} \) | \(a_{315}= -0.68395245 \pm 6.1 \cdot 10^{-8} \) |
| \(a_{316}= +0.42107133 \pm 8.8 \cdot 10^{-8} \) | \(a_{317}= +0.39249374 \pm 7.5 \cdot 10^{-8} \) | \(a_{318}= -0.17966714 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{319}= +0.41738342 \pm 1.0 \cdot 10^{-7} \) | \(a_{320}= +0.12342364 \pm 9.3 \cdot 10^{-8} \) | \(a_{321}= +0.22318730 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{322}= +0.05122432 \pm 1.6 \cdot 10^{-7} \) | \(a_{323}= -0.16245200 \pm 7.0 \cdot 10^{-8} \) | \(a_{324}= +0.04354116 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{325}= +0.03857629 \pm 8.2 \cdot 10^{-8} \) | \(a_{326}= +0.26601410 \pm 9.2 \cdot 10^{-8} \) | \(a_{327}= +0.63940787 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{328}= +0.64868616 \pm 1.0 \cdot 10^{-7} \) | \(a_{329}= -1.25036331 \pm 7.8 \cdot 10^{-8} \) | \(a_{330}= -0.12341058 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{331}= +0.91271448 \pm 7.5 \cdot 10^{-8} \) | \(a_{332}= -0.46011986 \pm 8.1 \cdot 10^{-8} \) | \(a_{333}= -0.65922952 \pm 9.0 \cdot 10^{-8} \) |
| \(a_{334}= +1.26325784 \pm 9.4 \cdot 10^{-8} \) | \(a_{335}= -0.27038390 \pm 6.5 \cdot 10^{-8} \) | \(a_{336}= +0.15468048 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{337}= -0.78280445 \pm 9.7 \cdot 10^{-8} \) | \(a_{338}= +0.96810132 \pm 8.8 \cdot 10^{-8} \) | \(a_{339}= -1.07440593 \pm 8.8 \cdot 10^{-8} \) |
| \(a_{340}= +0.43641501 \pm 1.6 \cdot 10^{-7} \) | \(a_{341}= +0.06513382 \pm 7.9 \cdot 10^{-8} \) | \(a_{342}= +0.08528766 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{343}= -0.93521263 \pm 6.9 \cdot 10^{-8} \) | \(a_{344}= -0.20648402 \pm 1.0 \cdot 10^{-7} \) | \(a_{345}= +0.03973149 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{346}= -1.06036376 \pm 1.2 \cdot 10^{-7} \) | \(a_{347}= -0.62162221 \pm 8.7 \cdot 10^{-8} \) | \(a_{348}= -0.40576719 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{349}= -1.32887570 \pm 8.9 \cdot 10^{-8} \) | \(a_{350}= -0.01870397 \pm 1.7 \cdot 10^{-7} \) | \(a_{351}= +1.49455615 \pm 9.9 \cdot 10^{-8} \) |
| \(a_{352}= -0.05330018 \pm 7.3 \cdot 10^{-7} \) | \(a_{353}= -0.41876899 \pm 7.1 \cdot 10^{-8} \) | \(a_{354}= +0.67747830 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{355}= -1.13498930 \pm 9.7 \cdot 10^{-8} \) | \(a_{356}= -0.13293698 \pm 8.4 \cdot 10^{-8} \) | \(a_{357}= +0.54693642 \pm 5.7 \cdot 10^{-8} \) |
| \(a_{358}= -0.35342019 \pm 9.2 \cdot 10^{-8} \) | \(a_{359}= +0.23921291 \pm 6.3 \cdot 10^{-8} \) | \(a_{360}= -0.22911884 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{361}= -0.96622717 \pm 1.0 \cdot 10^{-7} \) | \(a_{362}= -0.30823959 \pm 1.0 \cdot 10^{-7} \) | \(a_{363}= +0.05329454 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{364}= -0.81223556 \pm 1.7 \cdot 10^{-7} \) | \(a_{365}= +1.68469198 \pm 9.1 \cdot 10^{-8} \) | \(a_{366}= +0.73599075 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{367}= +0.31601659 \pm 8.8 \cdot 10^{-8} \) | \(a_{368}= +0.01715976 \pm 8.6 \cdot 10^{-8} \) | \(a_{369}= -1.20419575 \pm 8.6 \cdot 10^{-8} \) |
| \(a_{370}= +0.70128172 \pm 1.8 \cdot 10^{-7} \) | \(a_{371}= -0.45743394 \pm 6.6 \cdot 10^{-8} \) | \(a_{372}= -0.06332107 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{373}= +0.15804045 \pm 8.4 \cdot 10^{-8} \) | \(a_{374}= -0.18846469 \pm 8.6 \cdot 10^{-8} \) | \(a_{375}= -0.59335440 \pm 9.2 \cdot 10^{-8} \) |
| \(a_{376}= -0.41886215 \pm 1.0 \cdot 10^{-7} \) | \(a_{377}= +2.13070543 \pm 9.7 \cdot 10^{-8} \) | \(a_{378}= -0.72464529 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{379}= +1.11245637 \pm 7.9 \cdot 10^{-8} \) | \(a_{380}= -0.09072815 \pm 1.8 \cdot 10^{-7} \) | \(a_{381}= +0.58589882 \pm 7.6 \cdot 10^{-8} \) |
| \(a_{382}= +0.29012181 \pm 1.1 \cdot 10^{-7} \) | \(a_{383}= +0.76498810 \pm 7.0 \cdot 10^{-8} \) | \(a_{384}= +0.05181678 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{385}= -0.31420429 \pm 1.7 \cdot 10^{-7} \) | \(a_{386}= +0.87221034 \pm 1.0 \cdot 10^{-7} \) | \(a_{387}= +0.38330889 \pm 8.7 \cdot 10^{-8} \) |
| \(a_{388}= -0.03934385 \pm 1.0 \cdot 10^{-7} \) | \(a_{389}= -0.28021298 \pm 5.5 \cdot 10^{-8} \) | \(a_{390}= -0.63000008 \pm 2.8 \cdot 10^{-7} \) |
| \(a_{391}= +0.06067537 \pm 4.0 \cdot 10^{-8} \) | \(a_{392}= +0.04026431 \pm 7.2 \cdot 10^{-8} \) | \(a_{393}= -0.89337885 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{394}= +0.15727903 \pm 9.1 \cdot 10^{-8} \) | \(a_{395}= +0.83152249 \pm 7.2 \cdot 10^{-8} \) | \(a_{396}= +0.09894438 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{397}= -1.07479638 \pm 6.7 \cdot 10^{-8} \) | \(a_{398}= -0.85559861 \pm 1.0 \cdot 10^{-7} \) | \(a_{399}= -0.11370491 \pm 9.7 \cdot 10^{-8} \) |
| \(a_{400}= -0.00626569 \pm 8.7 \cdot 10^{-8} \) | \(a_{401}= -0.22542244 \pm 1.1 \cdot 10^{-7} \) | \(a_{402}= -0.11351490 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{403}= +0.33250237 \pm 5.3 \cdot 10^{-8} \) | \(a_{404}= +0.48029744 \pm 8.7 \cdot 10^{-8} \) | \(a_{405}= +0.08598414 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{406}= -1.03308641 \pm 1.9 \cdot 10^{-7} \) | \(a_{407}= -0.30284670 \pm 1.0 \cdot 10^{-7} \) | \(a_{408}= +0.18321952 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{409}= +1.26827575 \pm 9.4 \cdot 10^{-8} \) | \(a_{410}= +1.28101131 \pm 1.9 \cdot 10^{-7} \) | \(a_{411}= +0.40003480 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{412}= -0.10966497 \pm 1.0 \cdot 10^{-7} \) | \(a_{413}= +1.72486502 \pm 8.7 \cdot 10^{-8} \) | \(a_{414}= -0.03185470 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{415}= -0.90863469 \pm 8.2 \cdot 10^{-8} \) | \(a_{416}= -0.27209270 \pm 9.1 \cdot 10^{-8} \) | \(a_{417}= -0.53810322 \pm 8.0 \cdot 10^{-8} \) |
| \(a_{418}= +0.03918072 \pm 1.0 \cdot 10^{-7} \) | \(a_{419}= -0.77335514 \pm 5.9 \cdot 10^{-8} \) | \(a_{420}= +0.30545964 \pm 2.8 \cdot 10^{-7} \) |
| \(a_{421}= +0.20722331 \pm 8.0 \cdot 10^{-8} \) | \(a_{422}= -0.51321159 \pm 7.8 \cdot 10^{-8} \) | \(a_{423}= +0.77755939 \pm 8.0 \cdot 10^{-8} \) |
| \(a_{424}= -0.15323687 \pm 7.8 \cdot 10^{-8} \) | \(a_{425}= -0.02215491 \pm 9.3 \cdot 10^{-8} \) | \(a_{426}= -0.47650101 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{427}= +1.87383817 \pm 5.9 \cdot 10^{-8} \) | \(a_{428}= +0.19035491 \pm 1.0 \cdot 10^{-7} \) | \(a_{429}= +0.27206390 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{430}= -0.40776014 \pm 1.8 \cdot 10^{-7} \) | \(a_{431}= -1.49821795 \pm 1.0 \cdot 10^{-7} \) | \(a_{432}= -0.24275063 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{433}= +1.79985130 \pm 8.6 \cdot 10^{-8} \) | \(a_{434}= -0.16121594 \pm 1.6 \cdot 10^{-7} \) | \(a_{435}= -0.80130020 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{436}= +0.54534658 \pm 1.0 \cdot 10^{-7} \) | \(a_{437}= -0.01261406 \pm 5.3 \cdot 10^{-8} \) | \(a_{438}= +0.70728193 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{439}= -1.53665924 \pm 8.3 \cdot 10^{-8} \) | \(a_{440}= -0.10525603 \pm 9.3 \cdot 10^{-8} \) | \(a_{441}= -0.07474510 \pm 8.6 \cdot 10^{-8} \) |
| \(a_{442}= -0.96209560 \pm 1.6 \cdot 10^{-7} \) | \(a_{443}= -1.17692073 \pm 9.2 \cdot 10^{-8} \) | \(a_{444}= +0.29441815 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{445}= -0.26252106 \pm 7.4 \cdot 10^{-8} \) | \(a_{446}= +0.31887758 \pm 1.0 \cdot 10^{-7} \) | \(a_{447}= +0.02240443 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{448}= +0.13192592 \pm 9.4 \cdot 10^{-8} \) | \(a_{449}= +0.04940952 \pm 9.3 \cdot 10^{-8} \) | \(a_{450}= +0.01163137 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{451}= -0.55320142 \pm 1.0 \cdot 10^{-7} \) | \(a_{452}= -0.91635344 \pm 9.1 \cdot 10^{-8} \) | \(a_{453}= +0.31396591 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{454}= -0.14147866 \pm 6.8 \cdot 10^{-8} \) | \(a_{455}= -1.60398510 \pm 6.4 \cdot 10^{-8} \) | \(a_{456}= -0.03809028 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{457}= +0.38191024 \pm 1.0 \cdot 10^{-7} \) | \(a_{458}= +1.09127648 \pm 1.0 \cdot 10^{-7} \) | \(a_{459}= -0.85834464 \pm 8.1 \cdot 10^{-8} \) |
| \(a_{460}= +0.03388671 \pm 1.6 \cdot 10^{-7} \) | \(a_{461}= +0.43570719 \pm 1.1 \cdot 10^{-7} \) | \(a_{462}= -0.13191196 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{463}= +0.54298238 \pm 9.0 \cdot 10^{-8} \) | \(a_{464}= -0.34607605 \pm 1.0 \cdot 10^{-7} \) | \(a_{465}= -0.12504507 \pm 7.8 \cdot 10^{-8} \) |
| \(a_{466}= +0.16043405 \pm 7.4 \cdot 10^{-8} \) | \(a_{467}= -0.92351734 \pm 9.1 \cdot 10^{-8} \) | \(a_{468}= +0.50510230 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{469}= -0.28900982 \pm 7.5 \cdot 10^{-8} \) | \(a_{470}= -0.82715985 \pm 1.9 \cdot 10^{-7} \) | \(a_{471}= +0.23836538 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{472}= +0.57781659 \pm 9.7 \cdot 10^{-8} \) | \(a_{473}= +0.17609016 \pm 1.0 \cdot 10^{-7} \) | \(a_{474}= +0.34909695 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{475}= +0.00460588 \pm 8.4 \cdot 10^{-8} \) | \(a_{476}= +0.46647832 \pm 1.7 \cdot 10^{-7} \) | \(a_{477}= +0.28446297 \pm 8.3 \cdot 10^{-8} \) |
| \(a_{478}= +0.69444157 \pm 9.0 \cdot 10^{-8} \) | \(a_{479}= -0.57428962 \pm 9.1 \cdot 10^{-8} \) | \(a_{480}= +0.10232664 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{481}= -1.54600560 \pm 9.7 \cdot 10^{-8} \) | \(a_{482}= -0.26276959 \pm 7.3 \cdot 10^{-8} \) | \(a_{483}= +0.04246847 \pm 6.9 \cdot 10^{-8} \) |
| \(a_{484}= +0.04545455 \pm 9.5 \cdot 10^{-7} \) | \(a_{485}= -0.07769537 \pm 7.0 \cdot 10^{-8} \) | \(a_{486}= +0.72270107 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{487}= +1.31453256 \pm 9.9 \cdot 10^{-8} \) | \(a_{488}= +0.62772146 \pm 6.4 \cdot 10^{-8} \) | \(a_{489}= +0.22054390 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{490}= +0.07951309 \pm 1.5 \cdot 10^{-7} \) | \(a_{491}= +0.19809926 \pm 6.4 \cdot 10^{-8} \) | \(a_{492}= +0.53780523 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{493}= -1.22369413 \pm 7.9 \cdot 10^{-8} \) | \(a_{494}= +0.20001410 \pm 1.8 \cdot 10^{-7} \) | \(a_{495}= +0.19539320 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{496}= -0.05400611 \pm 7.9 \cdot 10^{-8} \) | \(a_{497}= -1.21317526 \pm 5.2 \cdot 10^{-8} \) | \(a_{498}= -0.38147086 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{499}= +1.72820651 \pm 8.8 \cdot 10^{-8} \) | \(a_{500}= -0.50606789 \pm 8.8 \cdot 10^{-8} \) | \(a_{501}= +1.04732721 \pm 8.9 \cdot 10^{-8} \) |
| \(a_{502}= -1.17353593 \pm 7.8 \cdot 10^{-8} \) | \(a_{503}= +1.55924531 \pm 9.1 \cdot 10^{-8} \) | \(a_{504}= -0.24490214 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{505}= +0.94848092 \pm 6.9 \cdot 10^{-8} \) | \(a_{506}= -0.01463389 \pm 8.6 \cdot 10^{-8} \) | \(a_{507}= +0.80262225 \pm 8.7 \cdot 10^{-8} \) |
| \(a_{508}= +0.49970908 \pm 7.8 \cdot 10^{-8} \) | \(a_{509}= +0.40773175 \pm 7.0 \cdot 10^{-8} \) | \(a_{510}= +0.36181792 \pm 2.7 \cdot 10^{-7} \) |
| \(a_{511}= +1.80074529 \pm 8.1 \cdot 10^{-8} \) | \(a_{512}= +0.04419417 \pm 1.0 \cdot 10^{-6} \) | \(a_{513}= +0.17844488 \pm 7.7 \cdot 10^{-8} \) |
| \(a_{514}= +0.07683256 \pm 9.8 \cdot 10^{-8} \) | \(a_{515}= -0.21656400 \pm 6.9 \cdot 10^{-8} \) | \(a_{516}= -0.17118938 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{517}= +0.35720684 \pm 1.0 \cdot 10^{-7} \) | \(a_{518}= +0.74959089 \pm 1.8 \cdot 10^{-7} \) | \(a_{519}= -0.87911413 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{520}= -0.53732274 \pm 1.7 \cdot 10^{-7} \) | \(a_{521}= +0.67175553 \pm 7.7 \cdot 10^{-8} \) | \(a_{522}= +0.64244211 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{523}= -1.87546815 \pm 8.6 \cdot 10^{-8} \) | \(a_{524}= -0.76195669 \pm 1.1 \cdot 10^{-7} \) | \(a_{525}= -0.01550687 \pm 7.6 \cdot 10^{-8} \) |
| \(a_{526}= -0.66294443 \pm 9.2 \cdot 10^{-8} \) | \(a_{527}= -0.19096079 \pm 8.4 \cdot 10^{-8} \) | \(a_{528}= -0.04418950 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{529}= -0.99528868 \pm 7.8 \cdot 10^{-8} \) | \(a_{530}= -0.30260884 \pm 1.6 \cdot 10^{-7} \) | \(a_{531}= -1.07263624 \pm 5.4 \cdot 10^{-8} \) |
| \(a_{532}= -0.09697814 \pm 1.8 \cdot 10^{-7} \) | \(a_{533}= -2.82404432 \pm 8.7 \cdot 10^{-8} \) | \(a_{534}= -0.11021386 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{535}= +0.37590874 \pm 8.4 \cdot 10^{-8} \) | \(a_{536}= -0.09681608 \pm 8.7 \cdot 10^{-8} \) | \(a_{537}= -0.29300953 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{538}= -0.13312166 \pm 7.9 \cdot 10^{-8} \) | \(a_{539}= -0.03433752 \pm 7.2 \cdot 10^{-8} \) | \(a_{540}= -0.47937866 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{541}= +0.98339737 \pm 7.8 \cdot 10^{-8} \) | \(a_{542}= -0.40465227 \pm 9.0 \cdot 10^{-8} \) | \(a_{543}= -0.25555172 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{544}= +0.15626667 \pm 8.6 \cdot 10^{-8} \) | \(a_{545}= +1.07693855 \pm 6.8 \cdot 10^{-8} \) | \(a_{546}= -0.67339887 \pm 2.8 \cdot 10^{-7} \) |
| \(a_{547}= +1.41182502 \pm 7.1 \cdot 10^{-8} \) | \(a_{548}= +0.34118693 \pm 1.0 \cdot 10^{-7} \) | \(a_{549}= -1.16527769 \pm 6.5 \cdot 10^{-8} \) |
| \(a_{550}= +0.00534339 \pm 8.7 \cdot 10^{-8} \) | \(a_{551}= +0.25439892 \pm 7.6 \cdot 10^{-8} \) | \(a_{552}= +0.01422661 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{553}= +0.88880355 \pm 7.4 \cdot 10^{-8} \) | \(a_{554}= -0.24580270 \pm 6.9 \cdot 10^{-8} \) | \(a_{555}= +0.58141054 \pm 9.2 \cdot 10^{-8} \) |
| \(a_{556}= -0.45894454 \pm 7.1 \cdot 10^{-8} \) | \(a_{557}= -0.57724033 \pm 7.7 \cdot 10^{-8} \) | \(a_{558}= +0.10025483 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{559}= +0.89892470 \pm 7.9 \cdot 10^{-8} \) | \(a_{560}= +0.26052443 \pm 1.7 \cdot 10^{-7} \) | \(a_{561}= -0.15625013 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{562}= -0.43150808 \pm 1.0 \cdot 10^{-7} \) | \(a_{563}= -0.87465316 \pm 1.0 \cdot 10^{-7} \) | \(a_{564}= -0.34726539 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{565}= -1.80959482 \pm 8.3 \cdot 10^{-8} \) | \(a_{566}= -0.51858647 \pm 8.2 \cdot 10^{-8} \) | \(a_{567}= +0.09190732 \pm 6.7 \cdot 10^{-8} \) |
| \(a_{568}= -0.40640444 \pm 9.2 \cdot 10^{-8} \) | \(a_{569}= +1.82933240 \pm 9.1 \cdot 10^{-8} \) | \(a_{570}= -0.07521985 \pm 2.9 \cdot 10^{-7} \) |
| \(a_{571}= -0.28611073 \pm 1.0 \cdot 10^{-7} \) | \(a_{572}= +0.23204144 \pm 9.1 \cdot 10^{-8} \) | \(a_{573}= +0.24053083 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{574}= +1.36925629 \pm 1.9 \cdot 10^{-7} \) | \(a_{575}= -0.00172028 \pm 4.9 \cdot 10^{-8} \) | \(a_{576}= -0.08204034 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{577}= +0.22904937 \pm 8.4 \cdot 10^{-8} \) | \(a_{578}= -0.15456173 \pm 1.1 \cdot 10^{-7} \) | \(a_{579}= +0.72312207 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{580}= -0.68342344 \pm 1.9 \cdot 10^{-7} \) | \(a_{581}= -0.97122777 \pm 6.0 \cdot 10^{-8} \) | \(a_{582}= -0.03261874 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{583}= +0.13068084 \pm 7.8 \cdot 10^{-8} \) | \(a_{584}= +0.60323590 \pm 9.8 \cdot 10^{-8} \) | \(a_{585}= +0.99746503 \pm 7.8 \cdot 10^{-8} \) |
| \(a_{586}= +0.49429947 \pm 6.6 \cdot 10^{-8} \) | \(a_{587}= -1.24573554 \pm 1.2 \cdot 10^{-7} \) | \(a_{588}= +0.03338187 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{589}= +0.03969964 \pm 7.2 \cdot 10^{-8} \) | \(a_{590}= +1.14105962 \pm 1.8 \cdot 10^{-7} \) | \(a_{591}= +0.13039508 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{592}= +0.25110722 \pm 1.0 \cdot 10^{-7} \) | \(a_{593}= +0.27804951 \pm 8.3 \cdot 10^{-8} \) | \(a_{594}= +0.20701843 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{595}= +0.92119123 \pm 3.5 \cdot 10^{-8} \) | \(a_{596}= +0.01910858 \pm 1.0 \cdot 10^{-7} \) | \(a_{597}= -0.70934980 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{598}= -0.07470471 \pm 1.6 \cdot 10^{-7} \) | \(a_{599}= -0.48173143 \pm 8.5 \cdot 10^{-8} \) | \(a_{600}= -0.00519468 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{601}= -0.80414463 \pm 1.1 \cdot 10^{-7} \) | \(a_{602}= -0.43584950 \pm 1.8 \cdot 10^{-7} \) | \(a_{603}= +0.17972561 \pm 8.6 \cdot 10^{-8} \) |
| \(a_{604}= +0.26777936 \pm 1.0 \cdot 10^{-7} \) | \(a_{605}= +0.08976265 \pm 9.3 \cdot 10^{-8} \) | \(a_{606}= +0.39819945 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{607}= -0.33676943 \pm 7.3 \cdot 10^{-8} \) | \(a_{608}= -0.03248693 \pm 1.0 \cdot 10^{-7} \) | \(a_{609}= -0.85649934 \pm 1.3 \cdot 10^{-7} \) |
| \(a_{610}= +1.23961066 \pm 1.4 \cdot 10^{-7} \) | \(a_{611}= +1.82350933 \pm 8.1 \cdot 10^{-8} \) | \(a_{612}= -0.29008737 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{613}= +0.21645665 \pm 8.1 \cdot 10^{-8} \) | \(a_{614}= +0.29447176 \pm 8.7 \cdot 10^{-8} \) | \(a_{615}= +1.06204605 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{616}= -0.11250680 \pm 9.4 \cdot 10^{-8} \) | \(a_{617}= +0.61324157 \pm 9.6 \cdot 10^{-8} \) | \(a_{618}= -0.09091977 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{619}= -1.54205192 \pm 7.8 \cdot 10^{-8} \) | \(a_{620}= -0.10665008 \pm 1.6 \cdot 10^{-7} \) | \(a_{621}= -0.06664866 \pm 8.5 \cdot 10^{-8} \) |
| \(a_{622}= -0.61083606 \pm 9.2 \cdot 10^{-8} \) | \(a_{623}= -0.28060534 \pm 7.3 \cdot 10^{-8} \) | \(a_{624}= -0.22558347 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{625}= -0.97430912 \pm 7.6 \cdot 10^{-8} \) | \(a_{626}= -0.22593034 \pm 9.8 \cdot 10^{-8} \) | \(a_{627}= +0.03248350 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{628}= +0.20330019 \pm 1.0 \cdot 10^{-7} \) | \(a_{629}= +0.88789279 \pm 7.1 \cdot 10^{-8} \) | \(a_{630}= -0.48362742 \pm 2.6 \cdot 10^{-7} \) |
| \(a_{631}= -0.44098875 \pm 8.2 \cdot 10^{-8} \) | \(a_{632}= +0.29774239 \pm 8.8 \cdot 10^{-8} \) | \(a_{633}= -0.42548754 \pm 8.7 \cdot 10^{-8} \) |
| \(a_{634}= +0.27753498 \pm 8.5 \cdot 10^{-8} \) | \(a_{635}= +0.98681461 \pm 5.4 \cdot 10^{-8} \) | \(a_{636}= -0.12704385 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{637}= -0.17529001 \pm 4.6 \cdot 10^{-8} \) | \(a_{638}= +0.29513464 \pm 1.0 \cdot 10^{-7} \) | \(a_{639}= +0.75443338 \pm 7.8 \cdot 10^{-8} \) |
| \(a_{640}= +0.08727369 \pm 9.3 \cdot 10^{-8} \) | \(a_{641}= +1.44582647 \pm 9.9 \cdot 10^{-8} \) | \(a_{642}= +0.15781725 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{643}= -1.05336252 \pm 7.3 \cdot 10^{-8} \) | \(a_{644}= +0.03622106 \pm 1.6 \cdot 10^{-7} \) | \(a_{645}= -0.33806106 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{646}= -0.11487091 \pm 1.8 \cdot 10^{-7} \) | \(a_{647}= +0.95049015 \pm 6.8 \cdot 10^{-8} \) | \(a_{648}= +0.03078825 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{649}= -0.49276364 \pm 9.7 \cdot 10^{-8} \) | \(a_{650}= +0.02727756 \pm 1.6 \cdot 10^{-7} \) | \(a_{651}= -0.13365905 \pm 8.8 \cdot 10^{-8} \) |
| \(a_{652}= +0.18810038 \pm 9.2 \cdot 10^{-8} \) | \(a_{653}= -1.18326234 \pm 9.2 \cdot 10^{-8} \) | \(a_{654}= +0.45212964 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{655}= -1.50469547 \pm 8.8 \cdot 10^{-8} \) | \(a_{656}= +0.45869038 \pm 1.0 \cdot 10^{-7} \) | \(a_{657}= -1.11982366 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{658}= -0.88414038 \pm 1.9 \cdot 10^{-7} \) | \(a_{659}= +0.54383914 \pm 1.0 \cdot 10^{-7} \) | \(a_{660}= -0.08726446 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{661}= -0.34698841 \pm 1.0 \cdot 10^{-7} \) | \(a_{662}= +0.64538660 \pm 8.5 \cdot 10^{-8} \) | \(a_{663}= -0.79764310 \pm 7.7 \cdot 10^{-8} \) |
| \(a_{664}= -0.32535388 \pm 8.1 \cdot 10^{-8} \) | \(a_{665}= -0.19151032 \pm 7.6 \cdot 10^{-8} \) | \(a_{666}= -0.46614566 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{667}= -0.09501729 \pm 8.7 \cdot 10^{-8} \) | \(a_{668}= +0.89325819 \pm 9.4 \cdot 10^{-8} \) | \(a_{669}= +0.26437134 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{670}= -0.19119029 \pm 1.7 \cdot 10^{-7} \) | \(a_{671}= -0.53532266 \pm 6.4 \cdot 10^{-8} \) | \(a_{672}= +0.10937562 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{673}= +0.47636701 \pm 7.9 \cdot 10^{-8} \) | \(a_{674}= -0.55352633 \pm 1.0 \cdot 10^{-7} \) | \(a_{675}= +0.02433598 \pm 7.4 \cdot 10^{-8} \) |
| \(a_{676}= +0.68455101 \pm 8.8 \cdot 10^{-8} \) | \(a_{677}= -0.04600808 \pm 8.1 \cdot 10^{-8} \) | \(a_{678}= -0.75971972 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{679}= -0.08304757 \pm 9.3 \cdot 10^{-8} \) | \(a_{680}= +0.30859202 \pm 1.6 \cdot 10^{-7} \) | \(a_{681}= -0.11729549 \pm 6.7 \cdot 10^{-8} \) |
| \(a_{682}= +0.04605656 \pm 7.9 \cdot 10^{-8} \) | \(a_{683}= -0.68517026 \pm 6.3 \cdot 10^{-8} \) | \(a_{684}= +0.06030748 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{685}= +0.67376852 \pm 6.9 \cdot 10^{-8} \) | \(a_{686}= -0.66129519 \pm 7.9 \cdot 10^{-8} \) | \(a_{687}= +0.90474290 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{688}= -0.14600625 \pm 1.0 \cdot 10^{-7} \) | \(a_{689}= +0.66711415 \pm 5.0 \cdot 10^{-8} \) | \(a_{690}= +0.02809440 \pm 2.7 \cdot 10^{-7} \) |
| \(a_{691}= -0.61002623 \pm 8.1 \cdot 10^{-8} \) | \(a_{692}= -0.74979040 \pm 1.2 \cdot 10^{-7} \) | \(a_{693}= +0.20885325 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{694}= -0.43955328 \pm 9.7 \cdot 10^{-8} \) | \(a_{695}= -0.90631369 \pm 5.8 \cdot 10^{-8} \) | \(a_{696}= -0.28692073 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{697}= +1.62188842 \pm 5.8 \cdot 10^{-8} \) | \(a_{698}= -0.93965702 \pm 1.0 \cdot 10^{-7} \) | \(a_{699}= +0.13301080 \pm 7.1 \cdot 10^{-8} \) |
| \(a_{700}= -0.01322570 \pm 1.7 \cdot 10^{-7} \) | \(a_{701}= +1.05603164 \pm 7.9 \cdot 10^{-8} \) | \(a_{702}= +1.05681079 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{703}= -0.18458776 \pm 8.7 \cdot 10^{-8} \) | \(a_{704}= -0.03768892 \pm 1.3 \cdot 10^{-6} \) | \(a_{705}= -0.68577213 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{706}= -0.29611439 \pm 8.2 \cdot 10^{-8} \) | \(a_{707}= +1.01381890 \pm 8.4 \cdot 10^{-8} \) | \(a_{708}= +0.47904950 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{709}= +0.59441366 \pm 9.9 \cdot 10^{-8} \) | \(a_{710}= -0.80255863 \pm 1.7 \cdot 10^{-7} \) | \(a_{711}= -0.55271739 \pm 7.5 \cdot 10^{-8} \) |
| \(a_{712}= -0.09400064 \pm 8.4 \cdot 10^{-8} \) | \(a_{713}= -0.01482771 \pm 4.4 \cdot 10^{-8} \) | \(a_{714}= +0.38674245 \pm 2.7 \cdot 10^{-7} \) |
| \(a_{715}= +0.45823037 \pm 1.7 \cdot 10^{-7} \) | \(a_{716}= -0.24990581 \pm 9.2 \cdot 10^{-8} \) | \(a_{717}= +0.57573959 \pm 9.6 \cdot 10^{-8} \) |
| \(a_{718}= +0.16914907 \pm 7.3 \cdot 10^{-8} \) | \(a_{719}= +0.48958189 \pm 1.0 \cdot 10^{-7} \) | \(a_{720}= -0.16201149 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{721}= -0.23148244 \pm 9.5 \cdot 10^{-8} \) | \(a_{722}= -0.68322578 \pm 1.1 \cdot 10^{-7} \) | \(a_{723}= -0.21785397 \pm 7.3 \cdot 10^{-8} \) |
| \(a_{724}= -0.21795830 \pm 1.0 \cdot 10^{-7} \) | \(a_{725}= +0.03469446 \pm 7.9 \cdot 10^{-8} \) | \(a_{726}= +0.03768493 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{727}= +0.64454220 \pm 6.8 \cdot 10^{-8} \) | \(a_{728}= -0.57433727 \pm 1.7 \cdot 10^{-7} \) | \(a_{729}= +0.51208633 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{730}= +1.19125712 \pm 1.8 \cdot 10^{-7} \) | \(a_{731}= -0.51626511 \pm 7.8 \cdot 10^{-8} \) | \(a_{732}= +0.52042405 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{733}= +1.37573014 \pm 7.2 \cdot 10^{-8} \) | \(a_{734}= +0.22345747 \pm 9.9 \cdot 10^{-8} \) | \(a_{735}= +0.06592179 \pm 8.7 \cdot 10^{-8} \) |
| \(a_{736}= +0.01213378 \pm 8.6 \cdot 10^{-8} \) | \(a_{737}= +0.08256503 \pm 8.7 \cdot 10^{-8} \) | \(a_{738}= -0.85149498 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{739}= -1.86093866 \pm 9.9 \cdot 10^{-8} \) | \(a_{740}= +0.49588106 \pm 1.8 \cdot 10^{-7} \) | \(a_{741}= +0.16582538 \pm 7.4 \cdot 10^{-8} \) |
| \(a_{742}= -0.32345464 \pm 1.6 \cdot 10^{-7} \) | \(a_{743}= +1.68541595 \pm 7.6 \cdot 10^{-8} \) | \(a_{744}= -0.04477476 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{745}= +0.03773521 \pm 8.7 \cdot 10^{-8} \) | \(a_{746}= +0.11175148 \pm 9.5 \cdot 10^{-8} \) | \(a_{747}= +0.60397428 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{748}= -0.13326466 \pm 8.6 \cdot 10^{-8} \) | \(a_{749}= +0.40180395 \pm 8.7 \cdot 10^{-8} \) | \(a_{750}= -0.41956492 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{751}= -0.47478965 \pm 7.9 \cdot 10^{-8} \) | \(a_{752}= -0.29618026 \pm 1.0 \cdot 10^{-7} \) | \(a_{753}= -0.97294160 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{754}= +1.50663626 \pm 1.8 \cdot 10^{-7} \) | \(a_{755}= +0.52880486 \pm 5.1 \cdot 10^{-8} \) | \(a_{756}= -0.51240160 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{757}= -0.34026089 \pm 9.0 \cdot 10^{-8} \) | \(a_{758}= +0.78662544 \pm 9.0 \cdot 10^{-8} \) | \(a_{759}= -0.01213250 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{760}= -0.06415449 \pm 1.8 \cdot 10^{-7} \) | \(a_{761}= +0.05907727 \pm 8.9 \cdot 10^{-8} \) | \(a_{762}= +0.41429303 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{763}= +1.15112557 \pm 9.9 \cdot 10^{-8} \) | \(a_{764}= +0.20514710 \pm 1.1 \cdot 10^{-7} \) | \(a_{765}= -0.57285821 \pm 5.1 \cdot 10^{-8} \) |
| \(a_{766}= +0.54092827 \pm 8.0 \cdot 10^{-8} \) | \(a_{767}= -2.51551483 \pm 8.6 \cdot 10^{-8} \) | \(a_{768}= +0.03663999 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{769}= -0.04906683 \pm 7.6 \cdot 10^{-8} \) | \(a_{770}= -0.22217598 \pm 1.7 \cdot 10^{-7} \) | \(a_{771}= +0.06369945 \pm 9.7 \cdot 10^{-8} \) |
| \(a_{772}= +0.61674584 \pm 1.0 \cdot 10^{-7} \) | \(a_{773}= -0.69781143 \pm 7.4 \cdot 10^{-8} \) | \(a_{774}= +0.27104032 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{775}= +0.00541416 \pm 7.4 \cdot 10^{-8} \) | \(a_{776}= -0.02782030 \pm 1.0 \cdot 10^{-7} \) | \(a_{777}= +0.62146215 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{778}= -0.19814050 \pm 6.6 \cdot 10^{-8} \) | \(a_{779}= -0.33718120 \pm 1.0 \cdot 10^{-7} \) | \(a_{780}= -0.44547733 \pm 2.8 \cdot 10^{-7} \) |
| \(a_{781}= +0.34658287 \pm 9.2 \cdot 10^{-8} \) | \(a_{782}= +0.04290397 \pm 1.6 \cdot 10^{-7} \) | \(a_{783}= +1.34416285 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{784}= +0.02847117 \pm 7.2 \cdot 10^{-8} \) | \(a_{785}= +0.40147280 \pm 7.7 \cdot 10^{-8} \) | \(a_{786}= -0.63171424 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{787}= -0.24269730 \pm 8.9 \cdot 10^{-8} \) | \(a_{788}= +0.11121307 \pm 9.1 \cdot 10^{-8} \) | \(a_{789}= -0.54962631 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{790}= +0.58797519 \pm 1.7 \cdot 10^{-7} \) | \(a_{791}= -1.93425231 \pm 7.6 \cdot 10^{-8} \) | \(a_{792}= +0.06996424 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{793}= -2.73277482 \pm 7.0 \cdot 10^{-8} \) | \(a_{794}= -0.75999581 \pm 7.7 \cdot 10^{-8} \) | \(a_{795}= -0.25088344 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{796}= -0.60499958 \pm 1.0 \cdot 10^{-7} \) | \(a_{797}= -0.27258806 \pm 8.7 \cdot 10^{-8} \) | \(a_{798}= -0.08040151 \pm 2.9 \cdot 10^{-7} \) |
| \(a_{799}= -1.04726708 \pm 7.1 \cdot 10^{-8} \) | \(a_{800}= -0.00443051 \pm 8.7 \cdot 10^{-8} \) | \(a_{801}= +0.17449914 \pm 8.9 \cdot 10^{-8} \) |
| \(a_{802}= -0.15939773 \pm 1.2 \cdot 10^{-7} \) | \(a_{803}= -0.51444130 \pm 9.8 \cdot 10^{-8} \) | \(a_{804}= -0.08026716 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{805}= +0.07152857 \pm 4.0 \cdot 10^{-8} \) | \(a_{806}= +0.23511468 \pm 1.6 \cdot 10^{-7} \) | \(a_{807}= -0.11036697 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{808}= +0.33962158 \pm 8.7 \cdot 10^{-8} \) | \(a_{809}= +0.15187786 \pm 9.2 \cdot 10^{-8} \) | \(a_{810}= +0.06079997 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{811}= -1.33165281 \pm 9.5 \cdot 10^{-8} \) | \(a_{812}= -0.73050241 \pm 1.9 \cdot 10^{-7} \) | \(a_{813}= -0.33548443 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{814}= -0.21414495 \pm 1.0 \cdot 10^{-7} \) | \(a_{815}= +0.37145653 \pm 7.1 \cdot 10^{-8} \) | \(a_{816}= +0.12955576 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{817}= +0.10732852 \pm 8.6 \cdot 10^{-8} \) | \(a_{818}= +0.89680638 \pm 1.0 \cdot 10^{-7} \) | \(a_{819}= +1.06617737 \pm 7.3 \cdot 10^{-8} \) |
| \(a_{820}= +0.90581178 \pm 1.9 \cdot 10^{-7} \) | \(a_{821}= +0.09156284 \pm 6.8 \cdot 10^{-8} \) | \(a_{822}= +0.28286732 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{823}= +1.15258574 \pm 9.6 \cdot 10^{-8} \) | \(a_{824}= -0.07754485 \pm 1.0 \cdot 10^{-7} \) | \(a_{825}= +0.00443004 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{826}= +1.21966375 \pm 1.8 \cdot 10^{-7} \) | \(a_{827}= -1.30376022 \pm 8.5 \cdot 10^{-8} \) | \(a_{828}= -0.02252468 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{829}= +1.85013797 \pm 7.2 \cdot 10^{-8} \) | \(a_{830}= -0.64250175 \pm 1.6 \cdot 10^{-7} \) | \(a_{831}= -0.20378726 \pm 6.9 \cdot 10^{-8} \) |
| \(a_{832}= -0.19239859 \pm 9.1 \cdot 10^{-8} \) | \(a_{833}= +0.10067152 \pm 5.9 \cdot 10^{-8} \) | \(a_{834}= -0.38049644 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{835}= +1.76398682 \pm 9.6 \cdot 10^{-8} \) | \(a_{836}= +0.02770495 \pm 1.0 \cdot 10^{-7} \) | \(a_{837}= +0.20976026 \pm 6.8 \cdot 10^{-8} \) |
| \(a_{838}= -0.54684466 \pm 6.9 \cdot 10^{-8} \) | \(a_{839}= -0.17195344 \pm 6.0 \cdot 10^{-8} \) | \(a_{840}= +0.21599258 \pm 2.8 \cdot 10^{-7} \) |
| \(a_{841}= +0.91629808 \pm 7.6 \cdot 10^{-8} \) | \(a_{842}= +0.14652901 \pm 9.1 \cdot 10^{-8} \) | \(a_{843}= -0.35774973 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{844}= -0.36289540 \pm 7.8 \cdot 10^{-8} \) | \(a_{845}= +1.35183642 \pm 6.9 \cdot 10^{-8} \) | \(a_{846}= +0.54981752 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{847}= +0.09594612 \pm 9.4 \cdot 10^{-8} \) | \(a_{848}= -0.10835483 \pm 7.8 \cdot 10^{-8} \) | \(a_{849}= -0.42994368 \pm 8.1 \cdot 10^{-8} \) |
| \(a_{850}= -0.01566588 \pm 1.6 \cdot 10^{-7} \) | \(a_{851}= +0.06894302 \pm 8.3 \cdot 10^{-8} \) | \(a_{852}= -0.33693709 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{853}= +0.52557014 \pm 1.1 \cdot 10^{-7} \) | \(a_{854}= +1.32500368 \pm 1.4 \cdot 10^{-7} \) | \(a_{855}= +0.11909390 \pm 5.9 \cdot 10^{-8} \) |
| \(a_{856}= +0.13460125 \pm 1.0 \cdot 10^{-7} \) | \(a_{857}= -1.83081065 \pm 1.1 \cdot 10^{-7} \) | \(a_{858}= +0.19237823 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{859}= +0.51391317 \pm 8.7 \cdot 10^{-8} \) | \(a_{860}= -0.28832996 \pm 1.8 \cdot 10^{-7} \) | \(a_{861}= +1.13520718 \pm 9.0 \cdot 10^{-8} \) |
| \(a_{862}= -1.05940008 \pm 1.1 \cdot 10^{-7} \) | \(a_{863}= +1.17553399 \pm 8.4 \cdot 10^{-8} \) | \(a_{864}= -0.17165062 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{865}= -1.48066976 \pm 9.7 \cdot 10^{-8} \) | \(a_{866}= +1.27268706 \pm 9.6 \cdot 10^{-8} \) | \(a_{867}= -0.12814225 \pm 1.2 \cdot 10^{-7} \) |
| \(a_{868}= -0.11399688 \pm 1.6 \cdot 10^{-7} \) | \(a_{869}= -0.25391556 \pm 8.8 \cdot 10^{-8} \) | \(a_{870}= -0.56660481 \pm 2.9 \cdot 10^{-7} \) |
| \(a_{871}= +0.42148718 \pm 5.5 \cdot 10^{-8} \) | \(a_{872}= +0.38561826 \pm 1.0 \cdot 10^{-7} \) | \(a_{873}= +0.05164453 \pm 7.3 \cdot 10^{-8} \) |
| \(a_{874}= -0.00891949 \pm 1.8 \cdot 10^{-7} \) | \(a_{875}= -1.06821555 \pm 7.3 \cdot 10^{-8} \) | \(a_{876}= +0.50012385 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{877}= -0.22615344 \pm 7.3 \cdot 10^{-8} \) | \(a_{878}= -1.08658217 \pm 9.4 \cdot 10^{-8} \) | \(a_{879}= +0.40980809 \pm 8.4 \cdot 10^{-8} \) |
| \(a_{880}= -0.07442725 \pm 9.3 \cdot 10^{-8} \) | \(a_{881}= -0.75225906 \pm 6.7 \cdot 10^{-8} \) | \(a_{882}= -0.05285277 \pm 1.6 \cdot 10^{-7} \) |
| \(a_{883}= +0.71215677 \pm 7.7 \cdot 10^{-8} \) | \(a_{884}= -0.68030432 \pm 1.6 \cdot 10^{-7} \) | \(a_{885}= +0.94601652 \pm 5.8 \cdot 10^{-8} \) |
| \(a_{886}= -0.83220863 \pm 1.0 \cdot 10^{-7} \) | \(a_{887}= +1.27039336 \pm 8.6 \cdot 10^{-8} \) | \(a_{888}= +0.20818507 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{889}= +1.05479328 \pm 6.8 \cdot 10^{-8} \) | \(a_{890}= -0.18563042 \pm 1.6 \cdot 10^{-7} \) | \(a_{891}= -0.02625631 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{892}= +0.22548050 \pm 1.0 \cdot 10^{-7} \) | \(a_{893}= +0.21772076 \pm 9.7 \cdot 10^{-8} \) | \(a_{894}= +0.01584232 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{895}= -0.49350856 \pm 7.4 \cdot 10^{-8} \) | \(a_{896}= +0.09328571 \pm 9.4 \cdot 10^{-8} \) | \(a_{897}= -0.06193532 \pm 6.9 \cdot 10^{-8} \) |
| \(a_{898}= +0.03493781 \pm 1.0 \cdot 10^{-7} \) | \(a_{899}= +0.29904352 \pm 7.5 \cdot 10^{-8} \) | \(a_{900}= +0.00822462 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{901}= -0.38313305 \pm 5.5 \cdot 10^{-8} \) | \(a_{902}= -0.39117247 \pm 1.0 \cdot 10^{-7} \) | \(a_{903}= -0.36134906 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{904}= -0.64795973 \pm 9.1 \cdot 10^{-8} \) | \(a_{905}= -0.43041931 \pm 8.4 \cdot 10^{-8} \) | \(a_{906}= +0.22200742 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{907}= -0.38882683 \pm 6.3 \cdot 10^{-8} \) | \(a_{908}= -0.10004052 \pm 6.8 \cdot 10^{-8} \) | \(a_{909}= -0.63046028 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{910}= -1.13418874 \pm 2.5 \cdot 10^{-7} \) | \(a_{911}= -1.09140122 \pm 7.4 \cdot 10^{-8} \) | \(a_{912}= -0.02693389 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{913}= +0.27746272 \pm 8.1 \cdot 10^{-8} \) | \(a_{914}= +0.27005132 \pm 1.1 \cdot 10^{-7} \) | \(a_{915}= +1.02772208 \pm 5.1 \cdot 10^{-8} \) |
| \(a_{916}= +0.77164900 \pm 1.0 \cdot 10^{-7} \) | \(a_{917}= -1.60834937 \pm 9.9 \cdot 10^{-8} \) | \(a_{918}= -0.60694132 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{919}= -1.03611323 \pm 1.0 \cdot 10^{-7} \) | \(a_{920}= +0.02396152 \pm 1.6 \cdot 10^{-7} \) | \(a_{921}= +0.24413725 \pm 9.6 \cdot 10^{-8} \) |
| \(a_{922}= +0.30809151 \pm 1.2 \cdot 10^{-7} \) | \(a_{923}= +1.76927489 \pm 6.8 \cdot 10^{-8} \) | \(a_{924}= -0.09327584 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{925}= -0.02517374 \pm 8.2 \cdot 10^{-8} \) | \(a_{926}= +0.38394652 \pm 1.0 \cdot 10^{-7} \) | \(a_{927}= +0.14395124 \pm 9.8 \cdot 10^{-8} \) |
| \(a_{928}= -0.24471272 \pm 1.0 \cdot 10^{-7} \) | \(a_{929}= -0.17489411 \pm 1.0 \cdot 10^{-7} \) | \(a_{930}= -0.08842022 \pm 2.7 \cdot 10^{-7} \) |
| \(a_{931}= -0.02092903 \pm 4.0 \cdot 10^{-8} \) | \(a_{932}= +0.11344400 \pm 7.4 \cdot 10^{-8} \) | \(a_{933}= -0.50642490 \pm 8.8 \cdot 10^{-8} \) |
| \(a_{934}= -0.65302537 \pm 1.0 \cdot 10^{-7} \) | \(a_{935}= -0.26316816 \pm 1.6 \cdot 10^{-7} \) | \(a_{936}= +0.35716126 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{937}= +1.19297868 \pm 7.0 \cdot 10^{-8} \) | \(a_{938}= -0.20436081 \pm 1.7 \cdot 10^{-7} \) | \(a_{939}= -0.18731172 \pm 1.1 \cdot 10^{-7} \) |
| \(a_{940}= -0.58489034 \pm 1.9 \cdot 10^{-7} \) | \(a_{941}= +0.54872128 \pm 9.2 \cdot 10^{-8} \) | \(a_{942}= +0.16854978 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{943}= +0.12593624 \pm 9.9 \cdot 10^{-8} \) | \(a_{944}= +0.40857803 \pm 9.7 \cdot 10^{-8} \) | \(a_{945}= -1.01187952 \pm 4.8 \cdot 10^{-8} \) |
| \(a_{946}= +0.12451455 \pm 1.0 \cdot 10^{-7} \) | \(a_{947}= +0.75110099 \pm 5.5 \cdot 10^{-8} \) | \(a_{948}= +0.24684882 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{949}= -2.62617737 \pm 8.7 \cdot 10^{-8} \) | \(a_{950}= +0.00325685 \pm 1.8 \cdot 10^{-7} \) | \(a_{951}= +0.23009550 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{952}= +0.32984998 \pm 1.7 \cdot 10^{-7} \) | \(a_{953}= +0.17602786 \pm 8.4 \cdot 10^{-8} \) | \(a_{954}= +0.20114569 \pm 1.7 \cdot 10^{-7} \) |
| \(a_{955}= +0.40512002 \pm 1.0 \cdot 10^{-7} \) | \(a_{956}= +0.49104435 \pm 9.0 \cdot 10^{-8} \) | \(a_{957}= +0.24468682 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{958}= -0.40608409 \pm 1.0 \cdot 10^{-7} \) | \(a_{959}= +0.72018239 \pm 1.0 \cdot 10^{-7} \) | \(a_{960}= +0.07235586 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{961}= -0.95333345 \pm 6.5 \cdot 10^{-8} \) | \(a_{962}= -1.09319105 \pm 1.8 \cdot 10^{-7} \) | \(a_{963}= -0.24986852 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{964}= -0.18580616 \pm 7.3 \cdot 10^{-8} \) | \(a_{965}= +1.21793626 \pm 9.1 \cdot 10^{-8} \) | \(a_{966}= +0.03002974 \pm 2.7 \cdot 10^{-7} \) |
| \(a_{967}= +1.56231985 \pm 8.1 \cdot 10^{-8} \) | \(a_{968}= +0.03214122 \pm 1.7 \cdot 10^{-6} \) | \(a_{969}= -0.09523585 \pm 8.2 \cdot 10^{-8} \) |
| \(a_{970}= -0.05493893 \pm 1.8 \cdot 10^{-7} \) | \(a_{971}= -0.25624309 \pm 9.1 \cdot 10^{-8} \) | \(a_{972}= +0.51102683 \pm 1.0 \cdot 10^{-7} \) |
| \(a_{973}= -0.96874689 \pm 6.3 \cdot 10^{-8} \) | \(a_{974}= +0.92951489 \pm 1.1 \cdot 10^{-7} \) | \(a_{975}= +0.02261496 \pm 7.5 \cdot 10^{-8} \) |
| \(a_{976}= +0.44386610 \pm 6.4 \cdot 10^{-8} \) | \(a_{977}= -1.43093973 \pm 7.7 \cdot 10^{-8} \) | \(a_{978}= +0.15594809 \pm 2.0 \cdot 10^{-7} \) |
| \(a_{979}= +0.08016402 \pm 8.4 \cdot 10^{-8} \) | \(a_{980}= +0.05622424 \pm 1.5 \cdot 10^{-7} \) | \(a_{981}= -0.71584674 \pm 9.2 \cdot 10^{-8} \) |
| \(a_{982}= +0.14007733 \pm 7.4 \cdot 10^{-8} \) | \(a_{983}= +0.92800002 \pm 1.0 \cdot 10^{-7} \) | \(a_{984}= +0.38028572 \pm 2.1 \cdot 10^{-7} \) |
| \(a_{985}= +0.21962115 \pm 9.4 \cdot 10^{-8} \) | \(a_{986}= -0.86528242 \pm 1.8 \cdot 10^{-7} \) | \(a_{987}= -0.73301289 \pm 8.5 \cdot 10^{-8} \) |
| \(a_{988}= +0.14143133 \pm 1.8 \cdot 10^{-7} \) | \(a_{989}= -0.04008690 \pm 9.3 \cdot 10^{-8} \) | \(a_{990}= +0.13816386 \pm 1.8 \cdot 10^{-7} \) |
| \(a_{991}= +0.53791963 \pm 6.9 \cdot 10^{-8} \) | \(a_{992}= -0.03818808 \pm 7.9 \cdot 10^{-8} \) | \(a_{993}= +0.53506966 \pm 9.1 \cdot 10^{-8} \) |
| \(a_{994}= -0.85784446 \pm 1.7 \cdot 10^{-7} \) | \(a_{995}= -1.19473999 \pm 9.1 \cdot 10^{-8} \) | \(a_{996}= -0.26974063 \pm 1.9 \cdot 10^{-7} \) |
| \(a_{997}= +0.23362699 \pm 6.8 \cdot 10^{-8} \) | \(a_{998}= +1.22202654 \pm 9.8 \cdot 10^{-8} \) | \(a_{999}= -0.97530295 \pm 9.0 \cdot 10^{-8} \) |
| \(a_{1000}= -0.35784404 \pm 8.8 \cdot 10^{-8} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000