Maass form invariants
Level: | \( 21 = 3 \cdot 7 \) |
Weight: | \( 0 \) |
Character: | 21.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(7.47848697390734287270005683799 \pm 4 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +1.88377113 \pm 2.8 \cdot 10^{-5} \) | \(a_{3}= -0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= +2.54859368 \pm 3.3 \cdot 10^{-5} \) | \(a_{5}= -0.68855838 \pm 2.2 \cdot 10^{-5} \) | \(a_{6}= -1.08759577 \pm 2.8 \cdot 10^{-5} \) |
\(a_{7}= +0.37796447 \pm 1.0 \cdot 10^{-8} \) | \(a_{8}= +2.91719607 \pm 3.3 \cdot 10^{-5} \) | \(a_{9}= +0.33333333 \pm 4.2 \cdot 10^{-8} \) |
\(a_{10}= -1.29708641 \pm 2.7 \cdot 10^{-5} \) | \(a_{11}= +1.81938821 \pm 2.2 \cdot 10^{-5} \) | \(a_{12}= -1.47143125 \pm 3.3 \cdot 10^{-5} \) |
\(a_{13}= +0.47983081 \pm 2.5 \cdot 10^{-5} \) | \(a_{14}= +0.71199856 \pm 2.8 \cdot 10^{-5} \) | \(a_{15}= +0.39753937 \pm 2.2 \cdot 10^{-5} \) |
\(a_{16}= +2.94673606 \pm 2.7 \cdot 10^{-5} \) | \(a_{17}= -0.79396107 \pm 2.4 \cdot 10^{-5} \) | \(a_{18}= +0.62792371 \pm 2.8 \cdot 10^{-5} \) |
\(a_{19}= +0.68941664 \pm 2.4 \cdot 10^{-5} \) | \(a_{20}= -1.75485554 \pm 3.2 \cdot 10^{-5} \) | \(a_{21}= -0.21821789 \pm 1.0 \cdot 10^{-8} \) |
\(a_{22}= +3.42731098 \pm 2.9 \cdot 10^{-5} \) | \(a_{23}= +1.20351149 \pm 2.4 \cdot 10^{-5} \) | \(a_{24}= -1.68424393 \pm 3.3 \cdot 10^{-5} \) |
\(a_{25}= -0.52588735 \pm 2.2 \cdot 10^{-5} \) | \(a_{26}= +0.90389143 \pm 2.7 \cdot 10^{-5} \) | \(a_{27}= -0.19245009 \pm 9.4 \cdot 10^{-8} \) |
\(a_{28}= +0.96327787 \pm 3.3 \cdot 10^{-5} \) | \(a_{29}= -0.17375577 \pm 2.5 \cdot 10^{-5} \) | \(a_{30}= +0.74887319 \pm 5.1 \cdot 10^{-5} \) |
\(a_{31}= +1.37755508 \pm 2.6 \cdot 10^{-5} \) | \(a_{32}= +2.63378025 \pm 2.5 \cdot 10^{-5} \) | \(a_{33}= -1.05042427 \pm 2.2 \cdot 10^{-5} \) |
\(a_{34}= -1.49564094 \pm 2.3 \cdot 10^{-5} \) | \(a_{35}= -0.26025061 \pm 2.2 \cdot 10^{-5} \) | \(a_{36}= +0.84953123 \pm 3.3 \cdot 10^{-5} \) |
\(a_{37}= -0.33957869 \pm 2.2 \cdot 10^{-5} \) | \(a_{38}= +1.29870317 \pm 2.8 \cdot 10^{-5} \) | \(a_{39}= -0.27703045 \pm 2.5 \cdot 10^{-5} \) |
\(a_{40}= -2.00865981 \pm 3.0 \cdot 10^{-5} \) | \(a_{41}= -0.71199244 \pm 1.8 \cdot 10^{-5} \) | \(a_{42}= -0.41107256 \pm 2.8 \cdot 10^{-5} \) |
\(a_{43}= -1.21799357 \pm 2.5 \cdot 10^{-5} \) | \(a_{44}= +4.63688128 \pm 3.3 \cdot 10^{-5} \) | \(a_{45}= -0.22951946 \pm 2.2 \cdot 10^{-5} \) |
\(a_{46}= +2.26714020 \pm 2.8 \cdot 10^{-5} \) | \(a_{47}= -0.79505157 \pm 2.3 \cdot 10^{-5} \) | \(a_{48}= -1.70129886 \pm 2.7 \cdot 10^{-5} \) |
\(a_{49}= +0.14285714 \pm 1.5 \cdot 10^{-7} \) | \(a_{50}= -0.99065141 \pm 2.2 \cdot 10^{-5} \) | \(a_{51}= +0.45839364 \pm 2.4 \cdot 10^{-5} \) |
\(a_{52}= +1.22289378 \pm 3.1 \cdot 10^{-5} \) | \(a_{53}= -1.36342505 \pm 2.5 \cdot 10^{-5} \) | \(a_{54}= -0.36253192 \pm 2.8 \cdot 10^{-5} \) |
\(a_{55}= -1.25275500 \pm 1.9 \cdot 10^{-5} \) | \(a_{56}= +1.10259647 \pm 3.3 \cdot 10^{-5} \) | \(a_{57}= -0.39803488 \pm 2.4 \cdot 10^{-5} \) |
\(a_{58}= -0.32731611 \pm 2.4 \cdot 10^{-5} \) | \(a_{59}= +0.73815466 \pm 1.7 \cdot 10^{-5} \) | \(a_{60}= +1.01316632 \pm 5.5 \cdot 10^{-5} \) |
\(a_{61}= -1.08567409 \pm 2.3 \cdot 10^{-5} \) | \(a_{62}= +2.59499848 \pm 3.0 \cdot 10^{-5} \) | \(a_{63}= +0.12598816 \pm 1.8 \cdot 10^{-7} \) |
\(a_{64}= +2.01470315 \pm 2.2 \cdot 10^{-5} \) | \(a_{65}= -0.33039153 \pm 2.3 \cdot 10^{-5} \) | \(a_{66}= -1.97875892 \pm 5.0 \cdot 10^{-5} \) |
\(a_{67}= +1.20593468 \pm 2.4 \cdot 10^{-5} \) | \(a_{68}= -2.02348415 \pm 2.2 \cdot 10^{-5} \) | \(a_{69}= -0.69484768 \pm 2.4 \cdot 10^{-5} \) |
\(a_{70}= -0.49025258 \pm 5.1 \cdot 10^{-5} \) | \(a_{71}= -0.54473291 \pm 3.0 \cdot 10^{-5} \) | \(a_{72}= +0.97239869 \pm 3.3 \cdot 10^{-5} \) |
\(a_{73}= -1.38446854 \pm 2.2 \cdot 10^{-5} \) | \(a_{74}= -0.63968853 \pm 2.5 \cdot 10^{-5} \) | \(a_{75}= +0.30362120 \pm 2.2 \cdot 10^{-5} \) |
\(a_{76}= +1.75704290 \pm 2.8 \cdot 10^{-5} \) | \(a_{77}= +0.68766411 \pm 2.2 \cdot 10^{-5} \) | \(a_{78}= -0.52186196 \pm 5.4 \cdot 10^{-5} \) |
\(a_{79}= +0.91391431 \pm 1.6 \cdot 10^{-5} \) | \(a_{80}= -2.02899982 \pm 2.8 \cdot 10^{-5} \) | \(a_{81}= +0.11111111 \pm 2.3 \cdot 10^{-7} \) |
\(a_{82}= -1.34123080 \pm 2.1 \cdot 10^{-5} \) | \(a_{83}= +0.27010314 \pm 2.2 \cdot 10^{-5} \) | \(a_{84}= -0.55614874 \pm 3.3 \cdot 10^{-5} \) |
\(a_{85}= +0.54668855 \pm 1.7 \cdot 10^{-5} \) | \(a_{86}= -2.29442112 \pm 3.3 \cdot 10^{-5} \) | \(a_{87}= +0.10031794 \pm 2.5 \cdot 10^{-5} \) |
\(a_{88}= +5.30751212 \pm 3.2 \cdot 10^{-5} \) | \(a_{89}= +0.91270129 \pm 2.0 \cdot 10^{-5} \) | \(a_{90}= -0.43236214 \pm 5.1 \cdot 10^{-5} \) |
\(a_{91}= +0.18135900 \pm 2.5 \cdot 10^{-5} \) | \(a_{92}= +3.06726177 \pm 3.5 \cdot 10^{-5} \) | \(a_{93}= -0.79533179 \pm 2.6 \cdot 10^{-5} \) |
\(a_{94}= -1.49769519 \pm 2.8 \cdot 10^{-5} \) | \(a_{95}= -0.47470361 \pm 1.7 \cdot 10^{-5} \) | \(a_{96}= -1.52061374 \pm 2.5 \cdot 10^{-5} \) |
\(a_{97}= +0.44905157 \pm 1.5 \cdot 10^{-5} \) | \(a_{98}= +0.26911016 \pm 2.8 \cdot 10^{-5} \) | \(a_{99}= +0.60646274 \pm 2.2 \cdot 10^{-5} \) |
\(a_{100}= -1.34027318 \pm 2.4 \cdot 10^{-5} \) | \(a_{101}= +0.31146953 \pm 2.6 \cdot 10^{-5} \) | \(a_{102}= +0.86350870 \pm 5.3 \cdot 10^{-5} \) |
\(a_{103}= +0.17684870 \pm 2.1 \cdot 10^{-5} \) | \(a_{104}= +1.39976056 \pm 3.1 \cdot 10^{-5} \) | \(a_{105}= +0.15025576 \pm 2.2 \cdot 10^{-5} \) |
\(a_{106}= -2.56838076 \pm 3.2 \cdot 10^{-5} \) | \(a_{107}= -0.46833212 \pm 2.7 \cdot 10^{-5} \) | \(a_{108}= -0.49047708 \pm 3.3 \cdot 10^{-5} \) |
\(a_{109}= -1.73020728 \pm 2.5 \cdot 10^{-5} \) | \(a_{110}= -2.35990371 \pm 2.3 \cdot 10^{-5} \) | \(a_{111}= +0.19605585 \pm 2.2 \cdot 10^{-5} \) |
\(a_{112}= +1.11376154 \pm 2.7 \cdot 10^{-5} \) | \(a_{113}= +0.32259341 \pm 1.6 \cdot 10^{-5} \) | \(a_{114}= -0.74980662 \pm 5.2 \cdot 10^{-5} \) |
\(a_{115}= -0.82868793 \pm 2.3 \cdot 10^{-5} \) | \(a_{116}= -0.44283286 \pm 2.9 \cdot 10^{-5} \) | \(a_{117}= +0.15994360 \pm 2.5 \cdot 10^{-5} \) |
\(a_{118}= +1.39051443 \pm 2.1 \cdot 10^{-5} \) | \(a_{119}= -0.30008908 \pm 2.4 \cdot 10^{-5} \) | \(a_{120}= +1.15970028 \pm 5.5 \cdot 10^{-5} \) |
\(a_{121}= +2.31017345 \pm 2.0 \cdot 10^{-5} \) | \(a_{122}= -2.04516152 \pm 2.5 \cdot 10^{-5} \) | \(a_{123}= +0.41106902 \pm 1.8 \cdot 10^{-5} \) |
\(a_{124}= +3.51082816 \pm 3.3 \cdot 10^{-5} \) | \(a_{125}= +1.05066253 \pm 2.0 \cdot 10^{-5} \) | \(a_{126}= +0.23733285 \pm 2.8 \cdot 10^{-5} \) |
\(a_{127}= +0.08394642 \pm 2.8 \cdot 10^{-5} \) | \(a_{128}= +1.16145938 \pm 2.5 \cdot 10^{-5} \) | \(a_{129}= +0.70320891 \pm 2.5 \cdot 10^{-5} \) |
\(a_{130}= -0.62238203 \pm 3.1 \cdot 10^{-5} \) | \(a_{131}= -1.34423648 \pm 2.0 \cdot 10^{-5} \) | \(a_{132}= -2.67710466 \pm 5.5 \cdot 10^{-5} \) |
\(a_{133}= +0.26057500 \pm 2.4 \cdot 10^{-5} \) | \(a_{134}= +2.27170493 \pm 2.4 \cdot 10^{-5} \) | \(a_{135}= +0.13251312 \pm 2.2 \cdot 10^{-5} \) |
\(a_{136}= -2.31614010 \pm 2.4 \cdot 10^{-5} \) | \(a_{137}= -1.01796268 \pm 2.0 \cdot 10^{-5} \) | \(a_{138}= -1.30893400 \pm 5.2 \cdot 10^{-5} \) |
\(a_{139}= +1.18770687 \pm 2.6 \cdot 10^{-5} \) | \(a_{140}= -0.66327305 \pm 5.5 \cdot 10^{-5} \) | \(a_{141}= +0.45902324 \pm 2.3 \cdot 10^{-5} \) |
\(a_{142}= -1.02615214 \pm 2.9 \cdot 10^{-5} \) | \(a_{143}= +0.87299852 \pm 2.3 \cdot 10^{-5} \) | \(a_{144}= +0.98224535 \pm 2.7 \cdot 10^{-5} \) |
\(a_{145}= +0.11964099 \pm 1.8 \cdot 10^{-5} \) | \(a_{146}= -2.60802187 \pm 2.7 \cdot 10^{-5} \) | \(a_{147}= -0.08247861 \pm 3.5 \cdot 10^{-7} \) |
\(a_{148}= -0.86544810 \pm 3.0 \cdot 10^{-5} \) | \(a_{149}= -0.06540344 \pm 2.1 \cdot 10^{-5} \) | \(a_{150}= +0.57195286 \pm 5.1 \cdot 10^{-5} \) |
\(a_{151}= +1.66871599 \pm 2.5 \cdot 10^{-5} \) | \(a_{152}= +2.01116352 \pm 2.9 \cdot 10^{-5} \) | \(a_{153}= -0.26465369 \pm 2.4 \cdot 10^{-5} \) |
\(a_{154}= +1.29540179 \pm 5.0 \cdot 10^{-5} \) | \(a_{155}= -0.94852710 \pm 2.4 \cdot 10^{-5} \) | \(a_{156}= -0.70603805 \pm 5.8 \cdot 10^{-5} \) |
\(a_{157}= -0.83891988 \pm 2.3 \cdot 10^{-5} \) | \(a_{158}= +1.72160539 \pm 2.0 \cdot 10^{-5} \) | \(a_{159}= +0.78717382 \pm 2.5 \cdot 10^{-5} \) |
\(a_{160}= -1.81351147 \pm 2.4 \cdot 10^{-5} \) | \(a_{161}= +0.45488459 \pm 2.4 \cdot 10^{-5} \) | \(a_{162}= +0.20930790 \pm 2.8 \cdot 10^{-5} \) |
\(a_{163}= -0.10390367 \pm 2.3 \cdot 10^{-5} \) | \(a_{164}= -1.81457942 \pm 2.5 \cdot 10^{-5} \) | \(a_{165}= +0.72327844 \pm 4.4 \cdot 10^{-5} \) |
\(a_{166}= +0.50881250 \pm 2.4 \cdot 10^{-5} \) | \(a_{167}= -1.03612689 \pm 1.8 \cdot 10^{-5} \) | \(a_{168}= -0.63658437 \pm 3.3 \cdot 10^{-5} \) |
\(a_{169}= -0.76976239 \pm 2.8 \cdot 10^{-5} \) | \(a_{170}= +1.02983611 \pm 1.4 \cdot 10^{-5} \) | \(a_{171}= +0.22980555 \pm 2.4 \cdot 10^{-5} \) |
\(a_{172}= -3.10417071 \pm 4.0 \cdot 10^{-5} \) | \(a_{173}= -1.26131326 \pm 2.7 \cdot 10^{-5} \) | \(a_{174}= +0.18897604 \pm 5.3 \cdot 10^{-5} \) |
\(a_{175}= -0.19876674 \pm 2.2 \cdot 10^{-5} \) | \(a_{176}= +5.36125683 \pm 2.6 \cdot 10^{-5} \) | \(a_{177}= -0.42617379 \pm 1.7 \cdot 10^{-5} \) |
\(a_{178}= +1.71932033 \pm 2.5 \cdot 10^{-5} \) | \(a_{179}= -0.61828469 \pm 2.1 \cdot 10^{-5} \) | \(a_{180}= -0.58495185 \pm 5.5 \cdot 10^{-5} \) |
\(a_{181}= +0.32274684 \pm 1.9 \cdot 10^{-5} \) | \(a_{182}= +0.34163885 \pm 5.4 \cdot 10^{-5} \) | \(a_{183}= +0.62681423 \pm 2.3 \cdot 10^{-5} \) |
\(a_{184}= +3.51087897 \pm 3.3 \cdot 10^{-5} \) | \(a_{185}= +0.23381975 \pm 2.6 \cdot 10^{-5} \) | \(a_{186}= -1.49822307 \pm 5.4 \cdot 10^{-5} \) |
\(a_{187}= -1.44452340 \pm 2.2 \cdot 10^{-5} \) | \(a_{188}= -2.02626340 \pm 3.5 \cdot 10^{-5} \) | \(a_{189}= -0.07273930 \pm 4.4 \cdot 10^{-7} \) |
\(a_{190}= -0.89423296 \pm 1.7 \cdot 10^{-5} \) | \(a_{191}= -0.63122439 \pm 2.6 \cdot 10^{-5} \) | \(a_{192}= -1.16318941 \pm 2.2 \cdot 10^{-5} \) |
\(a_{193}= +0.50953744 \pm 2.6 \cdot 10^{-5} \) | \(a_{194}= +0.84591039 \pm 1.4 \cdot 10^{-5} \) | \(a_{195}= +0.19075164 \pm 4.8 \cdot 10^{-5} \) |
\(a_{196}= +0.36408481 \pm 3.3 \cdot 10^{-5} \) | \(a_{197}= +0.41524627 \pm 1.9 \cdot 10^{-5} \) | \(a_{198}= +1.14243699 \pm 5.0 \cdot 10^{-5} \) |
\(a_{199}= +0.15832239 \pm 1.6 \cdot 10^{-5} \) | \(a_{200}= -1.53411651 \pm 2.0 \cdot 10^{-5} \) | \(a_{201}= -0.69624671 \pm 2.4 \cdot 10^{-5} \) |
\(a_{202}= +0.58673731 \pm 2.6 \cdot 10^{-5} \) | \(a_{203}= -0.06567351 \pm 2.5 \cdot 10^{-5} \) | \(a_{204}= +1.16825912 \pm 5.8 \cdot 10^{-5} \) |
\(a_{205}= +0.49024836 \pm 1.6 \cdot 10^{-5} \) | \(a_{206}= +0.33314247 \pm 2.7 \cdot 10^{-5} \) | \(a_{207}= +0.40117050 \pm 2.4 \cdot 10^{-5} \) |
\(a_{208}= +1.41393476 \pm 2.3 \cdot 10^{-5} \) | \(a_{209}= +1.25431651 \pm 2.4 \cdot 10^{-5} \) | \(a_{210}= +0.28304746 \pm 5.1 \cdot 10^{-5} \) |
\(a_{211}= +0.59405814 \pm 2.4 \cdot 10^{-5} \) | \(a_{212}= -3.47481647 \pm 3.7 \cdot 10^{-5} \) | \(a_{213}= +0.31450169 \pm 3.1 \cdot 10^{-5} \) |
\(a_{214}= -0.88223052 \pm 3.2 \cdot 10^{-5} \) | \(a_{215}= +0.83865968 \pm 2.0 \cdot 10^{-5} \) | \(a_{216}= -0.56141464 \pm 3.3 \cdot 10^{-5} \) |
\(a_{217}= +0.52066688 \pm 2.6 \cdot 10^{-5} \) | \(a_{218}= -3.25931452 \pm 2.7 \cdot 10^{-5} \) | \(a_{219}= +0.79932328 \pm 2.2 \cdot 10^{-5} \) |
\(a_{220}= -3.19276348 \pm 2.6 \cdot 10^{-5} \) | \(a_{221}= -0.38096698 \pm 2.0 \cdot 10^{-5} \) | \(a_{222}= +0.36932435 \pm 5.1 \cdot 10^{-5} \) |
\(a_{223}= +0.27434685 \pm 2.8 \cdot 10^{-5} \) | \(a_{224}= +0.99547536 \pm 2.5 \cdot 10^{-5} \) | \(a_{225}= -0.17529578 \pm 2.2 \cdot 10^{-5} \) |
\(a_{226}= +0.60769214 \pm 2.4 \cdot 10^{-5} \) | \(a_{227}= +0.72550437 \pm 2.5 \cdot 10^{-5} \) | \(a_{228}= -1.01442919 \pm 5.7 \cdot 10^{-5} \) |
\(a_{229}= +0.05264104 \pm 3.1 \cdot 10^{-5} \) | \(a_{230}= -1.56105839 \pm 2.7 \cdot 10^{-5} \) | \(a_{231}= -0.39702306 \pm 2.2 \cdot 10^{-5} \) |
\(a_{232}= -0.50687966 \pm 2.7 \cdot 10^{-5} \) | \(a_{233}= -0.29567684 \pm 2.2 \cdot 10^{-5} \) | \(a_{234}= +0.30129714 \pm 5.4 \cdot 10^{-5} \) |
\(a_{235}= +0.54743942 \pm 2.2 \cdot 10^{-5} \) | \(a_{236}= +1.88125629 \pm 2.5 \cdot 10^{-5} \) | \(a_{237}= -0.52764867 \pm 1.6 \cdot 10^{-5} \) |
\(a_{238}= -0.56529914 \pm 5.3 \cdot 10^{-5} \) | \(a_{239}= -0.05354359 \pm 2.0 \cdot 10^{-5} \) | \(a_{240}= +1.17144359 \pm 5.0 \cdot 10^{-5} \) |
\(a_{241}= -1.52053552 \pm 2.4 \cdot 10^{-5} \) | \(a_{242}= +4.35183806 \pm 2.7 \cdot 10^{-5} \) | \(a_{243}= -0.06415003 \pm 5.5 \cdot 10^{-7} \) |
\(a_{244}= -2.76694213 \pm 2.9 \cdot 10^{-5} \) | \(a_{245}= -0.09836548 \pm 2.2 \cdot 10^{-5} \) | \(a_{246}= +0.77435996 \pm 4.7 \cdot 10^{-5} \) |
\(a_{247}= +0.33080335 \pm 1.9 \cdot 10^{-5} \) | \(a_{248}= +4.01859825 \pm 3.3 \cdot 10^{-5} \) | \(a_{249}= -0.15594412 \pm 2.2 \cdot 10^{-5} \) |
\(a_{250}= +1.97920774 \pm 2.3 \cdot 10^{-5} \) | \(a_{251}= -0.55577837 \pm 1.9 \cdot 10^{-5} \) | \(a_{252}= +0.32109262 \pm 3.3 \cdot 10^{-5} \) |
\(a_{253}= +2.18965461 \pm 1.9 \cdot 10^{-5} \) | \(a_{254}= +0.15813584 \pm 3.8 \cdot 10^{-5} \) | \(a_{255}= -0.31563078 \pm 4.7 \cdot 10^{-5} \) |
\(a_{256}= +0.17322050 \pm 2.6 \cdot 10^{-5} \) | \(a_{257}= -1.81666701 \pm 2.1 \cdot 10^{-5} \) | \(a_{258}= +1.32468465 \pm 5.4 \cdot 10^{-5} \) |
\(a_{259}= -0.12834868 \pm 2.2 \cdot 10^{-5} \) | \(a_{260}= -0.84203376 \pm 3.4 \cdot 10^{-5} \) | \(a_{261}= -0.05791859 \pm 2.5 \cdot 10^{-5} \) |
\(a_{262}= -2.53223387 \pm 2.9 \cdot 10^{-5} \) | \(a_{263}= -1.94466692 \pm 2.3 \cdot 10^{-5} \) | \(a_{264}= -3.06429355 \pm 5.5 \cdot 10^{-5} \) |
\(a_{265}= +0.93879775 \pm 1.9 \cdot 10^{-5} \) | \(a_{266}= +0.49086366 \pm 5.2 \cdot 10^{-5} \) | \(a_{267}= -0.52694833 \pm 2.0 \cdot 10^{-5} \) |
\(a_{268}= +3.07343749 \pm 2.8 \cdot 10^{-5} \) | \(a_{269}= -0.88746708 \pm 2.2 \cdot 10^{-5} \) | \(a_{270}= +0.24962440 \pm 5.1 \cdot 10^{-5} \) |
\(a_{271}= +1.13691617 \pm 2.0 \cdot 10^{-5} \) | \(a_{272}= -2.33959370 \pm 1.6 \cdot 10^{-5} \) | \(a_{273}= -0.10470767 \pm 2.5 \cdot 10^{-5} \) |
\(a_{274}= -1.91760871 \pm 2.6 \cdot 10^{-5} \) | \(a_{275}= -0.95679325 \pm 2.0 \cdot 10^{-5} \) | \(a_{276}= -1.77088441 \pm 5.7 \cdot 10^{-5} \) |
\(a_{277}= -0.15337040 \pm 2.0 \cdot 10^{-5} \) | \(a_{278}= +2.23736792 \pm 3.0 \cdot 10^{-5} \) | \(a_{279}= +0.45918503 \pm 2.6 \cdot 10^{-5} \) |
\(a_{280}= -0.75920205 \pm 5.5 \cdot 10^{-5} \) | \(a_{281}= +0.96555257 \pm 2.8 \cdot 10^{-5} \) | \(a_{282}= +0.86469472 \pm 5.1 \cdot 10^{-5} \) |
\(a_{283}= +0.96494594 \pm 1.9 \cdot 10^{-5} \) | \(a_{284}= -1.38830286 \pm 3.7 \cdot 10^{-5} \) | \(a_{285}= +0.27407026 \pm 4.6 \cdot 10^{-5} \) |
\(a_{286}= +1.64452942 \pm 2.2 \cdot 10^{-5} \) | \(a_{287}= -0.26910785 \pm 1.8 \cdot 10^{-5} \) | \(a_{288}= +0.87792675 \pm 2.5 \cdot 10^{-5} \) |
\(a_{289}= -0.36962583 \pm 2.2 \cdot 10^{-5} \) | \(a_{290}= +0.22537625 \pm 2.3 \cdot 10^{-5} \) | \(a_{291}= -0.25926005 \pm 1.5 \cdot 10^{-5} \) |
\(a_{292}= -3.52844777 \pm 3.2 \cdot 10^{-5} \) | \(a_{293}= -0.00361595 \pm 2.1 \cdot 10^{-5} \) | \(a_{294}= -0.15537082 \pm 2.8 \cdot 10^{-5} \) |
\(a_{295}= -0.50826258 \pm 1.5 \cdot 10^{-5} \) | \(a_{296}= -0.99061762 \pm 2.8 \cdot 10^{-5} \) | \(a_{297}= -0.35014142 \pm 2.2 \cdot 10^{-5} \) |
\(a_{298}= -0.12320511 \pm 3.1 \cdot 10^{-5} \) | \(a_{299}= +0.57748190 \pm 2.7 \cdot 10^{-5} \) | \(a_{300}= +0.77380708 \pm 5.6 \cdot 10^{-5} \) |
\(a_{301}= -0.46035830 \pm 2.5 \cdot 10^{-5} \) | \(a_{302}= +3.14347901 \pm 3.3 \cdot 10^{-5} \) | \(a_{303}= -0.17982702 \pm 2.6 \cdot 10^{-5} \) |
\(a_{304}= +2.03152888 \pm 1.9 \cdot 10^{-5} \) | \(a_{305}= +0.74755000 \pm 1.7 \cdot 10^{-5} \) | \(a_{306}= -0.49854698 \pm 5.3 \cdot 10^{-5} \) |
\(a_{307}= -0.06224301 \pm 3.0 \cdot 10^{-5} \) | \(a_{308}= +1.75257639 \pm 5.5 \cdot 10^{-5} \) | \(a_{309}= -0.10210364 \pm 2.1 \cdot 10^{-5} \) |
\(a_{310}= -1.78680796 \pm 3.0 \cdot 10^{-5} \) | \(a_{311}= +1.46159663 \pm 2.8 \cdot 10^{-5} \) | \(a_{312}= -0.80815214 \pm 5.8 \cdot 10^{-5} \) |
\(a_{313}= +1.43408268 \pm 3.0 \cdot 10^{-5} \) | \(a_{314}= -1.58033305 \pm 2.6 \cdot 10^{-5} \) | \(a_{315}= -0.08675020 \pm 2.2 \cdot 10^{-5} \) |
\(a_{316}= +2.32919623 \pm 2.3 \cdot 10^{-5} \) | \(a_{317}= -1.56339881 \pm 2.8 \cdot 10^{-5} \) | \(a_{318}= +1.48285532 \pm 5.4 \cdot 10^{-5} \) |
\(a_{319}= -0.31612920 \pm 1.8 \cdot 10^{-5} \) | \(a_{320}= -1.38724074 \pm 1.8 \cdot 10^{-5} \) | \(a_{321}= +0.27039167 \pm 2.7 \cdot 10^{-5} \) |
\(a_{322}= +0.85689845 \pm 5.2 \cdot 10^{-5} \) | \(a_{323}= -0.54736997 \pm 3.0 \cdot 10^{-5} \) | \(a_{324}= +0.28317708 \pm 3.3 \cdot 10^{-5} \) |
\(a_{325}= -0.25233696 \pm 2.2 \cdot 10^{-5} \) | \(a_{326}= -0.19573073 \pm 1.8 \cdot 10^{-5} \) | \(a_{327}= +0.99893564 \pm 2.5 \cdot 10^{-5} \) |
\(a_{328}= -2.07702153 \pm 2.4 \cdot 10^{-5} \) | \(a_{329}= -0.30050125 \pm 2.3 \cdot 10^{-5} \) | \(a_{330}= +1.36249104 \pm 7.3 \cdot 10^{-5} \) |
\(a_{331}= -0.23554691 \pm 2.1 \cdot 10^{-5} \) | \(a_{332}= +0.68838315 \pm 2.5 \cdot 10^{-5} \) | \(a_{333}= -0.11319290 \pm 2.2 \cdot 10^{-5} \) |
\(a_{334}= -1.95182593 \pm 2.6 \cdot 10^{-5} \) | \(a_{335}= -0.83035643 \pm 2.5 \cdot 10^{-5} \) | \(a_{336}= -0.64303053 \pm 2.7 \cdot 10^{-5} \) |
\(a_{337}= -0.18236513 \pm 2.8 \cdot 10^{-5} \) | \(a_{338}= -1.45005617 \pm 2.7 \cdot 10^{-5} \) | \(a_{339}= -0.18624939 \pm 1.6 \cdot 10^{-5} \) |
\(a_{340}= +1.39328698 \pm 1.5 \cdot 10^{-5} \) | \(a_{341}= +2.50630746 \pm 1.9 \cdot 10^{-5} \) | \(a_{342}= +0.43290106 \pm 5.2 \cdot 10^{-5} \) |
\(a_{343}= +0.05399492 \pm 7.1 \cdot 10^{-7} \) | \(a_{344}= -3.55312605 \pm 3.9 \cdot 10^{-5} \) | \(a_{345}= +0.47844320 \pm 4.6 \cdot 10^{-5} \) |
\(a_{346}= -2.37602551 \pm 3.4 \cdot 10^{-5} \) | \(a_{347}= -1.39865602 \pm 2.5 \cdot 10^{-5} \) | \(a_{348}= +0.25566967 \pm 5.8 \cdot 10^{-5} \) |
\(a_{349}= +1.06853036 \pm 2.3 \cdot 10^{-5} \) | \(a_{350}= -0.37443104 \pm 5.1 \cdot 10^{-5} \) | \(a_{351}= -0.09234348 \pm 2.5 \cdot 10^{-5} \) |
\(a_{352}= +4.79186873 \pm 2.4 \cdot 10^{-5} \) | \(a_{353}= +0.61001085 \pm 1.9 \cdot 10^{-5} \) | \(a_{354}= -0.80281388 \pm 4.6 \cdot 10^{-5} \) |
\(a_{355}= +0.37508042 \pm 2.8 \cdot 10^{-5} \) | \(a_{356}= +2.32610472 \pm 2.4 \cdot 10^{-5} \) | \(a_{357}= +0.17325651 \pm 2.4 \cdot 10^{-5} \) |
\(a_{358}= -1.16470685 \pm 2.5 \cdot 10^{-5} \) | \(a_{359}= -0.46044052 \pm 1.6 \cdot 10^{-5} \) | \(a_{360}= -0.66955327 \pm 5.5 \cdot 10^{-5} \) |
\(a_{361}= -0.52470469 \pm 2.8 \cdot 10^{-5} \) | \(a_{362}= +0.60798119 \pm 2.4 \cdot 10^{-5} \) | \(a_{363}= -1.33377926 \pm 2.0 \cdot 10^{-5} \) |
\(a_{364}= +0.46221040 \pm 5.8 \cdot 10^{-5} \) | \(a_{365}= +0.95328742 \pm 2.3 \cdot 10^{-5} \) | \(a_{366}= +1.18077455 \pm 5.1 \cdot 10^{-5} \) |
\(a_{367}= +0.09574825 \pm 1.9 \cdot 10^{-5} \) | \(a_{368}= +3.54643069 \pm 2.7 \cdot 10^{-5} \) | \(a_{369}= -0.23733081 \pm 1.8 \cdot 10^{-5} \) |
\(a_{370}= +0.44046290 \pm 2.8 \cdot 10^{-5} \) | \(a_{371}= -0.51532623 \pm 2.5 \cdot 10^{-5} \) | \(a_{372}= -2.02697758 \pm 5.9 \cdot 10^{-5} \) |
\(a_{373}= +0.32964413 \pm 3.0 \cdot 10^{-5} \) | \(a_{374}= -2.72115148 \pm 2.7 \cdot 10^{-5} \) | \(a_{375}= -0.60660029 \pm 2.0 \cdot 10^{-5} \) |
\(a_{376}= -2.31932131 \pm 3.7 \cdot 10^{-5} \) | \(a_{377}= -0.08337337 \pm 1.8 \cdot 10^{-5} \) | \(a_{378}= -0.13702419 \pm 2.8 \cdot 10^{-5} \) |
\(a_{379}= +0.42581293 \pm 2.1 \cdot 10^{-5} \) | \(a_{380}= -1.20982662 \pm 2.1 \cdot 10^{-5} \) | \(a_{381}= -0.04846649 \pm 2.8 \cdot 10^{-5} \) |
\(a_{382}= -1.18908229 \pm 3.5 \cdot 10^{-5} \) | \(a_{383}= -0.83455658 \pm 2.9 \cdot 10^{-5} \) | \(a_{384}= -0.67056889 \pm 2.5 \cdot 10^{-5} \) |
\(a_{385}= -0.47349689 \pm 4.4 \cdot 10^{-5} \) | \(a_{386}= +0.95985192 \pm 2.8 \cdot 10^{-5} \) | \(a_{387}= -0.40599786 \pm 2.5 \cdot 10^{-5} \) |
\(a_{388}= +1.14445000 \pm 1.9 \cdot 10^{-5} \) | \(a_{389}= +1.56258334 \pm 2.0 \cdot 10^{-5} \) | \(a_{390}= +0.35933243 \pm 7.6 \cdot 10^{-5} \) |
\(a_{391}= -0.95554126 \pm 1.7 \cdot 10^{-5} \) | \(a_{392}= +0.41674230 \pm 3.3 \cdot 10^{-5} \) | \(a_{393}= +0.77609529 \pm 2.0 \cdot 10^{-5} \) |
\(a_{394}= +0.78222894 \pm 2.0 \cdot 10^{-5} \) | \(a_{395}= -0.62928336 \pm 1.6 \cdot 10^{-5} \) | \(a_{396}= +1.54562709 \pm 5.5 \cdot 10^{-5} \) |
\(a_{397}= +1.22509646 \pm 1.9 \cdot 10^{-5} \) | \(a_{398}= +0.29824314 \pm 2.1 \cdot 10^{-5} \) | \(a_{399}= -0.15044305 \pm 2.4 \cdot 10^{-5} \) |
\(a_{400}= -1.54965122 \pm 1.8 \cdot 10^{-5} \) | \(a_{401}= -0.36005463 \pm 2.3 \cdot 10^{-5} \) | \(a_{402}= -1.31156945 \pm 5.3 \cdot 10^{-5} \) |
\(a_{403}= +0.66099337 \pm 2.2 \cdot 10^{-5} \) | \(a_{404}= +0.79380928 \pm 3.3 \cdot 10^{-5} \) | \(a_{405}= -0.07650649 \pm 2.2 \cdot 10^{-5} \) |
\(a_{406}= -0.12371386 \pm 5.3 \cdot 10^{-5} \) | \(a_{407}= -0.61782546 \pm 1.9 \cdot 10^{-5} \) | \(a_{408}= +1.33722411 \pm 5.8 \cdot 10^{-5} \) |
\(a_{409}= -0.41213084 \pm 2.1 \cdot 10^{-5} \) | \(a_{410}= +0.92351571 \pm 2.0 \cdot 10^{-5} \) | \(a_{411}= +0.58772103 \pm 2.0 \cdot 10^{-5} \) |
\(a_{412}= +0.45071547 \pm 3.0 \cdot 10^{-5} \) | \(a_{413}= +0.27899624 \pm 1.7 \cdot 10^{-5} \) | \(a_{414}= +0.75571340 \pm 5.2 \cdot 10^{-5} \) |
\(a_{415}= -0.18598178 \pm 2.2 \cdot 10^{-5} \) | \(a_{416}= +1.26376892 \pm 2.3 \cdot 10^{-5} \) | \(a_{417}= -0.68572288 \pm 2.6 \cdot 10^{-5} \) |
\(a_{418}= +2.36284523 \pm 3.4 \cdot 10^{-5} \) | \(a_{419}= +0.14965394 \pm 2.5 \cdot 10^{-5} \) | \(a_{420}= +0.38294087 \pm 5.5 \cdot 10^{-5} \) |
\(a_{421}= +1.11329464 \pm 2.1 \cdot 10^{-5} \) | \(a_{422}= +1.11906957 \pm 2.5 \cdot 10^{-5} \) | \(a_{423}= -0.26501719 \pm 2.3 \cdot 10^{-5} \) |
\(a_{424}= -3.97737820 \pm 3.9 \cdot 10^{-5} \) | \(a_{425}= +0.41753408 \pm 2.2 \cdot 10^{-5} \) | \(a_{426}= +0.59244921 \pm 5.9 \cdot 10^{-5} \) |
\(a_{427}= -0.41034624 \pm 2.3 \cdot 10^{-5} \) | \(a_{428}= -1.19358827 \pm 4.0 \cdot 10^{-5} \) | \(a_{429}= -0.50402593 \pm 4.7 \cdot 10^{-5} \) |
\(a_{430}= +1.57984290 \pm 3.1 \cdot 10^{-5} \) | \(a_{431}= -1.56496706 \pm 2.4 \cdot 10^{-5} \) | \(a_{432}= -0.56709962 \pm 2.7 \cdot 10^{-5} \) |
\(a_{433}= +1.63426757 \pm 1.7 \cdot 10^{-5} \) | \(a_{434}= +0.98081723 \pm 5.4 \cdot 10^{-5} \) | \(a_{435}= -0.06907476 \pm 4.7 \cdot 10^{-5} \) |
\(a_{436}= -4.40959533 \pm 2.8 \cdot 10^{-5} \) | \(a_{437}= +0.82972085 \pm 2.0 \cdot 10^{-5} \) | \(a_{438}= +1.50574213 \pm 5.1 \cdot 10^{-5} \) |
\(a_{439}= +0.01970543 \pm 2.4 \cdot 10^{-5} \) | \(a_{440}= -3.65453197 \pm 2.6 \cdot 10^{-5} \) | \(a_{441}= +0.04761905 \pm 8.8 \cdot 10^{-7} \) |
\(a_{442}= -0.71765461 \pm 1.7 \cdot 10^{-5} \) | \(a_{443}= +0.05581488 \pm 2.4 \cdot 10^{-5} \) | \(a_{444}= +0.49966669 \pm 5.5 \cdot 10^{-5} \) |
\(a_{445}= -0.62844812 \pm 2.4 \cdot 10^{-5} \) | \(a_{446}= +0.51680668 \pm 2.8 \cdot 10^{-5} \) | \(a_{447}= +0.03776069 \pm 2.1 \cdot 10^{-5} \) |
\(a_{448}= +0.76148621 \pm 2.2 \cdot 10^{-5} \) | \(a_{449}= -0.43609128 \pm 2.1 \cdot 10^{-5} \) | \(a_{450}= -0.33021714 \pm 5.1 \cdot 10^{-5} \) |
\(a_{451}= -1.29539064 \pm 1.5 \cdot 10^{-5} \) | \(a_{452}= +0.82215951 \pm 2.8 \cdot 10^{-5} \) | \(a_{453}= -0.96343362 \pm 2.5 \cdot 10^{-5} \) |
\(a_{454}= +1.36668419 \pm 2.3 \cdot 10^{-5} \) | \(a_{455}= -0.12487626 \pm 4.8 \cdot 10^{-5} \) | \(a_{456}= -1.16114580 \pm 5.7 \cdot 10^{-5} \) |
\(a_{457}= +0.74953731 \pm 2.6 \cdot 10^{-5} \) | \(a_{458}= +0.09916367 \pm 2.9 \cdot 10^{-5} \) | \(a_{459}= +0.15279788 \pm 2.4 \cdot 10^{-5} \) |
\(a_{460}= -2.11198881 \pm 3.6 \cdot 10^{-5} \) | \(a_{461}= +1.44980186 \pm 3.0 \cdot 10^{-5} \) | \(a_{462}= -0.74790057 \pm 5.0 \cdot 10^{-5} \) |
\(a_{463}= +1.00186716 \pm 2.2 \cdot 10^{-5} \) | \(a_{464}= -0.51201240 \pm 2.3 \cdot 10^{-5} \) | \(a_{465}= +0.54763237 \pm 4.8 \cdot 10^{-5} \) |
\(a_{466}= -0.55698750 \pm 2.3 \cdot 10^{-5} \) | \(a_{467}= +0.57278480 \pm 2.6 \cdot 10^{-5} \) | \(a_{468}= +0.40763126 \pm 5.8 \cdot 10^{-5} \) |
\(a_{469}= +0.45580046 \pm 2.4 \cdot 10^{-5} \) | \(a_{470}= +1.03125058 \pm 3.1 \cdot 10^{-5} \) | \(a_{471}= +0.48435062 \pm 2.3 \cdot 10^{-5} \) |
\(a_{472}= +2.15334186 \pm 2.5 \cdot 10^{-5} \) | \(a_{473}= -2.21600314 \pm 2.1 \cdot 10^{-5} \) | \(a_{474}= -0.99396934 \pm 4.4 \cdot 10^{-5} \) |
\(a_{475}= -0.36255549 \pm 2.2 \cdot 10^{-5} \) | \(a_{476}= -0.76480512 \pm 5.8 \cdot 10^{-5} \) | \(a_{477}= -0.45447502 \pm 2.5 \cdot 10^{-5} \) |
\(a_{478}= -0.10086386 \pm 2.6 \cdot 10^{-5} \) | \(a_{479}= -1.20967072 \pm 2.4 \cdot 10^{-5} \) | \(a_{480}= +1.04703134 \pm 4.7 \cdot 10^{-5} \) |
\(a_{481}= -0.16294032 \pm 2.3 \cdot 10^{-5} \) | \(a_{482}= -2.86434091 \pm 2.3 \cdot 10^{-5} \) | \(a_{483}= -0.26262774 \pm 2.4 \cdot 10^{-5} \) |
\(a_{484}= +5.88769345 \pm 3.1 \cdot 10^{-5} \) | \(a_{485}= -0.30919823 \pm 1.4 \cdot 10^{-5} \) | \(a_{486}= -0.12084397 \pm 2.8 \cdot 10^{-5} \) |
\(a_{487}= -0.55504215 \pm 2.1 \cdot 10^{-5} \) | \(a_{488}= -3.16712419 \pm 2.7 \cdot 10^{-5} \) | \(a_{489}= +0.05998881 \pm 2.3 \cdot 10^{-5} \) |
\(a_{490}= -0.18529806 \pm 5.1 \cdot 10^{-5} \) | \(a_{491}= +0.53063908 \pm 1.8 \cdot 10^{-5} \) | \(a_{492}= +1.04764792 \pm 5.2 \cdot 10^{-5} \) |
\(a_{493}= +0.13795532 \pm 2.7 \cdot 10^{-5} \) | \(a_{494}= +0.62315780 \pm 2.3 \cdot 10^{-5} \) | \(a_{495}= -0.41758500 \pm 4.4 \cdot 10^{-5} \) |
\(a_{496}= +4.05929121 \pm 2.7 \cdot 10^{-5} \) | \(a_{497}= -0.20588969 \pm 3.1 \cdot 10^{-5} \) | \(a_{498}= -0.29376303 \pm 5.0 \cdot 10^{-5} \) |
\(a_{499}= +0.02257969 \pm 2.3 \cdot 10^{-5} \) | \(a_{500}= +2.67771188 \pm 2.9 \cdot 10^{-5} \) | \(a_{501}= +0.59820814 \pm 1.8 \cdot 10^{-5} \) |
\(a_{502}= -1.04695925 \pm 2.4 \cdot 10^{-5} \) | \(a_{503}= +1.38221528 \pm 2.5 \cdot 10^{-5} \) | \(a_{504}= +0.36753216 \pm 3.3 \cdot 10^{-5} \) |
\(a_{505}= -0.21446496 \pm 1.7 \cdot 10^{-5} \) | \(a_{506}= +4.12480814 \pm 2.3 \cdot 10^{-5} \) | \(a_{507}= +0.44442252 \pm 2.8 \cdot 10^{-5} \) |
\(a_{508}= +0.21394531 \pm 4.6 \cdot 10^{-5} \) | \(a_{509}= +0.91751118 \pm 2.4 \cdot 10^{-5} \) | \(a_{510}= -0.59457615 \pm 7.5 \cdot 10^{-5} \) |
\(a_{511}= -0.52327992 \pm 2.2 \cdot 10^{-5} \) | \(a_{512}= -0.83515160 \pm 3.0 \cdot 10^{-5} \) | \(a_{513}= -0.13267829 \pm 2.4 \cdot 10^{-5} \) |
\(a_{514}= -3.42218486 \pm 2.2 \cdot 10^{-5} \) | \(a_{515}= -0.12177065 \pm 2.2 \cdot 10^{-5} \) | \(a_{516}= +1.79219379 \pm 5.9 \cdot 10^{-5} \) |
\(a_{517}= -1.44650745 \pm 1.9 \cdot 10^{-5} \) | \(a_{518}= -0.24177954 \pm 5.1 \cdot 10^{-5} \) | \(a_{519}= +0.72821955 \pm 2.7 \cdot 10^{-5} \) |
\(a_{520}= -0.96381687 \pm 3.2 \cdot 10^{-5} \) | \(a_{521}= -1.56002152 \pm 2.7 \cdot 10^{-5} \) | \(a_{522}= -0.10910537 \pm 5.3 \cdot 10^{-5} \) |
\(a_{523}= +0.98505136 \pm 2.4 \cdot 10^{-5} \) | \(a_{524}= -3.42591259 \pm 3.4 \cdot 10^{-5} \) | \(a_{525}= +0.11475803 \pm 2.2 \cdot 10^{-5} \) |
\(a_{526}= -3.66330741 \pm 2.6 \cdot 10^{-5} \) | \(a_{527}= -1.09372510 \pm 2.9 \cdot 10^{-5} \) | \(a_{528}= -3.09532308 \pm 4.9 \cdot 10^{-5} \) |
\(a_{529}= +0.44843990 \pm 2.3 \cdot 10^{-5} \) | \(a_{530}= +1.76848011 \pm 2.7 \cdot 10^{-5} \) | \(a_{531}= +0.24605155 \pm 1.7 \cdot 10^{-5} \) |
\(a_{532}= +0.66409979 \pm 5.7 \cdot 10^{-5} \) | \(a_{533}= -0.34163591 \pm 2.5 \cdot 10^{-5} \) | \(a_{534}= -0.99265006 \pm 4.9 \cdot 10^{-5} \) |
\(a_{535}= +0.32247400 \pm 2.1 \cdot 10^{-5} \) | \(a_{536}= +3.51794789 \pm 3.0 \cdot 10^{-5} \) | \(a_{537}= +0.35696683 \pm 2.1 \cdot 10^{-5} \) |
\(a_{538}= -1.67178486 \pm 2.4 \cdot 10^{-5} \) | \(a_{539}= +0.25991260 \pm 2.2 \cdot 10^{-5} \) | \(a_{540}= +0.33772211 \pm 5.5 \cdot 10^{-5} \) |
\(a_{541}= +0.49314880 \pm 2.3 \cdot 10^{-5} \) | \(a_{542}= +2.14168986 \pm 2.6 \cdot 10^{-5} \) | \(a_{543}= -0.18633798 \pm 1.9 \cdot 10^{-5} \) |
\(a_{544}= -2.09111898 \pm 1.9 \cdot 10^{-5} \) | \(a_{545}= +1.19134873 \pm 1.9 \cdot 10^{-5} \) | \(a_{546}= -0.19724528 \pm 5.4 \cdot 10^{-5} \) |
\(a_{547}= +0.99102378 \pm 1.9 \cdot 10^{-5} \) | \(a_{548}= -2.59437325 \pm 2.9 \cdot 10^{-5} \) | \(a_{549}= -0.36189136 \pm 2.3 \cdot 10^{-5} \) |
\(a_{550}= -1.80237950 \pm 2.4 \cdot 10^{-5} \) | \(a_{551}= -0.11979012 \pm 2.0 \cdot 10^{-5} \) | \(a_{552}= -2.02700692 \pm 5.7 \cdot 10^{-5} \) |
\(a_{553}= +0.34542714 \pm 1.6 \cdot 10^{-5} \) | \(a_{554}= -0.28891473 \pm 2.5 \cdot 10^{-5} \) | \(a_{555}= -0.13499590 \pm 4.5 \cdot 10^{-5} \) |
\(a_{556}= +3.02698222 \pm 3.5 \cdot 10^{-5} \) | \(a_{557}= +1.42989042 \pm 2.4 \cdot 10^{-5} \) | \(a_{558}= +0.86499949 \pm 5.4 \cdot 10^{-5} \) |
\(a_{559}= -0.58443084 \pm 2.8 \cdot 10^{-5} \) | \(a_{560}= -0.76688985 \pm 5.0 \cdot 10^{-5} \) | \(a_{561}= +0.83399597 \pm 4.6 \cdot 10^{-5} \) |
\(a_{562}= +1.81888005 \pm 3.1 \cdot 10^{-5} \) | \(a_{563}= +0.83336769 \pm 1.7 \cdot 10^{-5} \) | \(a_{564}= +1.16986372 \pm 5.6 \cdot 10^{-5} \) |
\(a_{565}= -0.22212439 \pm 1.5 \cdot 10^{-5} \) | \(a_{566}= +1.81773731 \pm 2.3 \cdot 10^{-5} \) | \(a_{567}= +0.04199605 \pm 1.0 \cdot 10^{-6} \) |
\(a_{568}= -1.58909271 \pm 3.4 \cdot 10^{-5} \) | \(a_{569}= -0.55960036 \pm 2.2 \cdot 10^{-5} \) | \(a_{570}= +0.51628564 \pm 7.5 \cdot 10^{-5} \) |
\(a_{571}= -0.08463625 \pm 2.3 \cdot 10^{-5} \) | \(a_{572}= +2.22491852 \pm 2.4 \cdot 10^{-5} \) | \(a_{573}= +0.36443757 \pm 2.6 \cdot 10^{-5} \) |
\(a_{574}= -0.50693759 \pm 4.7 \cdot 10^{-5} \) | \(a_{575}= -0.63291147 \pm 2.5 \cdot 10^{-5} \) | \(a_{576}= +0.67156772 \pm 2.2 \cdot 10^{-5} \) |
\(a_{577}= +1.32004894 \pm 2.8 \cdot 10^{-5} \) | \(a_{578}= -0.69629046 \pm 2.8 \cdot 10^{-5} \) | \(a_{579}= -0.29418158 \pm 2.6 \cdot 10^{-5} \) |
\(a_{580}= +0.30491628 \pm 2.4 \cdot 10^{-5} \) | \(a_{581}= +0.10208939 \pm 2.2 \cdot 10^{-5} \) | \(a_{582}= -0.48838659 \pm 4.3 \cdot 10^{-5} \) |
\(a_{583}= -2.48059947 \pm 2.7 \cdot 10^{-5} \) | \(a_{584}= -4.03876618 \pm 3.2 \cdot 10^{-5} \) | \(a_{585}= -0.11013051 \pm 4.8 \cdot 10^{-5} \) |
\(a_{586}= -0.00681162 \pm 2.7 \cdot 10^{-5} \) | \(a_{587}= -0.01725481 \pm 3.0 \cdot 10^{-5} \) | \(a_{588}= -0.21020446 \pm 3.3 \cdot 10^{-5} \) |
\(a_{589}= +0.94970940 \pm 2.5 \cdot 10^{-5} \) | \(a_{590}= -0.95745037 \pm 2.1 \cdot 10^{-5} \) | \(a_{591}= -0.23974255 \pm 1.9 \cdot 10^{-5} \) |
\(a_{592}= -1.00064877 \pm 2.6 \cdot 10^{-5} \) | \(a_{593}= +0.38649465 \pm 1.7 \cdot 10^{-5} \) | \(a_{594}= -0.65958631 \pm 5.0 \cdot 10^{-5} \) |
\(a_{595}= +0.20662885 \pm 4.7 \cdot 10^{-5} \) | \(a_{596}= -0.16668680 \pm 3.6 \cdot 10^{-5} \) | \(a_{597}= -0.09140747 \pm 1.6 \cdot 10^{-5} \) |
\(a_{598}= +1.08784372 \pm 2.6 \cdot 10^{-5} \) | \(a_{599}= +0.80507216 \pm 2.8 \cdot 10^{-5} \) | \(a_{600}= +0.88572258 \pm 5.6 \cdot 10^{-5} \) |
\(a_{601}= -0.41904591 \pm 2.6 \cdot 10^{-5} \) | \(a_{602}= -0.86720967 \pm 5.4 \cdot 10^{-5} \) | \(a_{603}= +0.40197823 \pm 2.4 \cdot 10^{-5} \) |
\(a_{604}= +4.25287902 \pm 3.9 \cdot 10^{-5} \) | \(a_{605}= -1.59068930 \pm 1.3 \cdot 10^{-5} \) | \(a_{606}= -0.33875294 \pm 5.5 \cdot 10^{-5} \) |
\(a_{607}= -0.33236842 \pm 2.7 \cdot 10^{-5} \) | \(a_{608}= +1.81577194 \pm 1.7 \cdot 10^{-5} \) | \(a_{609}= +0.03791662 \pm 2.5 \cdot 10^{-5} \) |
\(a_{610}= +1.40821311 \pm 2.1 \cdot 10^{-5} \) | \(a_{611}= -0.38149024 \pm 2.0 \cdot 10^{-5} \) | \(a_{612}= -0.67449472 \pm 5.8 \cdot 10^{-5} \) |
\(a_{613}= +1.38835104 \pm 2.2 \cdot 10^{-5} \) | \(a_{614}= -0.11725159 \pm 3.3 \cdot 10^{-5} \) | \(a_{615}= -0.28304502 \pm 4.1 \cdot 10^{-5} \) |
\(a_{616}= +2.00605102 \pm 5.5 \cdot 10^{-5} \) | \(a_{617}= -1.31948069 \pm 2.4 \cdot 10^{-5} \) | \(a_{618}= -0.19233989 \pm 4.9 \cdot 10^{-5} \) |
\(a_{619}= -1.73996954 \pm 2.0 \cdot 10^{-5} \) | \(a_{620}= -2.41741016 \pm 3.3 \cdot 10^{-5} \) | \(a_{621}= -0.23161589 \pm 2.4 \cdot 10^{-5} \) |
\(a_{622}= +2.75331354 \pm 2.7 \cdot 10^{-5} \) | \(a_{623}= +0.34496866 \pm 2.0 \cdot 10^{-5} \) | \(a_{624}= -0.81633561 \pm 5.3 \cdot 10^{-5} \) |
\(a_{625}= -0.19755514 \pm 2.0 \cdot 10^{-5} \) | \(a_{626}= +2.70148356 \pm 3.3 \cdot 10^{-5} \) | \(a_{627}= -0.72417997 \pm 4.6 \cdot 10^{-5} \) |
\(a_{628}= -2.13806590 \pm 2.9 \cdot 10^{-5} \) | \(a_{629}= +0.26961226 \pm 1.9 \cdot 10^{-5} \) | \(a_{630}= -0.16341753 \pm 5.1 \cdot 10^{-5} \) |
\(a_{631}= -0.78986142 \pm 2.5 \cdot 10^{-5} \) | \(a_{632}= +2.66606723 \pm 2.2 \cdot 10^{-5} \) | \(a_{633}= -0.34297962 \pm 2.4 \cdot 10^{-5} \) |
\(a_{634}= -2.94508555 \pm 3.3 \cdot 10^{-5} \) | \(a_{635}= -0.05780201 \pm 2.4 \cdot 10^{-5} \) | \(a_{636}= +2.00618623 \pm 5.9 \cdot 10^{-5} \) |
\(a_{637}= +0.06854726 \pm 2.5 \cdot 10^{-5} \) | \(a_{638}= -0.59551507 \pm 2.7 \cdot 10^{-5} \) | \(a_{639}= -0.18157764 \pm 3.1 \cdot 10^{-5} \) |
\(a_{640}= -0.79973259 \pm 2.1 \cdot 10^{-5} \) | \(a_{641}= -0.60772552 \pm 2.3 \cdot 10^{-5} \) | \(a_{642}= +0.50935603 \pm 5.5 \cdot 10^{-5} \) |
\(a_{643}= +0.26873189 \pm 2.3 \cdot 10^{-5} \) | \(a_{644}= +1.15931598 \pm 5.7 \cdot 10^{-5} \) | \(a_{645}= -0.48420039 \pm 4.8 \cdot 10^{-5} \) |
\(a_{646}= -1.03111975 \pm 3.1 \cdot 10^{-5} \) | \(a_{647}= +0.32754963 \pm 3.2 \cdot 10^{-5} \) | \(a_{648}= +0.32413290 \pm 3.3 \cdot 10^{-5} \) |
\(a_{649}= +1.34298988 \pm 1.7 \cdot 10^{-5} \) | \(a_{650}= -0.47534507 \pm 2.3 \cdot 10^{-5} \) | \(a_{651}= -0.30060716 \pm 2.6 \cdot 10^{-5} \) |
\(a_{652}= -0.26480823 \pm 2.1 \cdot 10^{-5} \) | \(a_{653}= +0.76235192 \pm 2.4 \cdot 10^{-5} \) | \(a_{654}= +1.88176612 \pm 5.4 \cdot 10^{-5} \) |
\(a_{655}= +0.92558530 \pm 1.7 \cdot 10^{-5} \) | \(a_{656}= -2.09805378 \pm 1.9 \cdot 10^{-5} \) | \(a_{657}= -0.46148951 \pm 2.2 \cdot 10^{-5} \) |
\(a_{658}= -0.56607557 \pm 5.1 \cdot 10^{-5} \) | \(a_{659}= +1.42403820 \pm 2.8 \cdot 10^{-5} \) | \(a_{660}= +1.84334286 \pm 7.7 \cdot 10^{-5} \) |
\(a_{661}= -1.28920183 \pm 2.3 \cdot 10^{-5} \) | \(a_{662}= -0.44371647 \pm 2.3 \cdot 10^{-5} \) | \(a_{663}= +0.21995139 \pm 5.0 \cdot 10^{-5} \) |
\(a_{664}= +0.78794381 \pm 2.4 \cdot 10^{-5} \) | \(a_{665}= -0.17942110 \pm 4.6 \cdot 10^{-5} \) | \(a_{666}= -0.21322951 \pm 5.1 \cdot 10^{-5} \) |
\(a_{667}= -0.20911707 \pm 1.5 \cdot 10^{-5} \) | \(a_{668}= -2.64066645 \pm 3.4 \cdot 10^{-5} \) | \(a_{669}= -0.15839423 \pm 2.8 \cdot 10^{-5} \) |
\(a_{670}= -1.56420148 \pm 2.5 \cdot 10^{-5} \) | \(a_{671}= -1.97526264 \pm 2.1 \cdot 10^{-5} \) | \(a_{672}= -0.57473797 \pm 2.5 \cdot 10^{-5} \) |
\(a_{673}= +1.19312384 \pm 2.0 \cdot 10^{-5} \) | \(a_{674}= -0.34353417 \pm 3.1 \cdot 10^{-5} \) | \(a_{675}= +0.10120707 \pm 2.2 \cdot 10^{-5} \) |
\(a_{676}= -1.96181156 \pm 3.4 \cdot 10^{-5} \) | \(a_{677}= -0.71352579 \pm 3.0 \cdot 10^{-5} \) | \(a_{678}= -0.35085122 \pm 4.5 \cdot 10^{-5} \) |
\(a_{679}= +0.16972554 \pm 1.5 \cdot 10^{-5} \) | \(a_{680}= +1.59479768 \pm 1.4 \cdot 10^{-5} \) | \(a_{681}= -0.41887015 \pm 2.5 \cdot 10^{-5} \) |
\(a_{682}= +4.72130964 \pm 2.5 \cdot 10^{-5} \) | \(a_{683}= +0.01629909 \pm 2.0 \cdot 10^{-5} \) | \(a_{684}= +0.58568097 \pm 5.7 \cdot 10^{-5} \) |
\(a_{685}= +0.70092674 \pm 1.2 \cdot 10^{-5} \) | \(a_{686}= +0.10171408 \pm 2.8 \cdot 10^{-5} \) | \(a_{687}= -0.03039232 \pm 3.1 \cdot 10^{-5} \) |
\(a_{688}= -3.58910557 \pm 3.1 \cdot 10^{-5} \) | \(a_{689}= -0.65421335 \pm 2.8 \cdot 10^{-5} \) | \(a_{690}= +0.90127748 \pm 7.5 \cdot 10^{-5} \) |
\(a_{691}= -0.76532353 \pm 2.9 \cdot 10^{-5} \) | \(a_{692}= -3.21457501 \pm 3.7 \cdot 10^{-5} \) | \(a_{693}= +0.22922137 \pm 2.2 \cdot 10^{-5} \) |
\(a_{694}= -2.63474783 \pm 2.5 \cdot 10^{-5} \) | \(a_{695}= -0.81780552 \pm 2.7 \cdot 10^{-5} \) | \(a_{696}= +0.29264711 \pm 5.8 \cdot 10^{-5} \) |
\(a_{697}= +0.56529427 \pm 1.1 \cdot 10^{-5} \) | \(a_{698}= +2.01286665 \pm 2.5 \cdot 10^{-5} \) | \(a_{699}= +0.17070911 \pm 2.2 \cdot 10^{-5} \) |
\(a_{700}= -0.50657565 \pm 5.6 \cdot 10^{-5} \) | \(a_{701}= +1.68373959 \pm 2.3 \cdot 10^{-5} \) | \(a_{702}= -0.17395399 \pm 5.4 \cdot 10^{-5} \) |
\(a_{703}= -0.23411120 \pm 1.6 \cdot 10^{-5} \) | \(a_{704}= +3.66552715 \pm 2.4 \cdot 10^{-5} \) | \(a_{705}= -0.31606430 \pm 4.5 \cdot 10^{-5} \) |
\(a_{706}= +1.14912082 \pm 2.0 \cdot 10^{-5} \) | \(a_{707}= +0.11772442 \pm 2.6 \cdot 10^{-5} \) | \(a_{708}= -1.08614383 \pm 5.0 \cdot 10^{-5} \) |
\(a_{709}= -0.87358427 \pm 2.3 \cdot 10^{-5} \) | \(a_{710}= +0.70656566 \pm 3.0 \cdot 10^{-5} \) | \(a_{711}= +0.30463810 \pm 1.6 \cdot 10^{-5} \) |
\(a_{712}= +2.66252860 \pm 2.3 \cdot 10^{-5} \) | \(a_{713}= +1.65790336 \pm 2.3 \cdot 10^{-5} \) | \(a_{714}= +0.32637561 \pm 5.3 \cdot 10^{-5} \) |
\(a_{715}= -0.60111045 \pm 2.2 \cdot 10^{-5} \) | \(a_{716}= -1.57575645 \pm 2.8 \cdot 10^{-5} \) | \(a_{717}= +0.03091340 \pm 2.0 \cdot 10^{-5} \) |
\(a_{718}= -0.86736457 \pm 2.3 \cdot 10^{-5} \) | \(a_{719}= +1.24281314 \pm 1.9 \cdot 10^{-5} \) | \(a_{720}= -0.67633327 \pm 5.0 \cdot 10^{-5} \) |
\(a_{721}= +0.06684252 \pm 2.1 \cdot 10^{-5} \) | \(a_{722}= -0.98842355 \pm 3.1 \cdot 10^{-5} \) | \(a_{723}= +0.87788159 \pm 2.4 \cdot 10^{-5} \) |
\(a_{724}= +0.82255057 \pm 3.0 \cdot 10^{-5} \) | \(a_{725}= +0.09137596 \pm 1.9 \cdot 10^{-5} \) | \(a_{726}= -2.51253487 \pm 4.9 \cdot 10^{-5} \) |
\(a_{727}= -0.08751564 \pm 2.8 \cdot 10^{-5} \) | \(a_{728}= +0.52905976 \pm 5.8 \cdot 10^{-5} \) | \(a_{729}= +0.03703704 \pm 1.3 \cdot 10^{-6} \) |
\(a_{730}= +1.79577532 \pm 2.8 \cdot 10^{-5} \) | \(a_{731}= +0.96703947 \pm 2.3 \cdot 10^{-5} \) | \(a_{732}= +1.59749478 \pm 5.6 \cdot 10^{-5} \) |
\(a_{733}= +1.82054669 \pm 2.2 \cdot 10^{-5} \) | \(a_{734}= +0.18036779 \pm 2.4 \cdot 10^{-5} \) | \(a_{735}= +0.05679134 \pm 2.2 \cdot 10^{-5} \) |
\(a_{736}= +3.16978479 \pm 2.4 \cdot 10^{-5} \) | \(a_{737}= +2.19406333 \pm 2.1 \cdot 10^{-5} \) | \(a_{738}= -0.44707693 \pm 4.7 \cdot 10^{-5} \) |
\(a_{739}= +0.89459490 \pm 2.6 \cdot 10^{-5} \) | \(a_{740}= +0.59591155 \pm 3.2 \cdot 10^{-5} \) | \(a_{741}= -0.19098940 \pm 4.9 \cdot 10^{-5} \) |
\(a_{742}= -0.97075668 \pm 5.4 \cdot 10^{-5} \) | \(a_{743}= +0.08117388 \pm 2.3 \cdot 10^{-5} \) | \(a_{744}= -2.32013878 \pm 5.9 \cdot 10^{-5} \) |
\(a_{745}= +0.04503409 \pm 2.1 \cdot 10^{-5} \) | \(a_{746}= +0.62097410 \pm 3.8 \cdot 10^{-5} \) | \(a_{747}= +0.09003438 \pm 2.2 \cdot 10^{-5} \) |
\(a_{748}= -3.68150321 \pm 2.7 \cdot 10^{-5} \) | \(a_{749}= -0.17701290 \pm 2.7 \cdot 10^{-5} \) | \(a_{750}= -1.14269612 \pm 4.8 \cdot 10^{-5} \) |
\(a_{751}= +0.46740017 \pm 2.5 \cdot 10^{-5} \) | \(a_{752}= -2.34280712 \pm 3.6 \cdot 10^{-5} \) | \(a_{753}= +0.32087879 \pm 1.9 \cdot 10^{-5} \) |
\(a_{754}= -0.15705635 \pm 2.4 \cdot 10^{-5} \) | \(a_{755}= -1.14900838 \pm 2.6 \cdot 10^{-5} \) | \(a_{756}= -0.18538291 \pm 3.3 \cdot 10^{-5} \) |
\(a_{757}= -1.23936846 \pm 2.3 \cdot 10^{-5} \) | \(a_{758}= +0.80213410 \pm 2.1 \cdot 10^{-5} \) | \(a_{759}= -1.26419768 \pm 4.6 \cdot 10^{-5} \) |
\(a_{760}= -1.38480350 \pm 2.0 \cdot 10^{-5} \) | \(a_{761}= -1.17353929 \pm 2.8 \cdot 10^{-5} \) | \(a_{762}= -0.09129977 \pm 5.6 \cdot 10^{-5} \) |
\(a_{763}= -0.65395688 \pm 2.5 \cdot 10^{-5} \) | \(a_{764}= -1.60873450 \pm 4.4 \cdot 10^{-5} \) | \(a_{765}= +0.18222952 \pm 4.7 \cdot 10^{-5} \) |
\(a_{766}= -1.57211359 \pm 3.5 \cdot 10^{-5} \) | \(a_{767}= +0.35418935 \pm 2.1 \cdot 10^{-5} \) | \(a_{768}= -0.10000890 \pm 2.6 \cdot 10^{-5} \) |
\(a_{769}= +1.21109191 \pm 2.7 \cdot 10^{-5} \) | \(a_{770}= -0.89195976 \pm 7.3 \cdot 10^{-5} \) | \(a_{771}= +1.04885318 \pm 2.2 \cdot 10^{-5} \) |
\(a_{772}= +1.29860390 \pm 3.5 \cdot 10^{-5} \) | \(a_{773}= -1.75092021 \pm 2.2 \cdot 10^{-5} \) | \(a_{774}= -0.76480704 \pm 5.4 \cdot 10^{-5} \) |
\(a_{775}= -0.72443879 \pm 2.3 \cdot 10^{-5} \) | \(a_{776}= +1.30997149 \pm 1.9 \cdot 10^{-5} \) | \(a_{777}= +0.07410215 \pm 2.2 \cdot 10^{-5} \) |
\(a_{778}= +2.94354938 \pm 2.4 \cdot 10^{-5} \) | \(a_{779}= -0.49085943 \pm 1.5 \cdot 10^{-5} \) | \(a_{780}= +0.48614842 \pm 8.1 \cdot 10^{-5} \) |
\(a_{781}= -0.99108064 \pm 2.0 \cdot 10^{-5} \) | \(a_{782}= -1.80002105 \pm 1.8 \cdot 10^{-5} \) | \(a_{783}= +0.03343931 \pm 2.5 \cdot 10^{-5} \) |
\(a_{784}= +0.42096229 \pm 2.7 \cdot 10^{-5} \) | \(a_{785}= +0.57764532 \pm 2.7 \cdot 10^{-5} \) | \(a_{786}= +1.46198591 \pm 4.9 \cdot 10^{-5} \) |
\(a_{787}= -0.94444505 \pm 1.8 \cdot 10^{-5} \) | \(a_{788}= +1.05829402 \pm 2.0 \cdot 10^{-5} \) | \(a_{789}= +1.12275397 \pm 2.3 \cdot 10^{-5} \) |
\(a_{790}= -1.18542583 \pm 1.9 \cdot 10^{-5} \) | \(a_{791}= +0.12192885 \pm 1.6 \cdot 10^{-5} \) | \(a_{792}= +1.76917071 \pm 5.5 \cdot 10^{-5} \) |
\(a_{793}= -0.52093988 \pm 2.6 \cdot 10^{-5} \) | \(a_{794}= +2.30780135 \pm 3.2 \cdot 10^{-5} \) | \(a_{795}= -0.54201514 \pm 4.8 \cdot 10^{-5} \) |
\(a_{796}= +0.40349943 \pm 2.7 \cdot 10^{-5} \) | \(a_{797}= +0.44609141 \pm 2.1 \cdot 10^{-5} \) | \(a_{798}= -0.28340027 \pm 5.2 \cdot 10^{-5} \) |
\(a_{799}= +0.63123999 \pm 2.1 \cdot 10^{-5} \) | \(a_{800}= -1.38507172 \pm 1.9 \cdot 10^{-5} \) | \(a_{801}= +0.30423376 \pm 2.0 \cdot 10^{-5} \) |
\(a_{802}= -0.67826052 \pm 2.7 \cdot 10^{-5} \) | \(a_{803}= -2.51888573 \pm 1.8 \cdot 10^{-5} \) | \(a_{804}= -1.77444996 \pm 5.7 \cdot 10^{-5} \) |
\(a_{805}= -0.31321459 \pm 4.6 \cdot 10^{-5} \) | \(a_{806}= +1.24516023 \pm 2.8 \cdot 10^{-5} \) | \(a_{807}= +0.51237936 \pm 2.2 \cdot 10^{-5} \) |
\(a_{808}= +0.90861769 \pm 3.2 \cdot 10^{-5} \) | \(a_{809}= +1.23761066 \pm 2.5 \cdot 10^{-5} \) | \(a_{810}= -0.14412071 \pm 5.1 \cdot 10^{-5} \) |
\(a_{811}= +1.60249606 \pm 2.4 \cdot 10^{-5} \) | \(a_{812}= -0.16737509 \pm 5.8 \cdot 10^{-5} \) | \(a_{813}= -0.65639886 \pm 2.0 \cdot 10^{-5} \) |
\(a_{814}= -1.16384177 \pm 2.3 \cdot 10^{-5} \) | \(a_{815}= +0.07154374 \pm 1.9 \cdot 10^{-5} \) | \(a_{816}= +1.35076505 \pm 5.2 \cdot 10^{-5} \) |
\(a_{817}= -0.83970504 \pm 2.5 \cdot 10^{-5} \) | \(a_{818}= -0.77636019 \pm 2.0 \cdot 10^{-5} \) | \(a_{819}= +0.06045300 \pm 2.5 \cdot 10^{-5} \) |
\(a_{820}= +1.24944387 \pm 2.4 \cdot 10^{-5} \) | \(a_{821}= -0.96597195 \pm 1.9 \cdot 10^{-5} \) | \(a_{822}= +1.10713190 \pm 4.9 \cdot 10^{-5} \) |
\(a_{823}= -1.46631492 \pm 1.9 \cdot 10^{-5} \) | \(a_{824}= +0.51590232 \pm 3.1 \cdot 10^{-5} \) | \(a_{825}= +0.55240484 \pm 4.5 \cdot 10^{-5} \) |
\(a_{826}= +0.52556506 \pm 4.6 \cdot 10^{-5} \) | \(a_{827}= -0.57739600 \pm 2.8 \cdot 10^{-5} \) | \(a_{828}= +1.02242059 \pm 5.7 \cdot 10^{-5} \) |
\(a_{829}= -1.81779075 \pm 1.9 \cdot 10^{-5} \) | \(a_{830}= -0.35034711 \pm 2.7 \cdot 10^{-5} \) | \(a_{831}= +0.08854844 \pm 2.0 \cdot 10^{-5} \) |
\(a_{832}= +0.96671665 \pm 1.5 \cdot 10^{-5} \) | \(a_{833}= -0.11342301 \pm 2.4 \cdot 10^{-5} \) | \(a_{834}= -1.29174497 \pm 5.4 \cdot 10^{-5} \) |
\(a_{835}= +0.71343386 \pm 1.7 \cdot 10^{-5} \) | \(a_{836}= +3.19674313 \pm 3.6 \cdot 10^{-5} \) | \(a_{837}= -0.26511060 \pm 2.6 \cdot 10^{-5} \) |
\(a_{838}= +0.28191377 \pm 2.7 \cdot 10^{-5} \) | \(a_{839}= +1.49495753 \pm 2.6 \cdot 10^{-5} \) | \(a_{840}= +0.43832551 \pm 5.5 \cdot 10^{-5} \) |
\(a_{841}= -0.96980893 \pm 2.9 \cdot 10^{-5} \) | \(a_{842}= +2.09719230 \pm 2.2 \cdot 10^{-5} \) | \(a_{843}= -0.55746203 \pm 2.9 \cdot 10^{-5} \) |
\(a_{844}= +1.51401281 \pm 2.8 \cdot 10^{-5} \) | \(a_{845}= +0.53002635 \pm 2.4 \cdot 10^{-5} \) | \(a_{846}= -0.49923173 \pm 5.1 \cdot 10^{-5} \) |
\(a_{847}= +0.87316349 \pm 2.0 \cdot 10^{-5} \) | \(a_{848}= -4.01765377 \pm 3.4 \cdot 10^{-5} \) | \(a_{849}= -0.55711180 \pm 1.9 \cdot 10^{-5} \) |
\(a_{850}= +0.78653865 \pm 2.1 \cdot 10^{-5} \) | \(a_{851}= -0.40868685 \pm 2.3 \cdot 10^{-5} \) | \(a_{852}= +0.80153703 \pm 6.4 \cdot 10^{-5} \) |
\(a_{853}= -0.73650092 \pm 2.5 \cdot 10^{-5} \) | \(a_{854}= -0.77299839 \pm 5.1 \cdot 10^{-5} \) | \(a_{855}= -0.15823454 \pm 4.6 \cdot 10^{-5} \) |
\(a_{856}= -1.36621660 \pm 3.8 \cdot 10^{-5} \) | \(a_{857}= +0.67266650 \pm 2.2 \cdot 10^{-5} \) | \(a_{858}= -0.94946950 \pm 7.6 \cdot 10^{-5} \) |
\(a_{859}= -0.19669537 \pm 2.4 \cdot 10^{-5} \) | \(a_{860}= +2.13740277 \pm 3.9 \cdot 10^{-5} \) | \(a_{861}= +0.15536949 \pm 1.8 \cdot 10^{-5} \) |
\(a_{862}= -2.94803977 \pm 2.5 \cdot 10^{-5} \) | \(a_{863}= -1.21411983 \pm 2.6 \cdot 10^{-5} \) | \(a_{864}= -0.50687125 \pm 2.5 \cdot 10^{-5} \) |
\(a_{865}= +0.86848782 \pm 2.6 \cdot 10^{-5} \) | \(a_{866}= +3.07858607 \pm 2.2 \cdot 10^{-5} \) | \(a_{867}= +0.21340357 \pm 2.2 \cdot 10^{-5} \) |
\(a_{868}= +1.32696831 \pm 5.9 \cdot 10^{-5} \) | \(a_{869}= +1.66276492 \pm 1.5 \cdot 10^{-5} \) | \(a_{870}= -0.13012104 \pm 7.6 \cdot 10^{-5} \) |
\(a_{871}= +0.57864462 \pm 2.8 \cdot 10^{-5} \) | \(a_{872}= -5.04735386 \pm 3.5 \cdot 10^{-5} \) | \(a_{873}= +0.14968386 \pm 1.5 \cdot 10^{-5} \) |
\(a_{874}= +1.56300418 \pm 2.4 \cdot 10^{-5} \) | \(a_{875}= +0.39711311 \pm 2.0 \cdot 10^{-5} \) | \(a_{876}= +2.03715027 \pm 5.5 \cdot 10^{-5} \) |
\(a_{877}= -0.04907618 \pm 2.5 \cdot 10^{-5} \) | \(a_{878}= +0.03712051 \pm 3.2 \cdot 10^{-5} \) | \(a_{879}= +0.00208767 \pm 2.1 \cdot 10^{-5} \) |
\(a_{880}= -3.69153834 \pm 2.6 \cdot 10^{-5} \) | \(a_{881}= -1.68831367 \pm 2.2 \cdot 10^{-5} \) | \(a_{882}= +0.08970339 \pm 2.8 \cdot 10^{-5} \) |
\(a_{883}= +1.46320963 \pm 2.5 \cdot 10^{-5} \) | \(a_{884}= -0.97093005 \pm 1.4 \cdot 10^{-5} \) | \(a_{885}= +0.29344554 \pm 4.0 \cdot 10^{-5} \) |
\(a_{886}= +0.10514246 \pm 3.1 \cdot 10^{-5} \) | \(a_{887}= -1.46031282 \pm 1.9 \cdot 10^{-5} \) | \(a_{888}= +0.57193335 \pm 5.5 \cdot 10^{-5} \) |
\(a_{889}= +0.03172876 \pm 2.8 \cdot 10^{-5} \) | \(a_{890}= -1.18385243 \pm 3.2 \cdot 10^{-5} \) | \(a_{891}= +0.20215425 \pm 2.2 \cdot 10^{-5} \) |
\(a_{892}= +0.69919865 \pm 3.4 \cdot 10^{-5} \) | \(a_{893}= -0.54812178 \pm 1.7 \cdot 10^{-5} \) | \(a_{894}= +0.07113251 \pm 5.0 \cdot 10^{-5} \) |
\(a_{895}= +0.42572511 \pm 1.7 \cdot 10^{-5} \) | \(a_{896}= +0.43899038 \pm 2.5 \cdot 10^{-5} \) | \(a_{897}= -0.33340933 \pm 4.9 \cdot 10^{-5} \) |
\(a_{898}= -0.82149616 \pm 2.6 \cdot 10^{-5} \) | \(a_{899}= -0.23935815 \pm 2.8 \cdot 10^{-5} \) | \(a_{900}= -0.44675773 \pm 5.6 \cdot 10^{-5} \) |
\(a_{901}= +1.08250641 \pm 2.6 \cdot 10^{-5} \) | \(a_{902}= -2.44021950 \pm 1.8 \cdot 10^{-5} \) | \(a_{903}= +0.26578799 \pm 2.5 \cdot 10^{-5} \) |
\(a_{904}= +0.94106821 \pm 2.7 \cdot 10^{-5} \) | \(a_{905}= -0.22223005 \pm 1.5 \cdot 10^{-5} \) | \(a_{906}= -1.81488845 \pm 5.3 \cdot 10^{-5} \) |
\(a_{907}= +0.96781884 \pm 2.1 \cdot 10^{-5} \) | \(a_{908}= +1.84901586 \pm 2.8 \cdot 10^{-5} \) | \(a_{909}= +0.10382318 \pm 2.6 \cdot 10^{-5} \) |
\(a_{910}= -0.23523829 \pm 7.6 \cdot 10^{-5} \) | \(a_{911}= +1.57254880 \pm 1.8 \cdot 10^{-5} \) | \(a_{912}= -1.17290374 \pm 5.1 \cdot 10^{-5} \) |
\(a_{913}= +0.49142247 \pm 2.1 \cdot 10^{-5} \) | \(a_{914}= +1.41195675 \pm 3.4 \cdot 10^{-5} \) | \(a_{915}= -0.43159819 \pm 4.5 \cdot 10^{-5} \) |
\(a_{916}= +0.13416062 \pm 3.8 \cdot 10^{-5} \) | \(a_{917}= -0.50807363 \pm 2.0 \cdot 10^{-5} \) | \(a_{918}= +0.28783623 \pm 5.3 \cdot 10^{-5} \) |
\(a_{919}= +1.15889863 \pm 3.0 \cdot 10^{-5} \) | \(a_{920}= -2.41744515 \pm 3.2 \cdot 10^{-5} \) | \(a_{921}= +0.03593602 \pm 3.0 \cdot 10^{-5} \) |
\(a_{922}= +2.73109488 \pm 3.0 \cdot 10^{-5} \) | \(a_{923}= -0.26137964 \pm 2.6 \cdot 10^{-5} \) | \(a_{924}= -1.01185045 \pm 5.5 \cdot 10^{-5} \) |
\(a_{925}= +0.17858014 \pm 2.4 \cdot 10^{-5} \) | \(a_{926}= +1.88728843 \pm 2.4 \cdot 10^{-5} \) | \(a_{927}= +0.05894957 \pm 2.1 \cdot 10^{-5} \) |
\(a_{928}= -0.45763452 \pm 2.5 \cdot 10^{-5} \) | \(a_{929}= +0.08060803 \pm 3.0 \cdot 10^{-5} \) | \(a_{930}= +1.03161406 \pm 7.7 \cdot 10^{-5} \) |
\(a_{931}= +0.09848809 \pm 2.4 \cdot 10^{-5} \) | \(a_{932}= -0.75356013 \pm 2.5 \cdot 10^{-5} \) | \(a_{933}= -0.84385321 \pm 2.8 \cdot 10^{-5} \) |
\(a_{934}= +1.07899547 \pm 2.3 \cdot 10^{-5} \) | \(a_{935}= +0.99463870 \pm 1.6 \cdot 10^{-5} \) | \(a_{936}= +0.46658685 \pm 5.8 \cdot 10^{-5} \) |
\(a_{937}= -1.15272615 \pm 2.3 \cdot 10^{-5} \) | \(a_{938}= +0.85862376 \pm 5.3 \cdot 10^{-5} \) | \(a_{939}= -0.82796802 \pm 3.0 \cdot 10^{-5} \) |
\(a_{940}= +1.39520065 \pm 3.4 \cdot 10^{-5} \) | \(a_{941}= -0.80564541 \pm 2.5 \cdot 10^{-5} \) | \(a_{942}= +0.91240571 \pm 5.2 \cdot 10^{-5} \) |
\(a_{943}= -0.85689108 \pm 2.5 \cdot 10^{-5} \) | \(a_{944}= +2.17514694 \pm 2.0 \cdot 10^{-5} \) | \(a_{945}= +0.05008525 \pm 2.2 \cdot 10^{-5} \) |
\(a_{946}= -4.17444274 \pm 2.9 \cdot 10^{-5} \) | \(a_{947}= -1.57602773 \pm 2.2 \cdot 10^{-5} \) | \(a_{948}= -1.34476207 \pm 4.9 \cdot 10^{-5} \) |
\(a_{949}= -0.66431066 \pm 2.5 \cdot 10^{-5} \) | \(a_{950}= -0.68297157 \pm 2.3 \cdot 10^{-5} \) | \(a_{951}= +0.90262873 \pm 2.8 \cdot 10^{-5} \) |
\(a_{952}= -0.87541867 \pm 5.8 \cdot 10^{-5} \) | \(a_{953}= +1.16013896 \pm 2.7 \cdot 10^{-5} \) | \(a_{954}= -0.85612692 \pm 5.4 \cdot 10^{-5} \) |
\(a_{955}= +0.43463485 \pm 2.9 \cdot 10^{-5} \) | \(a_{956}= -0.13646085 \pm 2.7 \cdot 10^{-5} \) | \(a_{957}= +0.18251728 \pm 4.7 \cdot 10^{-5} \) |
\(a_{958}= -2.27874278 \pm 2.7 \cdot 10^{-5} \) | \(a_{959}= -0.38475373 \pm 2.0 \cdot 10^{-5} \) | \(a_{960}= +0.80092382 \pm 4.4 \cdot 10^{-5} \) |
\(a_{961}= +0.89765799 \pm 1.9 \cdot 10^{-5} \) | \(a_{962}= -0.30694227 \pm 2.5 \cdot 10^{-5} \) | \(a_{963}= -0.15611071 \pm 2.7 \cdot 10^{-5} \) |
\(a_{964}= -3.87522720 \pm 2.9 \cdot 10^{-5} \) | \(a_{965}= -0.35084628 \pm 2.2 \cdot 10^{-5} \) | \(a_{966}= -0.49473055 \pm 5.2 \cdot 10^{-5} \) |
\(a_{967}= -0.00817782 \pm 1.9 \cdot 10^{-5} \) | \(a_{968}= +6.73922890 \pm 2.7 \cdot 10^{-5} \) | \(a_{969}= +0.31602420 \pm 4.9 \cdot 10^{-5} \) |
\(a_{970}= -0.58245869 \pm 1.5 \cdot 10^{-5} \) | \(a_{971}= +0.90474172 \pm 1.6 \cdot 10^{-5} \) | \(a_{972}= -0.16349236 \pm 3.3 \cdot 10^{-5} \) |
\(a_{973}= +0.44891100 \pm 2.6 \cdot 10^{-5} \) | \(a_{974}= -1.04557238 \pm 2.2 \cdot 10^{-5} \) | \(a_{975}= +0.14568681 \pm 4.8 \cdot 10^{-5} \) |
\(a_{976}= -3.19919500 \pm 1.9 \cdot 10^{-5} \) | \(a_{977}= -0.23332537 \pm 2.2 \cdot 10^{-5} \) | \(a_{978}= +0.11300519 \pm 5.2 \cdot 10^{-5} \) |
\(a_{979}= +1.66055796 \pm 1.7 \cdot 10^{-5} \) | \(a_{980}= -0.25069365 \pm 5.5 \cdot 10^{-5} \) | \(a_{981}= -0.57673576 \pm 2.5 \cdot 10^{-5} \) |
\(a_{982}= +0.99960259 \pm 1.8 \cdot 10^{-5} \) | \(a_{983}= +1.65134406 \pm 2.4 \cdot 10^{-5} \) | \(a_{984}= +1.19916894 \pm 5.2 \cdot 10^{-5} \) |
\(a_{985}= -0.28592130 \pm 1.7 \cdot 10^{-5} \) | \(a_{986}= +0.25987625 \pm 1.9 \cdot 10^{-5} \) | \(a_{987}= +0.17349448 \pm 2.3 \cdot 10^{-5} \) |
\(a_{988}= +0.84308332 \pm 2.3 \cdot 10^{-5} \) | \(a_{989}= -1.46586925 \pm 3.0 \cdot 10^{-5} \) | \(a_{990}= -0.78663457 \pm 7.3 \cdot 10^{-5} \) |
\(a_{991}= -1.25304997 \pm 2.5 \cdot 10^{-5} \) | \(a_{992}= +3.62817735 \pm 2.4 \cdot 10^{-5} \) | \(a_{993}= +0.13599307 \pm 2.1 \cdot 10^{-5} \) |
\(a_{994}= -0.38784905 \pm 5.9 \cdot 10^{-5} \) | \(a_{995}= -0.10901421 \pm 1.8 \cdot 10^{-5} \) | \(a_{996}= -0.39743820 \pm 5.5 \cdot 10^{-5} \) |
\(a_{997}= -0.65461185 \pm 2.6 \cdot 10^{-5} \) | \(a_{998}= +0.04253496 \pm 2.7 \cdot 10^{-5} \) | \(a_{999}= +0.06535195 \pm 2.2 \cdot 10^{-5} \) |
\(a_{1000}= +3.06498860 \pm 2.8 \cdot 10^{-5} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000