Maass form invariants
Level: | \( 21 = 3 \cdot 7 \) |
Weight: | \( 0 \) |
Character: | 21.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(3.25120755731627793275771431396 \pm 6 \cdot 10^{-11}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -1.34252536 \pm 4.6 \cdot 10^{-7} \) | \(a_{3}= +0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= +0.80237434 \pm 5.3 \cdot 10^{-7} \) | \(a_{5}= +1.55320399 \pm 3.6 \cdot 10^{-7} \) | \(a_{6}= -0.77510738 \pm 4.7 \cdot 10^{-7} \) |
\(a_{7}= -0.37796447 \pm 1.0 \cdot 10^{-8} \) | \(a_{8}= +0.26531746 \pm 5.3 \cdot 10^{-7} \) | \(a_{9}= +0.33333333 \pm 4.2 \cdot 10^{-8} \) |
\(a_{10}= -2.08521574 \pm 4.4 \cdot 10^{-7} \) | \(a_{11}= +0.95130788 \pm 3.5 \cdot 10^{-7} \) | \(a_{12}= +0.46325104 \pm 5.4 \cdot 10^{-7} \) |
\(a_{13}= +1.23666557 \pm 4.1 \cdot 10^{-7} \) | \(a_{14}= +0.50742689 \pm 4.7 \cdot 10^{-7} \) | \(a_{15}= +0.89674274 \pm 3.7 \cdot 10^{-7} \) |
\(a_{16}= -1.15856976 \pm 4.4 \cdot 10^{-7} \) | \(a_{17}= -0.63940034 \pm 4.0 \cdot 10^{-7} \) | \(a_{18}= -0.44750845 \pm 4.7 \cdot 10^{-7} \) |
\(a_{19}= -0.14744390 \pm 3.9 \cdot 10^{-7} \) | \(a_{20}= +1.24625102 \pm 5.2 \cdot 10^{-7} \) | \(a_{21}= -0.21821789 \pm 1.0 \cdot 10^{-8} \) |
\(a_{22}= -1.27715496 \pm 4.7 \cdot 10^{-7} \) | \(a_{23}= +0.43647465 \pm 3.8 \cdot 10^{-7} \) | \(a_{24}= +0.15318111 \pm 5.4 \cdot 10^{-7} \) |
\(a_{25}= +1.41244262 \pm 3.7 \cdot 10^{-7} \) | \(a_{26}= -1.66025489 \pm 4.4 \cdot 10^{-7} \) | \(a_{27}= +0.19245009 \pm 9.4 \cdot 10^{-8} \) |
\(a_{28}= -0.30326900 \pm 5.4 \cdot 10^{-7} \) | \(a_{29}= +0.97406121 \pm 4.0 \cdot 10^{-7} \) | \(a_{30}= -1.20389987 \pm 8.3 \cdot 10^{-7} \) |
\(a_{31}= -1.25035990 \pm 4.2 \cdot 10^{-7} \) | \(a_{32}= +1.29009182 \pm 4.1 \cdot 10^{-7} \) | \(a_{33}= +0.54923786 \pm 3.6 \cdot 10^{-7} \) |
\(a_{34}= +0.85841118 \pm 3.7 \cdot 10^{-7} \) | \(a_{35}= -0.58705593 \pm 3.7 \cdot 10^{-7} \) | \(a_{36}= +0.26745811 \pm 5.4 \cdot 10^{-7} \) |
\(a_{37}= -1.38832542 \pm 3.6 \cdot 10^{-7} \) | \(a_{38}= +0.19794718 \pm 4.5 \cdot 10^{-7} \) | \(a_{39}= +0.71398920 \pm 4.2 \cdot 10^{-7} \) |
\(a_{40}= +0.41209213 \pm 4.8 \cdot 10^{-7} \) | \(a_{41}= +0.62741547 \pm 3.0 \cdot 10^{-7} \) | \(a_{42}= +0.29296305 \pm 4.7 \cdot 10^{-7} \) |
\(a_{43}= +0.43654656 \pm 4.1 \cdot 10^{-7} \) | \(a_{44}= +0.76330503 \pm 5.3 \cdot 10^{-7} \) | \(a_{45}= +0.51773466 \pm 3.7 \cdot 10^{-7} \) |
\(a_{46}= -0.58597828 \pm 4.5 \cdot 10^{-7} \) | \(a_{47}= -1.27684306 \pm 3.7 \cdot 10^{-7} \) | \(a_{48}= -0.66890056 \pm 4.5 \cdot 10^{-7} \) |
\(a_{49}= +0.14285714 \pm 1.5 \cdot 10^{-7} \) | \(a_{50}= -1.89624004 \pm 3.5 \cdot 10^{-7} \) | \(a_{51}= -0.36915796 \pm 4.1 \cdot 10^{-7} \) |
\(a_{52}= +0.99226872 \pm 5.0 \cdot 10^{-7} \) | \(a_{53}= -1.19393845 \pm 4.1 \cdot 10^{-7} \) | \(a_{54}= -0.25836913 \pm 4.7 \cdot 10^{-7} \) |
\(a_{55}= +1.47757519 \pm 3.2 \cdot 10^{-7} \) | \(a_{56}= -0.10028057 \pm 5.4 \cdot 10^{-7} \) | \(a_{57}= -0.08512678 \pm 4.0 \cdot 10^{-7} \) |
\(a_{58}= -1.30770188 \pm 3.9 \cdot 10^{-7} \) | \(a_{59}= -0.40595360 \pm 2.8 \cdot 10^{-7} \) | \(a_{60}= +0.71952336 \pm 9.1 \cdot 10^{-7} \) |
\(a_{61}= +0.61123522 \pm 3.7 \cdot 10^{-7} \) | \(a_{62}= +1.67863987 \pm 4.8 \cdot 10^{-7} \) | \(a_{63}= -0.12598816 \pm 1.8 \cdot 10^{-7} \) |
\(a_{64}= -0.57341123 \pm 3.5 \cdot 10^{-7} \) | \(a_{65}= +1.92079389 \pm 3.8 \cdot 10^{-7} \) | \(a_{66}= -0.73736576 \pm 8.2 \cdot 10^{-7} \) |
\(a_{67}= -1.19524820 \pm 3.9 \cdot 10^{-7} \) | \(a_{68}= -0.51303843 \pm 3.7 \cdot 10^{-7} \) | \(a_{69}= +0.25199876 \pm 4.0 \cdot 10^{-7} \) |
\(a_{70}= +0.78813747 \pm 8.3 \cdot 10^{-7} \) | \(a_{71}= +1.07684255 \pm 5.0 \cdot 10^{-7} \) | \(a_{72}= +0.08843915 \pm 5.4 \cdot 10^{-7} \) |
\(a_{73}= +0.14497602 \pm 3.6 \cdot 10^{-7} \) | \(a_{74}= +1.86386209 \pm 4.1 \cdot 10^{-7} \) | \(a_{75}= +0.81547413 \pm 3.8 \cdot 10^{-7} \) |
\(a_{76}= -0.11830520 \pm 4.5 \cdot 10^{-7} \) | \(a_{77}= -0.35956058 \pm 3.6 \cdot 10^{-7} \) | \(a_{78}= -0.95854861 \pm 8.8 \cdot 10^{-7} \) |
\(a_{79}= -0.63956426 \pm 2.5 \cdot 10^{-7} \) | \(a_{80}= -1.79949516 \pm 4.6 \cdot 10^{-7} \) | \(a_{81}= +0.11111111 \pm 2.3 \cdot 10^{-7} \) |
\(a_{82}= -0.84232118 \pm 3.4 \cdot 10^{-7} \) | \(a_{83}= -1.45201187 \pm 3.5 \cdot 10^{-7} \) | \(a_{84}= -0.17509244 \pm 5.4 \cdot 10^{-7} \) |
\(a_{85}= -0.99311916 \pm 2.7 \cdot 10^{-7} \) | \(a_{86}= -0.58607482 \pm 5.4 \cdot 10^{-7} \) | \(a_{87}= +0.56237450 \pm 4.1 \cdot 10^{-7} \) |
\(a_{88}= +0.25239859 \pm 5.1 \cdot 10^{-7} \) | \(a_{89}= +1.92879928 \pm 3.3 \cdot 10^{-7} \) | \(a_{90}= -0.69507191 \pm 8.3 \cdot 10^{-7} \) |
\(a_{91}= -0.46741565 \pm 4.2 \cdot 10^{-7} \) | \(a_{92}= +0.35021606 \pm 5.6 \cdot 10^{-7} \) | \(a_{93}= -0.72189562 \pm 4.3 \cdot 10^{-7} \) |
\(a_{94}= +1.71419418 \pm 4.6 \cdot 10^{-7} \) | \(a_{95}= -0.22901046 \pm 2.7 \cdot 10^{-7} \) | \(a_{96}= +0.74483486 \pm 4.2 \cdot 10^{-7} \) |
\(a_{97}= +0.48629690 \pm 2.4 \cdot 10^{-7} \) | \(a_{98}= -0.19178934 \pm 4.7 \cdot 10^{-7} \) | \(a_{99}= +0.31710263 \pm 3.6 \cdot 10^{-7} \) |
\(a_{100}= +1.13330772 \pm 3.9 \cdot 10^{-7} \) | \(a_{101}= -0.34272105 \pm 4.2 \cdot 10^{-7} \) | \(a_{102}= +0.49560392 \pm 8.7 \cdot 10^{-7} \) |
\(a_{103}= -1.57658472 \pm 3.4 \cdot 10^{-7} \) | \(a_{104}= +0.32810897 \pm 5.1 \cdot 10^{-7} \) | \(a_{105}= -0.33893690 \pm 3.7 \cdot 10^{-7} \) |
\(a_{106}= +1.60289264 \pm 5.3 \cdot 10^{-7} \) | \(a_{107}= -0.38169470 \pm 4.4 \cdot 10^{-7} \) | \(a_{108}= +0.15441701 \pm 5.4 \cdot 10^{-7} \) |
\(a_{109}= -0.19557324 \pm 4.1 \cdot 10^{-7} \) | \(a_{110}= -1.98368217 \pm 3.8 \cdot 10^{-7} \) | \(a_{111}= -0.80155006 \pm 3.7 \cdot 10^{-7} \) |
\(a_{112}= +0.43789821 \pm 4.5 \cdot 10^{-7} \) | \(a_{113}= -0.26705970 \pm 2.7 \cdot 10^{-7} \) | \(a_{114}= +0.11428486 \pm 8.6 \cdot 10^{-7} \) |
\(a_{115}= +0.67793416 \pm 3.8 \cdot 10^{-7} \) | \(a_{116}= +0.78156172 \pm 4.7 \cdot 10^{-7} \) | \(a_{117}= +0.41222186 \pm 4.2 \cdot 10^{-7} \) |
\(a_{118}= +0.54500300 \pm 3.5 \cdot 10^{-7} \) | \(a_{119}= +0.24167061 \pm 4.1 \cdot 10^{-7} \) | \(a_{120}= +0.23792150 \pm 9.0 \cdot 10^{-7} \) |
\(a_{121}= -0.09501331 \pm 3.3 \cdot 10^{-7} \) | \(a_{122}= -0.82059879 \pm 4.1 \cdot 10^{-7} \) | \(a_{123}= +0.36223849 \pm 3.1 \cdot 10^{-7} \) |
\(a_{124}= -1.00325670 \pm 5.4 \cdot 10^{-7} \) | \(a_{125}= +0.64060752 \pm 3.2 \cdot 10^{-7} \) | \(a_{126}= +0.16914230 \pm 4.7 \cdot 10^{-7} \) |
\(a_{127}= +0.69941016 \pm 4.5 \cdot 10^{-7} \) | \(a_{128}= -0.52027270 \pm 4.1 \cdot 10^{-7} \) | \(a_{129}= +0.25204027 \pm 4.2 \cdot 10^{-7} \) |
\(a_{130}= -2.57871451 \pm 5.1 \cdot 10^{-7} \) | \(a_{131}= +0.05940678 \pm 3.3 \cdot 10^{-7} \) | \(a_{132}= +0.44069437 \pm 9.0 \cdot 10^{-7} \) |
\(a_{133}= +0.05572856 \pm 4.0 \cdot 10^{-7} \) | \(a_{134}= +1.60465102 \pm 3.9 \cdot 10^{-7} \) | \(a_{135}= +0.29891425 \pm 3.7 \cdot 10^{-7} \) |
\(a_{136}= -0.16964407 \pm 4.0 \cdot 10^{-7} \) | \(a_{137}= -0.15228838 \pm 3.3 \cdot 10^{-7} \) | \(a_{138}= -0.33831472 \pm 8.6 \cdot 10^{-7} \) |
\(a_{139}= -0.90770728 \pm 4.2 \cdot 10^{-7} \) | \(a_{140}= -0.47103861 \pm 9.1 \cdot 10^{-7} \) | \(a_{141}= -0.73718568 \pm 3.8 \cdot 10^{-7} \) |
\(a_{142}= -1.44568843 \pm 4.6 \cdot 10^{-7} \) | \(a_{143}= +1.17644970 \pm 3.7 \cdot 10^{-7} \) | \(a_{144}= -0.38618992 \pm 4.5 \cdot 10^{-7} \) |
\(a_{145}= +1.51291576 \pm 3.0 \cdot 10^{-7} \) | \(a_{146}= -0.19463398 \pm 4.4 \cdot 10^{-7} \) | \(a_{147}= +0.08247861 \pm 3.5 \cdot 10^{-7} \) |
\(a_{148}= -1.11395670 \pm 4.8 \cdot 10^{-7} \) | \(a_{149}= +1.10308246 \pm 3.5 \cdot 10^{-7} \) | \(a_{150}= -1.09479470 \pm 8.4 \cdot 10^{-7} \) |
\(a_{151}= +0.18880037 \pm 4.0 \cdot 10^{-7} \) | \(a_{152}= -0.03911944 \pm 4.8 \cdot 10^{-7} \) | \(a_{153}= -0.21313345 \pm 4.1 \cdot 10^{-7} \) |
\(a_{154}= +0.48271920 \pm 8.2 \cdot 10^{-7} \) | \(a_{155}= -1.94206398 \pm 3.9 \cdot 10^{-7} \) | \(a_{156}= +0.57288661 \pm 9.6 \cdot 10^{-7} \) |
\(a_{157}= +1.11981318 \pm 3.8 \cdot 10^{-7} \) | \(a_{158}= +0.85863124 \pm 3.2 \cdot 10^{-7} \) | \(a_{159}= -0.68932068 \pm 4.2 \cdot 10^{-7} \) |
\(a_{160}= +2.00377576 \pm 3.8 \cdot 10^{-7} \) | \(a_{161}= -0.16497191 \pm 4.0 \cdot 10^{-7} \) | \(a_{162}= -0.14916948 \pm 4.7 \cdot 10^{-7} \) |
\(a_{163}= -1.02620951 \pm 3.7 \cdot 10^{-7} \) | \(a_{164}= +0.50342207 \pm 4.0 \cdot 10^{-7} \) | \(a_{165}= +0.85307844 \pm 7.3 \cdot 10^{-7} \) |
\(a_{166}= +1.94936276 \pm 3.9 \cdot 10^{-7} \) | \(a_{167}= -0.10464148 \pm 3.0 \cdot 10^{-7} \) | \(a_{168}= -0.05789702 \pm 5.4 \cdot 10^{-7} \) |
\(a_{169}= +0.52934173 \pm 4.6 \cdot 10^{-7} \) | \(a_{170}= +1.33328766 \pm 2.3 \cdot 10^{-7} \) | \(a_{171}= -0.04914797 \pm 4.0 \cdot 10^{-7} \) |
\(a_{172}= +0.35027376 \pm 6.4 \cdot 10^{-7} \) | \(a_{173}= +1.37834931 \pm 4.5 \cdot 10^{-7} \) | \(a_{174}= -0.75500203 \pm 8.7 \cdot 10^{-7} \) |
\(a_{175}= -0.53385313 \pm 3.8 \cdot 10^{-7} \) | \(a_{176}= -1.10215654 \pm 4.2 \cdot 10^{-7} \) | \(a_{177}= -0.23437742 \pm 2.9 \cdot 10^{-7} \) |
\(a_{178}= -2.58946195 \pm 4.1 \cdot 10^{-7} \) | \(a_{179}= -0.87817043 \pm 3.4 \cdot 10^{-7} \) | \(a_{180}= +0.41541701 \pm 9.1 \cdot 10^{-7} \) |
\(a_{181}= -0.33709004 \pm 3.1 \cdot 10^{-7} \) | \(a_{182}= +0.62751736 \pm 8.8 \cdot 10^{-7} \) | \(a_{183}= +0.35289682 \pm 3.8 \cdot 10^{-7} \) |
\(a_{184}= +0.11580434 \pm 5.4 \cdot 10^{-7} \) | \(a_{185}= -2.15635258 \pm 4.2 \cdot 10^{-7} \) | \(a_{186}= +0.96916318 \pm 8.9 \cdot 10^{-7} \) |
\(a_{187}= -0.60826659 \pm 3.6 \cdot 10^{-7} \) | \(a_{188}= -1.02450611 \pm 5.7 \cdot 10^{-7} \) | \(a_{189}= -0.07273930 \pm 4.4 \cdot 10^{-7} \) |
\(a_{190}= +0.30745235 \pm 2.8 \cdot 10^{-7} \) | \(a_{191}= +0.91337405 \pm 4.3 \cdot 10^{-7} \) | \(a_{192}= -0.33105913 \pm 3.6 \cdot 10^{-7} \) |
\(a_{193}= -0.46456701 \pm 4.2 \cdot 10^{-7} \) | \(a_{194}= -0.65286592 \pm 2.3 \cdot 10^{-7} \) | \(a_{195}= +1.10897087 \pm 7.8 \cdot 10^{-7} \) |
\(a_{196}= +0.11462491 \pm 5.4 \cdot 10^{-7} \) | \(a_{197}= -0.99612896 \pm 3.1 \cdot 10^{-7} \) | \(a_{198}= -0.42571832 \pm 8.2 \cdot 10^{-7} \) |
\(a_{199}= -0.39386058 \pm 2.6 \cdot 10^{-7} \) | \(a_{200}= +0.37474569 \pm 3.2 \cdot 10^{-7} \) | \(a_{201}= -0.69007687 \pm 4.0 \cdot 10^{-7} \) |
\(a_{202}= +0.46011170 \pm 4.3 \cdot 10^{-7} \) | \(a_{203}= -0.36816053 \pm 4.1 \cdot 10^{-7} \) | \(a_{204}= -0.29620288 \pm 9.4 \cdot 10^{-7} \) |
\(a_{205}= +0.97450420 \pm 2.5 \cdot 10^{-7} \) | \(a_{206}= +2.11660497 \pm 4.4 \cdot 10^{-7} \) | \(a_{207}= +0.14549155 \pm 4.0 \cdot 10^{-7} \) |
\(a_{208}= -1.43276333 \pm 3.7 \cdot 10^{-7} \) | \(a_{209}= -0.14026455 \pm 3.9 \cdot 10^{-7} \) | \(a_{210}= +0.45503138 \pm 8.3 \cdot 10^{-7} \) |
\(a_{211}= +0.04066963 \pm 3.9 \cdot 10^{-7} \) | \(a_{212}= -0.95798557 \pm 5.9 \cdot 10^{-7} \) | \(a_{213}= +0.62171534 \pm 5.1 \cdot 10^{-7} \) |
\(a_{214}= +0.51243481 \pm 5.2 \cdot 10^{-7} \) | \(a_{215}= +0.67804585 \pm 3.3 \cdot 10^{-7} \) | \(a_{216}= +0.05106037 \pm 5.4 \cdot 10^{-7} \) |
\(a_{217}= +0.47259162 \pm 4.3 \cdot 10^{-7} \) | \(a_{218}= +0.26256204 \pm 4.4 \cdot 10^{-7} \) | \(a_{219}= +0.08370194 \pm 3.7 \cdot 10^{-7} \) |
\(a_{220}= +1.18556842 \pm 4.3 \cdot 10^{-7} \) | \(a_{221}= -0.79072439 \pm 3.3 \cdot 10^{-7} \) | \(a_{222}= +1.07610128 \pm 8.3 \cdot 10^{-7} \) |
\(a_{223}= +0.58835608 \pm 4.5 \cdot 10^{-7} \) | \(a_{224}= -0.48760888 \pm 4.2 \cdot 10^{-7} \) | \(a_{225}= +0.47081421 \pm 3.8 \cdot 10^{-7} \) |
\(a_{226}= +0.35853442 \pm 3.9 \cdot 10^{-7} \) | \(a_{227}= +1.20176396 \pm 4.1 \cdot 10^{-7} \) | \(a_{228}= -0.06830354 \pm 9.3 \cdot 10^{-7} \) |
\(a_{229}= -0.08191472 \pm 5.0 \cdot 10^{-7} \) | \(a_{230}= -0.91014381 \pm 4.4 \cdot 10^{-7} \) | \(a_{231}= -0.20759240 \pm 3.6 \cdot 10^{-7} \) |
\(a_{232}= +0.25843545 \pm 4.4 \cdot 10^{-7} \) | \(a_{233}= -0.72632343 \pm 3.6 \cdot 10^{-7} \) | \(a_{234}= -0.55341830 \pm 8.8 \cdot 10^{-7} \) |
\(a_{235}= -1.98319773 \pm 3.6 \cdot 10^{-7} \) | \(a_{236}= -0.32572675 \pm 4.0 \cdot 10^{-7} \) | \(a_{237}= -0.36925260 \pm 2.7 \cdot 10^{-7} \) |
\(a_{238}= -0.32444893 \pm 8.7 \cdot 10^{-7} \) | \(a_{239}= +1.50146489 \pm 3.3 \cdot 10^{-7} \) | \(a_{240}= -1.03893902 \pm 8.1 \cdot 10^{-7} \) |
\(a_{241}= +0.92573834 \pm 3.9 \cdot 10^{-7} \) | \(a_{242}= +0.12755778 \pm 4.3 \cdot 10^{-7} \) | \(a_{243}= +0.06415003 \pm 5.5 \cdot 10^{-7} \) |
\(a_{244}= +0.49043946 \pm 4.7 \cdot 10^{-7} \) | \(a_{245}= +0.22188628 \pm 3.7 \cdot 10^{-7} \) | \(a_{246}= -0.48631436 \pm 7.7 \cdot 10^{-7} \) |
\(a_{247}= -0.18233880 \pm 3.1 \cdot 10^{-7} \) | \(a_{248}= -0.33174231 \pm 5.4 \cdot 10^{-7} \) | \(a_{249}= -0.83831944 \pm 3.6 \cdot 10^{-7} \) |
\(a_{250}= -0.86003184 \pm 3.8 \cdot 10^{-7} \) | \(a_{251}= +1.06983475 \pm 3.2 \cdot 10^{-7} \) | \(a_{252}= -0.10108967 \pm 5.4 \cdot 10^{-7} \) |
\(a_{253}= +0.41522177 \pm 3.1 \cdot 10^{-7} \) | \(a_{254}= -0.93897588 \pm 6.1 \cdot 10^{-7} \) | \(a_{255}= -0.57337762 \pm 7.7 \cdot 10^{-7} \) |
\(a_{256}= +1.27189053 \pm 4.2 \cdot 10^{-7} \) | \(a_{257}= -0.92414229 \pm 3.5 \cdot 10^{-7} \) | \(a_{258}= -0.33837046 \pm 8.8 \cdot 10^{-7} \) |
\(a_{259}= +0.52473769 \pm 3.7 \cdot 10^{-7} \) | \(a_{260}= +1.54119573 \pm 5.4 \cdot 10^{-7} \) | \(a_{261}= +0.32468707 \pm 4.1 \cdot 10^{-7} \) |
\(a_{262}= -0.07975511 \pm 4.7 \cdot 10^{-7} \) | \(a_{263}= -0.54252699 \pm 3.8 \cdot 10^{-7} \) | \(a_{264}= +0.14572239 \pm 9.0 \cdot 10^{-7} \) |
\(a_{265}= -1.85442995 \pm 3.2 \cdot 10^{-7} \) | \(a_{266}= -0.07481700 \pm 8.6 \cdot 10^{-7} \) | \(a_{267}= +1.11359278 \pm 3.4 \cdot 10^{-7} \) |
\(a_{268}= -0.95903649 \pm 4.5 \cdot 10^{-7} \) | \(a_{269}= -0.25218451 \pm 3.5 \cdot 10^{-7} \) | \(a_{270}= -0.40129996 \pm 8.3 \cdot 10^{-7} \) |
\(a_{271}= -1.43963611 \pm 3.3 \cdot 10^{-7} \) | \(a_{272}= +0.74078990 \pm 2.6 \cdot 10^{-7} \) | \(a_{273}= -0.26986255 \pm 4.2 \cdot 10^{-7} \) |
\(a_{274}= +0.20445102 \pm 4.2 \cdot 10^{-7} \) | \(a_{275}= +1.34366780 \pm 3.3 \cdot 10^{-7} \) | \(a_{276}= +0.20219734 \pm 9.3 \cdot 10^{-7} \) |
\(a_{277}= +1.91060990 \pm 3.2 \cdot 10^{-7} \) | \(a_{278}= +1.21862004 \pm 4.8 \cdot 10^{-7} \) | \(a_{279}= -0.41678663 \pm 4.3 \cdot 10^{-7} \) |
\(a_{280}= -0.15575619 \pm 9.0 \cdot 10^{-7} \) | \(a_{281}= -1.02844523 \pm 4.6 \cdot 10^{-7} \) | \(a_{282}= +0.98969047 \pm 8.4 \cdot 10^{-7} \) |
\(a_{283}= +0.41093542 \pm 3.2 \cdot 10^{-7} \) | \(a_{284}= +0.86403083 \pm 6.0 \cdot 10^{-7} \) | \(a_{285}= -0.13221925 \pm 7.6 \cdot 10^{-7} \) |
\(a_{286}= -1.57941356 \pm 3.7 \cdot 10^{-7} \) | \(a_{287}= -0.23714076 \pm 3.1 \cdot 10^{-7} \) | \(a_{288}= +0.43003061 \pm 4.2 \cdot 10^{-7} \) |
\(a_{289}= -0.59116720 \pm 3.7 \cdot 10^{-7} \) | \(a_{290}= -2.03112777 \pm 3.7 \cdot 10^{-7} \) | \(a_{291}= +0.28076365 \pm 2.5 \cdot 10^{-7} \) |
\(a_{292}= +0.11632504 \pm 5.2 \cdot 10^{-7} \) | \(a_{293}= +1.29278237 \pm 3.5 \cdot 10^{-7} \) | \(a_{294}= -0.11072963 \pm 4.7 \cdot 10^{-7} \) |
\(a_{295}= -0.63052875 \pm 2.4 \cdot 10^{-7} \) | \(a_{296}= -0.36834697 \pm 4.6 \cdot 10^{-7} \) | \(a_{297}= +0.18307929 \pm 3.6 \cdot 10^{-7} \) |
\(a_{298}= -1.48091617 \pm 5.1 \cdot 10^{-7} \) | \(a_{299}= +0.53977317 \pm 4.4 \cdot 10^{-7} \) | \(a_{300}= +0.65431552 \pm 9.1 \cdot 10^{-7} \) |
\(a_{301}= -0.16499909 \pm 4.2 \cdot 10^{-7} \) | \(a_{302}= -0.25346929 \pm 5.3 \cdot 10^{-7} \) | \(a_{303}= -0.19787009 \pm 4.3 \cdot 10^{-7} \) |
\(a_{304}= +0.17082405 \pm 3.2 \cdot 10^{-7} \) | \(a_{305}= +0.94937299 \pm 2.8 \cdot 10^{-7} \) | \(a_{306}= +0.28613706 \pm 8.7 \cdot 10^{-7} \) |
\(a_{307}= +0.96925154 \pm 4.9 \cdot 10^{-7} \) | \(a_{308}= -0.28850219 \pm 9.0 \cdot 10^{-7} \) | \(a_{309}= -0.91024161 \pm 3.5 \cdot 10^{-7} \) |
\(a_{310}= +2.60727014 \pm 4.8 \cdot 10^{-7} \) | \(a_{311}= +0.14334920 \pm 4.5 \cdot 10^{-7} \) | \(a_{312}= +0.18943380 \pm 9.5 \cdot 10^{-7} \) |
\(a_{313}= +1.52728534 \pm 4.8 \cdot 10^{-7} \) | \(a_{314}= -1.50337759 \pm 4.2 \cdot 10^{-7} \) | \(a_{315}= -0.19568531 \pm 3.7 \cdot 10^{-7} \) |
\(a_{316}= -0.51316995 \pm 3.7 \cdot 10^{-7} \) | \(a_{317}= -0.14790366 \pm 4.5 \cdot 10^{-7} \) | \(a_{318}= +0.92543050 \pm 8.8 \cdot 10^{-7} \) |
\(a_{319}= +0.92663211 \pm 2.9 \cdot 10^{-7} \) | \(a_{320}= -0.89062461 \pm 2.9 \cdot 10^{-7} \) | \(a_{321}= -0.22037154 \pm 4.5 \cdot 10^{-7} \) |
\(a_{322}= +0.22147897 \pm 8.6 \cdot 10^{-7} \) | \(a_{323}= +0.09427568 \pm 4.9 \cdot 10^{-7} \) | \(a_{324}= +0.08915270 \pm 5.4 \cdot 10^{-7} \) |
\(a_{325}= +1.74671916 \pm 3.6 \cdot 10^{-7} \) | \(a_{326}= +1.37771230 \pm 3.0 \cdot 10^{-7} \) | \(a_{327}= -0.11291426 \pm 4.2 \cdot 10^{-7} \) |
\(a_{328}= +0.16646428 \pm 3.9 \cdot 10^{-7} \) | \(a_{329}= +0.48260131 \pm 3.8 \cdot 10^{-7} \) | \(a_{330}= -1.14527943 \pm 1.1 \cdot 10^{-6} \) |
\(a_{331}= -1.39302004 \pm 3.5 \cdot 10^{-7} \) | \(a_{332}= -1.16505707 \pm 4.1 \cdot 10^{-7} \) | \(a_{333}= -0.46277514 \pm 3.7 \cdot 10^{-7} \) |
\(a_{334}= +0.14048383 \pm 4.3 \cdot 10^{-7} \) | \(a_{335}= -1.85646427 \pm 4.0 \cdot 10^{-7} \) | \(a_{336}= +0.25282065 \pm 4.5 \cdot 10^{-7} \) |
\(a_{337}= -1.79325122 \pm 4.6 \cdot 10^{-7} \) | \(a_{338}= -0.71065470 \pm 4.4 \cdot 10^{-7} \) | \(a_{339}= -0.15418699 \pm 2.8 \cdot 10^{-7} \) |
\(a_{340}= -0.79685333 \pm 2.5 \cdot 10^{-7} \) | \(a_{341}= -1.18947723 \pm 3.2 \cdot 10^{-7} \) | \(a_{342}= +0.06598239 \pm 8.6 \cdot 10^{-7} \) |
\(a_{343}= -0.05399492 \pm 7.1 \cdot 10^{-7} \) | \(a_{344}= +0.11582342 \pm 6.4 \cdot 10^{-7} \) | \(a_{345}= +0.39140547 \pm 7.6 \cdot 10^{-7} \) |
\(a_{346}= -1.85046891 \pm 5.5 \cdot 10^{-7} \) | \(a_{347}= -1.70584040 \pm 4.1 \cdot 10^{-7} \) | \(a_{348}= +0.45123487 \pm 9.5 \cdot 10^{-7} \) |
\(a_{349}= +0.22698307 \pm 3.8 \cdot 10^{-7} \) | \(a_{350}= +0.71671137 \pm 8.4 \cdot 10^{-7} \) | \(a_{351}= +0.23799640 \pm 4.2 \cdot 10^{-7} \) |
\(a_{352}= +1.22727452 \pm 4.0 \cdot 10^{-7} \) | \(a_{353}= -0.51267131 \pm 3.1 \cdot 10^{-7} \) | \(a_{354}= +0.31465763 \pm 7.5 \cdot 10^{-7} \) |
\(a_{355}= +1.67255614 \pm 4.6 \cdot 10^{-7} \) | \(a_{356}= +1.54761905 \pm 3.9 \cdot 10^{-7} \) | \(a_{357}= +0.13952859 \pm 4.1 \cdot 10^{-7} \) |
\(a_{358}= +1.17896607 \pm 4.0 \cdot 10^{-7} \) | \(a_{359}= -0.09936457 \pm 2.6 \cdot 10^{-7} \) | \(a_{360}= +0.13736404 \pm 9.0 \cdot 10^{-7} \) |
\(a_{361}= -0.97826030 \pm 4.5 \cdot 10^{-7} \) | \(a_{362}= +0.45255193 \pm 3.9 \cdot 10^{-7} \) | \(a_{363}= -0.05485596 \pm 3.4 \cdot 10^{-7} \) |
\(a_{364}= -0.37504232 \pm 9.6 \cdot 10^{-7} \) | \(a_{365}= +0.22517733 \pm 3.7 \cdot 10^{-7} \) | \(a_{366}= -0.47377293 \pm 8.4 \cdot 10^{-7} \) |
\(a_{367}= -1.14836054 \pm 3.1 \cdot 10^{-7} \) | \(a_{368}= -0.50568633 \pm 4.4 \cdot 10^{-7} \) | \(a_{369}= +0.20913849 \pm 3.1 \cdot 10^{-7} \) |
\(a_{370}= +2.89495803 \pm 4.6 \cdot 10^{-7} \) | \(a_{371}= +0.45126632 \pm 4.2 \cdot 10^{-7} \) | \(a_{372}= -0.57923053 \pm 9.7 \cdot 10^{-7} \) |
\(a_{373}= -1.16861173 \pm 4.9 \cdot 10^{-7} \) | \(a_{374}= +0.81661332 \pm 4.4 \cdot 10^{-7} \) | \(a_{375}= +0.36985492 \pm 3.4 \cdot 10^{-7} \) |
\(a_{376}= -0.33876876 \pm 6.1 \cdot 10^{-7} \) | \(a_{377}= +1.20458796 \pm 3.0 \cdot 10^{-7} \) | \(a_{378}= +0.09765435 \pm 4.7 \cdot 10^{-7} \) |
\(a_{379}= +1.07941851 \pm 3.4 \cdot 10^{-7} \) | \(a_{380}= -0.18375212 \pm 3.5 \cdot 10^{-7} \) | \(a_{381}= +0.40380465 \pm 4.6 \cdot 10^{-7} \) |
\(a_{382}= -1.22622783 \pm 5.7 \cdot 10^{-7} \) | \(a_{383}= +1.33460759 \pm 4.8 \cdot 10^{-7} \) | \(a_{384}= -0.30037959 \pm 4.2 \cdot 10^{-7} \) |
\(a_{385}= -0.55847093 \pm 7.3 \cdot 10^{-7} \) | \(a_{386}= +0.62369300 \pm 4.5 \cdot 10^{-7} \) | \(a_{387}= +0.14551552 \pm 4.2 \cdot 10^{-7} \) |
\(a_{388}= +0.39019216 \pm 3.1 \cdot 10^{-7} \) | \(a_{389}= +1.39543852 \pm 3.2 \cdot 10^{-7} \) | \(a_{390}= -1.48882152 \pm 1.2 \cdot 10^{-6} \) |
\(a_{391}= -0.27908204 \pm 2.8 \cdot 10^{-7} \) | \(a_{392}= +0.03790249 \pm 5.4 \cdot 10^{-7} \) | \(a_{393}= +0.03429852 \pm 3.4 \cdot 10^{-7} \) |
\(a_{394}= +1.33732839 \pm 3.3 \cdot 10^{-7} \) | \(a_{395}= -0.99337376 \pm 2.6 \cdot 10^{-7} \) | \(a_{396}= +0.25443501 \pm 9.0 \cdot 10^{-7} \) |
\(a_{397}= -0.90351845 \pm 3.1 \cdot 10^{-7} \) | \(a_{398}= +0.52876781 \pm 3.5 \cdot 10^{-7} \) | \(a_{399}= +0.03217490 \pm 4.0 \cdot 10^{-7} \) |
\(a_{400}= -1.63641330 \pm 3.0 \cdot 10^{-7} \) | \(a_{401}= +1.75509544 \pm 3.7 \cdot 10^{-7} \) | \(a_{402}= +0.92644570 \pm 8.7 \cdot 10^{-7} \) |
\(a_{403}= -1.54627704 \pm 3.6 \cdot 10^{-7} \) | \(a_{404}= -0.27499058 \pm 5.4 \cdot 10^{-7} \) | \(a_{405}= +0.17257822 \pm 3.7 \cdot 10^{-7} \) |
\(a_{406}= +0.49426485 \pm 8.7 \cdot 10^{-7} \) | \(a_{407}= -1.32072492 \pm 3.2 \cdot 10^{-7} \) | \(a_{408}= -0.09794405 \pm 9.4 \cdot 10^{-7} \) |
\(a_{409}= +1.08826254 \pm 3.4 \cdot 10^{-7} \) | \(a_{410}= -1.30829661 \pm 3.3 \cdot 10^{-7} \) | \(a_{411}= -0.08792374 \pm 3.4 \cdot 10^{-7} \) |
\(a_{412}= -1.26501113 \pm 4.9 \cdot 10^{-7} \) | \(a_{413}= +0.15343604 \pm 2.9 \cdot 10^{-7} \) | \(a_{414}= -0.19532609 \pm 8.6 \cdot 10^{-7} \) |
\(a_{415}= -2.25527062 \pm 3.6 \cdot 10^{-7} \) | \(a_{416}= +1.59541214 \pm 3.7 \cdot 10^{-7} \) | \(a_{417}= -0.52406504 \pm 4.3 \cdot 10^{-7} \) |
\(a_{418}= +0.18830871 \pm 5.5 \cdot 10^{-7} \) | \(a_{419}= -0.94390076 \pm 4.0 \cdot 10^{-7} \) | \(a_{420}= -0.27195427 \pm 9.1 \cdot 10^{-7} \) |
\(a_{421}= +1.33819795 \pm 3.4 \cdot 10^{-7} \) | \(a_{422}= -0.05460002 \pm 4.0 \cdot 10^{-7} \) | \(a_{423}= -0.42561435 \pm 3.8 \cdot 10^{-7} \) |
\(a_{424}= -0.31677271 \pm 6.3 \cdot 10^{-7} \) | \(a_{425}= -0.90311630 \pm 3.5 \cdot 10^{-7} \) | \(a_{426}= -0.83466861 \pm 9.7 \cdot 10^{-7} \) |
\(a_{427}= -0.23102520 \pm 3.8 \cdot 10^{-7} \) | \(a_{428}= -0.30626203 \pm 6.5 \cdot 10^{-7} \) | \(a_{429}= +0.67922355 \pm 7.7 \cdot 10^{-7} \) |
\(a_{430}= -0.91029375 \pm 5.1 \cdot 10^{-7} \) | \(a_{431}= +1.58796015 \pm 3.9 \cdot 10^{-7} \) | \(a_{432}= -0.22296685 \pm 4.5 \cdot 10^{-7} \) |
\(a_{433}= -0.16988873 \pm 2.8 \cdot 10^{-7} \) | \(a_{434}= -0.63446624 \pm 8.9 \cdot 10^{-7} \) | \(a_{435}= +0.87348232 \pm 7.8 \cdot 10^{-7} \) |
\(a_{436}= -0.15692295 \pm 4.6 \cdot 10^{-7} \) | \(a_{437}= -0.06435553 \pm 3.3 \cdot 10^{-7} \) | \(a_{438}= -0.11237198 \pm 8.3 \cdot 10^{-7} \) |
\(a_{439}= +1.69623676 \pm 3.9 \cdot 10^{-7} \) | \(a_{440}= +0.39202650 \pm 4.2 \cdot 10^{-7} \) | \(a_{441}= +0.04761905 \pm 8.8 \cdot 10^{-7} \) |
\(a_{442}= +1.06156755 \pm 2.8 \cdot 10^{-7} \) | \(a_{443}= -0.26583578 \pm 3.8 \cdot 10^{-7} \) | \(a_{444}= -0.64314320 \pm 9.1 \cdot 10^{-7} \) |
\(a_{445}= +2.99581873 \pm 3.9 \cdot 10^{-7} \) | \(a_{446}= -0.78988296 \pm 4.5 \cdot 10^{-7} \) | \(a_{447}= +0.63686495 \pm 3.6 \cdot 10^{-7} \) |
\(a_{448}= +0.21672907 \pm 3.6 \cdot 10^{-7} \) | \(a_{449}= -0.79015860 \pm 3.5 \cdot 10^{-7} \) | \(a_{450}= -0.63208001 \pm 8.4 \cdot 10^{-7} \) |
\(a_{451}= +0.59686528 \pm 2.5 \cdot 10^{-7} \) | \(a_{452}= -0.21428185 \pm 4.5 \cdot 10^{-7} \) | \(a_{453}= +0.10900395 \pm 4.1 \cdot 10^{-7} \) |
\(a_{454}= -1.61339860 \pm 3.7 \cdot 10^{-7} \) | \(a_{455}= -0.72599185 \pm 7.8 \cdot 10^{-7} \) | \(a_{456}= -0.02258562 \pm 9.3 \cdot 10^{-7} \) |
\(a_{457}= +1.48268577 \pm 4.2 \cdot 10^{-7} \) | \(a_{458}= +0.10997258 \pm 4.7 \cdot 10^{-7} \) | \(a_{459}= -0.12305265 \pm 4.1 \cdot 10^{-7} \) |
\(a_{460}= +0.54395698 \pm 5.9 \cdot 10^{-7} \) | \(a_{461}= -1.16732374 \pm 4.8 \cdot 10^{-7} \) | \(a_{462}= +0.27869806 \pm 8.2 \cdot 10^{-7} \) |
\(a_{463}= -0.28636666 \pm 3.6 \cdot 10^{-7} \) | \(a_{464}= -1.12851786 \pm 3.7 \cdot 10^{-7} \) | \(a_{465}= -1.12125116 \pm 8.0 \cdot 10^{-7} \) |
\(a_{466}= +0.97510762 \pm 3.8 \cdot 10^{-7} \) | \(a_{467}= -0.33352353 \pm 4.2 \cdot 10^{-7} \) | \(a_{468}= +0.33075624 \pm 9.6 \cdot 10^{-7} \) |
\(a_{469}= +0.45176136 \pm 4.0 \cdot 10^{-7} \) | \(a_{470}= +2.66249324 \pm 5.0 \cdot 10^{-7} \) | \(a_{471}= +0.64652444 \pm 3.9 \cdot 10^{-7} \) |
\(a_{472}= -0.10770658 \pm 4.0 \cdot 10^{-7} \) | \(a_{473}= +0.41529018 \pm 3.4 \cdot 10^{-7} \) | \(a_{474}= +0.49573098 \pm 7.3 \cdot 10^{-7} \) |
\(a_{475}= -0.20825605 \pm 3.6 \cdot 10^{-7} \) | \(a_{476}= +0.19391030 \pm 9.4 \cdot 10^{-7} \) | \(a_{477}= -0.39797948 \pm 4.2 \cdot 10^{-7} \) |
\(a_{478}= -2.01575470 \pm 4.1 \cdot 10^{-7} \) | \(a_{479}= +0.78944722 \pm 4.0 \cdot 10^{-7} \) | \(a_{480}= +1.15688047 \pm 7.8 \cdot 10^{-7} \) |
\(a_{481}= -1.71689425 \pm 3.7 \cdot 10^{-7} \) | \(a_{482}= -1.24282720 \pm 3.7 \cdot 10^{-7} \) | \(a_{483}= -0.09524658 \pm 4.0 \cdot 10^{-7} \) |
\(a_{484}= -0.07623625 \pm 5.0 \cdot 10^{-7} \) | \(a_{485}= +0.75531828 \pm 2.2 \cdot 10^{-7} \) | \(a_{486}= -0.08612304 \pm 4.7 \cdot 10^{-7} \) |
\(a_{487}= +0.69282500 \pm 3.4 \cdot 10^{-7} \) | \(a_{488}= +0.16217138 \pm 4.4 \cdot 10^{-7} \) | \(a_{489}= -0.59248234 \pm 3.8 \cdot 10^{-7} \) |
\(a_{490}= -0.29788796 \pm 8.3 \cdot 10^{-7} \) | \(a_{491}= -0.24177840 \pm 3.0 \cdot 10^{-7} \) | \(a_{492}= +0.29065087 \pm 8.5 \cdot 10^{-7} \) |
\(a_{493}= -0.62281507 \pm 4.3 \cdot 10^{-7} \) | \(a_{494}= +0.24479446 \pm 3.7 \cdot 10^{-7} \) | \(a_{495}= +0.49252506 \pm 7.3 \cdot 10^{-7} \) |
\(a_{496}= +1.44862917 \pm 4.5 \cdot 10^{-7} \) | \(a_{497}= -0.40700823 \pm 5.1 \cdot 10^{-7} \) | \(a_{498}= +1.12546511 \pm 8.2 \cdot 10^{-7} \) |
\(a_{499}= +0.19085831 \pm 3.7 \cdot 10^{-7} \) | \(a_{500}= +0.51400704 \pm 4.7 \cdot 10^{-7} \) | \(a_{501}= -0.06041478 \pm 3.1 \cdot 10^{-7} \) |
\(a_{502}= -1.43628028 \pm 3.9 \cdot 10^{-7} \) | \(a_{503}= +0.99219551 \pm 4.1 \cdot 10^{-7} \) | \(a_{504}= -0.03342686 \pm 5.4 \cdot 10^{-7} \) |
\(a_{505}= -0.53231570 \pm 2.8 \cdot 10^{-7} \) | \(a_{506}= -0.55744576 \pm 3.7 \cdot 10^{-7} \) | \(a_{507}= +0.30561559 \pm 4.7 \cdot 10^{-7} \) |
\(a_{508}= +0.56118877 \pm 7.5 \cdot 10^{-7} \) | \(a_{509}= +0.03311656 \pm 3.9 \cdot 10^{-7} \) | \(a_{510}= +0.76977399 \pm 1.2 \cdot 10^{-6} \) |
\(a_{511}= -0.05479578 \pm 3.7 \cdot 10^{-7} \) | \(a_{512}= -1.18727259 \pm 4.9 \cdot 10^{-7} \) | \(a_{513}= -0.02837559 \pm 4.0 \cdot 10^{-7} \) |
\(a_{514}= +1.24068445 \pm 3.5 \cdot 10^{-7} \) | \(a_{515}= -2.44875768 \pm 3.5 \cdot 10^{-7} \) | \(a_{516}= +0.20223065 \pm 9.6 \cdot 10^{-7} \) |
\(a_{517}= -1.21467086 \pm 3.0 \cdot 10^{-7} \) | \(a_{518}= -0.70447365 \pm 8.3 \cdot 10^{-7} \) | \(a_{519}= +0.79579035 \pm 4.6 \cdot 10^{-7} \) |
\(a_{520}= +0.50962015 \pm 5.1 \cdot 10^{-7} \) | \(a_{521}= -1.35689947 \pm 4.3 \cdot 10^{-7} \) | \(a_{522}= -0.43590063 \pm 8.7 \cdot 10^{-7} \) |
\(a_{523}= -0.27490178 \pm 3.9 \cdot 10^{-7} \) | \(a_{524}= +0.04766648 \pm 5.5 \cdot 10^{-7} \) | \(a_{525}= -0.30822025 \pm 3.8 \cdot 10^{-7} \) |
\(a_{526}= +0.72835624 \pm 4.3 \cdot 10^{-7} \) | \(a_{527}= +0.79948055 \pm 4.7 \cdot 10^{-7} \) | \(a_{528}= -0.63633038 \pm 8.1 \cdot 10^{-7} \) |
\(a_{529}= -0.80948988 \pm 3.7 \cdot 10^{-7} \) | \(a_{530}= +2.48961924 \pm 4.5 \cdot 10^{-7} \) | \(a_{531}= -0.13531787 \pm 2.9 \cdot 10^{-7} \) |
\(a_{532}= +0.04471516 \pm 9.3 \cdot 10^{-7} \) | \(a_{533}= +0.77590311 \pm 4.1 \cdot 10^{-7} \) | \(a_{534}= -1.49502655 \pm 8.0 \cdot 10^{-7} \) |
\(a_{535}= -0.59284973 \pm 3.4 \cdot 10^{-7} \) | \(a_{536}= -0.31712021 \pm 4.9 \cdot 10^{-7} \) | \(a_{537}= -0.50701193 \pm 3.5 \cdot 10^{-7} \) |
\(a_{538}= +0.33856410 \pm 3.9 \cdot 10^{-7} \) | \(a_{539}= +0.13590113 \pm 3.6 \cdot 10^{-7} \) | \(a_{540}= +0.23984112 \pm 9.1 \cdot 10^{-7} \) |
\(a_{541}= +1.12785530 \pm 3.7 \cdot 10^{-7} \) | \(a_{542}= +1.93274799 \pm 4.3 \cdot 10^{-7} \) | \(a_{543}= -0.19461903 \pm 3.2 \cdot 10^{-7} \) |
\(a_{544}= -0.82488516 \pm 3.1 \cdot 10^{-7} \) | \(a_{545}= -0.30376514 \pm 3.0 \cdot 10^{-7} \) | \(a_{546}= +0.36229732 \pm 8.8 \cdot 10^{-7} \) |
\(a_{547}= -0.13575478 \pm 3.1 \cdot 10^{-7} \) | \(a_{548}= -0.12219229 \pm 4.7 \cdot 10^{-7} \) | \(a_{549}= +0.20374507 \pm 3.8 \cdot 10^{-7} \) |
\(a_{550}= -1.80390809 \pm 4.0 \cdot 10^{-7} \) | \(a_{551}= -0.14361939 \pm 3.3 \cdot 10^{-7} \) | \(a_{552}= +0.06685967 \pm 9.3 \cdot 10^{-7} \) |
\(a_{553}= +0.24173257 \pm 2.7 \cdot 10^{-7} \) | \(a_{554}= -2.56504225 \pm 4.1 \cdot 10^{-7} \) | \(a_{555}= -1.24497074 \pm 7.4 \cdot 10^{-7} \) |
\(a_{556}= -0.72832103 \pm 5.6 \cdot 10^{-7} \) | \(a_{557}= -1.17724638 \pm 3.9 \cdot 10^{-7} \) | \(a_{558}= +0.55954662 \pm 8.9 \cdot 10^{-7} \) |
\(a_{559}= +0.53986210 \pm 4.5 \cdot 10^{-7} \) | \(a_{560}= +0.68014524 \pm 8.1 \cdot 10^{-7} \) | \(a_{561}= -0.35118288 \pm 7.6 \cdot 10^{-7} \) |
\(a_{562}= +1.38071380 \pm 5.1 \cdot 10^{-7} \) | \(a_{563}= +1.17221472 \pm 2.8 \cdot 10^{-7} \) | \(a_{564}= -0.59149888 \pm 9.2 \cdot 10^{-7} \) |
\(a_{565}= -0.41479819 \pm 2.5 \cdot 10^{-7} \) | \(a_{566}= -0.55169123 \pm 3.7 \cdot 10^{-7} \) | \(a_{567}= -0.04199605 \pm 1.0 \cdot 10^{-6} \) |
\(a_{568}= +0.28570513 \pm 5.6 \cdot 10^{-7} \) | \(a_{569}= +0.48263870 \pm 3.6 \cdot 10^{-7} \) | \(a_{570}= +0.17750770 \pm 1.2 \cdot 10^{-6} \) |
\(a_{571}= +1.00833692 \pm 3.8 \cdot 10^{-7} \) | \(a_{572}= +0.94395306 \pm 3.8 \cdot 10^{-7} \) | \(a_{573}= +0.52733676 \pm 4.4 \cdot 10^{-7} \) |
\(a_{574}= +0.31836748 \pm 7.7 \cdot 10^{-7} \) | \(a_{575}= +0.61649540 \pm 4.1 \cdot 10^{-7} \) | \(a_{576}= -0.19113708 \pm 3.6 \cdot 10^{-7} \) |
\(a_{577}= +0.39979035 \pm 4.5 \cdot 10^{-7} \) | \(a_{578}= +0.79365696 \pm 4.6 \cdot 10^{-7} \) | \(a_{579}= -0.26821789 \pm 4.3 \cdot 10^{-7} \) |
\(a_{580}= +1.21392478 \pm 3.9 \cdot 10^{-7} \) | \(a_{581}= +0.54880890 \pm 3.6 \cdot 10^{-7} \) | \(a_{582}= -0.37693232 \pm 7.1 \cdot 10^{-7} \) |
\(a_{583}= -1.13580305 \pm 4.4 \cdot 10^{-7} \) | \(a_{584}= +0.03846467 \pm 5.3 \cdot 10^{-7} \) | \(a_{585}= +0.64026463 \pm 7.8 \cdot 10^{-7} \) |
\(a_{586}= -1.73559312 \pm 4.4 \cdot 10^{-7} \) | \(a_{587}= +1.18851145 \pm 4.9 \cdot 10^{-7} \) | \(a_{588}= +0.06617872 \pm 5.4 \cdot 10^{-7} \) |
\(a_{589}= +0.18435794 \pm 4.0 \cdot 10^{-7} \) | \(a_{590}= +0.84650083 \pm 3.5 \cdot 10^{-7} \) | \(a_{591}= -0.57511532 \pm 3.2 \cdot 10^{-7} \) |
\(a_{592}= +1.60847185 \pm 4.3 \cdot 10^{-7} \) | \(a_{593}= +0.15861879 \pm 2.8 \cdot 10^{-7} \) | \(a_{594}= -0.24578859 \pm 8.2 \cdot 10^{-7} \) |
\(a_{595}= +0.37536376 \pm 7.7 \cdot 10^{-7} \) | \(a_{596}= +0.88508506 \pm 5.8 \cdot 10^{-7} \) | \(a_{597}= -0.22739551 \pm 2.7 \cdot 10^{-7} \) |
\(a_{598}= -0.72465917 \pm 4.2 \cdot 10^{-7} \) | \(a_{599}= +0.38389273 \pm 4.6 \cdot 10^{-7} \) | \(a_{600}= +0.21635952 \pm 9.1 \cdot 10^{-7} \) |
\(a_{601}= +0.78171868 \pm 4.3 \cdot 10^{-7} \) | \(a_{602}= +0.22151546 \pm 8.8 \cdot 10^{-7} \) | \(a_{603}= -0.39841607 \pm 4.0 \cdot 10^{-7} \) |
\(a_{604}= +0.15148857 \pm 6.2 \cdot 10^{-7} \) | \(a_{605}= -0.14757506 \pm 2.1 \cdot 10^{-7} \) | \(a_{606}= +0.26564562 \pm 9.0 \cdot 10^{-7} \) |
\(a_{607}= +1.79211005 \pm 4.5 \cdot 10^{-7} \) | \(a_{608}= -0.19021617 \pm 2.7 \cdot 10^{-7} \) | \(a_{609}= -0.21255758 \pm 4.1 \cdot 10^{-7} \) |
\(a_{610}= -1.27455731 \pm 3.5 \cdot 10^{-7} \) | \(a_{611}= -1.57902785 \pm 3.3 \cdot 10^{-7} \) | \(a_{612}= -0.17101281 \pm 9.4 \cdot 10^{-7} \) |
\(a_{613}= -1.66971520 \pm 3.6 \cdot 10^{-7} \) | \(a_{614}= -1.30124478 \pm 5.4 \cdot 10^{-7} \) | \(a_{615}= +0.56263026 \pm 6.8 \cdot 10^{-7} \) |
\(a_{616}= -0.09539770 \pm 9.0 \cdot 10^{-7} \) | \(a_{617}= +0.36882782 \pm 3.9 \cdot 10^{-7} \) | \(a_{618}= +1.22202245 \pm 8.1 \cdot 10^{-7} \) |
\(a_{619}= -0.06028449 \pm 3.3 \cdot 10^{-7} \) | \(a_{620}= -1.55826231 \pm 5.3 \cdot 10^{-7} \) | \(a_{621}= +0.08399959 \pm 4.0 \cdot 10^{-7} \) |
\(a_{622}= -0.19244993 \pm 4.4 \cdot 10^{-7} \) | \(a_{623}= -0.72901760 \pm 3.4 \cdot 10^{-7} \) | \(a_{624}= -0.82720629 \pm 8.6 \cdot 10^{-7} \) |
\(a_{625}= -0.41744847 \pm 3.3 \cdot 10^{-7} \) | \(a_{626}= -2.05041930 \pm 5.3 \cdot 10^{-7} \) | \(a_{627}= -0.08098177 \pm 7.5 \cdot 10^{-7} \) |
\(a_{628}= +0.89850936 \pm 4.7 \cdot 10^{-7} \) | \(a_{629}= +0.88769575 \pm 3.1 \cdot 10^{-7} \) | \(a_{630}= +0.26271249 \pm 8.3 \cdot 10^{-7} \) |
\(a_{631}= -1.45998392 \pm 4.0 \cdot 10^{-7} \) | \(a_{632}= -0.16968756 \pm 3.5 \cdot 10^{-7} \) | \(a_{633}= +0.02348062 \pm 4.0 \cdot 10^{-7} \) |
\(a_{634}= +0.19856442 \pm 5.3 \cdot 10^{-7} \) | \(a_{635}= +1.08632665 \pm 3.9 \cdot 10^{-7} \) | \(a_{636}= -0.55309323 \pm 9.6 \cdot 10^{-7} \) |
\(a_{637}= +0.17666651 \pm 4.2 \cdot 10^{-7} \) | \(a_{638}= -1.24402711 \pm 4.3 \cdot 10^{-7} \) | \(a_{639}= +0.35894752 \pm 5.1 \cdot 10^{-7} \) |
\(a_{640}= -0.80808964 \pm 3.4 \cdot 10^{-7} \) | \(a_{641}= +0.59470766 \pm 3.7 \cdot 10^{-7} \) | \(a_{642}= +0.29585438 \pm 9.1 \cdot 10^{-7} \) |
\(a_{643}= -0.90073337 \pm 3.7 \cdot 10^{-7} \) | \(a_{644}= -0.13236923 \pm 9.3 \cdot 10^{-7} \) | \(a_{645}= +0.39146996 \pm 7.9 \cdot 10^{-7} \) |
\(a_{646}= -0.12656749 \pm 5.0 \cdot 10^{-7} \) | \(a_{647}= +1.28527958 \pm 5.2 \cdot 10^{-7} \) | \(a_{648}= +0.02947972 \pm 5.4 \cdot 10^{-7} \) |
\(a_{649}= -0.38618686 \pm 2.7 \cdot 10^{-7} \) | \(a_{650}= -2.34501476 \pm 3.7 \cdot 10^{-7} \) | \(a_{651}= +0.27285090 \pm 4.3 \cdot 10^{-7} \) |
\(a_{652}= -0.82340418 \pm 3.4 \cdot 10^{-7} \) | \(a_{653}= +0.92635213 \pm 3.9 \cdot 10^{-7} \) | \(a_{654}= +0.15159026 \pm 8.9 \cdot 10^{-7} \) |
\(a_{655}= +0.09227085 \pm 2.8 \cdot 10^{-7} \) | \(a_{656}= -0.72690459 \pm 3.1 \cdot 10^{-7} \) | \(a_{657}= +0.04832534 \pm 3.7 \cdot 10^{-7} \) |
\(a_{658}= -0.64790450 \pm 8.4 \cdot 10^{-7} \) | \(a_{659}= -0.00629473 \pm 4.5 \cdot 10^{-7} \) | \(a_{660}= +0.68448825 \pm 1.2 \cdot 10^{-6} \) |
\(a_{661}= -0.15686973 \pm 3.8 \cdot 10^{-7} \) | \(a_{662}= +1.87016473 \pm 3.7 \cdot 10^{-7} \) | \(a_{663}= -0.45652494 \pm 8.2 \cdot 10^{-7} \) |
\(a_{664}= -0.38524410 \pm 3.9 \cdot 10^{-7} \) | \(a_{665}= +0.08655782 \pm 7.6 \cdot 10^{-7} \) | \(a_{666}= +0.62128736 \pm 8.3 \cdot 10^{-7} \) |
\(a_{667}= +0.42515303 \pm 2.4 \cdot 10^{-7} \) | \(a_{668}= -0.08396163 \pm 5.5 \cdot 10^{-7} \) | \(a_{669}= +0.33968754 \pm 4.6 \cdot 10^{-7} \) |
\(a_{670}= +2.49235036 \pm 4.1 \cdot 10^{-7} \) | \(a_{671}= +0.58147289 \pm 3.4 \cdot 10^{-7} \) | \(a_{672}= -0.28152112 \pm 4.2 \cdot 10^{-7} \) |
\(a_{673}= -0.03318382 \pm 3.2 \cdot 10^{-7} \) | \(a_{674}= +2.40748525 \pm 5.0 \cdot 10^{-7} \) | \(a_{675}= +0.27182471 \pm 3.8 \cdot 10^{-7} \) |
\(a_{676}= +0.42473022 \pm 5.6 \cdot 10^{-7} \) | \(a_{677}= -1.00910858 \pm 4.8 \cdot 10^{-7} \) | \(a_{678}= +0.20699994 \pm 7.4 \cdot 10^{-7} \) |
\(a_{679}= -0.18380295 \pm 2.5 \cdot 10^{-7} \) | \(a_{680}= -0.26349185 \pm 2.3 \cdot 10^{-7} \) | \(a_{681}= +0.69383875 \pm 4.2 \cdot 10^{-7} \) |
\(a_{682}= +1.59690334 \pm 4.1 \cdot 10^{-7} \) | \(a_{683}= +0.12073023 \pm 3.3 \cdot 10^{-7} \) | \(a_{684}= -0.03943507 \pm 9.3 \cdot 10^{-7} \) |
\(a_{685}= -0.23653492 \pm 2.0 \cdot 10^{-7} \) | \(a_{686}= +0.07248956 \pm 4.7 \cdot 10^{-7} \) | \(a_{687}= -0.04729348 \pm 5.1 \cdot 10^{-7} \) |
\(a_{688}= -0.50576964 \pm 5.0 \cdot 10^{-7} \) | \(a_{689}= -1.47650257 \pm 4.5 \cdot 10^{-7} \) | \(a_{690}= -0.52547177 \pm 1.2 \cdot 10^{-6} \) |
\(a_{691}= +1.20449320 \pm 4.8 \cdot 10^{-7} \) | \(a_{692}= +1.10595212 \pm 6.1 \cdot 10^{-7} \) | \(a_{693}= -0.11985353 \pm 3.6 \cdot 10^{-7} \) |
\(a_{694}= +2.29013400 \pm 4.1 \cdot 10^{-7} \) | \(a_{695}= -1.40985456 \pm 4.3 \cdot 10^{-7} \) | \(a_{696}= +0.14920777 \pm 9.5 \cdot 10^{-7} \) |
\(a_{697}= -0.40116967 \pm 1.9 \cdot 10^{-7} \) | \(a_{698}= -0.30473053 \pm 4.0 \cdot 10^{-7} \) | \(a_{699}= -0.41934303 \pm 3.7 \cdot 10^{-7} \) |
\(a_{700}= -0.42835005 \pm 9.1 \cdot 10^{-7} \) | \(a_{701}= -1.72038885 \pm 3.8 \cdot 10^{-7} \) | \(a_{702}= -0.31951620 \pm 8.8 \cdot 10^{-7} \) |
\(a_{703}= +0.20470012 \pm 2.6 \cdot 10^{-7} \) | \(a_{704}= -0.54549062 \pm 3.9 \cdot 10^{-7} \) | \(a_{705}= -1.14499974 \pm 7.5 \cdot 10^{-7} \) |
\(a_{706}= +0.68827424 \pm 3.3 \cdot 10^{-7} \) | \(a_{707}= +0.12953638 \pm 4.3 \cdot 10^{-7} \) | \(a_{708}= -0.18805843 \pm 8.3 \cdot 10^{-7} \) |
\(a_{709}= -1.23036514 \pm 3.8 \cdot 10^{-7} \) | \(a_{710}= -2.24544904 \pm 4.8 \cdot 10^{-7} \) | \(a_{711}= -0.21318809 \pm 2.7 \cdot 10^{-7} \) |
\(a_{712}= +0.51174412 \pm 3.8 \cdot 10^{-7} \) | \(a_{713}= -0.54575040 \pm 3.7 \cdot 10^{-7} \) | \(a_{714}= -0.18732068 \pm 8.7 \cdot 10^{-7} \) |
\(a_{715}= +1.82726637 \pm 3.6 \cdot 10^{-7} \) | \(a_{716}= -0.70462142 \pm 4.6 \cdot 10^{-7} \) | \(a_{717}= +0.86687116 \pm 3.4 \cdot 10^{-7} \) |
\(a_{718}= +0.13339945 \pm 3.7 \cdot 10^{-7} \) | \(a_{719}= +1.02492654 \pm 3.2 \cdot 10^{-7} \) | \(a_{720}= -0.59983172 \pm 8.1 \cdot 10^{-7} \) |
\(a_{721}= +0.59589301 \pm 3.5 \cdot 10^{-7} \) | \(a_{722}= +1.31333925 \pm 5.0 \cdot 10^{-7} \) | \(a_{723}= +0.53447528 \pm 4.0 \cdot 10^{-7} \) |
\(a_{724}= -0.27047240 \pm 4.9 \cdot 10^{-7} \) | \(a_{725}= +1.37580557 \pm 3.1 \cdot 10^{-7} \) | \(a_{726}= +0.07364552 \pm 8.0 \cdot 10^{-7} \) |
\(a_{727}= -1.65675818 \pm 4.5 \cdot 10^{-7} \) | \(a_{728}= -0.12401353 \pm 9.5 \cdot 10^{-7} \) | \(a_{729}= +0.03703704 \pm 1.3 \cdot 10^{-6} \) |
\(a_{730}= -0.30230627 \pm 4.5 \cdot 10^{-7} \) | \(a_{731}= -0.27912802 \pm 3.7 \cdot 10^{-7} \) | \(a_{732}= +0.28315535 \pm 9.2 \cdot 10^{-7} \) |
\(a_{733}= +0.70016404 \pm 3.6 \cdot 10^{-7} \) | \(a_{734}= +1.54170315 \pm 3.8 \cdot 10^{-7} \) | \(a_{735}= +0.12810611 \pm 3.7 \cdot 10^{-7} \) |
\(a_{736}= +0.56309237 \pm 3.9 \cdot 10^{-7} \) | \(a_{737}= -1.13704903 \pm 3.4 \cdot 10^{-7} \) | \(a_{738}= -0.28077373 \pm 7.7 \cdot 10^{-7} \) |
\(a_{739}= -1.94738852 \pm 4.3 \cdot 10^{-7} \) | \(a_{740}= -1.73020198 \pm 5.2 \cdot 10^{-7} \) | \(a_{741}= -0.10527335 \pm 8.1 \cdot 10^{-7} \) |
\(a_{742}= -0.60583647 \pm 8.8 \cdot 10^{-7} \) | \(a_{743}= +1.27649437 \pm 3.8 \cdot 10^{-7} \) | \(a_{744}= -0.19153151 \pm 9.7 \cdot 10^{-7} \) |
\(a_{745}= +1.71331207 \pm 3.5 \cdot 10^{-7} \) | \(a_{746}= +1.56889089 \pm 6.2 \cdot 10^{-7} \) | \(a_{747}= -0.48400396 \pm 3.6 \cdot 10^{-7} \) |
\(a_{748}= -0.48805750 \pm 4.4 \cdot 10^{-7} \) | \(a_{749}= +0.14426704 \pm 4.5 \cdot 10^{-7} \) | \(a_{750}= -0.49653962 \pm 8.0 \cdot 10^{-7} \) |
\(a_{751}= +0.08212326 \pm 4.1 \cdot 10^{-7} \) | \(a_{752}= +1.47931175 \pm 5.9 \cdot 10^{-7} \) | \(a_{753}= +0.61766938 \pm 3.3 \cdot 10^{-7} \) |
\(a_{754}= -1.61718989 \pm 3.8 \cdot 10^{-7} \) | \(a_{755}= +0.29324549 \pm 4.2 \cdot 10^{-7} \) | \(a_{756}= -0.05836415 \pm 5.4 \cdot 10^{-7} \) |
\(a_{757}= -0.50297079 \pm 3.8 \cdot 10^{-7} \) | \(a_{758}= -1.44914672 \pm 3.3 \cdot 10^{-7} \) | \(a_{759}= +0.23972840 \pm 7.5 \cdot 10^{-7} \) |
\(a_{760}= -0.06076047 \pm 3.3 \cdot 10^{-7} \) | \(a_{761}= -1.48660360 \pm 4.5 \cdot 10^{-7} \) | \(a_{762}= -0.54211798 \pm 9.2 \cdot 10^{-7} \) |
\(a_{763}= +0.07391974 \pm 4.2 \cdot 10^{-7} \) | \(a_{764}= +0.73286790 \pm 7.1 \cdot 10^{-7} \) | \(a_{765}= -0.33103972 \pm 7.7 \cdot 10^{-7} \) |
\(a_{766}= -1.79174453 \pm 5.7 \cdot 10^{-7} \) | \(a_{767}= -0.50202884 \pm 3.5 \cdot 10^{-7} \) | \(a_{768}= +0.73432634 \pm 4.3 \cdot 10^{-7} \) |
\(a_{769}= +0.55029750 \pm 4.5 \cdot 10^{-7} \) | \(a_{770}= +0.74976139 \pm 1.1 \cdot 10^{-6} \) | \(a_{771}= -0.53355380 \pm 3.6 \cdot 10^{-7} \) |
\(a_{772}= -0.37275665 \pm 5.6 \cdot 10^{-7} \) | \(a_{773}= +1.63013851 \pm 3.6 \cdot 10^{-7} \) | \(a_{774}= -0.19535827 \pm 8.8 \cdot 10^{-7} \) |
\(a_{775}= -1.76606161 \pm 3.7 \cdot 10^{-7} \) | \(a_{776}= +0.12902306 \pm 3.1 \cdot 10^{-7} \) | \(a_{777}= +0.30295745 \pm 3.7 \cdot 10^{-7} \) |
\(a_{778}= -1.87341160 \pm 3.9 \cdot 10^{-7} \) | \(a_{779}= -0.09250859 \pm 2.5 \cdot 10^{-7} \) | \(a_{780}= +0.88980977 \pm 1.3 \cdot 10^{-6} \) |
\(a_{781}= +1.02440881 \pm 3.2 \cdot 10^{-7} \) | \(a_{782}= +0.37467472 \pm 2.9 \cdot 10^{-7} \) | \(a_{783}= +0.18745817 \pm 4.1 \cdot 10^{-7} \) |
\(a_{784}= -0.16550997 \pm 4.5 \cdot 10^{-7} \) | \(a_{785}= +1.73929829 \pm 4.4 \cdot 10^{-7} \) | \(a_{786}= -0.04604663 \pm 8.0 \cdot 10^{-7} \) |
\(a_{787}= +0.09212103 \pm 3.0 \cdot 10^{-7} \) | \(a_{788}= -0.79926832 \pm 3.3 \cdot 10^{-7} \) | \(a_{789}= -0.31322810 \pm 3.9 \cdot 10^{-7} \) |
\(a_{790}= +1.33362946 \pm 3.2 \cdot 10^{-7} \) | \(a_{791}= +0.10093908 \pm 2.8 \cdot 10^{-7} \) | \(a_{792}= +0.08413286 \pm 9.0 \cdot 10^{-7} \) |
\(a_{793}= +0.75589356 \pm 4.2 \cdot 10^{-7} \) | \(a_{794}= +1.21299644 \pm 5.2 \cdot 10^{-7} \) | \(a_{795}= -1.07065563 \pm 7.9 \cdot 10^{-7} \) |
\(a_{796}= -0.31602362 \pm 4.4 \cdot 10^{-7} \) | \(a_{797}= -1.00005560 \pm 3.4 \cdot 10^{-7} \) | \(a_{798}= -0.04319562 \pm 8.6 \cdot 10^{-7} \) |
\(a_{799}= +0.81641389 \pm 3.5 \cdot 10^{-7} \) | \(a_{800}= +1.82218067 \pm 3.1 \cdot 10^{-7} \) | \(a_{801}= +0.64293309 \pm 3.4 \cdot 10^{-7} \) |
\(a_{802}= -2.35626013 \pm 4.4 \cdot 10^{-7} \) | \(a_{803}= +0.13791683 \pm 3.0 \cdot 10^{-7} \) | \(a_{804}= -0.55369997 \pm 9.4 \cdot 10^{-7} \) |
\(a_{805}= -0.25623503 \pm 7.6 \cdot 10^{-7} \) | \(a_{806}= +2.07591614 \pm 4.5 \cdot 10^{-7} \) | \(a_{807}= -0.14559879 \pm 3.6 \cdot 10^{-7} \) |
\(a_{808}= -0.09092988 \pm 5.2 \cdot 10^{-7} \) | \(a_{809}= -1.83563526 \pm 4.1 \cdot 10^{-7} \) | \(a_{810}= -0.23169064 \pm 8.3 \cdot 10^{-7} \) |
\(a_{811}= -0.07148282 \pm 3.9 \cdot 10^{-7} \) | \(a_{812}= -0.29540257 \pm 9.5 \cdot 10^{-7} \) | \(a_{813}= -0.83117430 \pm 3.4 \cdot 10^{-7} \) |
\(a_{814}= +1.77310670 \pm 3.7 \cdot 10^{-7} \) | \(a_{815}= -1.59391271 \pm 3.1 \cdot 10^{-7} \) | \(a_{816}= +0.42769525 \pm 8.5 \cdot 10^{-7} \) |
\(a_{817}= -0.06436613 \pm 4.1 \cdot 10^{-7} \) | \(a_{818}= -1.46102006 \pm 3.2 \cdot 10^{-7} \) | \(a_{819}= -0.15580522 \pm 4.2 \cdot 10^{-7} \) |
\(a_{820}= +0.78191717 \pm 3.9 \cdot 10^{-7} \) | \(a_{821}= +0.04891605 \pm 3.2 \cdot 10^{-7} \) | \(a_{822}= +0.11803985 \pm 8.0 \cdot 10^{-7} \) |
\(a_{823}= -0.17897305 \pm 3.1 \cdot 10^{-7} \) | \(a_{824}= -0.41829545 \pm 5.0 \cdot 10^{-7} \) | \(a_{825}= +0.77576696 \pm 7.3 \cdot 10^{-7} \) |
\(a_{826}= -0.20599177 \pm 7.5 \cdot 10^{-7} \) | \(a_{827}= -1.69776246 \pm 4.5 \cdot 10^{-7} \) | \(a_{828}= +0.11673869 \pm 9.3 \cdot 10^{-7} \) |
\(a_{829}= +1.58090840 \pm 3.1 \cdot 10^{-7} \) | \(a_{830}= +3.02775801 \pm 4.4 \cdot 10^{-7} \) | \(a_{831}= +1.10309114 \pm 3.3 \cdot 10^{-7} \) |
\(a_{832}= -0.70911792 \pm 2.5 \cdot 10^{-7} \) | \(a_{833}= -0.09134291 \pm 4.1 \cdot 10^{-7} \) | \(a_{834}= +0.70357061 \pm 8.9 \cdot 10^{-7} \) |
\(a_{835}= -0.16252956 \pm 2.8 \cdot 10^{-7} \) | \(a_{836}= -0.11254467 \pm 5.9 \cdot 10^{-7} \) | \(a_{837}= -0.24063187 \pm 4.3 \cdot 10^{-7} \) |
\(a_{838}= +1.26721071 \pm 4.3 \cdot 10^{-7} \) | \(a_{839}= +0.31524927 \pm 4.2 \cdot 10^{-7} \) | \(a_{840}= -0.08992588 \pm 9.0 \cdot 10^{-7} \) |
\(a_{841}= -0.05120475 \pm 4.8 \cdot 10^{-7} \) | \(a_{842}= -1.79656469 \pm 3.6 \cdot 10^{-7} \) | \(a_{843}= -0.59377313 \pm 4.7 \cdot 10^{-7} \) |
\(a_{844}= +0.03263227 \pm 4.5 \cdot 10^{-7} \) | \(a_{845}= +0.82217569 \pm 3.9 \cdot 10^{-7} \) | \(a_{846}= +0.57139806 \pm 8.4 \cdot 10^{-7} \) |
\(a_{847}= +0.03591166 \pm 3.4 \cdot 10^{-7} \) | \(a_{848}= +1.38326098 \pm 5.5 \cdot 10^{-7} \) | \(a_{849}= +0.23725368 \pm 3.3 \cdot 10^{-7} \) |
\(a_{850}= +1.21245653 \pm 3.4 \cdot 10^{-7} \) | \(a_{851}= -0.60596885 \pm 3.8 \cdot 10^{-7} \) | \(a_{852}= +0.49884843 \pm 1.0 \cdot 10^{-6} \) |
\(a_{853}= +1.43913802 \pm 4.1 \cdot 10^{-7} \) | \(a_{854}= +0.31015719 \pm 8.4 \cdot 10^{-7} \) | \(a_{855}= -0.07633682 \pm 7.6 \cdot 10^{-7} \) |
\(a_{856}= -0.10127027 \pm 6.2 \cdot 10^{-7} \) | \(a_{857}= -1.01054217 \pm 3.5 \cdot 10^{-7} \) | \(a_{858}= -0.91187484 \pm 1.2 \cdot 10^{-6} \) |
\(a_{859}= -1.14735223 \pm 3.9 \cdot 10^{-7} \) | \(a_{860}= +0.54404659 \pm 6.3 \cdot 10^{-7} \) | \(a_{861}= -0.13691328 \pm 3.1 \cdot 10^{-7} \) |
\(a_{862}= -2.13187677 \pm 4.1 \cdot 10^{-7} \) | \(a_{863}= +1.06331805 \pm 4.2 \cdot 10^{-7} \) | \(a_{864}= +0.24827829 \pm 4.2 \cdot 10^{-7} \) |
\(a_{865}= +2.14085765 \pm 4.3 \cdot 10^{-7} \) | \(a_{866}= +0.22807992 \pm 3.6 \cdot 10^{-7} \) | \(a_{867}= -0.34131054 \pm 3.8 \cdot 10^{-7} \) |
\(a_{868}= +0.37919539 \pm 9.7 \cdot 10^{-7} \) | \(a_{869}= -0.60842252 \pm 2.4 \cdot 10^{-7} \) | \(a_{870}= -1.17267217 \pm 1.2 \cdot 10^{-6} \) |
\(a_{871}= -1.47812229 \pm 4.5 \cdot 10^{-7} \) | \(a_{872}= -0.05188900 \pm 5.6 \cdot 10^{-7} \) | \(a_{873}= +0.16209897 \pm 2.5 \cdot 10^{-7} \) |
\(a_{874}= +0.08639893 \pm 3.9 \cdot 10^{-7} \) | \(a_{875}= -0.24212688 \pm 3.4 \cdot 10^{-7} \) | \(a_{876}= +0.06716029 \pm 9.1 \cdot 10^{-7} \) |
\(a_{877}= -0.05649010 \pm 4.1 \cdot 10^{-7} \) | \(a_{878}= -2.27724087 \pm 5.3 \cdot 10^{-7} \) | \(a_{879}= +0.74638825 \pm 3.6 \cdot 10^{-7} \) |
\(a_{880}= -1.71187393 \pm 4.2 \cdot 10^{-7} \) | \(a_{881}= +0.24207901 \pm 3.6 \cdot 10^{-7} \) | \(a_{882}= -0.06392978 \pm 4.7 \cdot 10^{-7} \) |
\(a_{883}= +1.22448227 \pm 4.1 \cdot 10^{-7} \) | \(a_{884}= -0.63445696 \pm 2.3 \cdot 10^{-7} \) | \(a_{885}= -0.36403594 \pm 6.5 \cdot 10^{-7} \) |
\(a_{886}= +0.35689128 \pm 5.0 \cdot 10^{-7} \) | \(a_{887}= +0.83453402 \pm 3.2 \cdot 10^{-7} \) | \(a_{888}= -0.21266522 \pm 9.1 \cdot 10^{-7} \) |
\(a_{889}= -0.26435219 \pm 4.6 \cdot 10^{-7} \) | \(a_{890}= -4.02196261 \pm 5.1 \cdot 10^{-7} \) | \(a_{891}= +0.10570088 \pm 3.6 \cdot 10^{-7} \) |
\(a_{892}= +0.47208182 \pm 5.6 \cdot 10^{-7} \) | \(a_{893}= +0.18826272 \pm 2.8 \cdot 10^{-7} \) | \(a_{894}= -0.85500735 \pm 8.2 \cdot 10^{-7} \) |
\(a_{895}= -1.36397781 \pm 2.9 \cdot 10^{-7} \) | \(a_{896}= +0.19664460 \pm 4.2 \cdot 10^{-7} \) | \(a_{897}= +0.31163819 \pm 8.1 \cdot 10^{-7} \) |
\(a_{898}= +1.06080795 \pm 4.2 \cdot 10^{-7} \) | \(a_{899}= -1.21792708 \pm 4.6 \cdot 10^{-7} \) | \(a_{900}= +0.37776924 \pm 9.1 \cdot 10^{-7} \) |
\(a_{901}= +0.76340465 \pm 4.2 \cdot 10^{-7} \) | \(a_{902}= -0.80130677 \pm 2.9 \cdot 10^{-7} \) | \(a_{903}= -0.09526227 \pm 4.2 \cdot 10^{-7} \) |
\(a_{904}= -0.07085560 \pm 4.4 \cdot 10^{-7} \) | \(a_{905}= -0.52356960 \pm 2.5 \cdot 10^{-7} \) | \(a_{906}= -0.14634056 \pm 8.7 \cdot 10^{-7} \) |
\(a_{907}= +1.26219688 \pm 3.4 \cdot 10^{-7} \) | \(a_{908}= +0.96426457 \pm 4.6 \cdot 10^{-7} \) | \(a_{909}= -0.11424035 \pm 4.3 \cdot 10^{-7} \) |
\(a_{910}= +0.97466247 \pm 1.2 \cdot 10^{-6} \) | \(a_{911}= +1.08618477 \pm 3.0 \cdot 10^{-7} \) | \(a_{912}= +0.09862531 \pm 8.4 \cdot 10^{-7} \) |
\(a_{913}= -1.38131034 \pm 3.5 \cdot 10^{-7} \) | \(a_{914}= -1.99054325 \pm 5.6 \cdot 10^{-7} \) | \(a_{915}= +0.54812075 \pm 7.5 \cdot 10^{-7} \) |
\(a_{916}= -0.06572627 \pm 6.2 \cdot 10^{-7} \) | \(a_{917}= -0.02245365 \pm 3.4 \cdot 10^{-7} \) | \(a_{918}= +0.16520131 \pm 8.7 \cdot 10^{-7} \) |
\(a_{919}= -0.12978209 \pm 4.8 \cdot 10^{-7} \) | \(a_{920}= +0.17986777 \pm 5.2 \cdot 10^{-7} \) | \(a_{921}= +0.55959764 \pm 5.0 \cdot 10^{-7} \) |
\(a_{922}= +1.56716172 \pm 4.8 \cdot 10^{-7} \) | \(a_{923}= +1.33169411 \pm 4.2 \cdot 10^{-7} \) | \(a_{924}= -0.16656681 \pm 9.0 \cdot 10^{-7} \) |
\(a_{925}= -1.96093000 \pm 3.9 \cdot 10^{-7} \) | \(a_{926}= +0.38445451 \pm 4.0 \cdot 10^{-7} \) | \(a_{927}= -0.52552824 \pm 3.5 \cdot 10^{-7} \) |
\(a_{928}= +1.25662840 \pm 4.1 \cdot 10^{-7} \) | \(a_{929}= +1.50622145 \pm 4.8 \cdot 10^{-7} \) | \(a_{930}= +1.50530812 \pm 1.2 \cdot 10^{-6} \) |
\(a_{931}= -0.02106341 \pm 4.0 \cdot 10^{-7} \) | \(a_{932}= -0.58278328 \pm 4.1 \cdot 10^{-7} \) | \(a_{933}= +0.08276270 \pm 4.6 \cdot 10^{-7} \) |
\(a_{934}= +0.44776380 \pm 3.7 \cdot 10^{-7} \) | \(a_{935}= -0.94476209 \pm 2.6 \cdot 10^{-7} \) | \(a_{936}= +0.10936966 \pm 9.5 \cdot 10^{-7} \) |
\(a_{937}= -1.34491108 \pm 3.7 \cdot 10^{-7} \) | \(a_{938}= -0.60650108 \pm 8.7 \cdot 10^{-7} \) | \(a_{939}= +0.88177860 \pm 5.0 \cdot 10^{-7} \) |
\(a_{940}= -1.59126697 \pm 5.6 \cdot 10^{-7} \) | \(a_{941}= +0.57897113 \pm 4.0 \cdot 10^{-7} \) | \(a_{942}= -0.86797546 \pm 8.5 \cdot 10^{-7} \) |
\(a_{943}= +0.27385095 \pm 4.0 \cdot 10^{-7} \) | \(a_{944}= +0.47032556 \pm 3.3 \cdot 10^{-7} \) | \(a_{945}= -0.11297897 \pm 3.7 \cdot 10^{-7} \) |
\(a_{946}= -0.55753760 \pm 4.7 \cdot 10^{-7} \) | \(a_{947}= +1.58689633 \pm 3.6 \cdot 10^{-7} \) | \(a_{948}= -0.29627881 \pm 8.0 \cdot 10^{-7} \) |
\(a_{949}= +0.17928685 \pm 4.1 \cdot 10^{-7} \) | \(a_{950}= +0.27958903 \pm 3.7 \cdot 10^{-7} \) | \(a_{951}= -0.08539222 \pm 4.6 \cdot 10^{-7} \) |
\(a_{952}= +0.06411943 \pm 9.4 \cdot 10^{-7} \) | \(a_{953}= +1.35914830 \pm 4.4 \cdot 10^{-7} \) | \(a_{954}= +0.53429755 \pm 8.8 \cdot 10^{-7} \) |
\(a_{955}= +1.41865622 \pm 4.6 \cdot 10^{-7} \) | \(a_{956}= +1.20473691 \pm 4.3 \cdot 10^{-7} \) | \(a_{957}= +0.53499130 \pm 7.7 \cdot 10^{-7} \) |
\(a_{958}= -1.05985292 \pm 4.4 \cdot 10^{-7} \) | \(a_{959}= +0.05755960 \pm 3.4 \cdot 10^{-7} \) | \(a_{960}= -0.51420236 \pm 7.3 \cdot 10^{-7} \) |
\(a_{961}= +0.56339988 \pm 3.1 \cdot 10^{-7} \) | \(a_{962}= +2.30497407 \pm 4.1 \cdot 10^{-7} \) | \(a_{963}= -0.12723157 \pm 4.5 \cdot 10^{-7} \) |
\(a_{964}= +0.74278869 \pm 4.8 \cdot 10^{-7} \) | \(a_{965}= -0.72156734 \pm 3.5 \cdot 10^{-7} \) | \(a_{966}= +0.12787095 \pm 8.6 \cdot 10^{-7} \) |
\(a_{967}= -0.95542594 \pm 3.1 \cdot 10^{-7} \) | \(a_{968}= -0.02520869 \pm 4.4 \cdot 10^{-7} \) | \(a_{969}= +0.05443009 \pm 8.0 \cdot 10^{-7} \) |
\(a_{970}= -1.01403395 \pm 2.5 \cdot 10^{-7} \) | \(a_{971}= -0.50856907 \pm 2.7 \cdot 10^{-7} \) | \(a_{972}= +0.05147234 \pm 5.4 \cdot 10^{-7} \) |
\(a_{973}= +0.34308110 \pm 4.3 \cdot 10^{-7} \) | \(a_{974}= -0.93013513 \pm 3.6 \cdot 10^{-7} \) | \(a_{975}= +1.00846878 \pm 7.9 \cdot 10^{-7} \) |
\(a_{976}= -0.70815865 \pm 3.1 \cdot 10^{-7} \) | \(a_{977}= +0.21598409 \pm 3.6 \cdot 10^{-7} \) | \(a_{978}= +0.79542256 \pm 8.5 \cdot 10^{-7} \) |
\(a_{979}= +1.83488196 \pm 2.8 \cdot 10^{-7} \) | \(a_{980}= +0.17803586 \pm 9.1 \cdot 10^{-7} \) | \(a_{981}= -0.06519108 \pm 4.2 \cdot 10^{-7} \) |
\(a_{982}= +0.32459364 \pm 3.0 \cdot 10^{-7} \) | \(a_{983}= -0.09607472 \pm 3.9 \cdot 10^{-7} \) | \(a_{984}= +0.09610820 \pm 8.5 \cdot 10^{-7} \) |
\(a_{985}= -1.54719148 \pm 2.8 \cdot 10^{-7} \) | \(a_{986}= +0.83614503 \pm 3.1 \cdot 10^{-7} \) | \(a_{987}= +0.27863000 \pm 3.8 \cdot 10^{-7} \) |
\(a_{988}= -0.14630397 \pm 3.8 \cdot 10^{-7} \) | \(a_{989}= +0.19054151 \pm 4.8 \cdot 10^{-7} \) | \(a_{990}= -0.66122739 \pm 1.1 \cdot 10^{-6} \) |
\(a_{991}= -0.93698566 \pm 4.0 \cdot 10^{-7} \) | \(a_{992}= -1.61307908 \pm 4.0 \cdot 10^{-7} \) | \(a_{993}= -0.80426049 \pm 3.6 \cdot 10^{-7} \) |
\(a_{994}= +0.54641887 \pm 9.7 \cdot 10^{-7} \) | \(a_{995}= -0.61174582 \pm 2.9 \cdot 10^{-7} \) | \(a_{996}= -0.67264601 \pm 9.0 \cdot 10^{-7} \) |
\(a_{997}= -0.65243174 \pm 4.2 \cdot 10^{-7} \) | \(a_{998}= -0.25623213 \pm 4.4 \cdot 10^{-7} \) | \(a_{999}= -0.26718335 \pm 3.7 \cdot 10^{-7} \) |
\(a_{1000}= +0.16996436 \pm 4.6 \cdot 10^{-7} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000