Maass form invariants
Level: | \( 21 = 3 \cdot 7 \) |
Weight: | \( 0 \) |
Character: | 21.1 |
Symmetry: | even |
Fricke sign: | $+1$ |
Spectral parameter: | \(8.84290412194447989199750287474 \pm 2 \cdot 10^{-9}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +0.33735720 \pm 5.1 \cdot 10^{-8} \) | \(a_{3}= +0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= -0.88619012 \pm 4.9 \cdot 10^{-8} \) | \(a_{5}= +1.83774686 \pm 4.7 \cdot 10^{-8} \) | \(a_{6}= +0.19477327 \pm 6.2 \cdot 10^{-8} \) |
\(a_{7}= +0.37796447 \pm 1.0 \cdot 10^{-8} \) | \(a_{8}= -0.63631982 \pm 3.9 \cdot 10^{-8} \) | \(a_{9}= +0.33333333 \pm 4.2 \cdot 10^{-8} \) |
\(a_{10}= +0.61997714 \pm 5.5 \cdot 10^{-8} \) | \(a_{11}= +1.17992931 \pm 3.8 \cdot 10^{-8} \) | \(a_{12}= -0.51164210 \pm 6.0 \cdot 10^{-8} \) |
\(a_{13}= -0.82800991 \pm 3.6 \cdot 10^{-8} \) | \(a_{14}= +0.12750904 \pm 6.2 \cdot 10^{-8} \) | \(a_{15}= +1.06102364 \pm 5.7 \cdot 10^{-8} \) |
\(a_{16}= +0.67152304 \pm 4.0 \cdot 10^{-8} \) | \(a_{17}= +0.38091271 \pm 4.1 \cdot 10^{-8} \) | \(a_{18}= +0.11245240 \pm 6.2 \cdot 10^{-8} \) |
\(a_{19}= -0.59621833 \pm 3.1 \cdot 10^{-8} \) | \(a_{20}= -1.62859310 \pm 5.1 \cdot 10^{-8} \) | \(a_{21}= +0.21821789 \pm 1.0 \cdot 10^{-8} \) |
\(a_{22}= +0.39805765 \pm 4.6 \cdot 10^{-8} \) | \(a_{23}= -0.65673033 \pm 4.5 \cdot 10^{-8} \) | \(a_{24}= -0.36737942 \pm 5.0 \cdot 10^{-8} \) |
\(a_{25}= +2.37731351 \pm 4.0 \cdot 10^{-8} \) | \(a_{26}= -0.27933511 \pm 3.9 \cdot 10^{-8} \) | \(a_{27}= +0.19245009 \pm 9.4 \cdot 10^{-8} \) |
\(a_{28}= -0.33494838 \pm 6.0 \cdot 10^{-8} \) | \(a_{29}= -0.39657525 \pm 3.9 \cdot 10^{-8} \) | \(a_{30}= +0.35794397 \pm 1.0 \cdot 10^{-7} \) |
\(a_{31}= +1.36187498 \pm 3.4 \cdot 10^{-8} \) | \(a_{32}= +0.86286296 \pm 4.6 \cdot 10^{-8} \) | \(a_{33}= +0.68123251 \pm 4.9 \cdot 10^{-8} \) |
\(a_{34}= +0.12850365 \pm 5.2 \cdot 10^{-8} \) | \(a_{35}= +0.69460302 \pm 5.7 \cdot 10^{-8} \) | \(a_{36}= -0.29539671 \pm 6.0 \cdot 10^{-8} \) |
\(a_{37}= +0.92274722 \pm 3.6 \cdot 10^{-8} \) | \(a_{38}= -0.20113855 \pm 4.4 \cdot 10^{-8} \) | \(a_{39}= -0.47805175 \pm 4.6 \cdot 10^{-8} \) |
\(a_{40}= -1.16939475 \pm 4.0 \cdot 10^{-8} \) | \(a_{41}= +1.40806085 \pm 3.8 \cdot 10^{-8} \) | \(a_{42}= +0.07361738 \pm 6.2 \cdot 10^{-8} \) |
\(a_{43}= +1.57064151 \pm 3.9 \cdot 10^{-8} \) | \(a_{44}= -1.04564170 \pm 4.2 \cdot 10^{-8} \) | \(a_{45}= +0.61258229 \pm 5.7 \cdot 10^{-8} \) |
\(a_{46}= -0.22155271 \pm 6.5 \cdot 10^{-8} \) | \(a_{47}= +0.15755537 \pm 3.9 \cdot 10^{-8} \) | \(a_{48}= +0.38770401 \pm 5.0 \cdot 10^{-8} \) |
\(a_{49}= +0.14285714 \pm 1.5 \cdot 10^{-7} \) | \(a_{50}= +0.80200383 \pm 4.5 \cdot 10^{-8} \) | \(a_{51}= +0.21992006 \pm 5.2 \cdot 10^{-8} \) |
\(a_{52}= +0.73377420 \pm 3.9 \cdot 10^{-8} \) | \(a_{53}= -1.81235988 \pm 2.4 \cdot 10^{-8} \) | \(a_{54}= +0.06492442 \pm 6.2 \cdot 10^{-8} \) |
\(a_{55}= +2.16841139 \pm 4.5 \cdot 10^{-8} \) | \(a_{56}= -0.24050629 \pm 5.0 \cdot 10^{-8} \) | \(a_{57}= -0.34422681 \pm 4.1 \cdot 10^{-8} \) |
\(a_{58}= -0.13378752 \pm 5.0 \cdot 10^{-8} \) | \(a_{59}= +0.61690625 \pm 4.2 \cdot 10^{-8} \) | \(a_{60}= -0.94026867 \pm 1.0 \cdot 10^{-7} \) |
\(a_{61}= +0.75907177 \pm 4.3 \cdot 10^{-8} \) | \(a_{62}= +0.45943833 \pm 2.6 \cdot 10^{-8} \) | \(a_{63}= +0.12598816 \pm 1.8 \cdot 10^{-7} \) |
\(a_{64}= -0.38043001 \pm 4.9 \cdot 10^{-8} \) | \(a_{65}= -1.52167262 \pm 4.3 \cdot 10^{-8} \) | \(a_{66}= +0.22981869 \pm 1.0 \cdot 10^{-7} \) |
\(a_{67}= -0.89786289 \pm 4.8 \cdot 10^{-8} \) | \(a_{68}= -0.33756108 \pm 4.9 \cdot 10^{-8} \) | \(a_{69}= -0.37916343 \pm 5.6 \cdot 10^{-8} \) |
\(a_{70}= +0.23432933 \pm 1.0 \cdot 10^{-7} \) | \(a_{71}= +0.89460882 \pm 3.5 \cdot 10^{-8} \) | \(a_{72}= -0.21210661 \pm 5.0 \cdot 10^{-8} \) |
\(a_{73}= -0.60047512 \pm 2.7 \cdot 10^{-8} \) | \(a_{74}= +0.31129542 \pm 4.6 \cdot 10^{-8} \) | \(a_{75}= +1.37254259 \pm 5.0 \cdot 10^{-8} \) |
\(a_{76}= +0.52836279 \pm 4.6 \cdot 10^{-8} \) | \(a_{77}= +0.44597136 \pm 4.9 \cdot 10^{-8} \) | \(a_{78}= -0.16127420 \pm 9.8 \cdot 10^{-8} \) |
\(a_{79}= -0.61769510 \pm 4.9 \cdot 10^{-8} \) | \(a_{80}= +1.23408936 \pm 4.7 \cdot 10^{-8} \) | \(a_{81}= +0.11111111 \pm 2.3 \cdot 10^{-7} \) |
\(a_{82}= +0.47501947 \pm 4.2 \cdot 10^{-8} \) | \(a_{83}= -1.44304784 \pm 3.6 \cdot 10^{-8} \) | \(a_{84}= -0.19338254 \pm 6.0 \cdot 10^{-8} \) |
\(a_{85}= +0.70002114 \pm 4.0 \cdot 10^{-8} \) | \(a_{86}= +0.52986723 \pm 3.5 \cdot 10^{-8} \) | \(a_{87}= -0.22896283 \pm 4.9 \cdot 10^{-8} \) |
\(a_{88}= -0.75081241 \pm 3.4 \cdot 10^{-8} \) | \(a_{89}= -0.31479346 \pm 3.0 \cdot 10^{-8} \) | \(a_{90}= +0.20665905 \pm 1.0 \cdot 10^{-7} \) |
\(a_{91}= -0.31295833 \pm 4.6 \cdot 10^{-8} \) | \(a_{92}= +0.58198793 \pm 5.8 \cdot 10^{-8} \) | \(a_{93}= +0.78627889 \pm 4.4 \cdot 10^{-8} \) |
\(a_{94}= +0.05315244 \pm 5.3 \cdot 10^{-8} \) | \(a_{95}= -1.09569836 \pm 3.5 \cdot 10^{-8} \) | \(a_{96}= +0.49817416 \pm 5.6 \cdot 10^{-8} \) |
\(a_{97}= -1.13081079 \pm 2.7 \cdot 10^{-8} \) | \(a_{98}= +0.04819389 \pm 6.2 \cdot 10^{-8} \) | \(a_{99}= +0.39330977 \pm 4.9 \cdot 10^{-8} \) |
\(a_{100}= -2.10675174 \pm 3.4 \cdot 10^{-8} \) | \(a_{101}= +0.25562932 \pm 3.5 \cdot 10^{-8} \) | \(a_{102}= +0.07419162 \pm 1.0 \cdot 10^{-7} \) |
\(a_{103}= -0.23349464 \pm 4.7 \cdot 10^{-8} \) | \(a_{104}= +0.52687912 \pm 3.3 \cdot 10^{-8} \) | \(a_{105}= +0.40102924 \pm 5.7 \cdot 10^{-8} \) |
\(a_{106}= -0.61141266 \pm 3.3 \cdot 10^{-8} \) | \(a_{107}= -0.69294242 \pm 3.5 \cdot 10^{-8} \) | \(a_{108}= -0.17054737 \pm 6.0 \cdot 10^{-8} \) |
\(a_{109}= +1.40408478 \pm 3.4 \cdot 10^{-8} \) | \(a_{110}= +0.73152920 \pm 5.1 \cdot 10^{-8} \) | \(a_{111}= +0.53274836 \pm 4.6 \cdot 10^{-8} \) |
\(a_{112}= +0.25381185 \pm 5.0 \cdot 10^{-8} \) | \(a_{113}= +0.82175293 \pm 4.6 \cdot 10^{-8} \) | \(a_{114}= -0.11612739 \pm 9.3 \cdot 10^{-8} \) |
\(a_{115}= -1.20690409 \pm 4.4 \cdot 10^{-8} \) | \(a_{116}= +0.35144107 \pm 4.8 \cdot 10^{-8} \) | \(a_{117}= -0.27600330 \pm 4.6 \cdot 10^{-8} \) |
\(a_{118}= +0.20811777 \pm 4.3 \cdot 10^{-8} \) | \(a_{119}= +0.14397147 \pm 5.2 \cdot 10^{-8} \) | \(a_{120}= -0.67515037 \pm 9.7 \cdot 10^{-8} \) |
\(a_{121}= +0.39223318 \pm 3.4 \cdot 10^{-8} \) | \(a_{122}= +0.25607833 \pm 6.2 \cdot 10^{-8} \) | \(a_{123}= +0.81294431 \pm 4.9 \cdot 10^{-8} \) |
\(a_{124}= -1.20688015 \pm 2.9 \cdot 10^{-8} \) | \(a_{125}= +2.53115357 \pm 3.6 \cdot 10^{-8} \) | \(a_{126}= +0.04250301 \pm 6.2 \cdot 10^{-8} \) |
\(a_{127}= -1.36834711 \pm 2.9 \cdot 10^{-8} \) | \(a_{128}= -0.99120376 \pm 5.1 \cdot 10^{-8} \) | \(a_{129}= +0.90681030 \pm 5.0 \cdot 10^{-8} \) |
\(a_{130}= -0.51334722 \pm 4.5 \cdot 10^{-8} \) | \(a_{131}= +1.37561587 \pm 4.3 \cdot 10^{-8} \) | \(a_{132}= -0.60370152 \pm 9.8 \cdot 10^{-8} \) |
\(a_{133}= -0.22534935 \pm 4.1 \cdot 10^{-8} \) | \(a_{134}= -0.30290051 \pm 6.6 \cdot 10^{-8} \) | \(a_{135}= +0.35367455 \pm 5.7 \cdot 10^{-8} \) |
\(a_{136}= -0.24238231 \pm 4.0 \cdot 10^{-8} \) | \(a_{137}= -0.79857447 \pm 4.0 \cdot 10^{-8} \) | \(a_{138}= -0.12791351 \pm 1.0 \cdot 10^{-7} \) |
\(a_{139}= -0.15187100 \pm 2.9 \cdot 10^{-8} \) | \(a_{140}= -0.61555033 \pm 1.0 \cdot 10^{-7} \) | \(a_{141}= +0.09096463 \pm 5.0 \cdot 10^{-8} \) |
\(a_{142}= +0.30180273 \pm 4.4 \cdot 10^{-8} \) | \(a_{143}= -0.97699317 \pm 3.2 \cdot 10^{-8} \) | \(a_{144}= +0.22384101 \pm 5.0 \cdot 10^{-8} \) |
\(a_{145}= -0.72880493 \pm 4.8 \cdot 10^{-8} \) | \(a_{146}= -0.20257461 \pm 3.1 \cdot 10^{-8} \) | \(a_{147}= +0.08247861 \pm 3.5 \cdot 10^{-7} \) |
\(a_{148}= -0.81772947 \pm 4.1 \cdot 10^{-8} \) | \(a_{149}= -1.56809781 \pm 4.2 \cdot 10^{-8} \) | \(a_{150}= +0.46303713 \pm 1.0 \cdot 10^{-7} \) |
\(a_{151}= +1.53496439 \pm 3.6 \cdot 10^{-8} \) | \(a_{152}= +0.37938554 \pm 3.8 \cdot 10^{-8} \) | \(a_{153}= +0.12697090 \pm 5.2 \cdot 10^{-8} \) |
\(a_{154}= +0.15045165 \pm 1.0 \cdot 10^{-7} \) | \(a_{155}= +2.50278146 \pm 4.3 \cdot 10^{-8} \) | \(a_{156}= +0.42364473 \pm 9.6 \cdot 10^{-8} \) |
\(a_{157}= +0.86522531 \pm 4.9 \cdot 10^{-8} \) | \(a_{158}= -0.20838389 \pm 6.5 \cdot 10^{-8} \) | \(a_{159}= -1.04636647 \pm 3.5 \cdot 10^{-8} \) |
\(a_{160}= +1.58572369 \pm 4.7 \cdot 10^{-8} \) | \(a_{161}= -0.24822073 \pm 5.6 \cdot 10^{-8} \) | \(a_{162}= +0.03748413 \pm 6.2 \cdot 10^{-8} \) |
\(a_{163}= -1.36937611 \pm 3.6 \cdot 10^{-8} \) | \(a_{164}= -1.24780961 \pm 3.0 \cdot 10^{-8} \) | \(a_{165}= +1.25193290 \pm 9.6 \cdot 10^{-8} \) |
\(a_{166}= -0.48682258 \pm 5.4 \cdot 10^{-8} \) | \(a_{167}= -0.43198714 \pm 5.1 \cdot 10^{-8} \) | \(a_{168}= -0.13885637 \pm 5.0 \cdot 10^{-8} \) |
\(a_{169}= -0.31439958 \pm 2.4 \cdot 10^{-8} \) | \(a_{170}= +0.23615717 \pm 4.9 \cdot 10^{-8} \) | \(a_{171}= -0.19873944 \pm 4.1 \cdot 10^{-8} \) |
\(a_{172}= -1.39188698 \pm 3.9 \cdot 10^{-8} \) | \(a_{173}= +1.30760874 \pm 4.1 \cdot 10^{-8} \) | \(a_{174}= -0.07724226 \pm 1.0 \cdot 10^{-7} \) |
\(a_{175}= +0.89854005 \pm 5.0 \cdot 10^{-8} \) | \(a_{176}= +0.79234972 \pm 3.8 \cdot 10^{-8} \) | \(a_{177}= +0.35617099 \pm 5.2 \cdot 10^{-8} \) |
\(a_{178}= -0.10619784 \pm 3.9 \cdot 10^{-8} \) | \(a_{179}= +0.34161175 \pm 3.7 \cdot 10^{-8} \) | \(a_{180}= -0.54286437 \pm 1.0 \cdot 10^{-7} \) |
\(a_{181}= -1.41668259 \pm 3.7 \cdot 10^{-8} \) | \(a_{182}= -0.10557875 \pm 9.8 \cdot 10^{-8} \) | \(a_{183}= +0.43825029 \pm 5.4 \cdot 10^{-8} \) |
\(a_{184}= +0.41789052 \pm 3.5 \cdot 10^{-8} \) | \(a_{185}= +1.69577581 \pm 3.8 \cdot 10^{-8} \) | \(a_{186}= +0.26525685 \pm 9.6 \cdot 10^{-8} \) |
\(a_{187}= +0.44945008 \pm 4.1 \cdot 10^{-8} \) | \(a_{188}= -0.13962401 \pm 4.3 \cdot 10^{-8} \) | \(a_{189}= +0.07273930 \pm 4.4 \cdot 10^{-7} \) |
\(a_{190}= -0.36964173 \pm 4.8 \cdot 10^{-8} \) | \(a_{191}= -0.93178364 \pm 3.6 \cdot 10^{-8} \) | \(a_{192}= -0.21964137 \pm 5.9 \cdot 10^{-8} \) |
\(a_{193}= -0.29328439 \pm 4.5 \cdot 10^{-8} \) | \(a_{194}= -0.38148716 \pm 2.9 \cdot 10^{-8} \) | \(a_{195}= -0.87853810 \pm 9.4 \cdot 10^{-8} \) |
\(a_{196}= -0.12659859 \pm 6.0 \cdot 10^{-8} \) | \(a_{197}= -0.43199156 \pm 4.4 \cdot 10^{-8} \) | \(a_{198}= +0.13268588 \pm 1.0 \cdot 10^{-7} \) |
\(a_{199}= -1.06793686 \pm 3.8 \cdot 10^{-8} \) | \(a_{200}= -1.51273171 \pm 2.7 \cdot 10^{-8} \) | \(a_{201}= -0.51838138 \pm 5.9 \cdot 10^{-8} \) |
\(a_{202}= +0.08623839 \pm 3.8 \cdot 10^{-8} \) | \(a_{203}= -0.14989136 \pm 4.9 \cdot 10^{-8} \) | \(a_{204}= -0.19489098 \pm 1.0 \cdot 10^{-7} \) |
\(a_{205}= +2.58765940 \pm 4.7 \cdot 10^{-8} \) | \(a_{206}= -0.07877110 \pm 5.7 \cdot 10^{-8} \) | \(a_{207}= -0.21891011 \pm 5.6 \cdot 10^{-8} \) |
\(a_{208}= -0.55602774 \pm 3.3 \cdot 10^{-8} \) | \(a_{209}= -0.70349548 \pm 2.5 \cdot 10^{-8} \) | \(a_{210}= +0.13529010 \pm 1.0 \cdot 10^{-7} \) |
\(a_{211}= -0.42535019 \pm 4.3 \cdot 10^{-8} \) | \(a_{212}= +1.60609542 \pm 3.2 \cdot 10^{-8} \) | \(a_{213}= +0.51650265 \pm 4.5 \cdot 10^{-8} \) |
\(a_{214}= -0.23376911 \pm 4.5 \cdot 10^{-8} \) | \(a_{215}= +2.88644149 \pm 4.8 \cdot 10^{-8} \) | \(a_{216}= -0.12245981 \pm 5.0 \cdot 10^{-8} \) |
\(a_{217}= +0.51474036 \pm 4.4 \cdot 10^{-8} \) | \(a_{218}= +0.47367811 \pm 4.1 \cdot 10^{-8} \) | \(a_{219}= -0.34668447 \pm 3.7 \cdot 10^{-8} \) |
\(a_{220}= -1.92162474 \pm 5.0 \cdot 10^{-8} \) | \(a_{221}= -0.31539950 \pm 3.8 \cdot 10^{-8} \) | \(a_{222}= +0.17972650 \pm 9.8 \cdot 10^{-8} \) |
\(a_{223}= +0.14482860 \pm 3.5 \cdot 10^{-8} \) | \(a_{224}= +0.32613154 \pm 5.6 \cdot 10^{-8} \) | \(a_{225}= +0.79243784 \pm 5.0 \cdot 10^{-8} \) |
\(a_{226}= +0.27722427 \pm 6.6 \cdot 10^{-8} \) | \(a_{227}= -0.78405035 \pm 3.7 \cdot 10^{-8} \) | \(a_{228}= +0.30505040 \pm 9.1 \cdot 10^{-8} \) |
\(a_{229}= +1.21112477 \pm 4.4 \cdot 10^{-8} \) | \(a_{230}= -0.40715779 \pm 5.8 \cdot 10^{-8} \) | \(a_{231}= +0.25748169 \pm 4.9 \cdot 10^{-8} \) |
\(a_{232}= +0.25234869 \pm 4.2 \cdot 10^{-8} \) | \(a_{233}= -1.55265167 \pm 3.4 \cdot 10^{-8} \) | \(a_{234}= -0.09311170 \pm 9.8 \cdot 10^{-8} \) |
\(a_{235}= +0.28954688 \pm 5.7 \cdot 10^{-8} \) | \(a_{236}= -0.54669622 \pm 4.0 \cdot 10^{-8} \) | \(a_{237}= -0.35662643 \pm 6.0 \cdot 10^{-8} \) |
\(a_{238}= +0.04856981 \pm 1.0 \cdot 10^{-7} \) | \(a_{239}= +0.92441894 \pm 4.1 \cdot 10^{-8} \) | \(a_{240}= +0.71250182 \pm 9.7 \cdot 10^{-8} \) |
\(a_{241}= +0.32152763 \pm 3.3 \cdot 10^{-8} \) | \(a_{242}= +0.13232269 \pm 3.7 \cdot 10^{-8} \) | \(a_{243}= +0.06415003 \pm 5.5 \cdot 10^{-7} \) |
\(a_{244}= -0.67268190 \pm 6.0 \cdot 10^{-8} \) | \(a_{245}= +0.26253527 \pm 5.7 \cdot 10^{-8} \) | \(a_{246}= +0.27425262 \pm 1.0 \cdot 10^{-7} \) |
\(a_{247}= +0.49367469 \pm 2.6 \cdot 10^{-8} \) | \(a_{248}= -0.86658804 \pm 2.9 \cdot 10^{-8} \) | \(a_{249}= -0.83314406 \pm 4.6 \cdot 10^{-8} \) |
\(a_{250}= +0.85390289 \pm 4.9 \cdot 10^{-8} \) | \(a_{251}= -1.72752644 \pm 4.2 \cdot 10^{-8} \) | \(a_{252}= -0.11164946 \pm 6.0 \cdot 10^{-8} \) |
\(a_{253}= -0.77489536 \pm 4.0 \cdot 10^{-8} \) | \(a_{254}= -0.46162175 \pm 3.0 \cdot 10^{-8} \) | \(a_{255}= +0.40415739 \pm 9.9 \cdot 10^{-8} \) |
\(a_{256}= +0.04604028 \pm 5.0 \cdot 10^{-8} \) | \(a_{257}= -0.64737726 \pm 3.1 \cdot 10^{-8} \) | \(a_{258}= +0.30591899 \pm 1.0 \cdot 10^{-7} \) |
\(a_{259}= +0.34876567 \pm 4.6 \cdot 10^{-8} \) | \(a_{260}= +1.34849124 \pm 4.2 \cdot 10^{-8} \) | \(a_{261}= -0.13219175 \pm 4.9 \cdot 10^{-8} \) |
\(a_{262}= +0.46407392 \pm 5.7 \cdot 10^{-8} \) | \(a_{263}= -1.54121880 \pm 4.9 \cdot 10^{-8} \) | \(a_{264}= -0.43348175 \pm 8.9 \cdot 10^{-8} \) |
\(a_{265}= -3.33065868 \pm 3.1 \cdot 10^{-8} \) | \(a_{266}= -0.07602323 \pm 9.3 \cdot 10^{-8} \) | \(a_{267}= -0.18174609 \pm 4.1 \cdot 10^{-8} \) |
\(a_{268}= +0.79567722 \pm 6.7 \cdot 10^{-8} \) | \(a_{269}= +0.55009914 \pm 3.7 \cdot 10^{-8} \) | \(a_{270}= +0.11931466 \pm 1.0 \cdot 10^{-7} \) |
\(a_{271}= -0.07499917 \pm 4.1 \cdot 10^{-8} \) | \(a_{272}= +0.25579166 \pm 3.4 \cdot 10^{-8} \) | \(a_{273}= -0.18068658 \pm 4.6 \cdot 10^{-8} \) |
\(a_{274}= -0.26940485 \pm 4.3 \cdot 10^{-8} \) | \(a_{275}= +2.80506190 \pm 3.9 \cdot 10^{-8} \) | \(a_{276}= +0.33601089 \pm 1.0 \cdot 10^{-7} \) |
\(a_{277}= +0.61544638 \pm 4.7 \cdot 10^{-8} \) | \(a_{278}= -0.05123477 \pm 3.7 \cdot 10^{-8} \) | \(a_{279}= +0.45395833 \pm 4.4 \cdot 10^{-8} \) |
\(a_{280}= -0.44198967 \pm 9.7 \cdot 10^{-8} \) | \(a_{281}= +1.57946646 \pm 3.8 \cdot 10^{-8} \) | \(a_{282}= +0.03068757 \pm 1.0 \cdot 10^{-7} \) |
\(a_{283}= +0.63687185 \pm 3.7 \cdot 10^{-8} \) | \(a_{284}= -0.79279350 \pm 4.3 \cdot 10^{-8} \) | \(a_{285}= -0.63260174 \pm 8.9 \cdot 10^{-8} \) |
\(a_{286}= -0.32959568 \pm 3.6 \cdot 10^{-8} \) | \(a_{287}= +0.53219698 \pm 4.9 \cdot 10^{-8} \) | \(a_{288}= +0.28762099 \pm 5.6 \cdot 10^{-8} \) |
\(a_{289}= -0.85490551 \pm 3.2 \cdot 10^{-8} \) | \(a_{290}= -0.24586759 \pm 6.0 \cdot 10^{-8} \) | \(a_{291}= -0.65287391 \pm 3.7 \cdot 10^{-8} \) |
\(a_{292}= +0.53213512 \pm 2.9 \cdot 10^{-8} \) | \(a_{293}= -0.48369414 \pm 3.5 \cdot 10^{-8} \) | \(a_{294}= +0.02782475 \pm 6.2 \cdot 10^{-8} \) |
\(a_{295}= +1.13371752 \pm 4.7 \cdot 10^{-8} \) | \(a_{296}= -0.58716235 \pm 2.8 \cdot 10^{-8} \) | \(a_{297}= +0.22707750 \pm 4.9 \cdot 10^{-8} \) |
\(a_{298}= -0.52900909 \pm 6.0 \cdot 10^{-8} \) | \(a_{299}= +0.54377922 \pm 3.3 \cdot 10^{-8} \) | \(a_{300}= -1.21633368 \pm 1.0 \cdot 10^{-7} \) |
\(a_{301}= +0.59364669 \pm 5.0 \cdot 10^{-8} \) | \(a_{302}= +0.51783129 \pm 4.1 \cdot 10^{-8} \) | \(a_{303}= +0.14758766 \pm 4.5 \cdot 10^{-8} \) |
\(a_{304}= -0.40037435 \pm 3.4 \cdot 10^{-8} \) | \(a_{305}= +1.39498176 \pm 4.2 \cdot 10^{-8} \) | \(a_{306}= +0.04283455 \pm 1.0 \cdot 10^{-7} \) |
\(a_{307}= +1.09195879 \pm 4.1 \cdot 10^{-8} \) | \(a_{308}= -0.39521541 \pm 9.8 \cdot 10^{-8} \) | \(a_{309}= -0.13480819 \pm 5.8 \cdot 10^{-8} \) |
\(a_{310}= +0.84433135 \pm 2.7 \cdot 10^{-8} \) | \(a_{311}= -1.49045846 \pm 3.5 \cdot 10^{-8} \) | \(a_{312}= +0.30419380 \pm 8.6 \cdot 10^{-8} \) |
\(a_{313}= -0.29569867 \pm 4.0 \cdot 10^{-8} \) | \(a_{314}= +0.29188999 \pm 5.8 \cdot 10^{-8} \) | \(a_{315}= +0.23153434 \pm 5.7 \cdot 10^{-8} \) |
\(a_{316}= +0.54739529 \pm 6.2 \cdot 10^{-8} \) | \(a_{317}= +0.17145030 \pm 3.3 \cdot 10^{-8} \) | \(a_{318}= -0.35299926 \pm 8.7 \cdot 10^{-8} \) |
\(a_{319}= -0.46793077 \pm 4.2 \cdot 10^{-8} \) | \(a_{320}= -0.69913405 \pm 4.1 \cdot 10^{-8} \) | \(a_{321}= -0.40007049 \pm 4.6 \cdot 10^{-8} \) |
\(a_{322}= -0.08373905 \pm 1.0 \cdot 10^{-7} \) | \(a_{323}= -0.22710714 \pm 2.9 \cdot 10^{-8} \) | \(a_{324}= -0.09846557 \pm 6.0 \cdot 10^{-8} \) |
\(a_{325}= -1.96843915 \pm 3.4 \cdot 10^{-8} \) | \(a_{326}= -0.46196889 \pm 5.0 \cdot 10^{-8} \) | \(a_{327}= +0.81064872 \pm 4.4 \cdot 10^{-8} \) |
\(a_{328}= -0.89597703 \pm 2.7 \cdot 10^{-8} \) | \(a_{329}= +0.05955033 \pm 5.0 \cdot 10^{-8} \) | \(a_{330}= +0.42234858 \pm 1.4 \cdot 10^{-7} \) |
\(a_{331}= -0.25697258 \pm 4.5 \cdot 10^{-8} \) | \(a_{332}= +1.27881474 \pm 5.8 \cdot 10^{-8} \) | \(a_{333}= +0.30758241 \pm 4.6 \cdot 10^{-8} \) |
\(a_{334}= -0.14573397 \pm 7.4 \cdot 10^{-8} \) | \(a_{335}= -1.65004470 \pm 4.8 \cdot 10^{-8} \) | \(a_{336}= +0.14653834 \pm 5.0 \cdot 10^{-8} \) |
\(a_{337}= -0.42954668 \pm 3.9 \cdot 10^{-8} \) | \(a_{338}= -0.10606496 \pm 2.9 \cdot 10^{-8} \) | \(a_{339}= +0.47443927 \pm 5.7 \cdot 10^{-8} \) |
\(a_{340}= -0.62035182 \pm 5.1 \cdot 10^{-8} \) | \(a_{341}= +1.60691621 \pm 2.8 \cdot 10^{-8} \) | \(a_{342}= -0.06704618 \pm 9.3 \cdot 10^{-8} \) |
\(a_{343}= +0.05399492 \pm 7.1 \cdot 10^{-7} \) | \(a_{344}= -0.99943032 \pm 3.7 \cdot 10^{-8} \) | \(a_{345}= -0.69680640 \pm 1.0 \cdot 10^{-7} \) |
\(a_{346}= +0.44113122 \pm 5.5 \cdot 10^{-8} \) | \(a_{347}= -0.62558858 \pm 4.1 \cdot 10^{-8} \) | \(a_{348}= +0.20290460 \pm 9.9 \cdot 10^{-8} \) |
\(a_{349}= +0.15511260 \pm 3.7 \cdot 10^{-8} \) | \(a_{350}= +0.30312896 \pm 1.0 \cdot 10^{-7} \) | \(a_{351}= -0.15935058 \pm 4.6 \cdot 10^{-8} \) |
\(a_{352}= +1.01811730 \pm 3.8 \cdot 10^{-8} \) | \(a_{353}= -0.08020388 \pm 4.3 \cdot 10^{-8} \) | \(a_{354}= +0.12015685 \pm 1.0 \cdot 10^{-7} \) |
\(a_{355}= +1.64406455 \pm 3.7 \cdot 10^{-8} \) | \(a_{356}= +0.27896685 \pm 3.0 \cdot 10^{-8} \) | \(a_{357}= +0.08312197 \pm 5.2 \cdot 10^{-8} \) |
\(a_{358}= +0.11524518 \pm 4.1 \cdot 10^{-8} \) | \(a_{359}= +0.60831718 \pm 4.1 \cdot 10^{-8} \) | \(a_{360}= -0.38979825 \pm 9.7 \cdot 10^{-8} \) |
\(a_{361}= -0.64452370 \pm 3.1 \cdot 10^{-8} \) | \(a_{362}= -0.47792807 \pm 4.3 \cdot 10^{-8} \) | \(a_{363}= +0.22645593 \pm 4.5 \cdot 10^{-8} \) |
\(a_{364}= +0.27734058 \pm 9.6 \cdot 10^{-8} \) | \(a_{365}= -1.10352127 \pm 3.1 \cdot 10^{-8} \) | \(a_{366}= +0.14784689 \pm 1.0 \cdot 10^{-7} \) |
\(a_{367}= +0.54201651 \pm 3.5 \cdot 10^{-8} \) | \(a_{368}= -0.44100955 \pm 3.5 \cdot 10^{-8} \) | \(a_{369}= +0.46935362 \pm 4.9 \cdot 10^{-8} \) |
\(a_{370}= +0.57208218 \pm 4.4 \cdot 10^{-8} \) | \(a_{371}= -0.68500765 \pm 3.5 \cdot 10^{-8} \) | \(a_{372}= -0.69679258 \pm 9.4 \cdot 10^{-8} \) |
\(a_{373}= +0.47456960 \pm 3.9 \cdot 10^{-8} \) | \(a_{374}= +0.15162522 \pm 5.3 \cdot 10^{-8} \) | \(a_{375}= +1.46136220 \pm 4.6 \cdot 10^{-8} \) |
\(a_{376}= -0.10025560 \pm 3.8 \cdot 10^{-8} \) | \(a_{377}= +0.32836824 \pm 3.2 \cdot 10^{-8} \) | \(a_{378}= +0.02453913 \pm 6.2 \cdot 10^{-8} \) |
\(a_{379}= -0.48273434 \pm 3.3 \cdot 10^{-8} \) | \(a_{380}= +0.97099706 \pm 4.6 \cdot 10^{-8} \) | \(a_{381}= -0.79001557 \pm 3.9 \cdot 10^{-8} \) |
\(a_{382}= -0.31434392 \pm 5.5 \cdot 10^{-8} \) | \(a_{383}= -0.02680395 \pm 4.2 \cdot 10^{-8} \) | \(a_{384}= -0.57227176 \pm 6.2 \cdot 10^{-8} \) |
\(a_{385}= +0.81958247 \pm 9.6 \cdot 10^{-8} \) | \(a_{386}= -0.09894160 \pm 6.3 \cdot 10^{-8} \) | \(a_{387}= +0.52354717 \pm 5.0 \cdot 10^{-8} \) |
\(a_{388}= +1.00211335 \pm 3.1 \cdot 10^{-8} \) | \(a_{389}= +0.01712834 \pm 4.2 \cdot 10^{-8} \) | \(a_{390}= -0.29638115 \pm 1.4 \cdot 10^{-7} \) |
\(a_{391}= -0.25015693 \pm 4.5 \cdot 10^{-8} \) | \(a_{392}= -0.09090283 \pm 5.0 \cdot 10^{-8} \) | \(a_{393}= +0.79421219 \pm 5.4 \cdot 10^{-8} \) |
\(a_{394}= -0.14573546 \pm 4.5 \cdot 10^{-8} \) | \(a_{395}= -1.13516723 \pm 4.9 \cdot 10^{-8} \) | \(a_{396}= -0.34854723 \pm 9.8 \cdot 10^{-8} \) |
\(a_{397}= -1.59829049 \pm 3.4 \cdot 10^{-8} \) | \(a_{398}= -0.36027619 \pm 5.4 \cdot 10^{-8} \) | \(a_{399}= -0.13010551 \pm 4.1 \cdot 10^{-8} \) |
\(a_{400}= +1.59642080 \pm 4.2 \cdot 10^{-8} \) | \(a_{401}= +1.40093577 \pm 4.7 \cdot 10^{-8} \) | \(a_{402}= -0.17487969 \pm 1.1 \cdot 10^{-7} \) |
\(a_{403}= -1.12764598 \pm 3.8 \cdot 10^{-8} \) | \(a_{404}= -0.22653618 \pm 3.4 \cdot 10^{-8} \) | \(a_{405}= +0.20419410 \pm 5.7 \cdot 10^{-8} \) |
\(a_{406}= -0.05056693 \pm 1.0 \cdot 10^{-7} \) | \(a_{407}= +1.08877650 \pm 3.0 \cdot 10^{-8} \) | \(a_{408}= -0.13993949 \pm 9.2 \cdot 10^{-8} \) |
\(a_{409}= -0.93174930 \pm 3.3 \cdot 10^{-8} \) | \(a_{410}= +0.87296554 \pm 5.3 \cdot 10^{-8} \) | \(a_{411}= -0.46105719 \pm 5.0 \cdot 10^{-8} \) |
\(a_{412}= +0.20692064 \pm 5.5 \cdot 10^{-8} \) | \(a_{413}= +0.23316865 \pm 5.2 \cdot 10^{-8} \) | \(a_{414}= -0.07385090 \pm 1.0 \cdot 10^{-7} \) |
\(a_{415}= -2.65195664 \pm 3.8 \cdot 10^{-8} \) | \(a_{416}= -0.71445908 \pm 3.8 \cdot 10^{-8} \) | \(a_{417}= -0.08768276 \pm 4.0 \cdot 10^{-8} \) |
\(a_{418}= -0.23732927 \pm 3.4 \cdot 10^{-8} \) | \(a_{419}= -0.27758706 \pm 3.5 \cdot 10^{-8} \) | \(a_{420}= -0.35538815 \pm 1.0 \cdot 10^{-7} \) |
\(a_{421}= -0.82082458 \pm 2.8 \cdot 10^{-8} \) | \(a_{422}= -0.14349495 \pm 6.2 \cdot 10^{-8} \) | \(a_{423}= +0.05251846 \pm 5.0 \cdot 10^{-8} \) |
\(a_{424}= +1.15324052 \pm 3.2 \cdot 10^{-8} \) | \(a_{425}= +0.90554894 \pm 3.0 \cdot 10^{-8} \) | \(a_{426}= +0.17424589 \pm 9.7 \cdot 10^{-8} \) |
\(a_{427}= +0.28690216 \pm 5.4 \cdot 10^{-8} \) | \(a_{428}= +0.61407872 \pm 4.3 \cdot 10^{-8} \) | \(a_{429}= -0.56406727 \pm 8.5 \cdot 10^{-8} \) |
\(a_{430}= +0.97376183 \pm 4.1 \cdot 10^{-8} \) | \(a_{431}= -0.51276660 \pm 4.7 \cdot 10^{-8} \) | \(a_{432}= +0.12923467 \pm 5.0 \cdot 10^{-8} \) |
\(a_{433}= +0.47907999 \pm 4.8 \cdot 10^{-8} \) | \(a_{434}= +0.17365137 \pm 9.6 \cdot 10^{-8} \) | \(a_{435}= -0.42077572 \pm 9.7 \cdot 10^{-8} \) |
\(a_{436}= -1.24428605 \pm 3.3 \cdot 10^{-8} \) | \(a_{437}= +0.39155466 \pm 3.6 \cdot 10^{-8} \) | \(a_{438}= -0.11695650 \pm 8.9 \cdot 10^{-8} \) |
\(a_{439}= -0.29468418 \pm 3.9 \cdot 10^{-8} \) | \(a_{440}= -1.37980315 \pm 3.7 \cdot 10^{-8} \) | \(a_{441}= +0.04761905 \pm 8.8 \cdot 10^{-7} \) |
\(a_{442}= -0.10640229 \pm 4.1 \cdot 10^{-8} \) | \(a_{443}= +0.77088395 \pm 4.0 \cdot 10^{-8} \) | \(a_{444}= -0.47211633 \pm 9.6 \cdot 10^{-8} \) |
\(a_{445}= -0.57851068 \pm 3.3 \cdot 10^{-8} \) | \(a_{446}= +0.04885897 \pm 4.9 \cdot 10^{-8} \) | \(a_{447}= -0.90534169 \pm 5.2 \cdot 10^{-8} \) |
\(a_{448}= -0.14378903 \pm 5.9 \cdot 10^{-8} \) | \(a_{449}= +1.10390920 \pm 5.0 \cdot 10^{-8} \) | \(a_{450}= +0.26733461 \pm 1.0 \cdot 10^{-7} \) |
\(a_{451}= +1.66141227 \pm 4.0 \cdot 10^{-8} \) | \(a_{452}= -0.72822932 \pm 5.9 \cdot 10^{-8} \) | \(a_{453}= +0.88621210 \pm 4.6 \cdot 10^{-8} \) |
\(a_{454}= -0.26450503 \pm 4.3 \cdot 10^{-8} \) | \(a_{455}= -0.57513819 \pm 9.4 \cdot 10^{-8} \) | \(a_{456}= +0.21903834 \pm 8.1 \cdot 10^{-8} \) |
\(a_{457}= +1.59058829 \pm 4.7 \cdot 10^{-8} \) | \(a_{458}= +0.40858166 \pm 6.5 \cdot 10^{-8} \) | \(a_{459}= +0.07330669 \pm 5.2 \cdot 10^{-8} \) |
\(a_{460}= +1.06954648 \pm 4.7 \cdot 10^{-8} \) | \(a_{461}= +0.71469830 \pm 4.1 \cdot 10^{-8} \) | \(a_{462}= +0.08686330 \pm 1.0 \cdot 10^{-7} \) |
\(a_{463}= +1.44690469 \pm 2.8 \cdot 10^{-8} \) | \(a_{464}= -0.26630942 \pm 4.6 \cdot 10^{-8} \) | \(a_{465}= +1.44498155 \pm 9.2 \cdot 10^{-8} \) |
\(a_{466}= -0.52379823 \pm 4.4 \cdot 10^{-8} \) | \(a_{467}= -0.81323185 \pm 3.4 \cdot 10^{-8} \) | \(a_{468}= +0.24459140 \pm 9.6 \cdot 10^{-8} \) |
\(a_{469}= -0.33936027 \pm 5.9 \cdot 10^{-8} \) | \(a_{470}= +0.09768073 \pm 7.4 \cdot 10^{-8} \) | \(a_{471}= +0.49953807 \pm 5.9 \cdot 10^{-8} \) |
\(a_{472}= -0.39254967 \pm 3.0 \cdot 10^{-8} \) | \(a_{473}= +1.85324596 \pm 3.9 \cdot 10^{-8} \) | \(a_{474}= -0.12031050 \pm 1.1 \cdot 10^{-7} \) |
\(a_{475}= -1.41739789 \pm 2.8 \cdot 10^{-8} \) | \(a_{476}= -0.12758610 \pm 1.0 \cdot 10^{-7} \) | \(a_{477}= -0.60411996 \pm 3.5 \cdot 10^{-8} \) |
\(a_{478}= +0.31185939 \pm 3.8 \cdot 10^{-8} \) | \(a_{479}= +0.28749379 \pm 3.7 \cdot 10^{-8} \) | \(a_{480}= +0.91551800 \pm 1.0 \cdot 10^{-7} \) |
\(a_{481}= -0.76404385 \pm 3.3 \cdot 10^{-8} \) | \(a_{482}= +0.10846966 \pm 3.0 \cdot 10^{-8} \) | \(a_{483}= -0.14331031 \pm 5.6 \cdot 10^{-8} \) |
\(a_{484}= -0.34759317 \pm 4.0 \cdot 10^{-8} \) | \(a_{485}= -2.07814397 \pm 2.5 \cdot 10^{-8} \) | \(a_{486}= +0.02164147 \pm 6.2 \cdot 10^{-8} \) |
\(a_{487}= -1.37556344 \pm 4.3 \cdot 10^{-8} \) | \(a_{488}= -0.48301241 \pm 4.5 \cdot 10^{-8} \) | \(a_{489}= -0.79060967 \pm 4.7 \cdot 10^{-8} \) |
\(a_{490}= +0.08856816 \pm 1.0 \cdot 10^{-7} \) | \(a_{491}= -0.84932390 \pm 3.1 \cdot 10^{-8} \) | \(a_{492}= -0.72042321 \pm 9.9 \cdot 10^{-8} \) |
\(a_{493}= -0.15106056 \pm 3.7 \cdot 10^{-8} \) | \(a_{494}= +0.16654471 \pm 3.4 \cdot 10^{-8} \) | \(a_{495}= +0.72280380 \pm 9.6 \cdot 10^{-8} \) |
\(a_{496}= +0.91453043 \pm 3.0 \cdot 10^{-8} \) | \(a_{497}= +0.33813035 \pm 4.5 \cdot 10^{-8} \) | \(a_{498}= -0.28106715 \pm 9.8 \cdot 10^{-8} \) |
\(a_{499}= +1.36242388 \pm 4.6 \cdot 10^{-8} \) | \(a_{500}= -2.24308328 \pm 4.4 \cdot 10^{-8} \) | \(a_{501}= -0.24940789 \pm 6.1 \cdot 10^{-8} \) |
\(a_{502}= -0.58279349 \pm 5.4 \cdot 10^{-8} \) | \(a_{503}= +0.47947459 \pm 3.9 \cdot 10^{-8} \) | \(a_{504}= -0.08016876 \pm 5.0 \cdot 10^{-8} \) |
\(a_{505}= +0.46978199 \pm 4.1 \cdot 10^{-8} \) | \(a_{506}= -0.26141653 \pm 5.3 \cdot 10^{-8} \) | \(a_{507}= -0.18151868 \pm 3.4 \cdot 10^{-8} \) |
\(a_{508}= +1.21261568 \pm 2.8 \cdot 10^{-8} \) | \(a_{509}= +0.31571846 \pm 4.6 \cdot 10^{-8} \) | \(a_{510}= +0.13634541 \pm 1.5 \cdot 10^{-7} \) |
\(a_{511}= -0.22695826 \pm 3.7 \cdot 10^{-8} \) | \(a_{512}= +1.00673578 \pm 4.8 \cdot 10^{-8} \) | \(a_{513}= -0.11474227 \pm 4.1 \cdot 10^{-8} \) |
\(a_{514}= -0.21839738 \pm 3.7 \cdot 10^{-8} \) | \(a_{515}= -0.42910404 \pm 4.5 \cdot 10^{-8} \) | \(a_{516}= -0.80360632 \pm 9.9 \cdot 10^{-8} \) |
\(a_{517}= +0.18590420 \pm 3.8 \cdot 10^{-8} \) | \(a_{518}= +0.11765861 \pm 9.8 \cdot 10^{-8} \) | \(a_{519}= +0.75494826 \pm 5.1 \cdot 10^{-8} \) |
\(a_{520}= +0.96827045 \pm 3.6 \cdot 10^{-8} \) | \(a_{521}= -0.65739230 \pm 4.2 \cdot 10^{-8} \) | \(a_{522}= -0.04459584 \pm 1.0 \cdot 10^{-7} \) |
\(a_{523}= +0.70954592 \pm 4.1 \cdot 10^{-8} \) | \(a_{524}= -1.21905719 \pm 4.4 \cdot 10^{-8} \) | \(a_{525}= +0.51877234 \pm 5.0 \cdot 10^{-8} \) |
\(a_{526}= -0.51994126 \pm 6.2 \cdot 10^{-8} \) | \(a_{527}= +0.51875549 \pm 3.1 \cdot 10^{-8} \) | \(a_{528}= +0.45746333 \pm 8.9 \cdot 10^{-8} \) |
\(a_{529}= -0.56870528 \pm 4.6 \cdot 10^{-8} \) | \(a_{530}= -1.12362170 \pm 4.0 \cdot 10^{-8} \) | \(a_{531}= +0.20563542 \pm 5.2 \cdot 10^{-8} \) |
\(a_{532}= +0.19970236 \pm 9.1 \cdot 10^{-8} \) | \(a_{533}= -1.16588834 \pm 3.4 \cdot 10^{-8} \) | \(a_{534}= -0.06131335 \pm 9.3 \cdot 10^{-8} \) |
\(a_{535}= -1.27345275 \pm 4.3 \cdot 10^{-8} \) | \(a_{536}= +0.57132795 \pm 5.3 \cdot 10^{-8} \) | \(a_{537}= +0.19722964 \pm 4.7 \cdot 10^{-8} \) |
\(a_{538}= +0.18557991 \pm 3.8 \cdot 10^{-8} \) | \(a_{539}= +0.16856133 \pm 4.9 \cdot 10^{-8} \) | \(a_{540}= -0.31342289 \pm 1.0 \cdot 10^{-7} \) |
\(a_{541}= -1.06313413 \pm 5.0 \cdot 10^{-8} \) | \(a_{542}= -0.02530151 \pm 5.1 \cdot 10^{-8} \) | \(a_{543}= -0.81792207 \pm 4.8 \cdot 10^{-8} \) |
\(a_{544}= +0.32867547 \pm 4.0 \cdot 10^{-8} \) | \(a_{545}= +2.58035238 \pm 3.7 \cdot 10^{-8} \) | \(a_{546}= -0.06095592 \pm 9.8 \cdot 10^{-8} \) |
\(a_{547}= -0.83194366 \pm 5.3 \cdot 10^{-8} \) | \(a_{548}= +0.70768880 \pm 4.0 \cdot 10^{-8} \) | \(a_{549}= +0.25302392 \pm 5.4 \cdot 10^{-8} \) |
\(a_{550}= +0.94630783 \pm 3.9 \cdot 10^{-8} \) | \(a_{551}= +0.23644544 \pm 2.6 \cdot 10^{-8} \) | \(a_{552}= +0.24126921 \pm 9.6 \cdot 10^{-8} \) |
\(a_{553}= -0.23346680 \pm 6.0 \cdot 10^{-8} \) | \(a_{554}= +0.20762527 \pm 6.9 \cdot 10^{-8} \) | \(a_{555}= +0.97905662 \pm 9.4 \cdot 10^{-8} \) |
\(a_{556}= +0.13458658 \pm 3.8 \cdot 10^{-8} \) | \(a_{557}= -0.32880188 \pm 3.6 \cdot 10^{-8} \) | \(a_{558}= +0.15314611 \pm 9.6 \cdot 10^{-8} \) |
\(a_{559}= -1.30050674 \pm 4.3 \cdot 10^{-8} \) | \(a_{560}= +0.46644194 \pm 9.7 \cdot 10^{-8} \) | \(a_{561}= +0.25949012 \pm 9.0 \cdot 10^{-8} \) |
\(a_{562}= +0.53284439 \pm 3.1 \cdot 10^{-8} \) | \(a_{563}= +1.21472615 \pm 5.0 \cdot 10^{-8} \) | \(a_{564}= -0.08061196 \pm 1.0 \cdot 10^{-7} \) |
\(a_{565}= +1.51017386 \pm 5.6 \cdot 10^{-8} \) | \(a_{566}= +0.21485331 \pm 5.0 \cdot 10^{-8} \) | \(a_{567}= +0.04199605 \pm 1.0 \cdot 10^{-6} \) |
\(a_{568}= -0.56925733 \pm 3.7 \cdot 10^{-8} \) | \(a_{569}= +0.80529036 \pm 4.6 \cdot 10^{-8} \) | \(a_{570}= -0.21341275 \pm 1.4 \cdot 10^{-7} \) |
\(a_{571}= -0.24551189 \pm 3.8 \cdot 10^{-8} \) | \(a_{572}= +0.86580169 \pm 3.3 \cdot 10^{-8} \) | \(a_{573}= -0.53796554 \pm 4.6 \cdot 10^{-8} \) |
\(a_{574}= +0.17954048 \pm 1.0 \cdot 10^{-7} \) | \(a_{575}= -1.56125388 \pm 3.9 \cdot 10^{-8} \) | \(a_{576}= -0.12681000 \pm 5.9 \cdot 10^{-8} \) |
\(a_{577}= +1.03492111 \pm 4.6 \cdot 10^{-8} \) | \(a_{578}= -0.28840853 \pm 3.5 \cdot 10^{-8} \) | \(a_{579}= -0.16932782 \pm 5.6 \cdot 10^{-8} \) |
\(a_{580}= +0.64585972 \pm 5.3 \cdot 10^{-8} \) | \(a_{581}= -0.54542082 \pm 4.6 \cdot 10^{-8} \) | \(a_{582}= -0.22025172 \pm 8.9 \cdot 10^{-8} \) |
\(a_{583}= -2.13845655 \pm 2.4 \cdot 10^{-8} \) | \(a_{584}= +0.38209422 \pm 2.5 \cdot 10^{-8} \) | \(a_{585}= -0.50722421 \pm 9.4 \cdot 10^{-8} \) |
\(a_{586}= -0.16317770 \pm 5.3 \cdot 10^{-8} \) | \(a_{587}= -0.36309028 \pm 3.1 \cdot 10^{-8} \) | \(a_{588}= -0.07309173 \pm 6.0 \cdot 10^{-8} \) |
\(a_{589}= -0.81197482 \pm 2.2 \cdot 10^{-8} \) | \(a_{590}= +0.38246777 \pm 3.8 \cdot 10^{-8} \) | \(a_{591}= -0.24941044 \pm 5.4 \cdot 10^{-8} \) |
\(a_{592}= +0.61964602 \pm 3.1 \cdot 10^{-8} \) | \(a_{593}= +0.68092658 \pm 4.8 \cdot 10^{-8} \) | \(a_{594}= +0.07660623 \pm 1.0 \cdot 10^{-7} \) |
\(a_{595}= +0.26458312 \pm 9.9 \cdot 10^{-8} \) | \(a_{596}= +1.38963279 \pm 5.9 \cdot 10^{-8} \) | \(a_{597}= -0.61657363 \pm 4.8 \cdot 10^{-8} \) |
\(a_{598}= +0.18344784 \pm 4.6 \cdot 10^{-8} \) | \(a_{599}= -1.69734240 \pm 3.2 \cdot 10^{-8} \) | \(a_{600}= -0.87337606 \pm 9.0 \cdot 10^{-8} \) |
\(a_{601}= -0.45496153 \pm 3.2 \cdot 10^{-8} \) | \(a_{602}= +0.20027099 \pm 1.0 \cdot 10^{-7} \) | \(a_{603}= -0.29928763 \pm 5.9 \cdot 10^{-8} \) |
\(a_{604}= -1.36027027 \pm 3.6 \cdot 10^{-8} \) | \(a_{605}= +0.72082530 \pm 4.1 \cdot 10^{-8} \) | \(a_{606}= +0.04978976 \pm 9.7 \cdot 10^{-8} \) |
\(a_{607}= +1.16522786 \pm 3.9 \cdot 10^{-8} \) | \(a_{608}= -0.51445471 \pm 3.8 \cdot 10^{-8} \) | \(a_{609}= -0.08653982 \pm 4.9 \cdot 10^{-8} \) |
\(a_{610}= +0.47060714 \pm 5.8 \cdot 10^{-8} \) | \(a_{611}= -0.13045741 \pm 3.0 \cdot 10^{-8} \) | \(a_{612}= -0.11252036 \pm 1.0 \cdot 10^{-7} \) |
\(a_{613}= +1.50049810 \pm 4.2 \cdot 10^{-8} \) | \(a_{614}= +0.36838016 \pm 5.6 \cdot 10^{-8} \) | \(a_{615}= +1.49398585 \pm 9.6 \cdot 10^{-8} \) |
\(a_{616}= -0.28378042 \pm 8.9 \cdot 10^{-8} \) | \(a_{617}= +1.05738381 \pm 4.0 \cdot 10^{-8} \) | \(a_{618}= -0.04547851 \pm 1.1 \cdot 10^{-7} \) |
\(a_{619}= -1.70116751 \pm 3.0 \cdot 10^{-8} \) | \(a_{620}= -2.21794020 \pm 3.5 \cdot 10^{-8} \) | \(a_{621}= -0.12638781 \pm 5.6 \cdot 10^{-8} \) |
\(a_{622}= -0.50281690 \pm 4.6 \cdot 10^{-8} \) | \(a_{623}= -0.11898074 \pm 4.1 \cdot 10^{-8} \) | \(a_{624}= -0.32102276 \pm 8.7 \cdot 10^{-8} \) |
\(a_{625}= +2.27430601 \pm 2.9 \cdot 10^{-8} \) | \(a_{626}= -0.09975608 \pm 5.7 \cdot 10^{-8} \) | \(a_{627}= -0.40616331 \pm 8.0 \cdot 10^{-8} \) |
\(a_{628}= -0.76675412 \pm 5.8 \cdot 10^{-8} \) | \(a_{629}= +0.35148615 \pm 3.8 \cdot 10^{-8} \) | \(a_{630}= +0.07810978 \pm 1.0 \cdot 10^{-7} \) |
\(a_{631}= -1.29398488 \pm 3.3 \cdot 10^{-8} \) | \(a_{632}= +0.39305164 \pm 4.5 \cdot 10^{-8} \) | \(a_{633}= -0.24557605 \pm 5.4 \cdot 10^{-8} \) |
\(a_{634}= +0.05783999 \pm 4.1 \cdot 10^{-8} \) | \(a_{635}= -2.51467559 \pm 3.1 \cdot 10^{-8} \) | \(a_{636}= +0.92727962 \pm 8.4 \cdot 10^{-8} \) |
\(a_{637}= -0.11828713 \pm 4.6 \cdot 10^{-8} \) | \(a_{638}= -0.15785981 \pm 5.1 \cdot 10^{-8} \) | \(a_{639}= +0.29820294 \pm 4.5 \cdot 10^{-8} \) |
\(a_{640}= -1.82158160 \pm 5.1 \cdot 10^{-8} \) | \(a_{641}= +1.42396525 \pm 3.0 \cdot 10^{-8} \) | \(a_{642}= -0.13496666 \pm 9.8 \cdot 10^{-8} \) |
\(a_{643}= -1.13006232 \pm 3.4 \cdot 10^{-8} \) | \(a_{644}= +0.21997076 \pm 1.0 \cdot 10^{-7} \) | \(a_{645}= +1.66648777 \pm 9.7 \cdot 10^{-8} \) |
\(a_{646}= -0.07661623 \pm 4.3 \cdot 10^{-8} \) | \(a_{647}= -0.21444065 \pm 3.7 \cdot 10^{-8} \) | \(a_{648}= -0.07070220 \pm 5.0 \cdot 10^{-8} \) |
\(a_{649}= +0.72790577 \pm 4.2 \cdot 10^{-8} \) | \(a_{650}= -0.66406713 \pm 3.7 \cdot 10^{-8} \) | \(a_{651}= +0.29718548 \pm 4.4 \cdot 10^{-8} \) |
\(a_{652}= +1.21352758 \pm 5.5 \cdot 10^{-8} \) | \(a_{653}= -0.36631619 \pm 2.9 \cdot 10^{-8} \) | \(a_{654}= +0.27347819 \pm 9.6 \cdot 10^{-8} \) |
\(a_{655}= +2.52803373 \pm 5.4 \cdot 10^{-8} \) | \(a_{656}= +0.94554531 \pm 3.8 \cdot 10^{-8} \) | \(a_{657}= -0.20015837 \pm 3.7 \cdot 10^{-8} \) |
\(a_{658}= +0.02008973 \pm 1.0 \cdot 10^{-7} \) | \(a_{659}= -0.55835034 \pm 4.0 \cdot 10^{-8} \) | \(a_{660}= -1.10945056 \pm 1.4 \cdot 10^{-7} \) |
\(a_{661}= +0.27067108 \pm 4.9 \cdot 10^{-8} \) | \(a_{662}= -0.08669155 \pm 5.9 \cdot 10^{-8} \) | \(a_{663}= -0.18209599 \pm 8.8 \cdot 10^{-8} \) |
\(a_{664}= +0.91823995 \pm 5.2 \cdot 10^{-8} \) | \(a_{665}= -0.41413505 \pm 8.9 \cdot 10^{-8} \) | \(a_{666}= +0.10376514 \pm 9.8 \cdot 10^{-8} \) |
\(a_{667}= +0.26044300 \pm 4.1 \cdot 10^{-8} \) | \(a_{668}= +0.38282273 \pm 7.2 \cdot 10^{-8} \) | \(a_{669}= +0.08361683 \pm 4.6 \cdot 10^{-8} \) |
\(a_{670}= -0.55665446 \pm 6.4 \cdot 10^{-8} \) | \(a_{671}= +0.89565103 \pm 3.6 \cdot 10^{-8} \) | \(a_{672}= +0.18829213 \pm 5.6 \cdot 10^{-8} \) |
\(a_{673}= +1.61413451 \pm 4.1 \cdot 10^{-8} \) | \(a_{674}= -0.14491067 \pm 4.3 \cdot 10^{-8} \) | \(a_{675}= +0.45751420 \pm 5.0 \cdot 10^{-8} \) |
\(a_{676}= +0.27861780 \pm 3.0 \cdot 10^{-8} \) | \(a_{677}= -0.91331524 \pm 2.8 \cdot 10^{-8} \) | \(a_{678}= +0.16005551 \pm 1.0 \cdot 10^{-7} \) |
\(a_{679}= -0.42740630 \pm 3.7 \cdot 10^{-8} \) | \(a_{680}= -0.44543733 \pm 4.0 \cdot 10^{-8} \) | \(a_{681}= -0.45267168 \pm 4.8 \cdot 10^{-8} \) |
\(a_{682}= +0.54210476 \pm 2.2 \cdot 10^{-8} \) | \(a_{683}= -0.37087161 \pm 3.2 \cdot 10^{-8} \) | \(a_{684}= +0.17612093 \pm 9.1 \cdot 10^{-8} \) |
\(a_{685}= -1.46757772 \pm 5.0 \cdot 10^{-8} \) | \(a_{686}= +0.01821558 \pm 6.2 \cdot 10^{-8} \) | \(a_{687}= +0.69924321 \pm 5.5 \cdot 10^{-8} \) |
\(a_{688}= +1.05472196 \pm 3.4 \cdot 10^{-8} \) | \(a_{689}= +1.50065195 \pm 2.0 \cdot 10^{-8} \) | \(a_{690}= -0.23507266 \pm 1.5 \cdot 10^{-7} \) |
\(a_{691}= -0.87222727 \pm 3.4 \cdot 10^{-8} \) | \(a_{692}= -1.15878994 \pm 5.3 \cdot 10^{-8} \) | \(a_{693}= +0.14865712 \pm 4.9 \cdot 10^{-8} \) |
\(a_{694}= -0.21104681 \pm 4.7 \cdot 10^{-8} \) | \(a_{695}= -0.27910045 \pm 3.6 \cdot 10^{-8} \) | \(a_{696}= +0.14569359 \pm 8.9 \cdot 10^{-8} \) |
\(a_{697}= +0.53634828 \pm 4.2 \cdot 10^{-8} \) | \(a_{698}= +0.05232835 \pm 4.6 \cdot 10^{-8} \) | \(a_{699}= -0.89642386 \pm 4.5 \cdot 10^{-8} \) |
\(a_{700}= -0.79627731 \pm 1.0 \cdot 10^{-7} \) | \(a_{701}= +1.23583134 \pm 5.7 \cdot 10^{-8} \) | \(a_{702}= -0.05375807 \pm 9.8 \cdot 10^{-8} \) |
\(a_{703}= -0.55015881 \pm 2.8 \cdot 10^{-8} \) | \(a_{704}= -0.44888052 \pm 3.8 \cdot 10^{-8} \) | \(a_{705}= +0.16716997 \pm 9.7 \cdot 10^{-8} \) |
\(a_{706}= -0.02705736 \pm 4.9 \cdot 10^{-8} \) | \(a_{707}= +0.09661880 \pm 4.5 \cdot 10^{-8} \) | \(a_{708}= -0.31563521 \pm 1.0 \cdot 10^{-7} \) |
\(a_{709}= +0.57390765 \pm 4.6 \cdot 10^{-8} \) | \(a_{710}= +0.55463702 \pm 4.8 \cdot 10^{-8} \) | \(a_{711}= -0.20589837 \pm 6.0 \cdot 10^{-8} \) |
\(a_{712}= +0.20030932 \pm 2.6 \cdot 10^{-8} \) | \(a_{713}= -0.89438460 \pm 2.4 \cdot 10^{-8} \) | \(a_{714}= +0.02804179 \pm 1.0 \cdot 10^{-7} \) |
\(a_{715}= -1.79546613 \pm 3.7 \cdot 10^{-8} \) | \(a_{716}= -0.30273296 \pm 4.4 \cdot 10^{-8} \) | \(a_{717}= +0.53371353 \pm 5.2 \cdot 10^{-8} \) |
\(a_{718}= +0.20522018 \pm 4.5 \cdot 10^{-8} \) | \(a_{719}= +1.20673533 \pm 4.4 \cdot 10^{-8} \) | \(a_{720}= +0.41136312 \pm 9.7 \cdot 10^{-8} \) |
\(a_{721}= -0.08825268 \pm 5.8 \cdot 10^{-8} \) | \(a_{722}= -0.21743471 \pm 3.3 \cdot 10^{-8} \) | \(a_{723}= +0.18563406 \pm 4.3 \cdot 10^{-8} \) |
\(a_{724}= +1.25545011 \pm 3.5 \cdot 10^{-8} \) | \(a_{725}= -0.94278371 \pm 4.1 \cdot 10^{-8} \) | \(a_{726}= +0.07639654 \pm 9.7 \cdot 10^{-8} \) |
\(a_{727}= -0.40712412 \pm 4.4 \cdot 10^{-8} \) | \(a_{728}= +0.19914159 \pm 8.6 \cdot 10^{-8} \) | \(a_{729}= +0.03703704 \pm 1.3 \cdot 10^{-6} \) |
\(a_{730}= -0.37228085 \pm 3.3 \cdot 10^{-8} \) | \(a_{731}= +0.59827732 \pm 4.3 \cdot 10^{-8} \) | \(a_{732}= -0.38837308 \pm 1.0 \cdot 10^{-7} \) |
\(a_{733}= -0.35089027 \pm 4.2 \cdot 10^{-8} \) | \(a_{734}= +0.18285317 \pm 4.2 \cdot 10^{-8} \) | \(a_{735}= +0.15157481 \pm 5.7 \cdot 10^{-8} \) |
\(a_{736}= -0.56666827 \pm 5.3 \cdot 10^{-8} \) | \(a_{737}= -1.05941474 \pm 3.9 \cdot 10^{-8} \) | \(a_{738}= +0.15833982 \pm 1.0 \cdot 10^{-7} \) |
\(a_{739}= +0.82989293 \pm 3.5 \cdot 10^{-8} \) | \(a_{740}= -1.50277977 \pm 3.6 \cdot 10^{-8} \) | \(a_{741}= +0.28502321 \pm 7.8 \cdot 10^{-8} \) |
\(a_{742}= -0.23109226 \pm 8.7 \cdot 10^{-8} \) | \(a_{743}= -0.89324765 \pm 3.8 \cdot 10^{-8} \) | \(a_{744}= -0.50032484 \pm 8.4 \cdot 10^{-8} \) |
\(a_{745}= -2.88176683 \pm 4.4 \cdot 10^{-8} \) | \(a_{746}= +0.16009947 \pm 5.3 \cdot 10^{-8} \) | \(a_{747}= -0.48101595 \pm 4.6 \cdot 10^{-8} \) |
\(a_{748}= -0.39829822 \pm 4.6 \cdot 10^{-8} \) | \(a_{749}= -0.26190761 \pm 4.6 \cdot 10^{-8} \) | \(a_{750}= +0.49300106 \pm 9.8 \cdot 10^{-8} \) |
\(a_{751}= +0.14446016 \pm 4.9 \cdot 10^{-8} \) | \(a_{752}= +0.10580206 \pm 4.6 \cdot 10^{-8} \) | \(a_{753}= -0.99738785 \pm 5.3 \cdot 10^{-8} \) |
\(a_{754}= +0.11077739 \pm 3.7 \cdot 10^{-8} \) | \(a_{755}= +2.82087598 \pm 4.4 \cdot 10^{-8} \) | \(a_{756}= -0.06446085 \pm 6.0 \cdot 10^{-8} \) |
\(a_{757}= +0.94134496 \pm 4.7 \cdot 10^{-8} \) | \(a_{758}= -0.16285391 \pm 4.8 \cdot 10^{-8} \) | \(a_{759}= -0.44738605 \pm 9.4 \cdot 10^{-8} \) |
\(a_{760}= +0.69721458 \pm 4.0 \cdot 10^{-8} \) | \(a_{761}= +0.27566172 \pm 3.1 \cdot 10^{-8} \) | \(a_{762}= -0.26651744 \pm 9.1 \cdot 10^{-8} \) |
\(a_{763}= +0.53069416 \pm 4.4 \cdot 10^{-8} \) | \(a_{764}= +0.82573745 \pm 5.6 \cdot 10^{-8} \) | \(a_{765}= +0.23334038 \pm 9.9 \cdot 10^{-8} \) |
\(a_{766}= -0.00904251 \pm 6.2 \cdot 10^{-8} \) | \(a_{767}= -0.51080449 \pm 4.1 \cdot 10^{-8} \) | \(a_{768}= +0.02658137 \pm 6.0 \cdot 10^{-8} \) |
\(a_{769}= -1.46457312 \pm 3.2 \cdot 10^{-8} \) | \(a_{770}= +0.27649205 \pm 1.4 \cdot 10^{-7} \) | \(a_{771}= -0.37376344 \pm 4.2 \cdot 10^{-8} \) |
\(a_{772}= +0.25990573 \pm 6.0 \cdot 10^{-8} \) | \(a_{773}= +0.12479235 \pm 4.0 \cdot 10^{-8} \) | \(a_{774}= +0.17662241 \pm 1.0 \cdot 10^{-7} \) |
\(a_{775}= +3.23760379 \pm 3.2 \cdot 10^{-8} \) | \(a_{776}= +0.71955732 \pm 3.2 \cdot 10^{-8} \) | \(a_{777}= +0.20135995 \pm 4.6 \cdot 10^{-8} \) |
\(a_{778}= +0.00577837 \pm 4.5 \cdot 10^{-8} \) | \(a_{779}= -0.83951169 \pm 2.0 \cdot 10^{-8} \) | \(a_{780}= +0.77855178 \pm 1.4 \cdot 10^{-7} \) |
\(a_{781}= +1.05557518 \pm 3.5 \cdot 10^{-8} \) | \(a_{782}= -0.08439224 \pm 6.6 \cdot 10^{-8} \) | \(a_{783}= -0.07632094 \pm 4.9 \cdot 10^{-8} \) |
\(a_{784}= +0.09593186 \pm 5.0 \cdot 10^{-8} \) | \(a_{785}= +1.59006510 \pm 5.5 \cdot 10^{-8} \) | \(a_{786}= +0.26793320 \pm 1.0 \cdot 10^{-7} \) |
\(a_{787}= -0.89657739 \pm 3.5 \cdot 10^{-8} \) | \(a_{788}= +0.38282665 \pm 4.8 \cdot 10^{-8} \) | \(a_{789}= -0.88982309 \pm 5.9 \cdot 10^{-8} \) |
\(a_{790}= -0.38295684 \pm 5.5 \cdot 10^{-8} \) | \(a_{791}= +0.31059341 \pm 5.7 \cdot 10^{-8} \) | \(a_{792}= -0.25027080 \pm 8.9 \cdot 10^{-8} \) |
\(a_{793}= -0.62851895 \pm 3.4 \cdot 10^{-8} \) | \(a_{794}= -0.53919481 \pm 4.3 \cdot 10^{-8} \) | \(a_{795}= -1.92295669 \pm 8.2 \cdot 10^{-8} \) |
\(a_{796}= +0.94639509 \pm 5.4 \cdot 10^{-8} \) | \(a_{797}= +1.14561592 \pm 4.2 \cdot 10^{-8} \) | \(a_{798}= -0.04389203 \pm 9.3 \cdot 10^{-8} \) |
\(a_{799}= +0.06001484 \pm 2.9 \cdot 10^{-8} \) | \(a_{800}= +2.05129576 \pm 4.1 \cdot 10^{-8} \) | \(a_{801}= -0.10493115 \pm 4.1 \cdot 10^{-8} \) |
\(a_{802}= +0.47261577 \pm 6.2 \cdot 10^{-8} \) | \(a_{803}= -0.70851820 \pm 2.7 \cdot 10^{-8} \) | \(a_{804}= +0.45938446 \pm 1.0 \cdot 10^{-7} \) |
\(a_{805}= -0.45616687 \pm 1.0 \cdot 10^{-7} \) | \(a_{806}= -0.38041949 \pm 2.5 \cdot 10^{-8} \) | \(a_{807}= +0.31759989 \pm 4.7 \cdot 10^{-8} \) |
\(a_{808}= -0.16266201 \pm 2.4 \cdot 10^{-8} \) | \(a_{809}= +0.59392495 \pm 3.1 \cdot 10^{-8} \) | \(a_{810}= +0.06888635 \pm 1.0 \cdot 10^{-7} \) |
\(a_{811}= +0.56766618 \pm 4.3 \cdot 10^{-8} \) | \(a_{812}= +0.13283224 \pm 9.9 \cdot 10^{-8} \) | \(a_{813}= -0.04330079 \pm 5.2 \cdot 10^{-8} \) |
\(a_{814}= +0.36730659 \pm 3.5 \cdot 10^{-8} \) | \(a_{815}= -2.51656665 \pm 4.1 \cdot 10^{-8} \) | \(a_{816}= +0.14768139 \pm 9.2 \cdot 10^{-8} \) |
\(a_{817}= -0.93644525 \pm 2.8 \cdot 10^{-8} \) | \(a_{818}= -0.31433234 \pm 3.8 \cdot 10^{-8} \) | \(a_{819}= -0.10431944 \pm 4.6 \cdot 10^{-8} \) |
\(a_{820}= -2.29315819 \pm 3.8 \cdot 10^{-8} \) | \(a_{821}= +0.60602913 \pm 4.2 \cdot 10^{-8} \) | \(a_{822}= -0.15554096 \pm 1.0 \cdot 10^{-7} \) |
\(a_{823}= -1.78675846 \pm 4.7 \cdot 10^{-8} \) | \(a_{824}= +0.14857727 \pm 4.1 \cdot 10^{-8} \) | \(a_{825}= +1.61950324 \pm 8.9 \cdot 10^{-8} \) |
\(a_{826}= +0.07866112 \pm 1.0 \cdot 10^{-7} \) | \(a_{827}= +0.51561215 \pm 3.9 \cdot 10^{-8} \) | \(a_{828}= +0.19399598 \pm 1.0 \cdot 10^{-7} \) |
\(a_{829}= +1.19824351 \pm 4.6 \cdot 10^{-8} \) | \(a_{830}= -0.89465667 \pm 5.7 \cdot 10^{-8} \) | \(a_{831}= +0.35532813 \pm 5.7 \cdot 10^{-8} \) |
\(a_{832}= +0.31499982 \pm 3.4 \cdot 10^{-8} \) | \(a_{833}= +0.05441610 \pm 5.2 \cdot 10^{-8} \) | \(a_{834}= -0.02958041 \pm 9.2 \cdot 10^{-8} \) |
\(a_{835}= -0.79388301 \pm 5.8 \cdot 10^{-8} \) | \(a_{836}= +0.62343075 \pm 3.5 \cdot 10^{-8} \) | \(a_{837}= +0.26209296 \pm 4.4 \cdot 10^{-8} \) |
\(a_{838}= -0.09364599 \pm 3.3 \cdot 10^{-8} \) | \(a_{839}= +0.76899774 \pm 4.6 \cdot 10^{-8} \) | \(a_{840}= -0.25518286 \pm 9.7 \cdot 10^{-8} \) |
\(a_{841}= -0.84272807 \pm 2.9 \cdot 10^{-8} \) | \(a_{842}= -0.27691108 \pm 3.4 \cdot 10^{-8} \) | \(a_{843}= +0.91190539 \pm 4.8 \cdot 10^{-8} \) |
\(a_{844}= +0.37694114 \pm 6.3 \cdot 10^{-8} \) | \(a_{845}= -0.57778684 \pm 2.6 \cdot 10^{-8} \) | \(a_{846}= +0.01771748 \pm 1.0 \cdot 10^{-7} \) |
\(a_{847}= +0.14825021 \pm 4.5 \cdot 10^{-8} \) | \(a_{848}= -1.21704142 \pm 3.7 \cdot 10^{-8} \) | \(a_{849}= +0.36769814 \pm 4.7 \cdot 10^{-8} \) |
\(a_{850}= +0.30549346 \pm 3.3 \cdot 10^{-8} \) | \(a_{851}= -0.60599609 \pm 4.4 \cdot 10^{-8} \) | \(a_{852}= -0.45771954 \pm 9.5 \cdot 10^{-8} \) |
\(a_{853}= -1.59248129 \pm 4.1 \cdot 10^{-8} \) | \(a_{854}= +0.09678851 \pm 1.0 \cdot 10^{-7} \) | \(a_{855}= -0.36523279 \pm 8.9 \cdot 10^{-8} \) |
\(a_{856}= +0.44093299 \pm 3.7 \cdot 10^{-8} \) | \(a_{857}= -0.46433105 \pm 3.8 \cdot 10^{-8} \) | \(a_{858}= -0.19029216 \pm 1.3 \cdot 10^{-7} \) |
\(a_{859}= +1.24291263 \pm 5.1 \cdot 10^{-8} \) | \(a_{860}= -2.55793593 \pm 4.8 \cdot 10^{-8} \) | \(a_{861}= +0.30726407 \pm 4.9 \cdot 10^{-8} \) |
\(a_{862}= -0.17298550 \pm 7.0 \cdot 10^{-8} \) | \(a_{863}= -0.20279481 \pm 3.4 \cdot 10^{-8} \) | \(a_{864}= +0.16605805 \pm 5.6 \cdot 10^{-8} \) |
\(a_{865}= +2.40305384 \pm 4.7 \cdot 10^{-8} \) | \(a_{866}= +0.16162109 \pm 5.8 \cdot 10^{-8} \) | \(a_{867}= -0.49357992 \pm 4.3 \cdot 10^{-8} \) |
\(a_{868}= -0.45615782 \pm 9.4 \cdot 10^{-8} \) | \(a_{869}= -0.72883656 \pm 4.2 \cdot 10^{-8} \) | \(a_{870}= -0.14195172 \pm 1.4 \cdot 10^{-7} \) |
\(a_{871}= +0.74343937 \pm 4.0 \cdot 10^{-8} \) | \(a_{872}= -0.89344697 \pm 2.2 \cdot 10^{-8} \) | \(a_{873}= -0.37693693 \pm 3.7 \cdot 10^{-8} \) |
\(a_{874}= +0.13209378 \pm 5.2 \cdot 10^{-8} \) | \(a_{875}= +0.95668613 \pm 4.6 \cdot 10^{-8} \) | \(a_{876}= +0.30722836 \pm 8.7 \cdot 10^{-8} \) |
\(a_{877}= +0.62099585 \pm 4.3 \cdot 10^{-8} \) | \(a_{878}= -0.09941383 \pm 4.1 \cdot 10^{-8} \) | \(a_{879}= -0.27926094 \pm 4.6 \cdot 10^{-8} \) |
\(a_{880}= +1.45613821 \pm 4.6 \cdot 10^{-8} \) | \(a_{881}= +1.15457899 \pm 4.5 \cdot 10^{-8} \) | \(a_{882}= +0.01606463 \pm 6.2 \cdot 10^{-8} \) |
\(a_{883}= -1.46915236 \pm 3.7 \cdot 10^{-8} \) | \(a_{884}= +0.27950392 \pm 4.0 \cdot 10^{-8} \) | \(a_{885}= +0.65455212 \pm 1.0 \cdot 10^{-7} \) |
\(a_{886}= +0.26006325 \pm 4.5 \cdot 10^{-8} \) | \(a_{887}= +0.20276098 \pm 3.3 \cdot 10^{-8} \) | \(a_{888}= -0.33899834 \pm 8.6 \cdot 10^{-8} \) |
\(a_{889}= -0.51718659 \pm 3.9 \cdot 10^{-8} \) | \(a_{890}= -0.19516475 \pm 4.1 \cdot 10^{-8} \) | \(a_{891}= +0.13110326 \pm 4.9 \cdot 10^{-8} \) |
\(a_{892}= -0.12834567 \pm 4.8 \cdot 10^{-8} \) | \(a_{893}= -0.09393740 \pm 2.6 \cdot 10^{-8} \) | \(a_{894}= -0.30542354 \pm 1.0 \cdot 10^{-7} \) |
\(a_{895}= +0.62779592 \pm 4.1 \cdot 10^{-8} \) | \(a_{896}= -0.37463981 \pm 6.2 \cdot 10^{-8} \) | \(a_{897}= +0.31395108 \pm 9.2 \cdot 10^{-8} \) |
\(a_{898}= +0.37241172 \pm 5.5 \cdot 10^{-8} \) | \(a_{899}= -0.54008592 \pm 3.1 \cdot 10^{-8} \) | \(a_{900}= -0.70225058 \pm 1.0 \cdot 10^{-7} \) |
\(a_{901}= -0.69035092 \pm 2.2 \cdot 10^{-8} \) | \(a_{902}= +0.56048940 \pm 4.3 \cdot 10^{-8} \) | \(a_{903}= +0.34274208 \pm 5.0 \cdot 10^{-8} \) |
\(a_{904}= -0.52289768 \pm 4.0 \cdot 10^{-8} \) | \(a_{905}= -2.60350397 \pm 4.5 \cdot 10^{-8} \) | \(a_{906}= +0.29897004 \pm 9.8 \cdot 10^{-8} \) |
\(a_{907}= +1.12144380 \pm 3.9 \cdot 10^{-8} \) | \(a_{908}= +0.69481767 \pm 4.3 \cdot 10^{-8} \) | \(a_{909}= +0.08520977 \pm 4.5 \cdot 10^{-8} \) |
\(a_{910}= -0.19402701 \pm 1.4 \cdot 10^{-7} \) | \(a_{911}= +1.19491357 \pm 4.0 \cdot 10^{-8} \) | \(a_{912}= -0.23115624 \pm 8.2 \cdot 10^{-8} \) |
\(a_{913}= -1.70269445 \pm 3.4 \cdot 10^{-8} \) | \(a_{914}= +0.53659642 \pm 6.1 \cdot 10^{-8} \) | \(a_{915}= +0.80539309 \pm 1.0 \cdot 10^{-7} \) |
\(a_{916}= -1.07328680 \pm 5.8 \cdot 10^{-8} \) | \(a_{917}= +0.51993393 \pm 5.4 \cdot 10^{-8} \) | \(a_{918}= +0.02473054 \pm 1.0 \cdot 10^{-7} \) |
\(a_{919}= +0.78103738 \pm 4.5 \cdot 10^{-8} \) | \(a_{920}= +0.76797700 \pm 3.1 \cdot 10^{-8} \) | \(a_{921}= +0.63044270 \pm 5.1 \cdot 10^{-8} \) |
\(a_{922}= +0.24110862 \pm 6.0 \cdot 10^{-8} \) | \(a_{923}= -0.74074498 \pm 3.0 \cdot 10^{-8} \) | \(a_{924}= -0.22817773 \pm 9.8 \cdot 10^{-8} \) |
\(a_{925}= +2.19365944 \pm 3.3 \cdot 10^{-8} \) | \(a_{926}= +0.48812372 \pm 2.6 \cdot 10^{-8} \) | \(a_{927}= -0.07783155 \pm 5.8 \cdot 10^{-8} \) |
\(a_{928}= -0.34219010 \pm 5.1 \cdot 10^{-8} \) | \(a_{929}= -1.35439310 \pm 3.8 \cdot 10^{-8} \) | \(a_{930}= +0.48747493 \pm 1.4 \cdot 10^{-7} \) |
\(a_{931}= -0.08517405 \pm 4.1 \cdot 10^{-8} \) | \(a_{932}= +1.37594457 \pm 4.4 \cdot 10^{-8} \) | \(a_{933}= -0.86051659 \pm 4.5 \cdot 10^{-8} \) |
\(a_{934}= -0.27434962 \pm 4.1 \cdot 10^{-8} \) | \(a_{935}= +0.82597546 \pm 3.8 \cdot 10^{-8} \) | \(a_{936}= +0.17562637 \pm 8.6 \cdot 10^{-8} \) |
\(a_{937}= +0.69253222 \pm 4.6 \cdot 10^{-8} \) | \(a_{938}= -0.11448563 \pm 1.1 \cdot 10^{-7} \) | \(a_{939}= -0.17072171 \pm 5.1 \cdot 10^{-8} \) |
\(a_{940}= -0.25659359 \pm 5.4 \cdot 10^{-8} \) | \(a_{941}= +0.74271634 \pm 4.5 \cdot 10^{-8} \) | \(a_{942}= +0.16852276 \pm 1.1 \cdot 10^{-7} \) |
\(a_{943}= -0.92471626 \pm 3.7 \cdot 10^{-8} \) | \(a_{944}= +0.41426676 \pm 3.4 \cdot 10^{-8} \) | \(a_{945}= +0.13367641 \pm 5.7 \cdot 10^{-8} \) |
\(a_{946}= +0.62520587 \pm 3.2 \cdot 10^{-8} \) | \(a_{947}= +0.66966804 \pm 3.9 \cdot 10^{-8} \) | \(a_{948}= +0.31603882 \pm 1.0 \cdot 10^{-7} \) |
\(a_{949}= +0.49719936 \pm 2.6 \cdot 10^{-8} \) | \(a_{950}= -0.47816939 \pm 3.4 \cdot 10^{-8} \) | \(a_{951}= +0.09898688 \pm 4.3 \cdot 10^{-8} \) |
\(a_{952}= -0.09161190 \pm 9.2 \cdot 10^{-8} \) | \(a_{953}= +1.40599005 \pm 4.9 \cdot 10^{-8} \) | \(a_{954}= -0.20380422 \pm 8.7 \cdot 10^{-8} \) |
\(a_{955}= -1.71238246 \pm 3.5 \cdot 10^{-8} \) | \(a_{956}= -0.81921093 \pm 4.0 \cdot 10^{-8} \) | \(a_{957}= -0.27015995 \pm 8.8 \cdot 10^{-8} \) |
\(a_{958}= +0.09698810 \pm 4.8 \cdot 10^{-8} \) | \(a_{959}= -0.30183278 \pm 5.0 \cdot 10^{-8} \) | \(a_{960}= -0.40364523 \pm 1.0 \cdot 10^{-7} \) |
\(a_{961}= +0.85470346 \pm 4.6 \cdot 10^{-8} \) | \(a_{962}= -0.25775570 \pm 3.7 \cdot 10^{-8} \) | \(a_{963}= -0.23098081 \pm 4.6 \cdot 10^{-8} \) |
\(a_{964}= -0.28493461 \pm 2.7 \cdot 10^{-8} \) | \(a_{965}= -0.53898247 \pm 5.6 \cdot 10^{-8} \) | \(a_{966}= -0.04834676 \pm 1.0 \cdot 10^{-7} \) |
\(a_{967}= +0.75913074 \pm 4.3 \cdot 10^{-8} \) | \(a_{968}= -0.24958575 \pm 2.7 \cdot 10^{-8} \) | \(a_{969}= -0.13112037 \pm 8.3 \cdot 10^{-8} \) |
\(a_{970}= -0.70107684 \pm 2.6 \cdot 10^{-8} \) | \(a_{971}= -0.00372495 \pm 4.1 \cdot 10^{-8} \) | \(a_{972}= -0.05684912 \pm 6.0 \cdot 10^{-8} \) |
\(a_{973}= -0.05740184 \pm 4.0 \cdot 10^{-8} \) | \(a_{974}= -0.46405624 \pm 5.2 \cdot 10^{-8} \) | \(a_{975}= -1.13647888 \pm 8.7 \cdot 10^{-8} \) |
\(a_{976}= +0.50973418 \pm 3.8 \cdot 10^{-8} \) | \(a_{977}= +0.28109864 \pm 5.0 \cdot 10^{-8} \) | \(a_{978}= -0.26671787 \pm 9.9 \cdot 10^{-8} \) |
\(a_{979}= -0.37143403 \pm 2.8 \cdot 10^{-8} \) | \(a_{980}= -0.23265616 \pm 1.0 \cdot 10^{-7} \) | \(a_{981}= +0.46802826 \pm 4.4 \cdot 10^{-8} \) |
\(a_{982}= -0.28652553 \pm 4.5 \cdot 10^{-8} \) | \(a_{983}= -0.48418334 \pm 4.0 \cdot 10^{-8} \) | \(a_{984}= -0.51729258 \pm 8.9 \cdot 10^{-8} \) |
\(a_{985}= -0.79389113 \pm 5.9 \cdot 10^{-8} \) | \(a_{986}= -0.05096137 \pm 4.8 \cdot 10^{-8} \) | \(a_{987}= +0.03438140 \pm 5.0 \cdot 10^{-8} \) |
\(a_{988}= -0.43748963 \pm 3.2 \cdot 10^{-8} \) | \(a_{989}= -1.03148791 \pm 2.6 \cdot 10^{-8} \) | \(a_{990}= +0.24384307 \pm 1.4 \cdot 10^{-7} \) |
\(a_{991}= +0.12401599 \pm 3.8 \cdot 10^{-8} \) | \(a_{992}= +1.17511147 \pm 3.2 \cdot 10^{-8} \) | \(a_{993}= -0.14836319 \pm 5.5 \cdot 10^{-8} \) |
\(a_{994}= +0.11407071 \pm 9.7 \cdot 10^{-8} \) | \(a_{995}= -1.96259761 \pm 4.0 \cdot 10^{-8} \) | \(a_{996}= +0.73832403 \pm 9.6 \cdot 10^{-8} \) |
\(a_{997}= +0.07952641 \pm 2.4 \cdot 10^{-8} \) | \(a_{998}= +0.45962351 \pm 5.8 \cdot 10^{-8} \) | \(a_{999}= +0.17758279 \pm 4.6 \cdot 10^{-8} \) |
\(a_{1000}= -1.61062319 \pm 3.4 \cdot 10^{-8} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000