Maass form invariants
Level: | \( 21 = 3 \cdot 7 \) |
Weight: | \( 0 \) |
Character: | 21.1 |
Symmetry: | odd |
Fricke sign: | $+1$ |
Spectral parameter: | \(3.27272100042075640598436233531 \pm 6 \cdot 10^{-11}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -0.20541682 \pm 4.8 \cdot 10^{-7} \) | \(a_{3}= +0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= -0.95780393 \pm 5.6 \cdot 10^{-7} \) | \(a_{5}= -1.66412663 \pm 3.8 \cdot 10^{-7} \) | \(a_{6}= -0.11859746 \pm 4.9 \cdot 10^{-7} \) |
\(a_{7}= +0.37796447 \pm 1.0 \cdot 10^{-8} \) | \(a_{8}= +0.40216586 \pm 5.6 \cdot 10^{-7} \) | \(a_{9}= +0.33333333 \pm 4.2 \cdot 10^{-8} \) |
\(a_{10}= +0.34183960 \pm 4.7 \cdot 10^{-7} \) | \(a_{11}= -0.88239856 \pm 3.7 \cdot 10^{-7} \) | \(a_{12}= -0.55298836 \pm 5.7 \cdot 10^{-7} \) |
\(a_{13}= +0.36743886 \pm 4.3 \cdot 10^{-7} \) | \(a_{14}= -0.07764026 \pm 4.9 \cdot 10^{-7} \) | \(a_{15}= -0.96078396 \pm 3.9 \cdot 10^{-7} \) |
\(a_{16}= +0.87519230 \pm 4.6 \cdot 10^{-7} \) | \(a_{17}= -0.70352362 \pm 4.2 \cdot 10^{-7} \) | \(a_{18}= -0.06847227 \pm 4.9 \cdot 10^{-7} \) |
\(a_{19}= -0.94609832 \pm 4.1 \cdot 10^{-7} \) | \(a_{20}= +1.59390702 \pm 5.4 \cdot 10^{-7} \) | \(a_{21}= +0.21821789 \pm 1.0 \cdot 10^{-8} \) |
\(a_{22}= +0.18125951 \pm 4.9 \cdot 10^{-7} \) | \(a_{23}= -1.57575420 \pm 4.0 \cdot 10^{-7} \) | \(a_{24}= +0.23219057 \pm 5.7 \cdot 10^{-7} \) |
\(a_{25}= +1.76931744 \pm 3.8 \cdot 10^{-7} \) | \(a_{26}= -0.07547812 \pm 4.7 \cdot 10^{-7} \) | \(a_{27}= +0.19245009 \pm 9.4 \cdot 10^{-8} \) |
\(a_{28}= -0.36201586 \pm 5.7 \cdot 10^{-7} \) | \(a_{29}= -0.13149234 \pm 4.2 \cdot 10^{-7} \) | \(a_{30}= +0.19736119 \pm 8.7 \cdot 10^{-7} \) |
\(a_{31}= +1.01385587 \pm 4.4 \cdot 10^{-7} \) | \(a_{32}= -0.58194508 \pm 4.3 \cdot 10^{-7} \) | \(a_{33}= -0.50945305 \pm 3.8 \cdot 10^{-7} \) |
\(a_{34}= +0.14451559 \pm 3.9 \cdot 10^{-7} \) | \(a_{35}= -0.62898074 \pm 3.9 \cdot 10^{-7} \) | \(a_{36}= -0.31926798 \pm 5.7 \cdot 10^{-7} \) |
\(a_{37}= -1.48476363 \pm 3.8 \cdot 10^{-7} \) | \(a_{38}= +0.19434451 \pm 4.7 \cdot 10^{-7} \) | \(a_{39}= +0.21214092 \pm 4.4 \cdot 10^{-7} \) |
\(a_{40}= -0.66925492 \pm 5.1 \cdot 10^{-7} \) | \(a_{41}= +0.78213203 \pm 3.2 \cdot 10^{-7} \) | \(a_{42}= -0.04482563 \pm 4.9 \cdot 10^{-7} \) |
\(a_{43}= +0.43530151 \pm 4.3 \cdot 10^{-7} \) | \(a_{44}= +0.84516481 \pm 5.6 \cdot 10^{-7} \) | \(a_{45}= -0.55470888 \pm 3.9 \cdot 10^{-7} \) |
\(a_{46}= +0.32368642 \pm 4.7 \cdot 10^{-7} \) | \(a_{47}= +0.27021586 \pm 3.9 \cdot 10^{-7} \) | \(a_{48}= +0.50529251 \pm 4.7 \cdot 10^{-7} \) |
\(a_{49}= +0.14285714 \pm 1.5 \cdot 10^{-7} \) | \(a_{50}= -0.36344757 \pm 3.7 \cdot 10^{-7} \) | \(a_{51}= -0.40617955 \pm 4.3 \cdot 10^{-7} \) |
\(a_{52}= -0.35193438 \pm 5.3 \cdot 10^{-7} \) | \(a_{53}= +0.30476280 \pm 4.3 \cdot 10^{-7} \) | \(a_{54}= -0.03953249 \pm 4.9 \cdot 10^{-7} \) |
\(a_{55}= +1.46842294 \pm 3.3 \cdot 10^{-7} \) | \(a_{56}= +0.15200441 \pm 5.7 \cdot 10^{-7} \) | \(a_{57}= -0.54623012 \pm 4.2 \cdot 10^{-7} \) |
\(a_{58}= +0.02701074 \pm 4.1 \cdot 10^{-7} \) | \(a_{59}= +0.22030638 \pm 2.9 \cdot 10^{-7} \) | \(a_{60}= +0.92024265 \pm 9.5 \cdot 10^{-7} \) |
\(a_{61}= -0.60003180 \pm 3.9 \cdot 10^{-7} \) | \(a_{62}= -0.20826305 \pm 5.1 \cdot 10^{-7} \) | \(a_{63}= +0.12598816 \pm 1.8 \cdot 10^{-7} \) |
\(a_{64}= -0.75565099 \pm 3.7 \cdot 10^{-7} \) | \(a_{65}= -0.61146479 \pm 4.0 \cdot 10^{-7} \) | \(a_{66}= +0.10465023 \pm 8.6 \cdot 10^{-7} \) |
\(a_{67}= -1.64040428 \pm 4.1 \cdot 10^{-7} \) | \(a_{68}= +0.67383769 \pm 3.8 \cdot 10^{-7} \) | \(a_{69}= -0.90976211 \pm 4.2 \cdot 10^{-7} \) |
\(a_{70}= +0.12920323 \pm 8.7 \cdot 10^{-7} \) | \(a_{71}= -1.73446562 \pm 5.2 \cdot 10^{-7} \) | \(a_{72}= +0.13405529 \pm 5.7 \cdot 10^{-7} \) |
\(a_{73}= +1.22945046 \pm 3.8 \cdot 10^{-7} \) | \(a_{74}= +0.30499543 \pm 4.3 \cdot 10^{-7} \) | \(a_{75}= +1.02151590 \pm 4.0 \cdot 10^{-7} \) |
\(a_{76}= +0.90617669 \pm 4.7 \cdot 10^{-7} \) | \(a_{77}= -0.33351531 \pm 3.8 \cdot 10^{-7} \) | \(a_{78}= -0.04357731 \pm 9.2 \cdot 10^{-7} \) |
\(a_{79}= +0.64458197 \pm 2.7 \cdot 10^{-7} \) | \(a_{80}= -1.45643081 \pm 4.8 \cdot 10^{-7} \) | \(a_{81}= +0.11111111 \pm 2.3 \cdot 10^{-7} \) |
\(a_{82}= -0.16066308 \pm 3.6 \cdot 10^{-7} \) | \(a_{83}= +0.68253740 \pm 3.7 \cdot 10^{-7} \) | \(a_{84}= -0.20900995 \pm 5.7 \cdot 10^{-7} \) |
\(a_{85}= +1.17075240 \pm 2.9 \cdot 10^{-7} \) | \(a_{86}= -0.08941825 \pm 5.7 \cdot 10^{-7} \) | \(a_{87}= -0.07591714 \pm 4.4 \cdot 10^{-7} \) |
\(a_{88}= -0.35487058 \pm 5.4 \cdot 10^{-7} \) | \(a_{89}= -0.56325012 \pm 3.5 \cdot 10^{-7} \) | \(a_{90}= +0.11394653 \pm 8.7 \cdot 10^{-7} \) |
\(a_{91}= +0.13887883 \pm 4.4 \cdot 10^{-7} \) | \(a_{92}= +1.50926357 \pm 5.9 \cdot 10^{-7} \) | \(a_{93}= +0.58534996 \pm 4.5 \cdot 10^{-7} \) |
\(a_{94}= -0.05550688 \pm 4.8 \cdot 10^{-7} \) | \(a_{95}= +1.57442742 \pm 2.9 \cdot 10^{-7} \) | \(a_{96}= -0.33598615 \pm 4.4 \cdot 10^{-7} \) |
\(a_{97}= -0.61588439 \pm 2.5 \cdot 10^{-7} \) | \(a_{98}= -0.02934526 \pm 4.9 \cdot 10^{-7} \) | \(a_{99}= -0.29413285 \pm 3.8 \cdot 10^{-7} \) |
\(a_{100}= -1.69465920 \pm 4.1 \cdot 10^{-7} \) | \(a_{101}= -0.44925282 \pm 4.5 \cdot 10^{-7} \) | \(a_{102}= +0.08343611 \pm 9.1 \cdot 10^{-7} \) |
\(a_{103}= -0.50353630 \pm 3.6 \cdot 10^{-7} \) | \(a_{104}= +0.14777137 \pm 5.3 \cdot 10^{-7} \) | \(a_{105}= -0.36314220 \pm 3.9 \cdot 10^{-7} \) |
\(a_{106}= -0.06260341 \pm 5.5 \cdot 10^{-7} \) | \(a_{107}= -0.18889496 \pm 4.6 \cdot 10^{-7} \) | \(a_{108}= -0.18432945 \pm 5.7 \cdot 10^{-7} \) |
\(a_{109}= -1.02176393 \pm 4.4 \cdot 10^{-7} \) | \(a_{110}= -0.30163877 \pm 4.0 \cdot 10^{-7} \) | \(a_{111}= -0.85722868 \pm 3.9 \cdot 10^{-7} \) |
\(a_{112}= +0.33079159 \pm 4.7 \cdot 10^{-7} \) | \(a_{113}= +0.62149173 \pm 2.8 \cdot 10^{-7} \) | \(a_{114}= +0.11220486 \pm 9.0 \cdot 10^{-7} \) |
\(a_{115}= +2.62225453 \pm 4.0 \cdot 10^{-7} \) | \(a_{116}= +0.12594388 \pm 5.0 \cdot 10^{-7} \) | \(a_{117}= +0.12247962 \pm 4.4 \cdot 10^{-7} \) |
\(a_{118}= -0.04525464 \pm 3.6 \cdot 10^{-7} \) | \(a_{119}= -0.26590694 \pm 4.3 \cdot 10^{-7} \) | \(a_{120}= -0.38639451 \pm 9.5 \cdot 10^{-7} \) |
\(a_{121}= -0.22137278 \pm 3.5 \cdot 10^{-7} \) | \(a_{122}= +0.12325663 \pm 4.3 \cdot 10^{-7} \) | \(a_{123}= +0.45156414 \pm 3.3 \cdot 10^{-7} \) |
\(a_{124}= -0.97107513 \pm 5.7 \cdot 10^{-7} \) | \(a_{125}= -1.28024164 \pm 3.4 \cdot 10^{-7} \) | \(a_{126}= -0.02588009 \pm 4.9 \cdot 10^{-7} \) |
\(a_{127}= -0.23822209 \pm 4.8 \cdot 10^{-7} \) | \(a_{128}= +0.73716851 \pm 4.3 \cdot 10^{-7} \) | \(a_{129}= +0.25132145 \pm 4.4 \cdot 10^{-7} \) |
\(a_{130}= +0.12560515 \pm 5.3 \cdot 10^{-7} \) | \(a_{131}= +0.64993585 \pm 3.4 \cdot 10^{-7} \) | \(a_{132}= +0.48795613 \pm 9.4 \cdot 10^{-7} \) |
\(a_{133}= -0.35759155 \pm 4.2 \cdot 10^{-7} \) | \(a_{134}= +0.33696663 \pm 4.1 \cdot 10^{-7} \) | \(a_{135}= -0.32026132 \pm 3.9 \cdot 10^{-7} \) |
\(a_{136}= -0.28293318 \pm 4.2 \cdot 10^{-7} \) | \(a_{137}= +0.09427400 \pm 3.4 \cdot 10^{-7} \) | \(a_{138}= +0.18688044 \pm 9.0 \cdot 10^{-7} \) |
\(a_{139}= +1.46926776 \pm 4.4 \cdot 10^{-7} \) | \(a_{140}= +0.60244023 \pm 9.5 \cdot 10^{-7} \) | \(a_{141}= +0.15600920 \pm 4.0 \cdot 10^{-7} \) |
\(a_{142}= +0.35628842 \pm 4.9 \cdot 10^{-7} \) | \(a_{143}= -0.32422752 \pm 3.9 \cdot 10^{-7} \) | \(a_{144}= +0.29173077 \pm 4.7 \cdot 10^{-7} \) |
\(a_{145}= +0.21881990 \pm 3.2 \cdot 10^{-7} \) | \(a_{146}= -0.25254981 \pm 4.6 \cdot 10^{-7} \) | \(a_{147}= +0.08247861 \pm 3.5 \cdot 10^{-7} \) |
\(a_{148}= +1.42211243 \pm 5.1 \cdot 10^{-7} \) | \(a_{149}= -0.51714452 \pm 3.7 \cdot 10^{-7} \) | \(a_{150}= -0.20983655 \pm 8.8 \cdot 10^{-7} \) |
\(a_{151}= -1.31312441 \pm 4.2 \cdot 10^{-7} \) | \(a_{152}= -0.38048845 \pm 5.0 \cdot 10^{-7} \) | \(a_{153}= -0.23450787 \pm 4.3 \cdot 10^{-7} \) |
\(a_{154}= +0.06850965 \pm 8.6 \cdot 10^{-7} \) | \(a_{155}= -1.68718455 \pm 4.1 \cdot 10^{-7} \) | \(a_{156}= -0.20318941 \pm 1.0 \cdot 10^{-6} \) |
\(a_{157}= -1.83712954 \pm 4.0 \cdot 10^{-7} \) | \(a_{158}= -0.13240798 \pm 3.4 \cdot 10^{-7} \) | \(a_{159}= +0.17595488 \pm 4.4 \cdot 10^{-7} \) |
\(a_{160}= +0.96843031 \pm 4.0 \cdot 10^{-7} \) | \(a_{161}= -0.59557911 \pm 4.2 \cdot 10^{-7} \) | \(a_{162}= -0.02282409 \pm 4.9 \cdot 10^{-7} \) |
\(a_{163}= +1.05523795 \pm 3.9 \cdot 10^{-7} \) | \(a_{164}= -0.74912913 \pm 4.2 \cdot 10^{-7} \) | \(a_{165}= +0.84779438 \pm 7.6 \cdot 10^{-7} \) |
\(a_{166}= -0.14020466 \pm 4.1 \cdot 10^{-7} \) | \(a_{167}= +0.50802128 \pm 3.1 \cdot 10^{-7} \) | \(a_{168}= +0.08775979 \pm 5.7 \cdot 10^{-7} \) |
\(a_{169}= -0.86498868 \pm 4.8 \cdot 10^{-7} \) | \(a_{170}= -0.24049224 \pm 2.4 \cdot 10^{-7} \) | \(a_{171}= -0.31536611 \pm 4.2 \cdot 10^{-7} \) |
\(a_{172}= -0.41693350 \pm 6.7 \cdot 10^{-7} \) | \(a_{173}= +1.31273175 \pm 4.7 \cdot 10^{-7} \) | \(a_{174}= +0.01559466 \pm 9.2 \cdot 10^{-7} \) |
\(a_{175}= +0.66873913 \pm 4.0 \cdot 10^{-7} \) | \(a_{176}= -0.77226842 \pm 4.4 \cdot 10^{-7} \) | \(a_{177}= +0.12719395 \pm 3.0 \cdot 10^{-7} \) |
\(a_{178}= +0.11570105 \pm 4.3 \cdot 10^{-7} \) | \(a_{179}= -0.48567828 \pm 3.6 \cdot 10^{-7} \) | \(a_{180}= +0.53130234 \pm 9.5 \cdot 10^{-7} \) |
\(a_{181}= -0.55298424 \pm 3.2 \cdot 10^{-7} \) | \(a_{182}= -0.02852805 \pm 9.2 \cdot 10^{-7} \) | \(a_{183}= -0.34642852 \pm 4.0 \cdot 10^{-7} \) |
\(a_{184}= -0.63371455 \pm 5.7 \cdot 10^{-7} \) | \(a_{185}= +2.47083469 \pm 4.4 \cdot 10^{-7} \) | \(a_{186}= -0.12024073 \pm 9.4 \cdot 10^{-7} \) |
\(a_{187}= +0.62078823 \pm 3.8 \cdot 10^{-7} \) | \(a_{188}= -0.25881381 \pm 5.9 \cdot 10^{-7} \) | \(a_{189}= +0.07273930 \pm 4.4 \cdot 10^{-7} \) |
\(a_{190}= -0.32341388 \pm 2.9 \cdot 10^{-7} \) | \(a_{191}= +1.73249641 \pm 4.5 \cdot 10^{-7} \) | \(a_{192}= -0.43627530 \pm 3.8 \cdot 10^{-7} \) |
\(a_{193}= +0.57425092 \pm 4.5 \cdot 10^{-7} \) | \(a_{194}= +0.12651301 \pm 2.4 \cdot 10^{-7} \) | \(a_{195}= -0.35302936 \pm 8.2 \cdot 10^{-7} \) |
\(a_{196}= -0.13682913 \pm 5.7 \cdot 10^{-7} \) | \(a_{197}= -0.87950981 \pm 3.2 \cdot 10^{-7} \) | \(a_{198}= +0.06041984 \pm 8.6 \cdot 10^{-7} \) |
\(a_{199}= +1.03839550 \pm 2.7 \cdot 10^{-7} \) | \(a_{200}= +0.71155907 \pm 3.4 \cdot 10^{-7} \) | \(a_{201}= -0.94708785 \pm 4.3 \cdot 10^{-7} \) |
\(a_{202}= +0.09228409 \pm 4.5 \cdot 10^{-7} \) | \(a_{203}= -0.04969943 \pm 4.4 \cdot 10^{-7} \) | \(a_{204}= +0.38904037 \pm 9.9 \cdot 10^{-7} \) |
\(a_{205}= -1.30156674 \pm 2.7 \cdot 10^{-7} \) | \(a_{206}= +0.10343483 \pm 4.6 \cdot 10^{-7} \) | \(a_{207}= -0.52525140 \pm 4.2 \cdot 10^{-7} \) |
\(a_{208}= +0.32157966 \pm 3.9 \cdot 10^{-7} \) | \(a_{209}= +0.83483580 \pm 4.1 \cdot 10^{-7} \) | \(a_{210}= +0.07459552 \pm 8.7 \cdot 10^{-7} \) |
\(a_{211}= +0.53807053 \pm 4.1 \cdot 10^{-7} \) | \(a_{212}= -0.29190301 \pm 6.2 \cdot 10^{-7} \) | \(a_{213}= -1.00139419 \pm 5.3 \cdot 10^{-7} \) |
\(a_{214}= +0.03880220 \pm 5.5 \cdot 10^{-7} \) | \(a_{215}= -0.72439684 \pm 3.4 \cdot 10^{-7} \) | \(a_{216}= +0.07739686 \pm 5.7 \cdot 10^{-7} \) |
\(a_{217}= +0.38320150 \pm 4.5 \cdot 10^{-7} \) | \(a_{218}= +0.20988750 \pm 4.6 \cdot 10^{-7} \) | \(a_{219}= +0.70982355 \pm 3.9 \cdot 10^{-7} \) |
\(a_{220}= -1.40646126 \pm 4.5 \cdot 10^{-7} \) | \(a_{221}= -0.25850192 \pm 3.4 \cdot 10^{-7} \) | \(a_{222}= +0.17608919 \pm 8.7 \cdot 10^{-7} \) |
\(a_{223}= -0.35406896 \pm 4.8 \cdot 10^{-7} \) | \(a_{224}= -0.21995457 \pm 4.4 \cdot 10^{-7} \) | \(a_{225}= +0.58977248 \pm 4.0 \cdot 10^{-7} \) |
\(a_{226}= -0.12766486 \pm 4.1 \cdot 10^{-7} \) | \(a_{227}= -1.07919375 \pm 4.3 \cdot 10^{-7} \) | \(a_{228}= +0.52318136 \pm 9.8 \cdot 10^{-7} \) |
\(a_{229}= -1.57800083 \pm 5.3 \cdot 10^{-7} \) | \(a_{230}= -0.53865519 \pm 4.7 \cdot 10^{-7} \) | \(a_{231}= -0.19255515 \pm 3.8 \cdot 10^{-7} \) |
\(a_{232}= -0.05288173 \pm 4.6 \cdot 10^{-7} \) | \(a_{233}= +0.28091192 \pm 3.7 \cdot 10^{-7} \) | \(a_{234}= -0.02515937 \pm 9.2 \cdot 10^{-7} \) |
\(a_{235}= -0.44967341 \pm 3.8 \cdot 10^{-7} \) | \(a_{236}= -0.21101032 \pm 4.2 \cdot 10^{-7} \) | \(a_{237}= +0.37214957 \pm 2.8 \cdot 10^{-7} \) |
\(a_{238}= +0.05462176 \pm 9.1 \cdot 10^{-7} \) | \(a_{239}= +1.19011791 \pm 3.5 \cdot 10^{-7} \) | \(a_{240}= -0.84087072 \pm 8.5 \cdot 10^{-7} \) |
\(a_{241}= +1.75709616 \pm 4.1 \cdot 10^{-7} \) | \(a_{242}= +0.04547369 \pm 4.6 \cdot 10^{-7} \) | \(a_{243}= +0.06415003 \pm 5.5 \cdot 10^{-7} \) |
\(a_{244}= +0.57471282 \pm 4.9 \cdot 10^{-7} \) | \(a_{245}= -0.23773238 \pm 3.9 \cdot 10^{-7} \) | \(a_{246}= -0.09275887 \pm 8.1 \cdot 10^{-7} \) |
\(a_{247}= -0.34763329 \pm 3.3 \cdot 10^{-7} \) | \(a_{248}= +0.40773822 \pm 5.7 \cdot 10^{-7} \) | \(a_{249}= +0.39406315 \pm 3.8 \cdot 10^{-7} \) |
\(a_{250}= +0.26298317 \pm 4.0 \cdot 10^{-7} \) | \(a_{251}= -0.83120406 \pm 3.3 \cdot 10^{-7} \) | \(a_{252}= -0.12067195 \pm 5.7 \cdot 10^{-7} \) |
\(a_{253}= +1.39044324 \pm 3.2 \cdot 10^{-7} \) | \(a_{254}= +0.04893483 \pm 6.4 \cdot 10^{-7} \) | \(a_{255}= +0.67593421 \pm 8.1 \cdot 10^{-7} \) |
\(a_{256}= +0.60422417 \pm 4.4 \cdot 10^{-7} \) | \(a_{257}= +0.54891834 \pm 3.7 \cdot 10^{-7} \) | \(a_{258}= -0.05162565 \pm 9.3 \cdot 10^{-7} \) |
\(a_{259}= -0.56118790 \pm 3.9 \cdot 10^{-7} \) | \(a_{260}= +0.58566338 \pm 5.7 \cdot 10^{-7} \) | \(a_{261}= -0.04383078 \pm 4.4 \cdot 10^{-7} \) |
\(a_{262}= -0.13350776 \pm 4.9 \cdot 10^{-7} \) | \(a_{263}= -1.56706272 \pm 4.0 \cdot 10^{-7} \) | \(a_{264}= -0.20488462 \pm 9.4 \cdot 10^{-7} \) |
\(a_{265}= -0.50716389 \pm 3.3 \cdot 10^{-7} \) | \(a_{266}= +0.07345532 \pm 9.0 \cdot 10^{-7} \) | \(a_{267}= -0.32519261 \pm 3.6 \cdot 10^{-7} \) |
\(a_{268}= +1.57118567 \pm 4.7 \cdot 10^{-7} \) | \(a_{269}= +0.45596767 \pm 3.7 \cdot 10^{-7} \) | \(a_{270}= +0.06578706 \pm 8.7 \cdot 10^{-7} \) |
\(a_{271}= +0.24397142 \pm 3.5 \cdot 10^{-7} \) | \(a_{272}= -0.61571846 \pm 2.7 \cdot 10^{-7} \) | \(a_{273}= +0.08018173 \pm 4.4 \cdot 10^{-7} \) |
\(a_{274}= -0.01936547 \pm 4.4 \cdot 10^{-7} \) | \(a_{275}= -1.56124316 \pm 3.5 \cdot 10^{-7} \) | \(a_{276}= +0.87137373 \pm 9.8 \cdot 10^{-7} \) |
\(a_{277}= -0.58699526 \pm 3.4 \cdot 10^{-7} \) | \(a_{278}= -0.30181231 \pm 5.1 \cdot 10^{-7} \) | \(a_{279}= +0.33795196 \pm 4.5 \cdot 10^{-7} \) |
\(a_{280}= -0.25295458 \pm 9.5 \cdot 10^{-7} \) | \(a_{281}= -0.25084672 \pm 4.9 \cdot 10^{-7} \) | \(a_{282}= -0.03204691 \pm 8.9 \cdot 10^{-7} \) |
\(a_{283}= +0.30704267 \pm 3.3 \cdot 10^{-7} \) | \(a_{284}= +1.66127798 \pm 6.3 \cdot 10^{-7} \) | \(a_{285}= +0.90899609 \pm 8.0 \cdot 10^{-7} \) |
\(a_{286}= +0.06660179 \pm 3.8 \cdot 10^{-7} \) | \(a_{287}= +0.29561812 \pm 3.3 \cdot 10^{-7} \) | \(a_{288}= -0.19398169 \pm 4.4 \cdot 10^{-7} \) |
\(a_{289}= -0.50505451 \pm 3.8 \cdot 10^{-7} \) | \(a_{290}= -0.04494929 \pm 3.9 \cdot 10^{-7} \) | \(a_{291}= -0.35558102 \pm 2.6 \cdot 10^{-7} \) |
\(a_{292}= -1.17757248 \pm 5.5 \cdot 10^{-7} \) | \(a_{293}= -0.66034081 \pm 3.6 \cdot 10^{-7} \) | \(a_{294}= -0.01694249 \pm 4.9 \cdot 10^{-7} \) |
\(a_{295}= -0.36661771 \pm 2.5 \cdot 10^{-7} \) | \(a_{296}= -0.59712124 \pm 4.8 \cdot 10^{-7} \) | \(a_{297}= -0.16981768 \pm 3.8 \cdot 10^{-7} \) |
\(a_{298}= +0.10623018 \pm 5.3 \cdot 10^{-7} \) | \(a_{299}= -0.57899333 \pm 4.6 \cdot 10^{-7} \) | \(a_{300}= -0.97841194 \pm 9.6 \cdot 10^{-7} \) |
\(a_{301}= +0.16452851 \pm 4.4 \cdot 10^{-7} \) | \(a_{302}= +0.26973784 \pm 5.6 \cdot 10^{-7} \) | \(a_{303}= -0.25937623 \pm 4.6 \cdot 10^{-7} \) |
\(a_{304}= -0.82801796 \pm 3.3 \cdot 10^{-7} \) | \(a_{305}= +0.99852890 \pm 3.0 \cdot 10^{-7} \) | \(a_{306}= +0.04817186 \pm 9.1 \cdot 10^{-7} \) |
\(a_{307}= +0.87161196 \pm 5.2 \cdot 10^{-7} \) | \(a_{308}= +0.31944227 \pm 9.4 \cdot 10^{-7} \) | \(a_{309}= -0.29071682 \pm 3.7 \cdot 10^{-7} \) |
\(a_{310}= +0.34657609 \pm 5.1 \cdot 10^{-7} \) | \(a_{311}= -1.81604123 \pm 4.7 \cdot 10^{-7} \) | \(a_{312}= +0.08531584 \pm 1.0 \cdot 10^{-6} \) |
\(a_{313}= -0.12419519 \pm 5.1 \cdot 10^{-7} \) | \(a_{314}= +0.37737731 \pm 4.4 \cdot 10^{-7} \) | \(a_{315}= -0.20966025 \pm 3.9 \cdot 10^{-7} \) |
\(a_{316}= -0.61738315 \pm 3.9 \cdot 10^{-7} \) | \(a_{317}= +1.20006689 \pm 4.7 \cdot 10^{-7} \) | \(a_{318}= -0.03614409 \pm 9.3 \cdot 10^{-7} \) |
\(a_{319}= +0.11602865 \pm 3.0 \cdot 10^{-7} \) | \(a_{320}= +1.25749893 \pm 3.1 \cdot 10^{-7} \) | \(a_{321}= -0.10905856 \pm 4.7 \cdot 10^{-7} \) |
\(a_{322}= +0.12234197 \pm 9.0 \cdot 10^{-7} \) | \(a_{323}= +0.66560252 \pm 5.2 \cdot 10^{-7} \) | \(a_{324}= -0.10642266 \pm 5.7 \cdot 10^{-7} \) |
\(a_{325}= +0.65011598 \pm 3.8 \cdot 10^{-7} \) | \(a_{326}= -0.21676363 \pm 3.2 \cdot 10^{-7} \) | \(a_{327}= -0.58991568 \pm 4.5 \cdot 10^{-7} \) |
\(a_{328}= +0.31454680 \pm 4.0 \cdot 10^{-7} \) | \(a_{329}= +0.10213200 \pm 4.0 \cdot 10^{-7} \) | \(a_{330}= -0.17415123 \pm 1.2 \cdot 10^{-6} \) |
\(a_{331}= +0.20724317 \pm 3.6 \cdot 10^{-7} \) | \(a_{332}= -0.65373700 \pm 4.3 \cdot 10^{-7} \) | \(a_{333}= -0.49492121 \pm 3.9 \cdot 10^{-7} \) |
\(a_{334}= -0.10435612 \pm 4.5 \cdot 10^{-7} \) | \(a_{335}= +2.72984045 \pm 4.2 \cdot 10^{-7} \) | \(a_{336}= +0.19098262 \pm 4.7 \cdot 10^{-7} \) |
\(a_{337}= -0.80539339 \pm 4.8 \cdot 10^{-7} \) | \(a_{338}= +0.17768323 \pm 4.7 \cdot 10^{-7} \) | \(a_{339}= +0.35881842 \pm 2.9 \cdot 10^{-7} \) |
\(a_{340}= -1.12135125 \pm 2.6 \cdot 10^{-7} \) | \(a_{341}= -0.89462496 \pm 3.3 \cdot 10^{-7} \) | \(a_{342}= +0.06478150 \pm 9.0 \cdot 10^{-7} \) |
\(a_{343}= +0.05399492 \pm 7.1 \cdot 10^{-7} \) | \(a_{344}= +0.17506341 \pm 6.7 \cdot 10^{-7} \) | \(a_{345}= +1.51395936 \pm 8.0 \cdot 10^{-7} \) |
\(a_{346}= -0.26965718 \pm 5.8 \cdot 10^{-7} \) | \(a_{347}= +1.01337815 \pm 4.3 \cdot 10^{-7} \) | \(a_{348}= +0.07271373 \pm 1.0 \cdot 10^{-6} \) |
\(a_{349}= -1.78147454 \pm 4.0 \cdot 10^{-7} \) | \(a_{350}= -0.13737027 \pm 8.8 \cdot 10^{-7} \) | \(a_{351}= +0.07071364 \pm 4.4 \cdot 10^{-7} \) |
\(a_{352}= +0.51350750 \pm 4.2 \cdot 10^{-7} \) | \(a_{353}= -0.02464546 \pm 3.3 \cdot 10^{-7} \) | \(a_{354}= -0.02612778 \pm 7.9 \cdot 10^{-7} \) |
\(a_{355}= +2.88637042 \pm 4.9 \cdot 10^{-7} \) | \(a_{356}= +0.53948318 \pm 4.1 \cdot 10^{-7} \) | \(a_{357}= -0.15352144 \pm 4.3 \cdot 10^{-7} \) |
\(a_{358}= +0.09976649 \pm 4.2 \cdot 10^{-7} \) | \(a_{359}= +0.05013454 \pm 2.8 \cdot 10^{-7} \) | \(a_{360}= -0.22308497 \pm 9.5 \cdot 10^{-7} \) |
\(a_{361}= -0.10489796 \pm 4.7 \cdot 10^{-7} \) | \(a_{362}= +0.11359227 \pm 4.2 \cdot 10^{-7} \) | \(a_{363}= -0.12780964 \pm 3.6 \cdot 10^{-7} \) |
\(a_{364}= -0.13301869 \pm 1.0 \cdot 10^{-6} \) | \(a_{365}= -2.04596125 \pm 3.9 \cdot 10^{-7} \) | \(a_{366}= +0.07116225 \pm 8.9 \cdot 10^{-7} \) |
\(a_{367}= +1.18525616 \pm 3.3 \cdot 10^{-7} \) | \(a_{368}= -1.37908794 \pm 4.7 \cdot 10^{-7} \) | \(a_{369}= +0.26071068 \pm 3.3 \cdot 10^{-7} \) |
\(a_{370}= -0.50755101 \pm 4.8 \cdot 10^{-7} \) | \(a_{371}= +0.11518951 \pm 4.4 \cdot 10^{-7} \) | \(a_{372}= -0.56065049 \pm 1.0 \cdot 10^{-6} \) |
\(a_{373}= -1.09810338 \pm 5.2 \cdot 10^{-7} \) | \(a_{374}= -0.12752035 \pm 4.6 \cdot 10^{-7} \) | \(a_{375}= -0.73914785 \pm 3.5 \cdot 10^{-7} \) |
\(a_{376}= +0.10867159 \pm 6.4 \cdot 10^{-7} \) | \(a_{377}= -0.04831539 \pm 3.1 \cdot 10^{-7} \) | \(a_{378}= -0.01494188 \pm 4.9 \cdot 10^{-7} \) |
\(a_{379}= -1.68272140 \pm 3.6 \cdot 10^{-7} \) | \(a_{380}= -1.50799277 \pm 3.7 \cdot 10^{-7} \) | \(a_{381}= -0.13753759 \pm 4.9 \cdot 10^{-7} \) |
\(a_{382}= -0.35588391 \pm 6.0 \cdot 10^{-7} \) | \(a_{383}= -0.16353048 \pm 5.0 \cdot 10^{-7} \) | \(a_{384}= +0.42560444 \pm 4.4 \cdot 10^{-7} \) |
\(a_{385}= +0.55501170 \pm 7.6 \cdot 10^{-7} \) | \(a_{386}= -0.11796080 \pm 4.8 \cdot 10^{-7} \) | \(a_{387}= +0.14510050 \pm 4.4 \cdot 10^{-7} \) |
\(a_{388}= +0.58989649 \pm 3.2 \cdot 10^{-7} \) | \(a_{389}= +0.33355101 \pm 3.4 \cdot 10^{-7} \) | \(a_{390}= +0.07251817 \pm 1.3 \cdot 10^{-6} \) |
\(a_{391}= +1.10858031 \pm 2.9 \cdot 10^{-7} \) | \(a_{392}= +0.05745227 \pm 5.7 \cdot 10^{-7} \) | \(a_{393}= +0.37524064 \pm 3.5 \cdot 10^{-7} \) |
\(a_{394}= +0.18066611 \pm 3.4 \cdot 10^{-7} \) | \(a_{395}= -1.07266602 \pm 2.7 \cdot 10^{-7} \) | \(a_{396}= +0.28172160 \pm 9.4 \cdot 10^{-7} \) |
\(a_{397}= -0.34382393 \pm 3.3 \cdot 10^{-7} \) | \(a_{398}= -0.21330390 \pm 3.7 \cdot 10^{-7} \) | \(a_{399}= -0.20645558 \pm 4.2 \cdot 10^{-7} \) |
\(a_{400}= +1.54849299 \pm 3.1 \cdot 10^{-7} \) | \(a_{401}= +0.67274952 \pm 3.9 \cdot 10^{-7} \) | \(a_{402}= +0.19454778 \pm 9.1 \cdot 10^{-7} \) |
\(a_{403}= +0.37253004 \pm 3.8 \cdot 10^{-7} \) | \(a_{404}= +0.43029611 \pm 5.7 \cdot 10^{-7} \) | \(a_{405}= -0.18490296 \pm 3.9 \cdot 10^{-7} \) |
\(a_{406}= +0.01020910 \pm 9.2 \cdot 10^{-7} \) | \(a_{407}= +1.31015328 \pm 3.3 \cdot 10^{-7} \) | \(a_{408}= -0.16335155 \pm 9.9 \cdot 10^{-7} \) |
\(a_{409}= -1.25975928 \pm 3.6 \cdot 10^{-7} \) | \(a_{410}= +0.26736370 \pm 3.5 \cdot 10^{-7} \) | \(a_{411}= +0.05442912 \pm 3.5 \cdot 10^{-7} \) |
\(a_{412}= +0.48228905 \pm 5.2 \cdot 10^{-7} \) | \(a_{413}= +0.08326798 \pm 3.0 \cdot 10^{-7} \) | \(a_{414}= +0.10789547 \pm 9.0 \cdot 10^{-7} \) |
\(a_{415}= -1.13582866 \pm 3.8 \cdot 10^{-7} \) | \(a_{416}= -0.21382924 \pm 3.9 \cdot 10^{-7} \) | \(a_{417}= +0.84828214 \pm 4.5 \cdot 10^{-7} \) |
\(a_{418}= -0.17148932 \pm 5.8 \cdot 10^{-7} \) | \(a_{419}= -1.45504456 \pm 4.3 \cdot 10^{-7} \) | \(a_{420}= +0.34781903 \pm 9.5 \cdot 10^{-7} \) |
\(a_{421}= +0.35765898 \pm 3.6 \cdot 10^{-7} \) | \(a_{422}= -0.11052874 \pm 4.2 \cdot 10^{-7} \) | \(a_{423}= +0.09007195 \pm 4.0 \cdot 10^{-7} \) |
\(a_{424}= +0.12256519 \pm 6.6 \cdot 10^{-7} \) | \(a_{425}= -1.24475662 \pm 3.7 \cdot 10^{-7} \) | \(a_{426}= +0.20570321 \pm 1.0 \cdot 10^{-6} \) |
\(a_{427}= -0.22679070 \pm 4.0 \cdot 10^{-7} \) | \(a_{428}= +0.18092434 \pm 6.9 \cdot 10^{-7} \) | \(a_{429}= -0.18719285 \pm 8.1 \cdot 10^{-7} \) |
\(a_{430}= +0.14880330 \pm 5.4 \cdot 10^{-7} \) | \(a_{431}= +0.16624448 \pm 4.1 \cdot 10^{-7} \) | \(a_{432}= +0.16843084 \pm 4.7 \cdot 10^{-7} \) |
\(a_{433}= +0.49397090 \pm 2.9 \cdot 10^{-7} \) | \(a_{434}= -0.07871603 \pm 9.4 \cdot 10^{-7} \) | \(a_{435}= +0.12633573 \pm 8.2 \cdot 10^{-7} \) |
\(a_{436}= +0.97864951 \pm 4.9 \cdot 10^{-7} \) | \(a_{437}= +1.49081841 \pm 3.5 \cdot 10^{-7} \) | \(a_{438}= -0.14580970 \pm 8.8 \cdot 10^{-7} \) |
\(a_{439}= +0.03302616 \pm 4.1 \cdot 10^{-7} \) | \(a_{440}= +0.59054958 \pm 4.4 \cdot 10^{-7} \) | \(a_{441}= +0.04761905 \pm 8.8 \cdot 10^{-7} \) |
\(a_{442}= +0.05310064 \pm 2.9 \cdot 10^{-7} \) | \(a_{443}= +0.45057629 \pm 4.0 \cdot 10^{-7} \) | \(a_{444}= +0.82105700 \pm 9.5 \cdot 10^{-7} \) |
\(a_{445}= +0.93731953 \pm 4.1 \cdot 10^{-7} \) | \(a_{446}= +0.07273172 \pm 4.7 \cdot 10^{-7} \) | \(a_{447}= -0.29857353 \pm 3.8 \cdot 10^{-7} \) |
\(a_{448}= -0.28560923 \pm 3.8 \cdot 10^{-7} \) | \(a_{449}= -0.28640283 \pm 3.6 \cdot 10^{-7} \) | \(a_{450}= -0.12114919 \pm 8.8 \cdot 10^{-7} \) |
\(a_{451}= -0.69015218 \pm 2.6 \cdot 10^{-7} \) | \(a_{452}= -0.59526722 \pm 4.8 \cdot 10^{-7} \) | \(a_{453}= -0.75813273 \pm 4.3 \cdot 10^{-7} \) |
\(a_{454}= +0.22168455 \pm 3.9 \cdot 10^{-7} \) | \(a_{455}= -0.23111197 \pm 8.2 \cdot 10^{-7} \) | \(a_{456}= -0.21967511 \pm 9.8 \cdot 10^{-7} \) |
\(a_{457}= +1.41646352 \pm 4.5 \cdot 10^{-7} \) | \(a_{458}= +0.32414792 \pm 4.9 \cdot 10^{-7} \) | \(a_{459}= -0.13539318 \pm 4.3 \cdot 10^{-7} \) |
\(a_{460}= -2.51160570 \pm 6.2 \cdot 10^{-7} \) | \(a_{461}= -1.70527356 \pm 5.0 \cdot 10^{-7} \) | \(a_{462}= +0.03955407 \pm 8.6 \cdot 10^{-7} \) |
\(a_{463}= +0.52394746 \pm 3.7 \cdot 10^{-7} \) | \(a_{464}= -0.11508108 \pm 3.9 \cdot 10^{-7} \) | \(a_{465}= -0.97409645 \pm 8.4 \cdot 10^{-7} \) |
\(a_{466}= -0.05770403 \pm 4.0 \cdot 10^{-7} \) | \(a_{467}= +1.66501606 \pm 4.4 \cdot 10^{-7} \) | \(a_{468}= -0.11731146 \pm 1.0 \cdot 10^{-6} \) |
\(a_{469}= -0.62001454 \pm 4.3 \cdot 10^{-7} \) | \(a_{470}= +0.09237048 \pm 5.3 \cdot 10^{-7} \) | \(a_{471}= -1.06066723 \pm 4.1 \cdot 10^{-7} \) |
\(a_{472}= +0.08859970 \pm 4.3 \cdot 10^{-7} \) | \(a_{473}= -0.38410943 \pm 3.6 \cdot 10^{-7} \) | \(a_{474}= -0.07644578 \pm 7.6 \cdot 10^{-7} \) |
\(a_{475}= -1.67394827 \pm 3.8 \cdot 10^{-7} \) | \(a_{476}= +0.25468671 \pm 9.9 \cdot 10^{-7} \) | \(a_{477}= +0.10158760 \pm 4.4 \cdot 10^{-7} \) |
\(a_{478}= -0.24447024 \pm 4.4 \cdot 10^{-7} \) | \(a_{479}= +1.36081238 \pm 4.2 \cdot 10^{-7} \) | \(a_{480}= +0.55912350 \pm 8.2 \cdot 10^{-7} \) |
\(a_{481}= -0.54555985 \pm 3.9 \cdot 10^{-7} \) | \(a_{482}= -0.36093711 \pm 3.9 \cdot 10^{-7} \) | \(a_{483}= -0.34385776 \pm 4.2 \cdot 10^{-7} \) |
\(a_{484}= +0.21203172 \pm 5.2 \cdot 10^{-7} \) | \(a_{485}= +1.02490962 \pm 2.3 \cdot 10^{-7} \) | \(a_{486}= -0.01317750 \pm 4.9 \cdot 10^{-7} \) |
\(a_{487}= -1.19366483 \pm 3.6 \cdot 10^{-7} \) | \(a_{488}= -0.24131231 \pm 4.6 \cdot 10^{-7} \) | \(a_{489}= +0.60924191 \pm 4.0 \cdot 10^{-7} \) |
\(a_{490}= +0.04883423 \pm 8.7 \cdot 10^{-7} \) | \(a_{491}= +0.90808492 \pm 3.2 \cdot 10^{-7} \) | \(a_{492}= -0.43250991 \pm 8.9 \cdot 10^{-7} \) |
\(a_{493}= +0.09250796 \pm 4.6 \cdot 10^{-7} \) | \(a_{494}= +0.07140973 \pm 3.9 \cdot 10^{-7} \) | \(a_{495}= +0.48947431 \pm 7.6 \cdot 10^{-7} \) |
\(a_{496}= +0.88731884 \pm 4.7 \cdot 10^{-7} \) | \(a_{497}= -0.65556638 \pm 5.3 \cdot 10^{-7} \) | \(a_{498}= -0.08094720 \pm 8.6 \cdot 10^{-7} \) |
\(a_{499}= -1.23400868 \pm 3.9 \cdot 10^{-7} \) | \(a_{500}= +1.22622047 \pm 5.0 \cdot 10^{-7} \) | \(a_{501}= +0.29330622 \pm 3.3 \cdot 10^{-7} \) |
\(a_{502}= +0.17074330 \pm 4.1 \cdot 10^{-7} \) | \(a_{503}= +0.25563750 \pm 4.3 \cdot 10^{-7} \) | \(a_{504}= +0.05066814 \pm 5.7 \cdot 10^{-7} \) |
\(a_{505}= +0.74761357 \pm 3.0 \cdot 10^{-7} \) | \(a_{506}= -0.28562043 \pm 3.9 \cdot 10^{-7} \) | \(a_{507}= -0.49940145 \pm 5.0 \cdot 10^{-7} \) |
\(a_{508}= +0.22817006 \pm 7.9 \cdot 10^{-7} \) | \(a_{509}= -0.42810081 \pm 4.1 \cdot 10^{-7} \) | \(a_{510}= -0.13884826 \pm 1.2 \cdot 10^{-6} \) |
\(a_{511}= +0.46468860 \pm 3.9 \cdot 10^{-7} \) | \(a_{512}= -0.86128632 \pm 5.1 \cdot 10^{-7} \) | \(a_{513}= -0.18207671 \pm 4.2 \cdot 10^{-7} \) |
\(a_{514}= -0.11275706 \pm 3.7 \cdot 10^{-7} \) | \(a_{515}= +0.83794817 \pm 3.7 \cdot 10^{-7} \) | \(a_{516}= -0.24071667 \pm 1.0 \cdot 10^{-6} \) |
\(a_{517}= -0.23843809 \pm 3.2 \cdot 10^{-7} \) | \(a_{518}= +0.11527744 \pm 8.7 \cdot 10^{-7} \) | \(a_{519}= +0.75790603 \pm 4.8 \cdot 10^{-7} \) |
\(a_{520}= -0.24591026 \pm 5.4 \cdot 10^{-7} \) | \(a_{521}= -0.30785154 \pm 4.5 \cdot 10^{-7} \) | \(a_{522}= +0.00900358 \pm 9.2 \cdot 10^{-7} \) |
\(a_{523}= +1.73204244 \pm 4.1 \cdot 10^{-7} \) | \(a_{524}= -0.62251111 \pm 5.8 \cdot 10^{-7} \) | \(a_{525}= +0.38609672 \pm 4.0 \cdot 10^{-7} \) |
\(a_{526}= +0.32190104 \pm 4.5 \cdot 10^{-7} \) | \(a_{527}= -0.71327155 \pm 4.9 \cdot 10^{-7} \) | \(a_{528}= -0.44586938 \pm 8.5 \cdot 10^{-7} \) |
\(a_{529}= +1.48300131 \pm 3.9 \cdot 10^{-7} \) | \(a_{530}= +0.10417999 \pm 4.7 \cdot 10^{-7} \) | \(a_{531}= +0.07343546 \pm 3.0 \cdot 10^{-7} \) |
\(a_{532}= +0.34250260 \pm 9.8 \cdot 10^{-7} \) | \(a_{533}= +0.28738570 \pm 4.3 \cdot 10^{-7} \) | \(a_{534}= +0.06680003 \pm 8.4 \cdot 10^{-7} \) |
\(a_{535}= +0.31434514 \pm 3.6 \cdot 10^{-7} \) | \(a_{536}= -0.65971460 \pm 5.1 \cdot 10^{-7} \) | \(a_{537}= -0.28040649 \pm 3.7 \cdot 10^{-7} \) |
\(a_{538}= -0.09366343 \pm 4.1 \cdot 10^{-7} \) | \(a_{539}= -0.12605694 \pm 3.8 \cdot 10^{-7} \) | \(a_{540}= +0.30674755 \pm 9.5 \cdot 10^{-7} \) |
\(a_{541}= -0.84965659 \pm 3.9 \cdot 10^{-7} \) | \(a_{542}= -0.05011583 \pm 4.5 \cdot 10^{-7} \) | \(a_{543}= -0.31926560 \pm 3.4 \cdot 10^{-7} \) |
\(a_{544}= +0.40941211 \pm 3.2 \cdot 10^{-7} \) | \(a_{545}= +1.70034457 \pm 3.2 \cdot 10^{-7} \) | \(a_{546}= -0.01647068 \pm 9.2 \cdot 10^{-7} \) |
\(a_{547}= -0.15825101 \pm 3.3 \cdot 10^{-7} \) | \(a_{548}= -0.09029601 \pm 5.0 \cdot 10^{-7} \) | \(a_{549}= -0.20001060 \pm 4.0 \cdot 10^{-7} \) |
\(a_{550}= +0.32070561 \pm 4.2 \cdot 10^{-7} \) | \(a_{551}= +0.12440468 \pm 3.5 \cdot 10^{-7} \) | \(a_{552}= -0.36587526 \pm 9.8 \cdot 10^{-7} \) |
\(a_{553}= +0.24362909 \pm 2.8 \cdot 10^{-7} \) | \(a_{554}= +0.12057870 \pm 4.3 \cdot 10^{-7} \) | \(a_{555}= +1.42653707 \pm 7.7 \cdot 10^{-7} \) |
\(a_{556}= -1.40727043 \pm 5.9 \cdot 10^{-7} \) | \(a_{557}= -1.25350600 \pm 4.1 \cdot 10^{-7} \) | \(a_{558}= -0.06942102 \pm 9.4 \cdot 10^{-7} \) |
\(a_{559}= +0.15994669 \pm 4.8 \cdot 10^{-7} \) | \(a_{560}= -0.55047910 \pm 8.5 \cdot 10^{-7} \) | \(a_{561}= +0.35841225 \pm 8.0 \cdot 10^{-7} \) |
\(a_{562}= +0.05152814 \pm 5.4 \cdot 10^{-7} \) | \(a_{563}= -0.54214902 \pm 2.9 \cdot 10^{-7} \) | \(a_{564}= -0.14942622 \pm 9.7 \cdot 10^{-7} \) |
\(a_{565}= -1.03424093 \pm 2.6 \cdot 10^{-7} \) | \(a_{566}= -0.06307173 \pm 3.9 \cdot 10^{-7} \) | \(a_{567}= +0.04199605 \pm 1.0 \cdot 10^{-6} \) |
\(a_{568}= -0.69754286 \pm 5.8 \cdot 10^{-7} \) | \(a_{569}= +1.40346234 \pm 3.8 \cdot 10^{-7} \) | \(a_{570}= -0.18672309 \pm 1.2 \cdot 10^{-6} \) |
\(a_{571}= +0.07694193 \pm 4.0 \cdot 10^{-7} \) | \(a_{572}= +0.31054639 \pm 4.0 \cdot 10^{-7} \) | \(a_{573}= +1.00025727 \pm 4.6 \cdot 10^{-7} \) |
\(a_{574}= -0.06072494 \pm 8.1 \cdot 10^{-7} \) | \(a_{575}= -2.78800940 \pm 4.3 \cdot 10^{-7} \) | \(a_{576}= -0.25188366 \pm 3.8 \cdot 10^{-7} \) |
\(a_{577}= +0.90981706 \pm 4.8 \cdot 10^{-7} \) | \(a_{578}= +0.10374669 \pm 4.8 \cdot 10^{-7} \) | \(a_{579}= +0.33154392 \pm 4.6 \cdot 10^{-7} \) |
\(a_{580}= -0.20958656 \pm 4.1 \cdot 10^{-7} \) | \(a_{581}= +0.25797489 \pm 3.8 \cdot 10^{-7} \) | \(a_{582}= +0.07304232 \pm 7.5 \cdot 10^{-7} \) |
\(a_{583}= -0.26892225 \pm 4.6 \cdot 10^{-7} \) | \(a_{584}= +0.49444300 \pm 5.5 \cdot 10^{-7} \) | \(a_{585}= -0.20382160 \pm 8.2 \cdot 10^{-7} \) |
\(a_{586}= +0.13564511 \pm 4.7 \cdot 10^{-7} \) | \(a_{587}= -0.76646566 \pm 5.1 \cdot 10^{-7} \) | \(a_{588}= -0.07899834 \pm 5.7 \cdot 10^{-7} \) |
\(a_{589}= -0.95920734 \pm 4.2 \cdot 10^{-7} \) | \(a_{590}= +0.07530945 \pm 3.7 \cdot 10^{-7} \) | \(a_{591}= -0.50778523 \pm 3.3 \cdot 10^{-7} \) |
\(a_{592}= -1.29945369 \pm 4.5 \cdot 10^{-7} \) | \(a_{593}= -0.61167757 \pm 3.0 \cdot 10^{-7} \) | \(a_{594}= +0.03488341 \pm 8.6 \cdot 10^{-7} \) |
\(a_{595}= +0.44250281 \pm 8.1 \cdot 10^{-7} \) | \(a_{596}= +0.49532305 \pm 6.1 \cdot 10^{-7} \) | \(a_{597}= +0.59951792 \pm 2.8 \cdot 10^{-7} \) |
\(a_{598}= +0.11893497 \pm 4.4 \cdot 10^{-7} \) | \(a_{599}= -1.95352834 \pm 4.8 \cdot 10^{-7} \) | \(a_{600}= +0.41081882 \pm 9.6 \cdot 10^{-7} \) |
\(a_{601}= +0.49354690 \pm 4.5 \cdot 10^{-7} \) | \(a_{602}= -0.03379692 \pm 9.3 \cdot 10^{-7} \) | \(a_{603}= -0.54680143 \pm 4.3 \cdot 10^{-7} \) |
\(a_{604}= +1.25771572 \pm 6.6 \cdot 10^{-7} \) | \(a_{605}= +0.36839235 \pm 2.3 \cdot 10^{-7} \) | \(a_{606}= +0.05328024 \pm 9.4 \cdot 10^{-7} \) |
\(a_{607}= -0.19114027 \pm 4.7 \cdot 10^{-7} \) | \(a_{608}= +0.55057727 \pm 2.9 \cdot 10^{-7} \) | \(a_{609}= -0.02869398 \pm 4.4 \cdot 10^{-7} \) |
\(a_{610}= -0.20511463 \pm 3.7 \cdot 10^{-7} \) | \(a_{611}= +0.09928781 \pm 3.5 \cdot 10^{-7} \) | \(a_{612}= +0.22461256 \pm 9.9 \cdot 10^{-7} \) |
\(a_{613}= +0.89101487 \pm 3.8 \cdot 10^{-7} \) | \(a_{614}= -0.17904376 \pm 5.7 \cdot 10^{-7} \) | \(a_{615}= -0.75145991 \pm 7.1 \cdot 10^{-7} \) |
\(a_{616}= -0.13412847 \pm 9.4 \cdot 10^{-7} \) | \(a_{617}= -1.81289467 \pm 4.1 \cdot 10^{-7} \) | \(a_{618}= +0.05971813 \pm 8.5 \cdot 10^{-7} \) |
\(a_{619}= +0.53762968 \pm 3.4 \cdot 10^{-7} \) | \(a_{620}= +1.61599199 \pm 5.6 \cdot 10^{-7} \) | \(a_{621}= -0.30325404 \pm 4.2 \cdot 10^{-7} \) |
\(a_{622}= +0.37304542 \pm 4.6 \cdot 10^{-7} \) | \(a_{623}= -0.21288854 \pm 3.6 \cdot 10^{-7} \) | \(a_{624}= +0.18566410 \pm 9.1 \cdot 10^{-7} \) |
\(a_{625}= +0.36116676 \pm 3.5 \cdot 10^{-7} \) | \(a_{626}= +0.02551178 \pm 5.6 \cdot 10^{-7} \) | \(a_{627}= +0.48199267 \pm 7.9 \cdot 10^{-7} \) |
\(a_{628}= +1.75960989 \pm 5.0 \cdot 10^{-7} \) | \(a_{629}= +1.04456629 \pm 3.3 \cdot 10^{-7} \) | \(a_{630}= +0.04306774 \pm 8.7 \cdot 10^{-7} \) |
\(a_{631}= +1.26466789 \pm 4.2 \cdot 10^{-7} \) | \(a_{632}= +0.25922886 \pm 3.7 \cdot 10^{-7} \) | \(a_{633}= +0.31065517 \pm 4.2 \cdot 10^{-7} \) |
\(a_{634}= -0.24651393 \pm 5.6 \cdot 10^{-7} \) | \(a_{635}= +0.39643173 \pm 4.1 \cdot 10^{-7} \) | \(a_{636}= -0.16853028 \pm 1.0 \cdot 10^{-6} \) |
\(a_{637}= +0.05249127 \pm 4.4 \cdot 10^{-7} \) | \(a_{638}= -0.02383424 \pm 4.5 \cdot 10^{-7} \) | \(a_{639}= -0.57815521 \pm 5.3 \cdot 10^{-7} \) |
\(a_{640}= -1.22674174 \pm 3.6 \cdot 10^{-7} \) | \(a_{641}= +1.26860439 \pm 3.9 \cdot 10^{-7} \) | \(a_{642}= +0.02240246 \pm 9.5 \cdot 10^{-7} \) |
\(a_{643}= -0.30880747 \pm 3.9 \cdot 10^{-7} \) | \(a_{644}= +0.57044801 \pm 9.8 \cdot 10^{-7} \) | \(a_{645}= -0.41823071 \pm 8.3 \cdot 10^{-7} \) |
\(a_{646}= -0.13672595 \pm 5.2 \cdot 10^{-7} \) | \(a_{647}= -0.68499447 \pm 5.4 \cdot 10^{-7} \) | \(a_{648}= +0.04468510 \pm 5.7 \cdot 10^{-7} \) |
\(a_{649}= -0.19439803 \pm 2.8 \cdot 10^{-7} \) | \(a_{650}= -0.13354476 \pm 3.9 \cdot 10^{-7} \) | \(a_{651}= +0.22124149 \pm 4.5 \cdot 10^{-7} \) |
\(a_{652}= -1.01071105 \pm 3.6 \cdot 10^{-7} \) | \(a_{653}= -0.34843230 \pm 4.1 \cdot 10^{-7} \) | \(a_{654}= +0.12117860 \pm 9.3 \cdot 10^{-7} \) |
\(a_{655}= -1.08157556 \pm 2.9 \cdot 10^{-7} \) | \(a_{656}= +0.68451593 \pm 3.2 \cdot 10^{-7} \) | \(a_{657}= +0.40981682 \pm 3.9 \cdot 10^{-7} \) |
\(a_{658}= -0.02097963 \pm 8.9 \cdot 10^{-7} \) | \(a_{659}= +1.70787564 \pm 4.7 \cdot 10^{-7} \) | \(a_{660}= -0.81202079 \pm 1.3 \cdot 10^{-6} \) |
\(a_{661}= -1.57160438 \pm 4.0 \cdot 10^{-7} \) | \(a_{662}= -0.04257123 \pm 3.9 \cdot 10^{-7} \) | \(a_{663}= -0.14924615 \pm 8.6 \cdot 10^{-7} \) |
\(a_{664}= +0.27449324 \pm 4.1 \cdot 10^{-7} \) | \(a_{665}= +0.59507763 \pm 8.0 \cdot 10^{-7} \) | \(a_{666}= +0.10166514 \pm 8.7 \cdot 10^{-7} \) |
\(a_{667}= +0.20719960 \pm 2.5 \cdot 10^{-7} \) | \(a_{668}= -0.48658477 \pm 5.7 \cdot 10^{-7} \) | \(a_{669}= -0.20442181 \pm 4.9 \cdot 10^{-7} \) |
\(a_{670}= -0.56075515 \pm 4.3 \cdot 10^{-7} \) | \(a_{671}= +0.52946720 \pm 3.5 \cdot 10^{-7} \) | \(a_{672}= -0.12699083 \pm 4.4 \cdot 10^{-7} \) |
\(a_{673}= -0.51205815 \pm 3.4 \cdot 10^{-7} \) | \(a_{674}= +0.16544135 \pm 5.3 \cdot 10^{-7} \) | \(a_{675}= +0.34050530 \pm 4.0 \cdot 10^{-7} \) |
\(a_{676}= +0.82848956 \pm 5.9 \cdot 10^{-7} \) | \(a_{677}= +0.66205345 \pm 5.1 \cdot 10^{-7} \) | \(a_{678}= -0.07370734 \pm 7.8 \cdot 10^{-7} \) |
\(a_{679}= -0.23278242 \pm 2.6 \cdot 10^{-7} \) | \(a_{680}= +0.47083665 \pm 2.4 \cdot 10^{-7} \) | \(a_{681}= -0.62307280 \pm 4.4 \cdot 10^{-7} \) |
\(a_{682}= +0.18377102 \pm 4.3 \cdot 10^{-7} \) | \(a_{683}= -0.34194638 \pm 3.5 \cdot 10^{-7} \) | \(a_{684}= +0.30205890 \pm 9.8 \cdot 10^{-7} \) |
\(a_{685}= -0.15688388 \pm 2.1 \cdot 10^{-7} \) | \(a_{686}= -0.01109147 \pm 4.9 \cdot 10^{-7} \) | \(a_{687}= -0.91105920 \pm 5.4 \cdot 10^{-7} \) |
\(a_{688}= +0.38097253 \pm 5.2 \cdot 10^{-7} \) | \(a_{689}= +0.11198170 \pm 4.8 \cdot 10^{-7} \) | \(a_{690}= -0.31099272 \pm 1.2 \cdot 10^{-6} \) |
\(a_{691}= -0.59201797 \pm 5.0 \cdot 10^{-7} \) | \(a_{692}= -1.25733963 \pm 6.4 \cdot 10^{-7} \) | \(a_{693}= -0.11117177 \pm 3.8 \cdot 10^{-7} \) |
\(a_{694}= -0.20816492 \pm 4.3 \cdot 10^{-7} \) | \(a_{695}= -2.44504760 \pm 4.6 \cdot 10^{-7} \) | \(a_{696}= -0.03053128 \pm 1.0 \cdot 10^{-6} \) |
\(a_{697}= -0.55024836 \pm 2.0 \cdot 10^{-7} \) | \(a_{698}= +0.36594484 \pm 4.2 \cdot 10^{-7} \) | \(a_{699}= +0.16218457 \pm 3.9 \cdot 10^{-7} \) |
\(a_{700}= -0.64052097 \pm 9.6 \cdot 10^{-7} \) | \(a_{701}= +1.18171109 \pm 4.0 \cdot 10^{-7} \) | \(a_{702}= -0.01452577 \pm 9.2 \cdot 10^{-7} \) |
\(a_{703}= +1.40473238 \pm 2.7 \cdot 10^{-7} \) | \(a_{704}= +0.66678534 \pm 4.1 \cdot 10^{-7} \) | \(a_{705}= -0.25961906 \pm 7.8 \cdot 10^{-7} \) |
\(a_{706}= +0.00506259 \pm 3.4 \cdot 10^{-7} \) | \(a_{707}= -0.16980160 \pm 4.6 \cdot 10^{-7} \) | \(a_{708}= -0.12182686 \pm 8.7 \cdot 10^{-7} \) |
\(a_{709}= -0.38133841 \pm 4.0 \cdot 10^{-7} \) | \(a_{710}= -0.59290904 \pm 5.1 \cdot 10^{-7} \) | \(a_{711}= +0.21486066 \pm 2.8 \cdot 10^{-7} \) |
\(a_{712}= -0.22651997 \pm 4.0 \cdot 10^{-7} \) | \(a_{713}= -1.59758765 \pm 3.9 \cdot 10^{-7} \) | \(a_{714}= +0.03153589 \pm 9.1 \cdot 10^{-7} \) |
\(a_{715}= +0.53955565 \pm 3.8 \cdot 10^{-7} \) | \(a_{716}= +0.46518456 \pm 4.8 \cdot 10^{-7} \) | \(a_{717}= +0.68711489 \pm 3.6 \cdot 10^{-7} \) |
\(a_{718}= -0.01029848 \pm 3.9 \cdot 10^{-7} \) | \(a_{719}= +0.47686407 \pm 3.3 \cdot 10^{-7} \) | \(a_{720}= -0.48547694 \pm 8.5 \cdot 10^{-7} \) |
\(a_{721}= -0.19031883 \pm 3.7 \cdot 10^{-7} \) | \(a_{722}= +0.02154781 \pm 5.3 \cdot 10^{-7} \) | \(a_{723}= +1.01445994 \pm 4.2 \cdot 10^{-7} \) |
\(a_{724}= +0.52965048 \pm 5.1 \cdot 10^{-7} \) | \(a_{725}= -0.23265168 \pm 3.3 \cdot 10^{-7} \) | \(a_{726}= +0.02625425 \pm 8.4 \cdot 10^{-7} \) |
\(a_{727}= +1.18827849 \pm 4.8 \cdot 10^{-7} \) | \(a_{728}= +0.05585233 \pm 1.0 \cdot 10^{-6} \) | \(a_{729}= +0.03703704 \pm 1.3 \cdot 10^{-6} \) |
\(a_{730}= +0.42027486 \pm 4.7 \cdot 10^{-7} \) | \(a_{731}= -0.30624490 \pm 3.9 \cdot 10^{-7} \) | \(a_{732}= +0.33181060 \pm 9.7 \cdot 10^{-7} \) |
\(a_{733}= -0.31535288 \pm 3.8 \cdot 10^{-7} \) | \(a_{734}= -0.24347155 \pm 4.0 \cdot 10^{-7} \) | \(a_{735}= -0.13725485 \pm 3.9 \cdot 10^{-7} \) |
\(a_{736}= +0.91700241 \pm 4.1 \cdot 10^{-7} \) | \(a_{737}= +1.44749037 \pm 3.6 \cdot 10^{-7} \) | \(a_{738}= -0.05355436 \pm 8.1 \cdot 10^{-7} \) |
\(a_{739}= -1.44001741 \pm 4.5 \cdot 10^{-7} \) | \(a_{740}= -2.36657517 \pm 5.5 \cdot 10^{-7} \) | \(a_{741}= -0.20070617 \pm 8.5 \cdot 10^{-7} \) |
\(a_{742}= -0.02366186 \pm 9.3 \cdot 10^{-7} \) | \(a_{743}= +1.19701894 \pm 4.0 \cdot 10^{-7} \) | \(a_{744}= +0.23540777 \pm 1.0 \cdot 10^{-6} \) |
\(a_{745}= +0.86059396 \pm 3.6 \cdot 10^{-7} \) | \(a_{746}= +0.22556891 \pm 6.5 \cdot 10^{-7} \) | \(a_{747}= +0.22751247 \pm 3.8 \cdot 10^{-7} \) |
\(a_{748}= -0.59459341 \pm 4.7 \cdot 10^{-7} \) | \(a_{749}= -0.07139558 \pm 4.7 \cdot 10^{-7} \) | \(a_{750}= +0.15183340 \pm 8.4 \cdot 10^{-7} \) |
\(a_{751}= -0.20806694 \pm 4.4 \cdot 10^{-7} \) | \(a_{752}= +0.23649084 \pm 6.2 \cdot 10^{-7} \) | \(a_{753}= -0.47989589 \pm 3.4 \cdot 10^{-7} \) |
\(a_{754}= +0.00992479 \pm 4.0 \cdot 10^{-7} \) | \(a_{755}= +2.18520530 \pm 4.4 \cdot 10^{-7} \) | \(a_{756}= -0.06966998 \pm 5.7 \cdot 10^{-7} \) |
\(a_{757}= -0.00915971 \pm 4.0 \cdot 10^{-7} \) | \(a_{758}= +0.34565928 \pm 3.5 \cdot 10^{-7} \) | \(a_{759}= +0.80277278 \pm 7.9 \cdot 10^{-7} \) |
\(a_{760}= +0.63318096 \pm 3.4 \cdot 10^{-7} \) | \(a_{761}= -0.99588415 \pm 4.8 \cdot 10^{-7} \) | \(a_{762}= +0.02825253 \pm 9.7 \cdot 10^{-7} \) |
\(a_{763}= -0.38619047 \pm 4.5 \cdot 10^{-7} \) | \(a_{764}= -1.65939187 \pm 7.4 \cdot 10^{-7} \) | \(a_{765}= +0.39025080 \pm 8.1 \cdot 10^{-7} \) |
\(a_{766}= +0.03359191 \pm 5.9 \cdot 10^{-7} \) | \(a_{767}= +0.08094912 \pm 3.7 \cdot 10^{-7} \) | \(a_{768}= +0.34884899 \pm 4.5 \cdot 10^{-7} \) |
\(a_{769}= -1.20581531 \pm 4.7 \cdot 10^{-7} \) | \(a_{770}= -0.11400874 \pm 1.2 \cdot 10^{-6} \) | \(a_{771}= +0.31691815 \pm 3.8 \cdot 10^{-7} \) |
\(a_{772}= -0.55001978 \pm 5.9 \cdot 10^{-7} \) | \(a_{773}= -0.92702026 \pm 3.8 \cdot 10^{-7} \) | \(a_{774}= -0.02980608 \pm 9.3 \cdot 10^{-7} \) |
\(a_{775}= +1.79383287 \pm 3.9 \cdot 10^{-7} \) | \(a_{776}= -0.24768768 \pm 3.2 \cdot 10^{-7} \) | \(a_{777}= -0.32400199 \pm 3.9 \cdot 10^{-7} \) |
\(a_{778}= -0.06851699 \pm 4.1 \cdot 10^{-7} \) | \(a_{779}= -0.73997381 \pm 2.6 \cdot 10^{-7} \) | \(a_{780}= +0.33813291 \pm 1.3 \cdot 10^{-6} \) |
\(a_{781}= +1.53048996 \pm 3.4 \cdot 10^{-7} \) | \(a_{782}= -0.22772104 \pm 3.0 \cdot 10^{-7} \) | \(a_{783}= -0.02530571 \pm 4.4 \cdot 10^{-7} \) |
\(a_{784}= +0.12502747 \pm 4.7 \cdot 10^{-7} \) | \(a_{785}= +3.05721619 \pm 4.6 \cdot 10^{-7} \) | \(a_{786}= -0.07708074 \pm 8.4 \cdot 10^{-7} \) |
\(a_{787}= +1.01451335 \pm 3.2 \cdot 10^{-7} \) | \(a_{788}= +0.84239795 \pm 3.5 \cdot 10^{-7} \) | \(a_{789}= -0.90474408 \pm 4.1 \cdot 10^{-7} \) |
\(a_{790}= +0.22034365 \pm 3.3 \cdot 10^{-7} \) | \(a_{791}= +0.23490179 \pm 2.9 \cdot 10^{-7} \) | \(a_{792}= -0.11829019 \pm 9.4 \cdot 10^{-7} \) |
\(a_{793}= -0.22047500 \pm 4.4 \cdot 10^{-7} \) | \(a_{794}= +0.07062722 \pm 5.4 \cdot 10^{-7} \) | \(a_{795}= -0.29281121 \pm 8.3 \cdot 10^{-7} \) |
\(a_{796}= -0.99457929 \pm 4.7 \cdot 10^{-7} \) | \(a_{797}= -0.95059678 \pm 3.6 \cdot 10^{-7} \) | \(a_{798}= +0.04240945 \pm 9.0 \cdot 10^{-7} \) |
\(a_{799}= -0.19010324 \pm 3.6 \cdot 10^{-7} \) | \(a_{800}= -1.02964558 \pm 3.3 \cdot 10^{-7} \) | \(a_{801}= -0.18775004 \pm 3.6 \cdot 10^{-7} \) |
\(a_{802}= -0.13819407 \pm 4.7 \cdot 10^{-7} \) | \(a_{803}= -1.08486531 \pm 3.1 \cdot 10^{-7} \) | \(a_{804}= +0.90712447 \pm 9.9 \cdot 10^{-7} \) |
\(a_{805}= +0.99111905 \pm 8.0 \cdot 10^{-7} \) | \(a_{806}= -0.07652394 \pm 4.7 \cdot 10^{-7} \) | \(a_{807}= +0.26325305 \pm 3.8 \cdot 10^{-7} \) |
\(a_{808}= -0.18067415 \pm 5.4 \cdot 10^{-7} \) | \(a_{809}= -1.15335825 \pm 4.3 \cdot 10^{-7} \) | \(a_{810}= +0.03798218 \pm 8.7 \cdot 10^{-7} \) |
\(a_{811}= -1.36572419 \pm 4.1 \cdot 10^{-7} \) | \(a_{812}= +0.04760231 \pm 1.0 \cdot 10^{-6} \) | \(a_{813}= +0.14085696 \pm 3.6 \cdot 10^{-7} \) |
\(a_{814}= -0.26912752 \pm 3.9 \cdot 10^{-7} \) | \(a_{815}= -1.75604957 \pm 3.3 \cdot 10^{-7} \) | \(a_{816}= -0.35548522 \pm 8.9 \cdot 10^{-7} \) |
\(a_{817}= -0.41183803 \pm 4.3 \cdot 10^{-7} \) | \(a_{818}= +0.25877575 \pm 3.4 \cdot 10^{-7} \) | \(a_{819}= +0.04629294 \pm 4.4 \cdot 10^{-7} \) |
\(a_{820}= +1.24664574 \pm 4.1 \cdot 10^{-7} \) | \(a_{821}= -1.44522289 \pm 3.3 \cdot 10^{-7} \) | \(a_{822}= -0.01118066 \pm 8.4 \cdot 10^{-7} \) |
\(a_{823}= +0.85298009 \pm 3.3 \cdot 10^{-7} \) | \(a_{824}= -0.20250511 \pm 5.2 \cdot 10^{-7} \) | \(a_{825}= -0.90138416 \pm 7.7 \cdot 10^{-7} \) |
\(a_{826}= -0.01710464 \pm 7.9 \cdot 10^{-7} \) | \(a_{827}= -1.13846445 \pm 4.8 \cdot 10^{-7} \) | \(a_{828}= +0.50308786 \pm 9.8 \cdot 10^{-7} \) |
\(a_{829}= +0.56443466 \pm 3.2 \cdot 10^{-7} \) | \(a_{830}= +0.23331831 \pm 4.7 \cdot 10^{-7} \) | \(a_{831}= -0.33890187 \pm 3.5 \cdot 10^{-7} \) |
\(a_{832}= -0.27765554 \pm 2.6 \cdot 10^{-7} \) | \(a_{833}= -0.10050337 \pm 4.3 \cdot 10^{-7} \) | \(a_{834}= -0.17425142 \pm 9.4 \cdot 10^{-7} \) |
\(a_{835}= -0.84541173 \pm 2.9 \cdot 10^{-7} \) | \(a_{836}= -0.79960901 \pm 6.2 \cdot 10^{-7} \) | \(a_{837}= +0.19511665 \pm 4.5 \cdot 10^{-7} \) |
\(a_{838}= +0.29889063 \pm 4.6 \cdot 10^{-7} \) | \(a_{839}= +1.46887028 \pm 4.4 \cdot 10^{-7} \) | \(a_{840}= -0.14604340 \pm 9.5 \cdot 10^{-7} \) |
\(a_{841}= -0.98270977 \pm 5.0 \cdot 10^{-7} \) | \(a_{842}= -0.07346917 \pm 3.8 \cdot 10^{-7} \) | \(a_{843}= -0.14482642 \pm 5.0 \cdot 10^{-7} \) |
\(a_{844}= -0.51536607 \pm 4.7 \cdot 10^{-7} \) | \(a_{845}= +1.43945070 \pm 4.1 \cdot 10^{-7} \) | \(a_{846}= -0.01850229 \pm 8.9 \cdot 10^{-7} \) |
\(a_{847}= -0.08367105 \pm 3.6 \cdot 10^{-7} \) | \(a_{848}= +0.26672605 \pm 5.8 \cdot 10^{-7} \) | \(a_{849}= +0.17727117 \pm 3.4 \cdot 10^{-7} \) |
\(a_{850}= +0.25569395 \pm 3.6 \cdot 10^{-7} \) | \(a_{851}= +2.33962253 \pm 3.9 \cdot 10^{-7} \) | \(a_{852}= +0.95913929 \pm 1.1 \cdot 10^{-6} \) |
\(a_{853}= -0.16027498 \pm 4.3 \cdot 10^{-7} \) | \(a_{854}= +0.04658663 \pm 8.9 \cdot 10^{-7} \) | \(a_{855}= +0.52480914 \pm 8.0 \cdot 10^{-7} \) |
\(a_{856}= -0.07596711 \pm 6.6 \cdot 10^{-7} \) | \(a_{857}= +1.95302275 \pm 3.7 \cdot 10^{-7} \) | \(a_{858}= +0.03845256 \pm 1.3 \cdot 10^{-6} \) |
\(a_{859}= -0.11152021 \pm 4.1 \cdot 10^{-7} \) | \(a_{860}= +0.69383014 \pm 6.6 \cdot 10^{-7} \) | \(a_{861}= +0.17067520 \pm 3.3 \cdot 10^{-7} \) |
\(a_{862}= -0.03414941 \pm 4.3 \cdot 10^{-7} \) | \(a_{863}= +0.88315588 \pm 4.4 \cdot 10^{-7} \) | \(a_{864}= -0.11199538 \pm 4.4 \cdot 10^{-7} \) |
\(a_{865}= -2.18455186 \pm 4.5 \cdot 10^{-7} \) | \(a_{866}= -0.10146993 \pm 3.8 \cdot 10^{-7} \) | \(a_{867}= -0.29159336 \pm 3.9 \cdot 10^{-7} \) |
\(a_{868}= -0.36703190 \pm 1.0 \cdot 10^{-6} \) | \(a_{869}= -0.56877820 \pm 2.5 \cdot 10^{-7} \) | \(a_{870}= -0.02595148 \pm 1.3 \cdot 10^{-6} \) |
\(a_{871}= -0.60274828 \pm 4.8 \cdot 10^{-7} \) | \(a_{872}= -0.41091857 \pm 5.9 \cdot 10^{-7} \) | \(a_{873}= -0.20529480 \pm 2.6 \cdot 10^{-7} \) |
\(a_{874}= -0.30623918 \pm 4.1 \cdot 10^{-7} \) | \(a_{875}= -0.48388586 \pm 3.5 \cdot 10^{-7} \) | \(a_{876}= -0.67987179 \pm 9.6 \cdot 10^{-7} \) |
\(a_{877}= +1.32125782 \pm 4.3 \cdot 10^{-7} \) | \(a_{878}= -0.00678413 \pm 5.5 \cdot 10^{-7} \) | \(a_{879}= -0.38124795 \pm 3.7 \cdot 10^{-7} \) |
\(a_{880}= +1.28515244 \pm 4.5 \cdot 10^{-7} \) | \(a_{881}= +0.26983872 \pm 3.8 \cdot 10^{-7} \) | \(a_{882}= -0.00978175 \pm 4.9 \cdot 10^{-7} \) |
\(a_{883}= -0.58130800 \pm 4.3 \cdot 10^{-7} \) | \(a_{884}= +0.24759415 \pm 2.4 \cdot 10^{-7} \) | \(a_{885}= -0.21166683 \pm 6.9 \cdot 10^{-7} \) |
\(a_{886}= -0.09255595 \pm 5.3 \cdot 10^{-7} \) | \(a_{887}= +0.74805055 \pm 3.3 \cdot 10^{-7} \) | \(a_{888}= -0.34474811 \pm 9.5 \cdot 10^{-7} \) |
\(a_{889}= -0.09003949 \pm 4.9 \cdot 10^{-7} \) | \(a_{890}= -0.19254120 \pm 5.4 \cdot 10^{-7} \) | \(a_{891}= -0.09804428 \pm 3.8 \cdot 10^{-7} \) |
\(a_{892}= +0.33912864 \pm 5.9 \cdot 10^{-7} \) | \(a_{893}= -0.25565077 \pm 2.9 \cdot 10^{-7} \) | \(a_{894}= +0.06133202 \pm 8.6 \cdot 10^{-7} \) |
\(a_{895}= +0.80823016 \pm 3.0 \cdot 10^{-7} \) | \(a_{896}= +0.27862351 \pm 4.4 \cdot 10^{-7} \) | \(a_{897}= -0.33428195 \pm 8.5 \cdot 10^{-7} \) |
\(a_{898}= +0.05883196 \pm 4.4 \cdot 10^{-7} \) | \(a_{899}= -0.13331428 \pm 4.8 \cdot 10^{-7} \) | \(a_{900}= -0.56488640 \pm 9.6 \cdot 10^{-7} \) |
\(a_{901}= -0.21440783 \pm 4.4 \cdot 10^{-7} \) | \(a_{902}= +0.14176887 \pm 3.1 \cdot 10^{-7} \) | \(a_{903}= +0.09499058 \pm 4.4 \cdot 10^{-7} \) |
\(a_{904}= +0.24994276 \pm 4.7 \cdot 10^{-7} \) | \(a_{905}= +0.92023580 \pm 2.6 \cdot 10^{-7} \) | \(a_{906}= +0.15573322 \pm 9.2 \cdot 10^{-7} \) |
\(a_{907}= +0.58804874 \pm 3.5 \cdot 10^{-7} \) | \(a_{908}= +1.03365602 \pm 4.8 \cdot 10^{-7} \) | \(a_{909}= -0.14975094 \pm 4.6 \cdot 10^{-7} \) |
\(a_{910}= +0.04747429 \pm 1.3 \cdot 10^{-6} \) | \(a_{911}= +0.45120107 \pm 3.2 \cdot 10^{-7} \) | \(a_{912}= -0.47805639 \pm 8.8 \cdot 10^{-7} \) |
\(a_{913}= -0.60227001 \pm 3.6 \cdot 10^{-7} \) | \(a_{914}= -0.29096544 \pm 5.9 \cdot 10^{-7} \) | \(a_{915}= +0.57650093 \pm 7.8 \cdot 10^{-7} \) |
\(a_{916}= +1.51141540 \pm 6.5 \cdot 10^{-7} \) | \(a_{917}= +0.24565266 \pm 3.5 \cdot 10^{-7} \) | \(a_{918}= +0.02781204 \pm 9.1 \cdot 10^{-7} \) |
\(a_{919}= +1.56971476 \pm 5.1 \cdot 10^{-7} \) | \(a_{920}= +1.05458125 \pm 5.5 \cdot 10^{-7} \) | \(a_{921}= +0.50322540 \pm 5.3 \cdot 10^{-7} \) |
\(a_{922}= +0.35029188 \pm 5.0 \cdot 10^{-7} \) | \(a_{923}= -0.63731007 \pm 4.4 \cdot 10^{-7} \) | \(a_{924}= +0.18443008 \pm 9.4 \cdot 10^{-7} \) |
\(a_{925}= -2.62701818 \pm 4.1 \cdot 10^{-7} \) | \(a_{926}= -0.10762762 \pm 4.2 \cdot 10^{-7} \) | \(a_{927}= -0.16784543 \pm 3.7 \cdot 10^{-7} \) |
\(a_{928}= +0.07652132 \pm 4.3 \cdot 10^{-7} \) | \(a_{929}= -0.58291949 \pm 5.1 \cdot 10^{-7} \) | \(a_{930}= +0.20009580 \pm 1.3 \cdot 10^{-6} \) |
\(a_{931}= -0.13515690 \pm 4.2 \cdot 10^{-7} \) | \(a_{932}= -0.26905854 \pm 4.3 \cdot 10^{-7} \) | \(a_{933}= -1.04849189 \pm 4.8 \cdot 10^{-7} \) |
\(a_{934}= -0.34202231 \pm 3.9 \cdot 10^{-7} \) | \(a_{935}= -1.03307023 \pm 2.7 \cdot 10^{-7} \) | \(a_{936}= +0.04925712 \pm 1.0 \cdot 10^{-6} \) |
\(a_{937}= +0.46793416 \pm 3.9 \cdot 10^{-7} \) | \(a_{938}= +0.12736142 \pm 9.1 \cdot 10^{-7} \) | \(a_{939}= -0.07170413 \pm 5.2 \cdot 10^{-7} \) |
\(a_{940}= +0.43069896 \pm 5.9 \cdot 10^{-7} \) | \(a_{941}= -1.56537624 \pm 4.2 \cdot 10^{-7} \) | \(a_{942}= +0.21787889 \pm 8.9 \cdot 10^{-7} \) |
\(a_{943}= -1.23244784 \pm 4.2 \cdot 10^{-7} \) | \(a_{944}= +0.19281045 \pm 3.5 \cdot 10^{-7} \) | \(a_{945}= -0.12104740 \pm 3.9 \cdot 10^{-7} \) |
\(a_{946}= +0.07890254 \pm 5.0 \cdot 10^{-7} \) | \(a_{947}= +0.05446460 \pm 3.8 \cdot 10^{-7} \) | \(a_{948}= -0.35644632 \pm 8.4 \cdot 10^{-7} \) |
\(a_{949}= +0.45174788 \pm 4.3 \cdot 10^{-7} \) | \(a_{950}= +0.34385713 \pm 3.9 \cdot 10^{-7} \) | \(a_{951}= +0.69285894 \pm 4.8 \cdot 10^{-7} \) |
\(a_{952}= -0.10693869 \pm 9.9 \cdot 10^{-7} \) | \(a_{953}= -1.35795226 \pm 4.6 \cdot 10^{-7} \) | \(a_{954}= -0.02086780 \pm 9.3 \cdot 10^{-7} \) |
\(a_{955}= -2.88309341 \pm 4.9 \cdot 10^{-7} \) | \(a_{956}= -1.13989961 \pm 4.6 \cdot 10^{-7} \) | \(a_{957}= +0.06698917 \pm 8.1 \cdot 10^{-7} \) |
\(a_{958}= -0.27953376 \pm 4.6 \cdot 10^{-7} \) | \(a_{959}= +0.03563222 \pm 3.5 \cdot 10^{-7} \) | \(a_{960}= +0.72601735 \pm 7.6 \cdot 10^{-7} \) |
\(a_{961}= +0.02790372 \pm 3.2 \cdot 10^{-7} \) | \(a_{962}= +0.11206717 \pm 4.3 \cdot 10^{-7} \) | \(a_{963}= -0.06296499 \pm 4.7 \cdot 10^{-7} \) |
\(a_{964}= -1.68295361 \pm 5.0 \cdot 10^{-7} \) | \(a_{965}= -0.95562624 \pm 3.7 \cdot 10^{-7} \) | \(a_{966}= +0.07063417 \pm 9.0 \cdot 10^{-7} \) |
\(a_{967}= +1.54808844 \pm 3.2 \cdot 10^{-7} \) | \(a_{968}= -0.08902858 \pm 4.7 \cdot 10^{-7} \) | \(a_{969}= +0.38428579 \pm 8.4 \cdot 10^{-7} \) |
\(a_{970}= -0.21053368 \pm 2.6 \cdot 10^{-7} \) | \(a_{971}= +0.57792780 \pm 2.8 \cdot 10^{-7} \) | \(a_{972}= -0.06144315 \pm 5.7 \cdot 10^{-7} \) |
\(a_{973}= +0.55533101 \pm 4.5 \cdot 10^{-7} \) | \(a_{974}= +0.24519884 \pm 3.8 \cdot 10^{-7} \) | \(a_{975}= +0.37534464 \pm 8.3 \cdot 10^{-7} \) |
\(a_{976}= -0.52514321 \pm 3.3 \cdot 10^{-7} \) | \(a_{977}= +1.52820305 \pm 3.8 \cdot 10^{-7} \) | \(a_{978}= -0.12514854 \pm 8.9 \cdot 10^{-7} \) |
\(a_{979}= +0.49701110 \pm 2.9 \cdot 10^{-7} \) | \(a_{980}= +0.22770100 \pm 9.5 \cdot 10^{-7} \) | \(a_{981}= -0.34058798 \pm 4.5 \cdot 10^{-7} \) |
\(a_{982}= -0.18653592 \pm 3.1 \cdot 10^{-7} \) | \(a_{983}= +0.21247041 \pm 4.1 \cdot 10^{-7} \) | \(a_{984}= +0.18160368 \pm 8.9 \cdot 10^{-7} \) |
\(a_{985}= +1.46361570 \pm 2.9 \cdot 10^{-7} \) | \(a_{986}= -0.01900269 \pm 3.3 \cdot 10^{-7} \) | \(a_{987}= +0.05896593 \pm 4.0 \cdot 10^{-7} \) |
\(a_{988}= +0.33296453 \pm 4.0 \cdot 10^{-7} \) | \(a_{989}= -0.68592819 \pm 5.1 \cdot 10^{-7} \) | \(a_{990}= -0.10054626 \pm 1.2 \cdot 10^{-6} \) |
\(a_{991}= +0.98543969 \pm 4.2 \cdot 10^{-7} \) | \(a_{992}= -0.59000844 \pm 4.2 \cdot 10^{-7} \) | \(a_{993}= +0.11965190 \pm 3.7 \cdot 10^{-7} \) |
\(a_{994}= +0.13466436 \pm 1.0 \cdot 10^{-6} \) | \(a_{995}= -1.72802160 \pm 3.0 \cdot 10^{-7} \) | \(a_{996}= -0.37743523 \pm 9.4 \cdot 10^{-7} \) |
\(a_{997}= +1.54832248 \pm 4.4 \cdot 10^{-7} \) | \(a_{998}= +0.25348614 \pm 4.6 \cdot 10^{-7} \) | \(a_{999}= -0.28574289 \pm 3.9 \cdot 10^{-7} \) |
\(a_{1000}= -0.51486948 \pm 4.9 \cdot 10^{-7} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000