Maass form invariants
Level: | \( 21 = 3 \cdot 7 \) |
Weight: | \( 0 \) |
Character: | 21.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(8.55790422191291735607221572644 \pm 2 \cdot 10^{-9}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -1.29837478 \pm 2.4 \cdot 10^{-6} \) | \(a_{3}= +0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= +0.68577706 \pm 2.8 \cdot 10^{-6} \) | \(a_{5}= -0.92976698 \pm 1.9 \cdot 10^{-6} \) | \(a_{6}= -0.74961703 \pm 2.4 \cdot 10^{-6} \) |
\(a_{7}= -0.37796447 \pm 1.0 \cdot 10^{-8} \) | \(a_{8}= +0.40797914 \pm 2.8 \cdot 10^{-6} \) | \(a_{9}= +0.33333333 \pm 4.2 \cdot 10^{-8} \) |
\(a_{10}= +1.20718600 \pm 2.3 \cdot 10^{-6} \) | \(a_{11}= -0.20539436 \pm 1.8 \cdot 10^{-6} \) | \(a_{12}= +0.39593357 \pm 2.8 \cdot 10^{-6} \) |
\(a_{13}= -0.32328544 \pm 2.1 \cdot 10^{-6} \) | \(a_{14}= +0.49073954 \pm 2.4 \cdot 10^{-6} \) | \(a_{15}= -0.53680122 \pm 1.9 \cdot 10^{-6} \) |
\(a_{16}= -1.21548688 \pm 2.3 \cdot 10^{-6} \) | \(a_{17}= -1.19487726 \pm 2.1 \cdot 10^{-6} \) | \(a_{18}= -0.43279159 \pm 2.4 \cdot 10^{-6} \) |
\(a_{19}= -1.03154817 \pm 2.0 \cdot 10^{-6} \) | \(a_{20}= -0.63761287 \pm 2.7 \cdot 10^{-6} \) | \(a_{21}= -0.21821789 \pm 1.0 \cdot 10^{-8} \) |
\(a_{22}= +0.26667886 \pm 2.4 \cdot 10^{-6} \) | \(a_{23}= +1.32111469 \pm 2.0 \cdot 10^{-6} \) | \(a_{24}= +0.23554687 \pm 2.8 \cdot 10^{-6} \) |
\(a_{25}= -0.13553336 \pm 1.9 \cdot 10^{-6} \) | \(a_{26}= +0.41974566 \pm 2.3 \cdot 10^{-6} \) | \(a_{27}= +0.19245009 \pm 9.4 \cdot 10^{-8} \) |
\(a_{28}= -0.25919937 \pm 2.8 \cdot 10^{-6} \) | \(a_{29}= -1.10371943 \pm 2.1 \cdot 10^{-6} \) | \(a_{30}= +0.69696916 \pm 4.3 \cdot 10^{-6} \) |
\(a_{31}= -0.75266787 \pm 2.2 \cdot 10^{-6} \) | \(a_{32}= +1.17017837 \pm 2.1 \cdot 10^{-6} \) | \(a_{33}= -0.11858449 \pm 1.8 \cdot 10^{-6} \) |
\(a_{34}= +1.55139849 \pm 1.9 \cdot 10^{-6} \) | \(a_{35}= +0.35141889 \pm 1.9 \cdot 10^{-6} \) | \(a_{36}= +0.22859235 \pm 2.8 \cdot 10^{-6} \) |
\(a_{37}= +0.11839808 \pm 1.9 \cdot 10^{-6} \) | \(a_{38}= +1.33933612 \pm 2.4 \cdot 10^{-6} \) | \(a_{39}= -0.18664894 \pm 2.1 \cdot 10^{-6} \) |
\(a_{40}= -0.37932553 \pm 2.5 \cdot 10^{-6} \) | \(a_{41}= +1.33809665 \pm 1.6 \cdot 10^{-6} \) | \(a_{42}= +0.28332860 \pm 2.4 \cdot 10^{-6} \) |
\(a_{43}= +0.84371741 \pm 2.1 \cdot 10^{-6} \) | \(a_{44}= -0.14085474 \pm 2.8 \cdot 10^{-6} \) | \(a_{45}= -0.30992233 \pm 1.9 \cdot 10^{-6} \) |
\(a_{46}= -1.71530200 \pm 2.4 \cdot 10^{-6} \) | \(a_{47}= +1.43222580 \pm 1.9 \cdot 10^{-6} \) | \(a_{48}= -0.70176168 \pm 2.3 \cdot 10^{-6} \) |
\(a_{49}= +0.14285714 \pm 1.5 \cdot 10^{-7} \) | \(a_{50}= +0.17597310 \pm 1.8 \cdot 10^{-6} \) | \(a_{51}= -0.68986271 \pm 2.1 \cdot 10^{-6} \) |
\(a_{52}= -0.22170174 \pm 2.6 \cdot 10^{-6} \) | \(a_{53}= +0.01777122 \pm 2.2 \cdot 10^{-6} \) | \(a_{54}= -0.24987234 \pm 2.4 \cdot 10^{-6} \) |
\(a_{55}= +0.19096890 \pm 1.7 \cdot 10^{-6} \) | \(a_{56}= -0.15420162 \pm 2.8 \cdot 10^{-6} \) | \(a_{57}= -0.59556461 \pm 2.0 \cdot 10^{-6} \) |
\(a_{58}= +1.43304147 \pm 2.0 \cdot 10^{-6} \) | \(a_{59}= +0.91519658 \pm 1.4 \cdot 10^{-6} \) | \(a_{60}= -0.36812596 \pm 4.7 \cdot 10^{-6} \) |
\(a_{61}= +1.82318643 \pm 1.9 \cdot 10^{-6} \) | \(a_{62}= +0.97724498 \pm 2.5 \cdot 10^{-6} \) | \(a_{63}= -0.12598816 \pm 1.8 \cdot 10^{-7} \) |
\(a_{64}= -0.30384320 \pm 1.8 \cdot 10^{-6} \) | \(a_{65}= +0.30058013 \pm 2.0 \cdot 10^{-6} \) | \(a_{66}= +0.15396711 \pm 4.3 \cdot 10^{-6} \) |
\(a_{67}= -1.75068669 \pm 2.1 \cdot 10^{-6} \) | \(a_{68}= -0.81941941 \pm 1.9 \cdot 10^{-6} \) | \(a_{69}= +0.76274592 \pm 2.0 \cdot 10^{-6} \) |
\(a_{70}= -0.45627342 \pm 4.3 \cdot 10^{-6} \) | \(a_{71}= -0.15916268 \pm 2.6 \cdot 10^{-6} \) | \(a_{72}= +0.13599305 \pm 2.8 \cdot 10^{-6} \) |
\(a_{73}= -0.47403465 \pm 1.9 \cdot 10^{-6} \) | \(a_{74}= -0.15372508 \pm 2.1 \cdot 10^{-6} \) | \(a_{75}= -0.07825022 \pm 1.9 \cdot 10^{-6} \) |
\(a_{76}= -0.70741207 \pm 2.4 \cdot 10^{-6} \) | \(a_{77}= +0.07763177 \pm 1.8 \cdot 10^{-6} \) | \(a_{78}= +0.24234027 \pm 4.6 \cdot 10^{-6} \) |
\(a_{79}= -0.18159458 \pm 1.3 \cdot 10^{-6} \) | \(a_{80}= +1.13011957 \pm 2.4 \cdot 10^{-6} \) | \(a_{81}= +0.11111111 \pm 2.3 \cdot 10^{-7} \) |
\(a_{82}= -1.73735094 \pm 1.8 \cdot 10^{-6} \) | \(a_{83}= +1.92974861 \pm 1.8 \cdot 10^{-6} \) | \(a_{84}= -0.14964882 \pm 2.8 \cdot 10^{-6} \) |
\(a_{85}= +1.11095742 \pm 1.4 \cdot 10^{-6} \) | \(a_{86}= -1.09546140 \pm 2.8 \cdot 10^{-6} \) | \(a_{87}= -0.63723271 \pm 2.1 \cdot 10^{-6} \) |
\(a_{88}= -0.08379661 \pm 2.7 \cdot 10^{-6} \) | \(a_{89}= +0.59221495 \pm 1.7 \cdot 10^{-6} \) | \(a_{90}= +0.40239533 \pm 4.3 \cdot 10^{-6} \) |
\(a_{91}= +0.12219041 \pm 2.1 \cdot 10^{-6} \) | \(a_{92}= +0.90599015 \pm 2.9 \cdot 10^{-6} \) | \(a_{93}= -0.43455300 \pm 2.2 \cdot 10^{-6} \) |
\(a_{94}= -1.85956585 \pm 2.4 \cdot 10^{-6} \) | \(a_{95}= +0.95909943 \pm 1.4 \cdot 10^{-6} \) | \(a_{96}= +0.67560280 \pm 2.1 \cdot 10^{-6} \) |
\(a_{97}= -0.13701847 \pm 1.2 \cdot 10^{-6} \) | \(a_{98}= -0.18548211 \pm 2.4 \cdot 10^{-6} \) | \(a_{99}= -0.06846479 \pm 1.8 \cdot 10^{-6} \) |
\(a_{100}= -0.09294567 \pm 2.0 \cdot 10^{-6} \) | \(a_{101}= -1.54859731 \pm 2.2 \cdot 10^{-6} \) | \(a_{102}= +0.89570034 \pm 4.5 \cdot 10^{-6} \) |
\(a_{103}= -0.07091623 \pm 1.8 \cdot 10^{-6} \) | \(a_{104}= -0.13189372 \pm 2.7 \cdot 10^{-6} \) | \(a_{105}= +0.20289179 \pm 1.9 \cdot 10^{-6} \) |
\(a_{106}= -0.02307371 \pm 2.8 \cdot 10^{-6} \) | \(a_{107}= +1.75500509 \pm 2.3 \cdot 10^{-6} \) | \(a_{108}= +0.13197786 \pm 2.8 \cdot 10^{-6} \) |
\(a_{109}= -0.19037704 \pm 2.2 \cdot 10^{-6} \) | \(a_{110}= -0.24794920 \pm 2.0 \cdot 10^{-6} \) | \(a_{111}= +0.06835716 \pm 1.9 \cdot 10^{-6} \) |
\(a_{112}= +0.45941086 \pm 2.3 \cdot 10^{-6} \) | \(a_{113}= +0.82782725 \pm 1.4 \cdot 10^{-6} \) | \(a_{114}= +0.77326607 \pm 4.5 \cdot 10^{-6} \) |
\(a_{115}= -1.22832882 \pm 2.0 \cdot 10^{-6} \) | \(a_{116}= -0.75690547 \pm 2.5 \cdot 10^{-6} \) | \(a_{117}= -0.10776181 \pm 2.1 \cdot 10^{-6} \) |
\(a_{118}= -1.18826815 \pm 1.8 \cdot 10^{-6} \) | \(a_{119}= +0.45162115 \pm 2.1 \cdot 10^{-6} \) | \(a_{120}= -0.21900370 \pm 4.7 \cdot 10^{-6} \) |
\(a_{121}= -0.95781316 \pm 1.7 \cdot 10^{-6} \) | \(a_{122}= -2.36717927 \pm 2.1 \cdot 10^{-6} \) | \(a_{123}= +0.77255046 \pm 1.6 \cdot 10^{-6} \) |
\(a_{124}= -0.51616236 \pm 2.8 \cdot 10^{-6} \) | \(a_{125}= +1.05578142 \pm 1.7 \cdot 10^{-6} \) | \(a_{126}= +0.16357985 \pm 2.4 \cdot 10^{-6} \) |
\(a_{127}= +0.29935244 \pm 2.4 \cdot 10^{-6} \) | \(a_{128}= -0.77567602 \pm 2.1 \cdot 10^{-6} \) | \(a_{129}= +0.48712047 \pm 2.2 \cdot 10^{-6} \) |
\(a_{130}= -0.39026566 \pm 2.7 \cdot 10^{-6} \) | \(a_{131}= +0.64008560 \pm 1.7 \cdot 10^{-6} \) | \(a_{132}= -0.08132252 \pm 4.7 \cdot 10^{-6} \) |
\(a_{133}= +0.38988856 \pm 2.0 \cdot 10^{-6} \) | \(a_{134}= +2.27304744 \pm 2.0 \cdot 10^{-6} \) | \(a_{135}= -0.17893374 \pm 1.9 \cdot 10^{-6} \) |
\(a_{136}= -0.48748499 \pm 2.1 \cdot 10^{-6} \) | \(a_{137}= -0.08871147 \pm 1.7 \cdot 10^{-6} \) | \(a_{138}= -0.99033007 \pm 4.5 \cdot 10^{-6} \) |
\(a_{139}= +0.44115732 \pm 2.2 \cdot 10^{-6} \) | \(a_{140}= +0.24099501 \pm 4.7 \cdot 10^{-6} \) | \(a_{141}= +0.82689595 \pm 2.0 \cdot 10^{-6} \) |
\(a_{142}= +0.20665281 \pm 2.4 \cdot 10^{-6} \) | \(a_{143}= +0.06640101 \pm 1.9 \cdot 10^{-6} \) | \(a_{144}= -0.40516229 \pm 2.3 \cdot 10^{-6} \) |
\(a_{145}= +1.02620188 \pm 1.6 \cdot 10^{-6} \) | \(a_{146}= +0.61547463 \pm 2.3 \cdot 10^{-6} \) | \(a_{147}= +0.08247861 \pm 3.5 \cdot 10^{-7} \) |
\(a_{148}= +0.08119469 \pm 2.5 \cdot 10^{-6} \) | \(a_{149}= -0.80640577 \pm 1.8 \cdot 10^{-6} \) | \(a_{150}= +0.10159811 \pm 4.4 \cdot 10^{-6} \) |
\(a_{151}= +0.96400045 \pm 2.1 \cdot 10^{-6} \) | \(a_{152}= -0.42085013 \pm 2.5 \cdot 10^{-6} \) | \(a_{153}= -0.39829242 \pm 2.1 \cdot 10^{-6} \) |
\(a_{154}= -0.10079513 \pm 4.3 \cdot 10^{-6} \) | \(a_{155}= +0.69980574 \pm 2.1 \cdot 10^{-6} \) | \(a_{156}= -0.12799956 \pm 5.0 \cdot 10^{-6} \) |
\(a_{157}= -1.72723228 \pm 2.0 \cdot 10^{-6} \) | \(a_{158}= +0.23577782 \pm 1.7 \cdot 10^{-6} \) | \(a_{159}= +0.01026022 \pm 2.2 \cdot 10^{-6} \) |
\(a_{160}= -1.08799321 \pm 2.0 \cdot 10^{-6} \) | \(a_{161}= -0.49933442 \pm 2.0 \cdot 10^{-6} \) | \(a_{162}= -0.14426386 \pm 2.4 \cdot 10^{-6} \) |
\(a_{163}= +0.90759795 \pm 2.0 \cdot 10^{-6} \) | \(a_{164}= +0.91763599 \pm 2.1 \cdot 10^{-6} \) | \(a_{165}= +0.11025594 \pm 3.8 \cdot 10^{-6} \) |
\(a_{166}= -2.50553693 \pm 2.0 \cdot 10^{-6} \) | \(a_{167}= -0.95592861 \pm 1.6 \cdot 10^{-6} \) | \(a_{168}= -0.08902835 \pm 2.8 \cdot 10^{-6} \) |
\(a_{169}= -0.89548652 \pm 2.4 \cdot 10^{-6} \) | \(a_{170}= -1.44243909 \pm 1.2 \cdot 10^{-6} \) | \(a_{171}= -0.34384939 \pm 2.0 \cdot 10^{-6} \) |
\(a_{172}= +0.57860205 \pm 3.4 \cdot 10^{-6} \) | \(a_{173}= +1.54539443 \pm 2.3 \cdot 10^{-6} \) | \(a_{174}= +0.82736688 \pm 4.6 \cdot 10^{-6} \) |
\(a_{175}= +0.05122680 \pm 1.9 \cdot 10^{-6} \) | \(a_{176}= +0.24965415 \pm 2.2 \cdot 10^{-6} \) | \(a_{177}= +0.52838899 \pm 1.5 \cdot 10^{-6} \) |
\(a_{178}= -0.76891696 \pm 2.1 \cdot 10^{-6} \) | \(a_{179}= +0.52654964 \pm 1.8 \cdot 10^{-6} \) | \(a_{180}= -0.21253762 \pm 4.7 \cdot 10^{-6} \) |
\(a_{181}= +1.65057147 \pm 1.6 \cdot 10^{-6} \) | \(a_{182}= -0.15864895 \pm 4.6 \cdot 10^{-6} \) | \(a_{183}= +1.05261717 \pm 2.0 \cdot 10^{-6} \) |
\(a_{184}= +0.53898723 \pm 2.8 \cdot 10^{-6} \) | \(a_{185}= -0.11008262 \pm 2.2 \cdot 10^{-6} \) | \(a_{186}= +0.56421265 \pm 4.6 \cdot 10^{-6} \) |
\(a_{187}= +0.24542105 \pm 1.9 \cdot 10^{-6} \) | \(a_{188}= +0.98218760 \pm 3.0 \cdot 10^{-6} \) | \(a_{189}= -0.07273930 \pm 4.4 \cdot 10^{-7} \) |
\(a_{190}= -1.24527050 \pm 1.5 \cdot 10^{-6} \) | \(a_{191}= -1.44321631 \pm 2.2 \cdot 10^{-6} \) | \(a_{192}= -0.17542395 \pm 1.8 \cdot 10^{-6} \) |
\(a_{193}= +1.72444330 \pm 2.2 \cdot 10^{-6} \) | \(a_{194}= +0.17790132 \pm 1.2 \cdot 10^{-6} \) | \(a_{195}= +0.17354002 \pm 4.1 \cdot 10^{-6} \) |
\(a_{196}= +0.09796815 \pm 2.8 \cdot 10^{-6} \) | \(a_{197}= -1.80007512 \pm 1.6 \cdot 10^{-6} \) | \(a_{198}= +0.08889295 \pm 4.3 \cdot 10^{-6} \) |
\(a_{199}= +0.46702524 \pm 1.4 \cdot 10^{-6} \) | \(a_{200}= -0.05529478 \pm 1.7 \cdot 10^{-6} \) | \(a_{201}= -1.01075943 \pm 2.1 \cdot 10^{-6} \) |
\(a_{202}= +2.01065969 \pm 2.2 \cdot 10^{-6} \) | \(a_{203}= +0.41716673 \pm 2.1 \cdot 10^{-6} \) | \(a_{204}= -0.47309202 \pm 4.9 \cdot 10^{-6} \) |
\(a_{205}= -1.24411808 \pm 1.3 \cdot 10^{-6} \) | \(a_{206}= +0.09207584 \pm 2.3 \cdot 10^{-6} \) | \(a_{207}= +0.44037156 \pm 2.0 \cdot 10^{-6} \) |
\(a_{208}= +0.39294921 \pm 1.9 \cdot 10^{-6} \) | \(a_{209}= +0.21187418 \pm 2.1 \cdot 10^{-6} \) | \(a_{210}= -0.26342958 \pm 4.3 \cdot 10^{-6} \) |
\(a_{211}= -0.20510676 \pm 2.1 \cdot 10^{-6} \) | \(a_{212}= +0.01218710 \pm 3.1 \cdot 10^{-6} \) | \(a_{213}= -0.09189262 \pm 2.6 \cdot 10^{-6} \) |
\(a_{214}= -2.27865435 \pm 2.8 \cdot 10^{-6} \) | \(a_{215}= -0.78446059 \pm 1.7 \cdot 10^{-6} \) | \(a_{216}= +0.07851562 \pm 2.8 \cdot 10^{-6} \) |
\(a_{217}= +0.28448172 \pm 2.2 \cdot 10^{-6} \) | \(a_{218}= +0.24718074 \pm 2.3 \cdot 10^{-6} \) | \(a_{219}= -0.27368403 \pm 1.9 \cdot 10^{-6} \) |
\(a_{220}= +0.13096209 \pm 2.3 \cdot 10^{-6} \) | \(a_{221}= +0.38628642 \pm 1.7 \cdot 10^{-6} \) | \(a_{222}= -0.08875321 \pm 4.3 \cdot 10^{-6} \) |
\(a_{223}= +0.98957567 \pm 2.4 \cdot 10^{-6} \) | \(a_{224}= -0.44228585 \pm 2.1 \cdot 10^{-6} \) | \(a_{225}= -0.04517779 \pm 1.9 \cdot 10^{-6} \) |
\(a_{226}= -1.07483002 \pm 2.1 \cdot 10^{-6} \) | \(a_{227}= +0.32095129 \pm 2.1 \cdot 10^{-6} \) | \(a_{228}= -0.40842455 \pm 4.9 \cdot 10^{-6} \) |
\(a_{229}= +0.08049160 \pm 2.6 \cdot 10^{-6} \) | \(a_{230}= +1.59483116 \pm 2.3 \cdot 10^{-6} \) | \(a_{231}= +0.04482072 \pm 1.8 \cdot 10^{-6} \) |
\(a_{232}= -0.45029450 \pm 2.3 \cdot 10^{-6} \) | \(a_{233}= -0.67676647 \pm 1.9 \cdot 10^{-6} \) | \(a_{234}= +0.13991522 \pm 4.6 \cdot 10^{-6} \) |
\(a_{235}= -1.33163626 \pm 1.9 \cdot 10^{-6} \) | \(a_{236}= +0.62762082 \pm 2.1 \cdot 10^{-6} \) | \(a_{237}= -0.10484368 \pm 1.3 \cdot 10^{-6} \) |
\(a_{238}= -0.58637351 \pm 4.5 \cdot 10^{-6} \) | \(a_{239}= +0.44113060 \pm 1.7 \cdot 10^{-6} \) | \(a_{240}= +0.65247484 \pm 4.2 \cdot 10^{-6} \) |
\(a_{241}= +0.79728202 \pm 2.0 \cdot 10^{-6} \) | \(a_{242}= +1.24360044 \pm 2.3 \cdot 10^{-6} \) | \(a_{243}= +0.06415003 \pm 5.5 \cdot 10^{-7} \) |
\(a_{244}= +1.25029943 \pm 2.4 \cdot 10^{-6} \) | \(a_{245}= -0.13282385 \pm 1.9 \cdot 10^{-6} \) | \(a_{246}= -1.00306003 \pm 4.0 \cdot 10^{-6} \) |
\(a_{247}= +0.33348450 \pm 1.6 \cdot 10^{-6} \) | \(a_{248}= -0.30707279 \pm 2.8 \cdot 10^{-6} \) | \(a_{249}= +1.11414088 \pm 1.8 \cdot 10^{-6} \) |
\(a_{250}= -1.37079997 \pm 2.0 \cdot 10^{-6} \) | \(a_{251}= +0.28845815 \pm 1.6 \cdot 10^{-6} \) | \(a_{252}= -0.08639979 \pm 2.8 \cdot 10^{-6} \) |
\(a_{253}= -0.27134951 \pm 1.6 \cdot 10^{-6} \) | \(a_{254}= -0.38867166 \pm 3.2 \cdot 10^{-6} \) | \(a_{255}= +0.64141157 \pm 4.0 \cdot 10^{-6} \) |
\(a_{256}= +1.31096139 \pm 2.2 \cdot 10^{-6} \) | \(a_{257}= -1.77205500 \pm 1.8 \cdot 10^{-6} \) | \(a_{258}= -0.63246494 \pm 4.6 \cdot 10^{-6} \) |
\(a_{259}= -0.04475027 \pm 1.9 \cdot 10^{-6} \) | \(a_{260}= +0.20613096 \pm 2.9 \cdot 10^{-6} \) | \(a_{261}= -0.36790648 \pm 2.1 \cdot 10^{-6} \) |
\(a_{262}= -0.83107100 \pm 2.4 \cdot 10^{-6} \) | \(a_{263}= +1.47682542 \pm 2.0 \cdot 10^{-6} \) | \(a_{264}= -0.04838000 \pm 4.7 \cdot 10^{-6} \) |
\(a_{265}= -0.01652310 \pm 1.7 \cdot 10^{-6} \) | \(a_{266}= -0.50622147 \pm 4.5 \cdot 10^{-6} \) | \(a_{267}= +0.34191546 \pm 1.7 \cdot 10^{-6} \) |
\(a_{268}= -1.20058078 \pm 2.4 \cdot 10^{-6} \) | \(a_{269}= -0.32849894 \pm 1.8 \cdot 10^{-6} \) | \(a_{270}= +0.23232305 \pm 4.3 \cdot 10^{-6} \) |
\(a_{271}= +0.77340714 \pm 1.7 \cdot 10^{-6} \) | \(a_{272}= +1.45235763 \pm 1.3 \cdot 10^{-6} \) | \(a_{273}= +0.07054667 \pm 2.1 \cdot 10^{-6} \) |
\(a_{274}= +0.11518074 \pm 2.2 \cdot 10^{-6} \) | \(a_{275}= +0.02783779 \pm 1.7 \cdot 10^{-6} \) | \(a_{276}= +0.52307366 \pm 4.9 \cdot 10^{-6} \) |
\(a_{277}= +0.98056909 \pm 1.7 \cdot 10^{-6} \) | \(a_{278}= -0.57278753 \pm 2.5 \cdot 10^{-6} \) | \(a_{279}= -0.25088929 \pm 2.2 \cdot 10^{-6} \) |
\(a_{280}= +0.14337157 \pm 4.7 \cdot 10^{-6} \) | \(a_{281}= +0.08937720 \pm 2.4 \cdot 10^{-6} \) | \(a_{282}= -1.07362085 \pm 4.4 \cdot 10^{-6} \) |
\(a_{283}= +1.20777724 \pm 1.7 \cdot 10^{-6} \) | \(a_{284}= -0.10915011 \pm 3.1 \cdot 10^{-6} \) | \(a_{285}= +0.55373631 \pm 3.9 \cdot 10^{-6} \) |
\(a_{286}= -0.08621339 \pm 1.9 \cdot 10^{-6} \) | \(a_{287}= -0.50575300 \pm 1.6 \cdot 10^{-6} \) | \(a_{288}= +0.39005946 \pm 2.1 \cdot 10^{-6} \) |
\(a_{289}= +0.42773166 \pm 1.9 \cdot 10^{-6} \) | \(a_{290}= -1.33239464 \pm 1.9 \cdot 10^{-6} \) | \(a_{291}= -0.07910765 \pm 1.3 \cdot 10^{-6} \) |
\(a_{292}= -0.32508209 \pm 2.7 \cdot 10^{-6} \) | \(a_{293}= -1.32126378 \pm 1.8 \cdot 10^{-6} \) | \(a_{294}= -0.10708815 \pm 2.4 \cdot 10^{-6} \) |
\(a_{295}= -0.85091956 \pm 1.2 \cdot 10^{-6} \) | \(a_{296}= +0.04830395 \pm 2.4 \cdot 10^{-6} \) | \(a_{297}= -0.03952816 \pm 1.8 \cdot 10^{-6} \) |
\(a_{298}= +1.04701692 \pm 2.6 \cdot 10^{-6} \) | \(a_{299}= -0.42709714 \pm 2.3 \cdot 10^{-6} \) | \(a_{300}= -0.05366221 \pm 4.8 \cdot 10^{-6} \) |
\(a_{301}= -0.31889521 \pm 2.2 \cdot 10^{-6} \) | \(a_{302}= -1.25163387 \pm 2.8 \cdot 10^{-6} \) | \(a_{303}= -0.89408308 \pm 2.2 \cdot 10^{-6} \) |
\(a_{304}= +1.25383327 \pm 1.6 \cdot 10^{-6} \) | \(a_{305}= -1.69513854 \pm 1.5 \cdot 10^{-6} \) | \(a_{306}= +0.51713283 \pm 4.5 \cdot 10^{-6} \) |
\(a_{307}= -0.41729971 \pm 2.6 \cdot 10^{-6} \) | \(a_{308}= +0.05323809 \pm 4.7 \cdot 10^{-6} \) | \(a_{309}= -0.04094350 \pm 1.8 \cdot 10^{-6} \) |
\(a_{310}= -0.90861012 \pm 2.5 \cdot 10^{-6} \) | \(a_{311}= -0.32432013 \pm 2.4 \cdot 10^{-6} \) | \(a_{312}= -0.07614887 \pm 5.0 \cdot 10^{-6} \) |
\(a_{313}= -0.88465126 \pm 2.5 \cdot 10^{-6} \) | \(a_{314}= +2.24259483 \pm 2.2 \cdot 10^{-6} \) | \(a_{315}= +0.11713963 \pm 1.9 \cdot 10^{-6} \) |
\(a_{316}= -0.12453340 \pm 2.0 \cdot 10^{-6} \) | \(a_{317}= +1.70170064 \pm 2.3 \cdot 10^{-6} \) | \(a_{318}= -0.01332161 \pm 4.6 \cdot 10^{-6} \) |
\(a_{319}= +0.22669775 \pm 1.5 \cdot 10^{-6} \) | \(a_{320}= +0.28250338 \pm 1.5 \cdot 10^{-6} \) | \(a_{321}= +1.01325266 \pm 2.3 \cdot 10^{-6} \) |
\(a_{322}= +0.64832321 \pm 4.5 \cdot 10^{-6} \) | \(a_{323}= +1.23257344 \pm 2.6 \cdot 10^{-6} \) | \(a_{324}= +0.07619745 \pm 2.8 \cdot 10^{-6} \) |
\(a_{325}= +0.04381596 \pm 1.9 \cdot 10^{-6} \) | \(a_{326}= -1.17840229 \pm 1.6 \cdot 10^{-6} \) | \(a_{327}= -0.10991423 \pm 2.2 \cdot 10^{-6} \) |
\(a_{328}= +0.54591552 \pm 2.0 \cdot 10^{-6} \) | \(a_{329}= -0.54133047 \pm 2.0 \cdot 10^{-6} \) | \(a_{330}= -0.14315354 \pm 6.2 \cdot 10^{-6} \) |
\(a_{331}= -0.99727655 \pm 1.8 \cdot 10^{-6} \) | \(a_{332}= +1.32337733 \pm 2.1 \cdot 10^{-6} \) | \(a_{333}= +0.03946603 \pm 1.9 \cdot 10^{-6} \) |
\(a_{334}= +1.24115359 \pm 2.2 \cdot 10^{-6} \) | \(a_{335}= +1.62773068 \pm 2.1 \cdot 10^{-6} \) | \(a_{336}= +0.26524098 \pm 2.3 \cdot 10^{-6} \) |
\(a_{337}= -1.86076779 \pm 2.4 \cdot 10^{-6} \) | \(a_{338}= +1.16267712 \pm 2.3 \cdot 10^{-6} \) | \(a_{339}= +0.47794629 \pm 1.4 \cdot 10^{-6} \) |
\(a_{340}= +0.76186912 \pm 1.3 \cdot 10^{-6} \) | \(a_{341}= +0.15459374 \pm 1.6 \cdot 10^{-6} \) | \(a_{342}= +0.44644537 \pm 4.5 \cdot 10^{-6} \) |
\(a_{343}= -0.05399492 \pm 7.1 \cdot 10^{-7} \) | \(a_{344}= +0.34421910 \pm 3.3 \cdot 10^{-6} \) | \(a_{345}= -0.70917598 \pm 3.9 \cdot 10^{-6} \) |
\(a_{346}= -2.00650115 \pm 2.9 \cdot 10^{-6} \) | \(a_{347}= -0.43725410 \pm 2.1 \cdot 10^{-6} \) | \(a_{348}= -0.43699957 \pm 5.0 \cdot 10^{-6} \) |
\(a_{349}= +0.30796398 \pm 2.0 \cdot 10^{-6} \) | \(a_{350}= -0.06651158 \pm 4.4 \cdot 10^{-6} \) | \(a_{351}= -0.06221631 \pm 2.1 \cdot 10^{-6} \) |
\(a_{352}= -0.24034804 \pm 2.1 \cdot 10^{-6} \) | \(a_{353}= -0.61896147 \pm 1.6 \cdot 10^{-6} \) | \(a_{354}= -0.68604694 \pm 3.9 \cdot 10^{-6} \) |
\(a_{355}= +0.14798420 \pm 2.4 \cdot 10^{-6} \) | \(a_{356}= +0.40612743 \pm 2.1 \cdot 10^{-6} \) | \(a_{357}= +0.26074359 \pm 2.1 \cdot 10^{-6} \) |
\(a_{358}= -0.68365877 \pm 2.1 \cdot 10^{-6} \) | \(a_{359}= +0.95116056 \pm 1.4 \cdot 10^{-6} \) | \(a_{360}= -0.12644184 \pm 4.7 \cdot 10^{-6} \) |
\(a_{361}= +0.06409162 \pm 2.4 \cdot 10^{-6} \) | \(a_{362}= -2.14306037 \pm 2.1 \cdot 10^{-6} \) | \(a_{363}= -0.55299368 \pm 1.7 \cdot 10^{-6} \) |
\(a_{364}= +0.08379538 \pm 5.0 \cdot 10^{-6} \) | \(a_{365}= +0.44074176 \pm 1.9 \cdot 10^{-6} \) | \(a_{366}= -1.36669159 \pm 4.4 \cdot 10^{-6} \) |
\(a_{367}= +0.50081842 \pm 1.6 \cdot 10^{-6} \) | \(a_{368}= -1.60579758 \pm 2.3 \cdot 10^{-6} \) | \(a_{369}= +0.44603222 \pm 1.6 \cdot 10^{-6} \) |
\(a_{370}= +0.14292850 \pm 2.4 \cdot 10^{-6} \) | \(a_{371}= -0.00671689 \pm 2.2 \cdot 10^{-6} \) | \(a_{372}= -0.29800648 \pm 5.1 \cdot 10^{-6} \) |
\(a_{373}= -1.66166981 \pm 2.6 \cdot 10^{-6} \) | \(a_{374}= -0.31864850 \pm 2.3 \cdot 10^{-6} \) | \(a_{375}= +0.60955569 \pm 1.7 \cdot 10^{-6} \) |
\(a_{376}= +0.58431825 \pm 3.2 \cdot 10^{-6} \) | \(a_{377}= +0.35681642 \pm 1.5 \cdot 10^{-6} \) | \(a_{378}= +0.09444287 \pm 2.4 \cdot 10^{-6} \) |
\(a_{379}= +0.52495228 \pm 1.8 \cdot 10^{-6} \) | \(a_{380}= +0.65772839 \pm 1.8 \cdot 10^{-6} \) | \(a_{381}= +0.17283121 \pm 2.4 \cdot 10^{-6} \) |
\(a_{382}= +1.87383565 \pm 3.0 \cdot 10^{-6} \) | \(a_{383}= +0.18551431 \pm 2.5 \cdot 10^{-6} \) | \(a_{384}= -0.44783676 \pm 2.2 \cdot 10^{-6} \) |
\(a_{385}= -0.07217946 \pm 3.8 \cdot 10^{-6} \) | \(a_{386}= -2.23897368 \pm 2.4 \cdot 10^{-6} \) | \(a_{387}= +0.28123914 \pm 2.2 \cdot 10^{-6} \) |
\(a_{388}= -0.09396412 \pm 1.6 \cdot 10^{-6} \) | \(a_{389}= +0.96912433 \pm 1.7 \cdot 10^{-6} \) | \(a_{390}= -0.22531998 \pm 6.5 \cdot 10^{-6} \) |
\(a_{391}= -1.57856990 \pm 1.5 \cdot 10^{-6} \) | \(a_{392}= +0.05828273 \pm 2.8 \cdot 10^{-6} \) | \(a_{393}= +0.36955359 \pm 1.7 \cdot 10^{-6} \) |
\(a_{394}= +2.33717214 \pm 1.7 \cdot 10^{-6} \) | \(a_{395}= +0.16884064 \pm 1.3 \cdot 10^{-6} \) | \(a_{396}= -0.04695158 \pm 4.7 \cdot 10^{-6} \) |
\(a_{397}= +1.89017568 \pm 1.6 \cdot 10^{-6} \) | \(a_{398}= -0.60637379 \pm 1.8 \cdot 10^{-6} \) | \(a_{399}= +0.22510226 \pm 2.0 \cdot 10^{-6} \) |
\(a_{400}= +0.16473902 \pm 1.6 \cdot 10^{-6} \) | \(a_{401}= +0.35672051 \pm 2.0 \cdot 10^{-6} \) | \(a_{402}= +1.31234455 \pm 4.5 \cdot 10^{-6} \) |
\(a_{403}= +0.24332656 \pm 1.9 \cdot 10^{-6} \) | \(a_{404}= -1.06199252 \pm 2.8 \cdot 10^{-6} \) | \(a_{405}= -0.10330744 \pm 1.9 \cdot 10^{-6} \) |
\(a_{406}= -0.54163876 \pm 4.6 \cdot 10^{-6} \) | \(a_{407}= -0.02431830 \pm 1.7 \cdot 10^{-6} \) | \(a_{408}= -0.28144959 \pm 4.9 \cdot 10^{-6} \) |
\(a_{409}= -0.54879896 \pm 1.8 \cdot 10^{-6} \) | \(a_{410}= +1.61533154 \pm 1.7 \cdot 10^{-6} \) | \(a_{411}= -0.05121759 \pm 1.7 \cdot 10^{-6} \) |
\(a_{412}= -0.04863272 \pm 2.6 \cdot 10^{-6} \) | \(a_{413}= -0.34591179 \pm 1.5 \cdot 10^{-6} \) | \(a_{414}= -0.57176733 \pm 4.5 \cdot 10^{-6} \) |
\(a_{415}= -1.79421654 \pm 1.9 \cdot 10^{-6} \) | \(a_{416}= -0.37830163 \pm 1.9 \cdot 10^{-6} \) | \(a_{417}= +0.25470230 \pm 2.2 \cdot 10^{-6} \) |
\(a_{418}= -0.27509209 \pm 2.9 \cdot 10^{-6} \) | \(a_{419}= +1.21130668 \pm 2.1 \cdot 10^{-6} \) | \(a_{420}= +0.13913853 \pm 4.7 \cdot 10^{-6} \) |
\(a_{421}= +0.82148906 \pm 1.8 \cdot 10^{-6} \) | \(a_{422}= +0.26630544 \pm 2.1 \cdot 10^{-6} \) | \(a_{423}= +0.47740860 \pm 2.0 \cdot 10^{-6} \) |
\(a_{424}= +0.00725029 \pm 3.3 \cdot 10^{-6} \) | \(a_{425}= +0.16194573 \pm 1.8 \cdot 10^{-6} \) | \(a_{426}= +0.11931105 \pm 5.0 \cdot 10^{-6} \) |
\(a_{427}= -0.68909970 \pm 2.0 \cdot 10^{-6} \) | \(a_{428}= +1.20354224 \pm 3.4 \cdot 10^{-6} \) | \(a_{429}= +0.03833664 \pm 4.0 \cdot 10^{-6} \) |
\(a_{430}= +1.01852384 \pm 2.7 \cdot 10^{-6} \) | \(a_{431}= -1.73359932 \pm 2.0 \cdot 10^{-6} \) | \(a_{432}= -0.23392056 \pm 2.3 \cdot 10^{-6} \) |
\(a_{433}= -0.42680417 \pm 1.4 \cdot 10^{-6} \) | \(a_{434}= -0.36936388 \pm 4.6 \cdot 10^{-6} \) | \(a_{435}= +0.59247793 \pm 4.0 \cdot 10^{-6} \) |
\(a_{436}= -0.13055621 \pm 2.4 \cdot 10^{-6} \) | \(a_{437}= -1.36279344 \pm 1.7 \cdot 10^{-6} \) | \(a_{438}= +0.35534444 \pm 4.3 \cdot 10^{-6} \) |
\(a_{439}= +0.69129484 \pm 2.0 \cdot 10^{-6} \) | \(a_{440}= +0.07791133 \pm 2.2 \cdot 10^{-6} \) | \(a_{441}= +0.04761905 \pm 8.8 \cdot 10^{-7} \) |
\(a_{442}= -0.50154454 \pm 1.4 \cdot 10^{-6} \) | \(a_{443}= -1.15821979 \pm 2.0 \cdot 10^{-6} \) | \(a_{444}= +0.04687777 \pm 4.7 \cdot 10^{-6} \) |
\(a_{445}= -0.55062191 \pm 2.0 \cdot 10^{-6} \) | \(a_{446}= -1.28484009 \pm 2.3 \cdot 10^{-6} \) | \(a_{447}= -0.46557859 \pm 1.8 \cdot 10^{-6} \) |
\(a_{448}= +0.11484194 \pm 1.8 \cdot 10^{-6} \) | \(a_{449}= +1.28802874 \pm 1.8 \cdot 10^{-6} \) | \(a_{450}= +0.05865770 \pm 4.4 \cdot 10^{-6} \) |
\(a_{451}= -0.27483751 \pm 1.3 \cdot 10^{-6} \) | \(a_{452}= +0.56770494 \pm 2.4 \cdot 10^{-6} \) | \(a_{453}= +0.55656592 \pm 2.1 \cdot 10^{-6} \) |
\(a_{454}= -0.41671506 \pm 2.0 \cdot 10^{-6} \) | \(a_{455}= -0.11360861 \pm 4.1 \cdot 10^{-6} \) | \(a_{456}= -0.24297794 \pm 4.9 \cdot 10^{-6} \) |
\(a_{457}= -0.07380512 \pm 2.2 \cdot 10^{-6} \) | \(a_{458}= -0.10450827 \pm 2.4 \cdot 10^{-6} \) | \(a_{459}= -0.22995424 \pm 2.1 \cdot 10^{-6} \) |
\(a_{460}= -0.84235973 \pm 3.1 \cdot 10^{-6} \) | \(a_{461}= +1.03286445 \pm 2.5 \cdot 10^{-6} \) | \(a_{462}= -0.05819410 \pm 4.3 \cdot 10^{-6} \) |
\(a_{463}= -0.24522077 \pm 1.9 \cdot 10^{-6} \) | \(a_{464}= +1.34155649 \pm 1.9 \cdot 10^{-6} \) | \(a_{465}= +0.40403303 \pm 4.1 \cdot 10^{-6} \) |
\(a_{466}= +0.87869651 \pm 2.0 \cdot 10^{-6} \) | \(a_{467}= -1.60605625 \pm 2.2 \cdot 10^{-6} \) | \(a_{468}= -0.07390058 \pm 5.0 \cdot 10^{-6} \) |
\(a_{469}= +0.66169737 \pm 2.1 \cdot 10^{-6} \) | \(a_{470}= +1.72896293 \pm 2.6 \cdot 10^{-6} \) | \(a_{471}= -0.99721802 \pm 2.0 \cdot 10^{-6} \) |
\(a_{472}= +0.37338111 \pm 2.1 \cdot 10^{-6} \) | \(a_{473}= -0.17329480 \pm 1.8 \cdot 10^{-6} \) | \(a_{474}= +0.13612639 \pm 3.8 \cdot 10^{-6} \) |
\(a_{475}= +0.13980919 \pm 1.9 \cdot 10^{-6} \) | \(a_{476}= +0.30971143 \pm 4.9 \cdot 10^{-6} \) | \(a_{477}= +0.00592374 \pm 2.2 \cdot 10^{-6} \) |
\(a_{478}= -0.57275284 \pm 2.2 \cdot 10^{-6} \) | \(a_{479}= -0.89302879 \pm 2.1 \cdot 10^{-6} \) | \(a_{480}= -0.62815318 \pm 4.1 \cdot 10^{-6} \) |
\(a_{481}= -0.03827637 \pm 1.9 \cdot 10^{-6} \) | \(a_{482}= -1.03517087 \pm 2.0 \cdot 10^{-6} \) | \(a_{483}= -0.28829086 \pm 2.0 \cdot 10^{-6} \) |
\(a_{484}= -0.65684629 \pm 2.6 \cdot 10^{-6} \) | \(a_{485}= +0.12739525 \pm 1.2 \cdot 10^{-6} \) | \(a_{486}= -0.08329078 \pm 2.4 \cdot 10^{-6} \) |
\(a_{487}= -1.52579236 \pm 1.8 \cdot 10^{-6} \) | \(a_{488}= +0.74382203 \pm 2.3 \cdot 10^{-6} \) | \(a_{489}= +0.52400192 \pm 2.0 \cdot 10^{-6} \) |
\(a_{490}= +0.17245514 \pm 4.3 \cdot 10^{-6} \) | \(a_{491}= +0.05972214 \pm 1.6 \cdot 10^{-6} \) | \(a_{492}= +0.52979739 \pm 4.4 \cdot 10^{-6} \) |
\(a_{493}= +1.31880924 \pm 2.3 \cdot 10^{-6} \) | \(a_{494}= -0.43298787 \pm 1.9 \cdot 10^{-6} \) | \(a_{495}= +0.06365630 \pm 3.8 \cdot 10^{-6} \) |
\(a_{496}= +0.91485793 \pm 2.3 \cdot 10^{-6} \) | \(a_{497}= +0.06015784 \pm 2.6 \cdot 10^{-6} \) | \(a_{498}= -1.44657242 \pm 4.3 \cdot 10^{-6} \) |
\(a_{499}= -0.75593384 \pm 1.9 \cdot 10^{-6} \) | \(a_{500}= +0.72403068 \pm 2.5 \cdot 10^{-6} \) | \(a_{501}= -0.55190564 \pm 1.6 \cdot 10^{-6} \) |
\(a_{502}= -0.37452679 \pm 2.0 \cdot 10^{-6} \) | \(a_{503}= +1.05348325 \pm 2.2 \cdot 10^{-6} \) | \(a_{504}= -0.05140054 \pm 2.8 \cdot 10^{-6} \) |
\(a_{505}= +1.43983465 \pm 1.5 \cdot 10^{-6} \) | \(a_{506}= +0.35231336 \pm 1.9 \cdot 10^{-6} \) | \(a_{507}= -0.51700939 \pm 2.4 \cdot 10^{-6} \) |
\(a_{508}= +0.20528904 \pm 3.9 \cdot 10^{-6} \) | \(a_{509}= +1.26120974 \pm 2.1 \cdot 10^{-6} \) | \(a_{510}= -0.83279260 \pm 6.4 \cdot 10^{-6} \) |
\(a_{511}= +0.17916826 \pm 1.9 \cdot 10^{-6} \) | \(a_{512}= -0.92644317 \pm 2.5 \cdot 10^{-6} \) | \(a_{513}= -0.19852154 \pm 2.0 \cdot 10^{-6} \) |
\(a_{514}= +2.30079152 \pm 1.8 \cdot 10^{-6} \) | \(a_{515}= +0.06593557 \pm 1.8 \cdot 10^{-6} \) | \(a_{516}= +0.33405605 \pm 5.0 \cdot 10^{-6} \) |
\(a_{517}= -0.29417110 \pm 1.6 \cdot 10^{-6} \) | \(a_{518}= +0.05810262 \pm 4.3 \cdot 10^{-6} \) | \(a_{519}= +0.89223389 \pm 2.3 \cdot 10^{-6} \) |
\(a_{520}= +0.12263042 \pm 2.7 \cdot 10^{-6} \) | \(a_{521}= -0.40149093 \pm 2.3 \cdot 10^{-6} \) | \(a_{522}= +0.47768049 \pm 4.6 \cdot 10^{-6} \) |
\(a_{523}= -0.33853076 \pm 2.0 \cdot 10^{-6} \) | \(a_{524}= +0.43895602 \pm 2.9 \cdot 10^{-6} \) | \(a_{525}= +0.02957580 \pm 1.9 \cdot 10^{-6} \) |
\(a_{526}= -1.91747287 \pm 2.2 \cdot 10^{-6} \) | \(a_{527}= +0.89934572 \pm 2.5 \cdot 10^{-6} \) | \(a_{528}= +0.14413789 \pm 4.2 \cdot 10^{-6} \) |
\(a_{529}= +0.74534403 \pm 2.0 \cdot 10^{-6} \) | \(a_{530}= +0.02145317 \pm 2.3 \cdot 10^{-6} \) | \(a_{531}= +0.30506553 \pm 1.5 \cdot 10^{-6} \) |
\(a_{532}= +0.26737663 \pm 4.9 \cdot 10^{-6} \) | \(a_{533}= -0.43258716 \pm 2.2 \cdot 10^{-6} \) | \(a_{534}= -0.44393441 \pm 4.2 \cdot 10^{-6} \) |
\(a_{535}= -1.63174579 \pm 1.8 \cdot 10^{-6} \) | \(a_{536}= -0.71424365 \pm 2.6 \cdot 10^{-6} \) | \(a_{537}= +0.30400358 \pm 1.8 \cdot 10^{-6} \) |
\(a_{538}= +0.42651474 \pm 2.0 \cdot 10^{-6} \) | \(a_{539}= -0.02934205 \pm 1.8 \cdot 10^{-6} \) | \(a_{540}= -0.12270865 \pm 4.7 \cdot 10^{-6} \) |
\(a_{541}= +0.96899287 \pm 1.9 \cdot 10^{-6} \) | \(a_{542}= -1.00417232 \pm 2.2 \cdot 10^{-6} \) | \(a_{543}= +0.95295788 \pm 1.6 \cdot 10^{-6} \) |
\(a_{544}= -1.39821953 \pm 1.6 \cdot 10^{-6} \) | \(a_{545}= +0.17700628 \pm 1.6 \cdot 10^{-6} \) | \(a_{546}= -0.09159601 \pm 4.6 \cdot 10^{-6} \) |
\(a_{547}= -0.75407413 \pm 1.6 \cdot 10^{-6} \) | \(a_{548}= -0.06083629 \pm 2.5 \cdot 10^{-6} \) | \(a_{549}= +0.60772881 \pm 2.0 \cdot 10^{-6} \) |
\(a_{550}= -0.03614388 \pm 2.1 \cdot 10^{-6} \) | \(a_{551}= +1.13853975 \pm 1.7 \cdot 10^{-6} \) | \(a_{552}= +0.31118442 \pm 4.9 \cdot 10^{-6} \) |
\(a_{553}= +0.06863630 \pm 1.3 \cdot 10^{-6} \) | \(a_{554}= -1.27314617 \pm 2.1 \cdot 10^{-6} \) | \(a_{555}= -0.06355623 \pm 3.8 \cdot 10^{-6} \) |
\(a_{556}= +0.30253557 \pm 2.9 \cdot 10^{-6} \) | \(a_{557}= +1.32752955 \pm 2.0 \cdot 10^{-6} \) | \(a_{558}= +0.32574833 \pm 4.6 \cdot 10^{-6} \) |
\(a_{559}= -0.27276155 \pm 2.4 \cdot 10^{-6} \) | \(a_{560}= -0.42714505 \pm 4.2 \cdot 10^{-6} \) | \(a_{561}= +0.14169391 \pm 4.0 \cdot 10^{-6} \) |
\(a_{562}= -0.11604510 \pm 2.7 \cdot 10^{-6} \) | \(a_{563}= -1.27871090 \pm 1.4 \cdot 10^{-6} \) | \(a_{564}= +0.56706628 \pm 4.8 \cdot 10^{-6} \) |
\(a_{565}= -0.76968644 \pm 1.3 \cdot 10^{-6} \) | \(a_{566}= -1.56814751 \pm 2.0 \cdot 10^{-6} \) | \(a_{567}= -0.04199605 \pm 1.0 \cdot 10^{-6} \) |
\(a_{568}= -0.06493505 \pm 2.9 \cdot 10^{-6} \) | \(a_{569}= -0.19560647 \pm 1.9 \cdot 10^{-6} \) | \(a_{570}= -0.71895726 \pm 6.4 \cdot 10^{-6} \) |
\(a_{571}= -1.71566975 \pm 2.0 \cdot 10^{-6} \) | \(a_{572}= +0.04553629 \pm 2.0 \cdot 10^{-6} \) | \(a_{573}= -0.83324132 \pm 2.2 \cdot 10^{-6} \) |
\(a_{574}= +0.65665693 \pm 4.0 \cdot 10^{-6} \) | \(a_{575}= -0.17905511 \pm 2.1 \cdot 10^{-6} \) | \(a_{576}= -0.10128107 \pm 1.8 \cdot 10^{-6} \) |
\(a_{577}= -1.56930164 \pm 2.4 \cdot 10^{-6} \) | \(a_{578}= -0.55535600 \pm 2.4 \cdot 10^{-6} \) | \(a_{579}= +0.99560780 \pm 2.2 \cdot 10^{-6} \) |
\(a_{580}= +0.70374571 \pm 2.0 \cdot 10^{-6} \) | \(a_{581}= -0.72937642 \pm 1.8 \cdot 10^{-6} \) | \(a_{582}= +0.10271138 \pm 3.7 \cdot 10^{-6} \) |
\(a_{583}= -0.00365011 \pm 2.3 \cdot 10^{-6} \) | \(a_{584}= -0.19339625 \pm 2.8 \cdot 10^{-6} \) | \(a_{585}= +0.10019338 \pm 4.1 \cdot 10^{-6} \) |
\(a_{586}= +1.71549557 \pm 2.3 \cdot 10^{-6} \) | \(a_{587}= +0.71975287 \pm 2.6 \cdot 10^{-6} \) | \(a_{588}= +0.05656194 \pm 2.8 \cdot 10^{-6} \) |
\(a_{589}= +0.77641316 \pm 2.1 \cdot 10^{-6} \) | \(a_{590}= +1.10481249 \pm 1.8 \cdot 10^{-6} \) | \(a_{591}= -1.03927386 \pm 1.6 \cdot 10^{-6} \) |
\(a_{592}= -0.14391131 \pm 2.3 \cdot 10^{-6} \) | \(a_{593}= -0.62036736 \pm 1.5 \cdot 10^{-6} \) | \(a_{594}= +0.05132237 \pm 4.3 \cdot 10^{-6} \) |
\(a_{595}= -0.41990244 \pm 4.0 \cdot 10^{-6} \) | \(a_{596}= -0.55301458 \pm 3.1 \cdot 10^{-6} \) | \(a_{597}= +0.26963715 \pm 1.4 \cdot 10^{-6} \) |
\(a_{598}= +0.55453216 \pm 2.2 \cdot 10^{-6} \) | \(a_{599}= +1.22462702 \pm 2.4 \cdot 10^{-6} \) | \(a_{600}= -0.03192446 \pm 4.8 \cdot 10^{-6} \) |
\(a_{601}= +1.57285575 \pm 2.2 \cdot 10^{-6} \) | \(a_{602}= +0.41404549 \pm 4.6 \cdot 10^{-6} \) | \(a_{603}= -0.58356223 \pm 2.1 \cdot 10^{-6} \) |
\(a_{604}= +0.66108940 \pm 3.3 \cdot 10^{-6} \) | \(a_{605}= +0.89054305 \pm 1.1 \cdot 10^{-6} \) | \(a_{606}= +1.16085491 \pm 4.7 \cdot 10^{-6} \) |
\(a_{607}= +1.12222650 \pm 2.3 \cdot 10^{-6} \) | \(a_{608}= -1.20709536 \pm 1.4 \cdot 10^{-6} \) | \(a_{609}= +0.24085133 \pm 2.1 \cdot 10^{-6} \) |
\(a_{610}= +2.20092512 \pm 1.8 \cdot 10^{-6} \) | \(a_{611}= -0.46301775 \pm 1.7 \cdot 10^{-6} \) | \(a_{612}= -0.27313980 \pm 4.9 \cdot 10^{-6} \) |
\(a_{613}= +0.02686787 \pm 1.9 \cdot 10^{-6} \) | \(a_{614}= +0.54181142 \pm 2.8 \cdot 10^{-6} \) | \(a_{615}= -0.71829191 \pm 3.5 \cdot 10^{-6} \) |
\(a_{616}= +0.03167214 \pm 4.7 \cdot 10^{-6} \) | \(a_{617}= +0.16780917 \pm 2.0 \cdot 10^{-6} \) | \(a_{618}= +0.05316001 \pm 4.2 \cdot 10^{-6} \) |
\(a_{619}= +0.54251580 \pm 1.7 \cdot 10^{-6} \) | \(a_{620}= +0.47991072 \pm 2.8 \cdot 10^{-6} \) | \(a_{621}= +0.25424864 \pm 2.0 \cdot 10^{-6} \) |
\(a_{622}= +0.42108908 \pm 2.3 \cdot 10^{-6} \) | \(a_{623}= -0.22383621 \pm 1.7 \cdot 10^{-6} \) | \(a_{624}= +0.22686933 \pm 4.5 \cdot 10^{-6} \) |
\(a_{625}= -0.84609735 \pm 1.7 \cdot 10^{-6} \) | \(a_{626}= +1.14860888 \pm 2.8 \cdot 10^{-6} \) | \(a_{627}= +0.12232561 \pm 3.9 \cdot 10^{-6} \) |
\(a_{628}= -1.18449628 \pm 2.5 \cdot 10^{-6} \) | \(a_{629}= -0.14147117 \pm 1.6 \cdot 10^{-6} \) | \(a_{630}= -0.15209114 \pm 4.3 \cdot 10^{-6} \) |
\(a_{631}= +0.00291178 \pm 2.1 \cdot 10^{-6} \) | \(a_{632}= -0.07408680 \pm 1.8 \cdot 10^{-6} \) | \(a_{633}= -0.11841844 \pm 2.1 \cdot 10^{-6} \) |
\(a_{634}= -2.20944519 \pm 2.8 \cdot 10^{-6} \) | \(a_{635}= -0.27832801 \pm 2.0 \cdot 10^{-6} \) | \(a_{636}= +0.00703622 \pm 5.0 \cdot 10^{-6} \) |
\(a_{637}= -0.04618363 \pm 2.1 \cdot 10^{-6} \) | \(a_{638}= -0.29433864 \pm 2.3 \cdot 10^{-6} \) | \(a_{639}= -0.05305423 \pm 2.6 \cdot 10^{-6} \) |
\(a_{640}= +0.72119796 \pm 1.8 \cdot 10^{-6} \) | \(a_{641}= -0.97064206 \pm 2.0 \cdot 10^{-6} \) | \(a_{642}= -1.31558170 \pm 4.7 \cdot 10^{-6} \) |
\(a_{643}= -0.66914834 \pm 1.9 \cdot 10^{-6} \) | \(a_{644}= -0.34243209 \pm 4.9 \cdot 10^{-6} \) | \(a_{645}= -0.45290853 \pm 4.1 \cdot 10^{-6} \) |
\(a_{646}= -1.60034227 \pm 2.6 \cdot 10^{-6} \) | \(a_{647}= +1.50176546 \pm 2.7 \cdot 10^{-6} \) | \(a_{648}= +0.04533102 \pm 2.8 \cdot 10^{-6} \) |
\(a_{649}= -0.18797622 \pm 1.4 \cdot 10^{-6} \) | \(a_{650}= -0.05688954 \pm 1.9 \cdot 10^{-6} \) | \(a_{651}= +0.16424560 \pm 2.2 \cdot 10^{-6} \) |
\(a_{652}= +0.62240986 \pm 1.8 \cdot 10^{-6} \) | \(a_{653}= -0.30167242 \pm 2.0 \cdot 10^{-6} \) | \(a_{654}= +0.14270987 \pm 4.6 \cdot 10^{-6} \) |
\(a_{655}= -0.59513046 \pm 1.5 \cdot 10^{-6} \) | \(a_{656}= -1.62643893 \pm 1.6 \cdot 10^{-6} \) | \(a_{657}= -0.15801155 \pm 1.9 \cdot 10^{-6} \) |
\(a_{658}= +0.70284983 \pm 4.4 \cdot 10^{-6} \) | \(a_{659}= -0.45935912 \pm 2.4 \cdot 10^{-6} \) | \(a_{660}= +0.07561100 \pm 6.6 \cdot 10^{-6} \) |
\(a_{661}= +1.03811805 \pm 2.0 \cdot 10^{-6} \) | \(a_{662}= +1.29483872 \pm 1.9 \cdot 10^{-6} \) | \(a_{663}= +0.22302257 \pm 4.3 \cdot 10^{-6} \) |
\(a_{664}= +0.78729718 \pm 2.0 \cdot 10^{-6} \) | \(a_{665}= -0.36250551 \pm 3.9 \cdot 10^{-6} \) | \(a_{666}= -0.05124169 \pm 4.3 \cdot 10^{-6} \) |
\(a_{667}= -1.45813995 \pm 1.2 \cdot 10^{-6} \) | \(a_{668}= -0.65555391 \pm 2.9 \cdot 10^{-6} \) | \(a_{669}= +0.57133178 \pm 2.4 \cdot 10^{-6} \) |
\(a_{670}= -2.11340446 \pm 2.1 \cdot 10^{-6} \) | \(a_{671}= -0.37447221 \pm 1.7 \cdot 10^{-6} \) | \(a_{672}= -0.25535386 \pm 2.1 \cdot 10^{-6} \) |
\(a_{673}= +0.79713411 \pm 1.7 \cdot 10^{-6} \) | \(a_{674}= +2.41597396 \pm 2.6 \cdot 10^{-6} \) | \(a_{675}= -0.02608341 \pm 1.9 \cdot 10^{-6} \) |
\(a_{676}= -0.61410412 \pm 2.9 \cdot 10^{-6} \) | \(a_{677}= +1.53299837 \pm 2.5 \cdot 10^{-6} \) | \(a_{678}= -0.62055340 \pm 3.8 \cdot 10^{-6} \) |
\(a_{679}= +0.05178811 \pm 1.3 \cdot 10^{-6} \) | \(a_{680}= +0.45324745 \pm 1.2 \cdot 10^{-6} \) | \(a_{681}= +0.18530131 \pm 2.1 \cdot 10^{-6} \) |
\(a_{682}= -0.20072061 \pm 2.1 \cdot 10^{-6} \) | \(a_{683}= -0.24787330 \pm 1.7 \cdot 10^{-6} \) | \(a_{684}= -0.23580402 \pm 4.9 \cdot 10^{-6} \) |
\(a_{685}= +0.08248100 \pm 1.0 \cdot 10^{-6} \) | \(a_{686}= +0.07010565 \pm 2.4 \cdot 10^{-6} \) | \(a_{687}= +0.04647185 \pm 2.6 \cdot 10^{-6} \) |
\(a_{688}= -1.02552745 \pm 2.6 \cdot 10^{-6} \) | \(a_{689}= -0.00574518 \pm 2.4 \cdot 10^{-6} \) | \(a_{690}= +0.92077620 \pm 6.4 \cdot 10^{-6} \) |
\(a_{691}= +0.70224507 \pm 2.5 \cdot 10^{-6} \) | \(a_{692}= +1.05979605 \pm 3.2 \cdot 10^{-6} \) | \(a_{693}= +0.02587726 \pm 1.8 \cdot 10^{-6} \) |
\(a_{694}= +0.56771970 \pm 2.1 \cdot 10^{-6} \) | \(a_{695}= -0.41017351 \pm 2.3 \cdot 10^{-6} \) | \(a_{696}= -0.25997765 \pm 5.0 \cdot 10^{-6} \) |
\(a_{697}= -1.59886126 \pm 1.0 \cdot 10^{-6} \) | \(a_{698}= -0.39985267 \pm 2.1 \cdot 10^{-6} \) | \(a_{699}= -0.39073130 \pm 1.9 \cdot 10^{-6} \) |
\(a_{700}= +0.03513016 \pm 4.8 \cdot 10^{-6} \) | \(a_{701}= +1.64489106 \pm 2.0 \cdot 10^{-6} \) | \(a_{702}= +0.08078009 \pm 4.6 \cdot 10^{-6} \) |
\(a_{703}= -0.12213332 \pm 1.4 \cdot 10^{-6} \) | \(a_{704}= +0.06240768 \pm 2.1 \cdot 10^{-6} \) | \(a_{705}= -0.76882055 \pm 3.9 \cdot 10^{-6} \) |
\(a_{706}= +0.80364396 \pm 1.7 \cdot 10^{-6} \) | \(a_{707}= +0.58531477 \pm 2.2 \cdot 10^{-6} \) | \(a_{708}= +0.36235705 \pm 4.3 \cdot 10^{-6} \) |
\(a_{709}= +0.07931419 \pm 2.0 \cdot 10^{-6} \) | \(a_{710}= -0.19213896 \pm 2.5 \cdot 10^{-6} \) | \(a_{711}= -0.06053153 \pm 1.3 \cdot 10^{-6} \) |
\(a_{712}= +0.24161135 \pm 2.0 \cdot 10^{-6} \) | \(a_{713}= -0.99436059 \pm 1.9 \cdot 10^{-6} \) | \(a_{714}= -0.33854291 \pm 4.5 \cdot 10^{-6} \) |
\(a_{715}= -0.06173746 \pm 1.9 \cdot 10^{-6} \) | \(a_{716}= +0.36109566 \pm 2.4 \cdot 10^{-6} \) | \(a_{717}= +0.25468687 \pm 1.8 \cdot 10^{-6} \) |
\(a_{718}= -1.23496288 \pm 2.0 \cdot 10^{-6} \) | \(a_{719}= -0.83623834 \pm 1.7 \cdot 10^{-6} \) | \(a_{720}= +0.37670652 \pm 4.2 \cdot 10^{-6} \) |
\(a_{721}= +0.02680382 \pm 1.8 \cdot 10^{-6} \) | \(a_{722}= -0.08321494 \pm 2.6 \cdot 10^{-6} \) | \(a_{723}= +0.46031099 \pm 2.1 \cdot 10^{-6} \) |
\(a_{724}= +1.13192405 \pm 2.5 \cdot 10^{-6} \) | \(a_{725}= +0.14959080 \pm 1.6 \cdot 10^{-6} \) | \(a_{726}= +0.71799305 \pm 4.2 \cdot 10^{-6} \) |
\(a_{727}= +0.21225016 \pm 2.4 \cdot 10^{-6} \) | \(a_{728}= +0.04985114 \pm 5.0 \cdot 10^{-6} \) | \(a_{729}= +0.03703704 \pm 1.3 \cdot 10^{-6} \) |
\(a_{730}= -0.57224799 \pm 2.3 \cdot 10^{-6} \) | \(a_{731}= -1.00813875 \pm 1.9 \cdot 10^{-6} \) | \(a_{732}= +0.72186071 \pm 4.8 \cdot 10^{-6} \) |
\(a_{733}= -0.15373331 \pm 1.9 \cdot 10^{-6} \) | \(a_{734}= -0.65025000 \pm 2.0 \cdot 10^{-6} \) | \(a_{735}= -0.07668589 \pm 1.9 \cdot 10^{-6} \) |
\(a_{736}= +1.54593984 \pm 2.0 \cdot 10^{-6} \) | \(a_{737}= +0.35958118 \pm 1.8 \cdot 10^{-6} \) | \(a_{738}= -0.57911698 \pm 4.0 \cdot 10^{-6} \) |
\(a_{739}= +0.58768910 \pm 2.2 \cdot 10^{-6} \) | \(a_{740}= -0.07549214 \pm 2.7 \cdot 10^{-6} \) | \(a_{741}= +0.19253737 \pm 4.2 \cdot 10^{-6} \) |
\(a_{742}= +0.00872104 \pm 4.6 \cdot 10^{-6} \) | \(a_{743}= -1.24473861 \pm 2.0 \cdot 10^{-6} \) | \(a_{744}= -0.17728856 \pm 5.0 \cdot 10^{-6} \) |
\(a_{745}= +0.74976946 \pm 1.8 \cdot 10^{-6} \) | \(a_{746}= +2.15747017 \pm 3.2 \cdot 10^{-6} \) | \(a_{747}= +0.64324954 \pm 1.8 \cdot 10^{-6} \) |
\(a_{748}= +0.16830413 \pm 2.3 \cdot 10^{-6} \) | \(a_{749}= -0.66332958 \pm 2.3 \cdot 10^{-6} \) | \(a_{750}= -0.79143173 \pm 4.1 \cdot 10^{-6} \) |
\(a_{751}= +1.67929732 \pm 2.2 \cdot 10^{-6} \) | \(a_{752}= -1.74085168 \pm 3.1 \cdot 10^{-6} \) | \(a_{753}= +0.16654139 \pm 1.7 \cdot 10^{-6} \) |
\(a_{754}= -0.46328144 \pm 2.0 \cdot 10^{-6} \) | \(a_{755}= -0.89629579 \pm 2.2 \cdot 10^{-6} \) | \(a_{756}= -0.04988294 \pm 2.8 \cdot 10^{-6} \) |
\(a_{757}= -0.62305963 \pm 2.0 \cdot 10^{-6} \) | \(a_{758}= -0.68158480 \pm 1.7 \cdot 10^{-6} \) | \(a_{759}= -0.15666371 \pm 3.9 \cdot 10^{-6} \) |
\(a_{760}= +0.39129256 \pm 1.7 \cdot 10^{-6} \) | \(a_{761}= +0.52233451 \pm 2.4 \cdot 10^{-6} \) | \(a_{762}= -0.22439969 \pm 4.8 \cdot 10^{-6} \) |
\(a_{763}= +0.07195576 \pm 2.2 \cdot 10^{-6} \) | \(a_{764}= -0.98972464 \pm 3.7 \cdot 10^{-6} \) | \(a_{765}= +0.37031914 \pm 4.0 \cdot 10^{-6} \) |
\(a_{766}= -0.24086710 \pm 3.0 \cdot 10^{-6} \) | \(a_{767}= -0.29586973 \pm 1.8 \cdot 10^{-6} \) | \(a_{768}= +0.75688391 \pm 2.2 \cdot 10^{-6} \) |
\(a_{769}= +1.05155916 \pm 2.3 \cdot 10^{-6} \) | \(a_{770}= +0.09371599 \pm 6.2 \cdot 10^{-6} \) | \(a_{771}= -1.02309643 \pm 1.8 \cdot 10^{-6} \) |
\(a_{772}= +1.18258366 \pm 3.0 \cdot 10^{-6} \) | \(a_{773}= +0.81748405 \pm 1.9 \cdot 10^{-6} \) | \(a_{774}= -0.36515380 \pm 4.6 \cdot 10^{-6} \) |
\(a_{775}= +0.10201161 \pm 1.9 \cdot 10^{-6} \) | \(a_{776}= -0.05590068 \pm 1.6 \cdot 10^{-6} \) | \(a_{777}= -0.02583658 \pm 1.9 \cdot 10^{-6} \) |
\(a_{778}= -1.25828659 \pm 2.0 \cdot 10^{-6} \) | \(a_{779}= -1.38031115 \pm 1.3 \cdot 10^{-6} \) | \(a_{780}= +0.11900976 \pm 6.9 \cdot 10^{-6} \) |
\(a_{781}= +0.03269112 \pm 1.7 \cdot 10^{-6} \) | \(a_{782}= +2.04957534 \pm 1.5 \cdot 10^{-6} \) | \(a_{783}= -0.21241090 \pm 2.1 \cdot 10^{-6} \) |
\(a_{784}= -0.17364098 \pm 2.3 \cdot 10^{-6} \) | \(a_{785}= +1.60592355 \pm 2.3 \cdot 10^{-6} \) | \(a_{786}= -0.47981906 \pm 4.1 \cdot 10^{-6} \) |
\(a_{787}= +1.44441006 \pm 1.6 \cdot 10^{-6} \) | \(a_{788}= -1.23445023 \pm 1.7 \cdot 10^{-6} \) | \(a_{789}= +0.85264555 \pm 2.0 \cdot 10^{-6} \) |
\(a_{790}= -0.21921843 \pm 1.7 \cdot 10^{-6} \) | \(a_{791}= -0.31288929 \pm 1.4 \cdot 10^{-6} \) | \(a_{792}= -0.02793220 \pm 4.7 \cdot 10^{-6} \) |
\(a_{793}= -0.58940963 \pm 2.2 \cdot 10^{-6} \) | \(a_{794}= -2.45415642 \pm 2.7 \cdot 10^{-6} \) | \(a_{795}= -0.00953961 \pm 4.1 \cdot 10^{-6} \) |
\(a_{796}= +0.32027520 \pm 2.3 \cdot 10^{-6} \) | \(a_{797}= -0.22610763 \pm 1.8 \cdot 10^{-6} \) | \(a_{798}= -0.29226710 \pm 4.5 \cdot 10^{-6} \) |
\(a_{799}= -1.71133404 \pm 1.8 \cdot 10^{-6} \) | \(a_{800}= -0.15859821 \pm 1.6 \cdot 10^{-6} \) | \(a_{801}= +0.19740498 \pm 1.7 \cdot 10^{-6} \) |
\(a_{802}= -0.46315691 \pm 2.3 \cdot 10^{-6} \) | \(a_{803}= +0.09736404 \pm 1.6 \cdot 10^{-6} \) | \(a_{804}= -0.69315563 \pm 4.9 \cdot 10^{-6} \) |
\(a_{805}= +0.46426466 \pm 3.9 \cdot 10^{-6} \) | \(a_{806}= -0.31592907 \pm 2.3 \cdot 10^{-6} \) | \(a_{807}= -0.18965895 \pm 1.9 \cdot 10^{-6} \) |
\(a_{808}= -0.63179540 \pm 2.7 \cdot 10^{-6} \) | \(a_{809}= +0.82065642 \pm 2.1 \cdot 10^{-6} \) | \(a_{810}= +0.13413178 \pm 4.3 \cdot 10^{-6} \) |
\(a_{811}= +0.35806569 \pm 2.1 \cdot 10^{-6} \) | \(a_{812}= +0.28608338 \pm 5.0 \cdot 10^{-6} \) | \(a_{813}= +0.44652682 \pm 1.8 \cdot 10^{-6} \) |
\(a_{814}= +0.03157426 \pm 1.9 \cdot 10^{-6} \) | \(a_{815}= -0.84385461 \pm 1.6 \cdot 10^{-6} \) | \(a_{816}= +0.83851907 \pm 4.4 \cdot 10^{-6} \) |
\(a_{817}= -0.87033515 \pm 2.2 \cdot 10^{-6} \) | \(a_{818}= +0.71254673 \pm 1.7 \cdot 10^{-6} \) | \(a_{819}= +0.04073014 \pm 2.1 \cdot 10^{-6} \) |
\(a_{820}= -0.85318764 \pm 2.0 \cdot 10^{-6} \) | \(a_{821}= +0.56762659 \pm 1.6 \cdot 10^{-6} \) | \(a_{822}= +0.06649963 \pm 4.1 \cdot 10^{-6} \) |
\(a_{823}= -1.79126913 \pm 1.6 \cdot 10^{-6} \) | \(a_{824}= -0.02893234 \pm 2.6 \cdot 10^{-6} \) | \(a_{825}= +0.01607215 \pm 3.8 \cdot 10^{-6} \) |
\(a_{826}= +0.44912315 \pm 3.9 \cdot 10^{-6} \) | \(a_{827}= -0.94715813 \pm 2.4 \cdot 10^{-6} \) | \(a_{828}= +0.30199672 \pm 4.9 \cdot 10^{-6} \) |
\(a_{829}= +0.36982799 \pm 1.6 \cdot 10^{-6} \) | \(a_{830}= +2.32956551 \pm 2.3 \cdot 10^{-6} \) | \(a_{831}= +0.56613183 \pm 1.7 \cdot 10^{-6} \) |
\(a_{832}= +0.09822808 \pm 1.3 \cdot 10^{-6} \) | \(a_{833}= -0.17069675 \pm 2.1 \cdot 10^{-6} \) | \(a_{834}= -0.33069904 \pm 4.6 \cdot 10^{-6} \) |
\(a_{835}= +0.88879086 \pm 1.5 \cdot 10^{-6} \) | \(a_{836}= +0.14529845 \pm 3.1 \cdot 10^{-6} \) | \(a_{837}= -0.14485100 \pm 2.2 \cdot 10^{-6} \) |
\(a_{838}= -1.57273003 \pm 2.3 \cdot 10^{-6} \) | \(a_{839}= +1.45166382 \pm 2.2 \cdot 10^{-6} \) | \(a_{840}= +0.08277562 \pm 4.7 \cdot 10^{-6} \) |
\(a_{841}= +0.21819658 \pm 2.5 \cdot 10^{-6} \) | \(a_{842}= -1.06660068 \pm 1.9 \cdot 10^{-6} \) | \(a_{843}= +0.05160195 \pm 2.4 \cdot 10^{-6} \) |
\(a_{844}= -0.14065751 \pm 2.3 \cdot 10^{-6} \) | \(a_{845}= +0.83259380 \pm 2.0 \cdot 10^{-6} \) | \(a_{846}= -0.61985528 \pm 4.4 \cdot 10^{-6} \) |
\(a_{847}= +0.36201934 \pm 1.7 \cdot 10^{-6} \) | \(a_{848}= -0.02160069 \pm 2.9 \cdot 10^{-6} \) | \(a_{849}= +0.69731052 \pm 1.7 \cdot 10^{-6} \) |
\(a_{850}= -0.21026625 \pm 1.8 \cdot 10^{-6} \) | \(a_{851}= +0.15641744 \pm 2.0 \cdot 10^{-6} \) | \(a_{852}= -0.06301785 \pm 5.4 \cdot 10^{-6} \) |
\(a_{853}= -0.78796539 \pm 2.2 \cdot 10^{-6} \) | \(a_{854}= +0.89470966 \pm 4.4 \cdot 10^{-6} \) | \(a_{855}= +0.31969981 \pm 3.9 \cdot 10^{-6} \) |
\(a_{856}= +0.71600546 \pm 3.3 \cdot 10^{-6} \) | \(a_{857}= +0.86610707 \pm 1.8 \cdot 10^{-6} \) | \(a_{858}= -0.04977533 \pm 6.5 \cdot 10^{-6} \) |
\(a_{859}= -0.60290909 \pm 2.0 \cdot 10^{-6} \) | \(a_{860}= -0.53796508 \pm 3.3 \cdot 10^{-6} \) | \(a_{861}= -0.29199663 \pm 1.6 \cdot 10^{-6} \) |
\(a_{862}= +2.25086163 \pm 2.2 \cdot 10^{-6} \) | \(a_{863}= +1.78084184 \pm 2.2 \cdot 10^{-6} \) | \(a_{864}= +0.22520093 \pm 2.1 \cdot 10^{-6} \) |
\(a_{865}= -1.43685672 \pm 2.2 \cdot 10^{-6} \) | \(a_{866}= +0.55415176 \pm 1.9 \cdot 10^{-6} \) | \(a_{867}= +0.24695099 \pm 1.9 \cdot 10^{-6} \) |
\(a_{868}= +0.19509103 \pm 5.1 \cdot 10^{-6} \) | \(a_{869}= +0.03729850 \pm 1.3 \cdot 10^{-6} \) | \(a_{870}= -0.76925840 \pm 6.5 \cdot 10^{-6} \) |
\(a_{871}= +0.56597152 \pm 2.4 \cdot 10^{-6} \) | \(a_{872}= -0.07766986 \pm 3.0 \cdot 10^{-6} \) | \(a_{873}= -0.04567282 \pm 1.3 \cdot 10^{-6} \) |
\(a_{874}= +1.76941663 \pm 2.1 \cdot 10^{-6} \) | \(a_{875}= -0.39904787 \pm 1.7 \cdot 10^{-6} \) | \(a_{876}= -0.18768623 \pm 4.7 \cdot 10^{-6} \) |
\(a_{877}= -0.06434337 \pm 2.2 \cdot 10^{-6} \) | \(a_{878}= -0.89755978 \pm 2.8 \cdot 10^{-6} \) | \(a_{879}= -0.76283200 \pm 1.8 \cdot 10^{-6} \) |
\(a_{880}= -0.23212019 \pm 2.2 \cdot 10^{-6} \) | \(a_{881}= +1.29157812 \pm 1.9 \cdot 10^{-6} \) | \(a_{882}= -0.06182737 \pm 2.4 \cdot 10^{-6} \) |
\(a_{883}= -0.51833614 \pm 2.2 \cdot 10^{-6} \) | \(a_{884}= +0.26490637 \pm 1.2 \cdot 10^{-6} \) | \(a_{885}= -0.49127864 \pm 3.4 \cdot 10^{-6} \) |
\(a_{886}= +1.50380336 \pm 2.6 \cdot 10^{-6} \) | \(a_{887}= -1.77033941 \pm 1.6 \cdot 10^{-6} \) | \(a_{888}= +0.02788830 \pm 4.7 \cdot 10^{-6} \) |
\(a_{889}= -0.11314459 \pm 2.4 \cdot 10^{-6} \) | \(a_{890}= +0.71491360 \pm 2.7 \cdot 10^{-6} \) | \(a_{891}= -0.02282160 \pm 1.8 \cdot 10^{-6} \) |
\(a_{892}= +0.67862830 \pm 2.9 \cdot 10^{-6} \) | \(a_{893}= -1.47740990 \pm 1.5 \cdot 10^{-6} \) | \(a_{894}= +0.60449550 \pm 4.3 \cdot 10^{-6} \) |
\(a_{895}= -0.48956847 \pm 1.5 \cdot 10^{-6} \) | \(a_{896}= +0.29317798 \pm 2.2 \cdot 10^{-6} \) | \(a_{897}= -0.24658465 \pm 4.2 \cdot 10^{-6} \) |
\(a_{898}= -1.67234403 \pm 2.2 \cdot 10^{-6} \) | \(a_{899}= +0.83073415 \pm 2.4 \cdot 10^{-6} \) | \(a_{900}= -0.03098189 \pm 4.8 \cdot 10^{-6} \) |
\(a_{901}= -0.02123443 \pm 2.2 \cdot 10^{-6} \) | \(a_{902}= +0.35684209 \pm 1.5 \cdot 10^{-6} \) | \(a_{903}= -0.18411423 \pm 2.2 \cdot 10^{-6} \) |
\(a_{904}= +0.33773625 \pm 2.3 \cdot 10^{-6} \) | \(a_{905}= -1.53464686 \pm 1.3 \cdot 10^{-6} \) | \(a_{906}= -0.72263115 \pm 4.5 \cdot 10^{-6} \) |
\(a_{907}= -1.25818254 \pm 1.8 \cdot 10^{-6} \) | \(a_{908}= +0.22010103 \pm 2.4 \cdot 10^{-6} \) | \(a_{909}= -0.51619910 \pm 2.2 \cdot 10^{-6} \) |
\(a_{910}= +0.14750655 \pm 6.5 \cdot 10^{-6} \) | \(a_{911}= -0.01668539 \pm 1.6 \cdot 10^{-6} \) | \(a_{912}= +0.72390097 \pm 4.4 \cdot 10^{-6} \) |
\(a_{913}= -0.39635948 \pm 1.8 \cdot 10^{-6} \) | \(a_{914}= +0.09582671 \pm 2.9 \cdot 10^{-6} \) | \(a_{915}= -0.97868869 \pm 3.9 \cdot 10^{-6} \) |
\(a_{916}= +0.05519930 \pm 3.3 \cdot 10^{-6} \) | \(a_{917}= -0.24192962 \pm 1.7 \cdot 10^{-6} \) | \(a_{918}= +0.29856678 \pm 4.5 \cdot 10^{-6} \) |
\(a_{919}= +0.03844584 \pm 2.5 \cdot 10^{-6} \) | \(a_{920}= -0.50113253 \pm 2.7 \cdot 10^{-6} \) | \(a_{921}= -0.24092810 \pm 2.6 \cdot 10^{-6} \) |
\(a_{922}= -1.34104514 \pm 2.5 \cdot 10^{-6} \) | \(a_{923}= +0.05145498 \pm 2.2 \cdot 10^{-6} \) | \(a_{924}= +0.03073702 \pm 4.7 \cdot 10^{-6} \) |
\(a_{925}= -0.01604689 \pm 2.0 \cdot 10^{-6} \) | \(a_{926}= +0.31838847 \pm 2.1 \cdot 10^{-6} \) | \(a_{927}= -0.02363874 \pm 1.8 \cdot 10^{-6} \) |
\(a_{928}= -1.29154861 \pm 2.2 \cdot 10^{-6} \) | \(a_{929}= -0.36985979 \pm 2.5 \cdot 10^{-6} \) | \(a_{930}= -0.52458629 \pm 6.6 \cdot 10^{-6} \) |
\(a_{931}= -0.14736402 \pm 2.0 \cdot 10^{-6} \) | \(a_{932}= -0.46411092 \pm 2.1 \cdot 10^{-6} \) | \(a_{933}= -0.18724632 \pm 2.4 \cdot 10^{-6} \) |
\(a_{934}= +2.08526292 \pm 1.9 \cdot 10^{-6} \) | \(a_{935}= -0.22818439 \pm 1.3 \cdot 10^{-6} \) | \(a_{936}= -0.04396457 \pm 5.0 \cdot 10^{-6} \) |
\(a_{937}= -0.39195792 \pm 2.0 \cdot 10^{-6} \) | \(a_{938}= -0.85913118 \pm 4.5 \cdot 10^{-6} \) | \(a_{939}= -0.51075364 \pm 2.5 \cdot 10^{-6} \) |
\(a_{940}= -0.91320560 \pm 2.9 \cdot 10^{-6} \) | \(a_{941}= +0.49658074 \pm 2.1 \cdot 10^{-6} \) | \(a_{942}= +1.29476273 \pm 4.4 \cdot 10^{-6} \) |
\(a_{943}= +1.76777915 \pm 2.1 \cdot 10^{-6} \) | \(a_{944}= -1.11240943 \pm 1.7 \cdot 10^{-6} \) | \(a_{945}= +0.06763060 \pm 1.9 \cdot 10^{-6} \) |
\(a_{946}= +0.22500160 \pm 2.5 \cdot 10^{-6} \) | \(a_{947}= +0.63287628 \pm 1.9 \cdot 10^{-6} \) | \(a_{948}= -0.07189939 \pm 4.2 \cdot 10^{-6} \) |
\(a_{949}= +0.15324850 \pm 2.2 \cdot 10^{-6} \) | \(a_{950}= -0.18152472 \pm 1.9 \cdot 10^{-6} \) | \(a_{951}= +0.98247732 \pm 2.4 \cdot 10^{-6} \) |
\(a_{952}= +0.18425201 \pm 4.9 \cdot 10^{-6} \) | \(a_{953}= -0.08637124 \pm 2.3 \cdot 10^{-6} \) | \(a_{954}= -0.00769124 \pm 4.6 \cdot 10^{-6} \) |
\(a_{955}= +1.34185487 \pm 2.4 \cdot 10^{-6} \) | \(a_{956}= +0.30251725 \pm 2.3 \cdot 10^{-6} \) | \(a_{957}= +0.13088401 \pm 4.0 \cdot 10^{-6} \) |
\(a_{958}= +1.15948606 \pm 2.3 \cdot 10^{-6} \) | \(a_{959}= +0.03352979 \pm 1.7 \cdot 10^{-6} \) | \(a_{960}= +0.16310340 \pm 3.8 \cdot 10^{-6} \) |
\(a_{961}= -0.43349107 \pm 1.6 \cdot 10^{-6} \) | \(a_{962}= +0.04969708 \pm 2.1 \cdot 10^{-6} \) | \(a_{963}= +0.58500170 \pm 2.3 \cdot 10^{-6} \) |
\(a_{964}= +0.54675772 \pm 2.5 \cdot 10^{-6} \) | \(a_{965}= -1.60333044 \pm 1.8 \cdot 10^{-6} \) | \(a_{966}= +0.37430958 \pm 4.5 \cdot 10^{-6} \) |
\(a_{967}= +1.30766616 \pm 1.6 \cdot 10^{-6} \) | \(a_{968}= -0.39076779 \pm 2.3 \cdot 10^{-6} \) | \(a_{969}= +0.71162661 \pm 4.1 \cdot 10^{-6} \) |
\(a_{970}= -0.16540678 \pm 1.3 \cdot 10^{-6} \) | \(a_{971}= +0.09442955 \pm 1.4 \cdot 10^{-6} \) | \(a_{972}= +0.04399262 \pm 2.8 \cdot 10^{-6} \) |
\(a_{973}= -0.16674179 \pm 2.2 \cdot 10^{-6} \) | \(a_{974}= +1.98105032 \pm 1.9 \cdot 10^{-6} \) | \(a_{975}= +0.02529716 \pm 4.1 \cdot 10^{-6} \) |
\(a_{976}= -2.21605919 \pm 1.6 \cdot 10^{-6} \) | \(a_{977}= +0.66414589 \pm 1.9 \cdot 10^{-6} \) | \(a_{978}= -0.68035088 \pm 4.4 \cdot 10^{-6} \) |
\(a_{979}= -0.12163761 \pm 1.4 \cdot 10^{-6} \) | \(a_{980}= -0.09108755 \pm 4.7 \cdot 10^{-6} \) | \(a_{981}= -0.06345901 \pm 2.2 \cdot 10^{-6} \) |
\(a_{982}= -0.07754172 \pm 1.5 \cdot 10^{-6} \) | \(a_{983}= +0.80440130 \pm 2.0 \cdot 10^{-6} \) | \(a_{984}= +0.31518447 \pm 4.4 \cdot 10^{-6} \) |
\(a_{985}= +1.67365041 \pm 1.4 \cdot 10^{-6} \) | \(a_{986}= -1.71230866 \pm 1.6 \cdot 10^{-6} \) | \(a_{987}= -0.31253729 \pm 2.0 \cdot 10^{-6} \) |
\(a_{988}= +0.22869602 \pm 2.0 \cdot 10^{-6} \) | \(a_{989}= +1.11464747 \pm 2.5 \cdot 10^{-6} \) | \(a_{990}= -0.08264973 \pm 6.2 \cdot 10^{-6} \) |
\(a_{991}= +0.43647801 \pm 2.1 \cdot 10^{-6} \) | \(a_{992}= -0.88075567 \pm 2.1 \cdot 10^{-6} \) | \(a_{993}= -0.57577788 \pm 1.8 \cdot 10^{-6} \) |
\(a_{994}= -0.07810742 \pm 5.0 \cdot 10^{-6} \) | \(a_{995}= -0.43422465 \pm 1.5 \cdot 10^{-6} \) | \(a_{996}= +0.76405226 \pm 4.7 \cdot 10^{-6} \) |
\(a_{997}= +0.25759711 \pm 2.2 \cdot 10^{-6} \) | \(a_{998}= +0.98148543 \pm 2.3 \cdot 10^{-6} \) | \(a_{999}= +0.02278572 \pm 1.9 \cdot 10^{-6} \) |
\(a_{1000}= +0.43073680 \pm 2.4 \cdot 10^{-6} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000