Maass form invariants
Level: | \( 21 = 3 \cdot 7 \) |
Weight: | \( 0 \) |
Character: | 21.1 |
Symmetry: | even |
Fricke sign: | $+1$ |
Spectral parameter: | \(8.75237080868404451593214088427 \pm 2 \cdot 10^{-9}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -1.16278581 \pm 5.2 \cdot 10^{-8} \) | \(a_{3}= -0.57735027 \pm 1.0 \cdot 10^{-8} \) |
\(a_{4}= +0.35207085 \pm 5.0 \cdot 10^{-8} \) | \(a_{5}= +0.28199500 \pm 4.8 \cdot 10^{-8} \) | \(a_{6}= +0.67133470 \pm 6.3 \cdot 10^{-8} \) |
\(a_{7}= -0.37796447 \pm 1.0 \cdot 10^{-8} \) | \(a_{8}= +0.75340283 \pm 4.0 \cdot 10^{-8} \) | \(a_{9}= +0.33333333 \pm 4.2 \cdot 10^{-8} \) |
\(a_{10}= -0.32789978 \pm 5.6 \cdot 10^{-8} \) | \(a_{11}= +1.34787761 \pm 3.9 \cdot 10^{-8} \) | \(a_{12}= -0.20326820 \pm 6.1 \cdot 10^{-8} \) |
\(a_{13}= -1.44366560 \pm 3.7 \cdot 10^{-8} \) | \(a_{14}= +0.43949173 \pm 6.3 \cdot 10^{-8} \) | \(a_{15}= -0.16280989 \pm 5.8 \cdot 10^{-8} \) |
\(a_{16}= -1.22811697 \pm 4.0 \cdot 10^{-8} \) | \(a_{17}= -1.78757535 \pm 4.2 \cdot 10^{-8} \) | \(a_{18}= -0.38759527 \pm 6.3 \cdot 10^{-8} \) |
\(a_{19}= +0.58243002 \pm 3.2 \cdot 10^{-8} \) | \(a_{20}= +0.09928222 \pm 5.2 \cdot 10^{-8} \) | \(a_{21}= +0.21821789 \pm 1.0 \cdot 10^{-8} \) |
\(a_{22}= -1.56729297 \pm 4.6 \cdot 10^{-8} \) | \(a_{23}= -0.95160994 \pm 4.6 \cdot 10^{-8} \) | \(a_{24}= -0.43497733 \pm 5.1 \cdot 10^{-8} \) |
\(a_{25}= -0.92047882 \pm 4.0 \cdot 10^{-8} \) | \(a_{26}= +1.67867388 \pm 4.0 \cdot 10^{-8} \) | \(a_{27}= -0.19245009 \pm 9.4 \cdot 10^{-8} \) |
\(a_{28}= -0.13307027 \pm 6.1 \cdot 10^{-8} \) | \(a_{29}= +0.76321343 \pm 4.0 \cdot 10^{-8} \) | \(a_{30}= +0.18931303 \pm 1.1 \cdot 10^{-7} \) |
\(a_{31}= +1.86735199 \pm 3.4 \cdot 10^{-8} \) | \(a_{32}= +0.67463415 \pm 4.7 \cdot 10^{-8} \) | \(a_{33}= -0.77819750 \pm 4.9 \cdot 10^{-8} \) |
\(a_{34}= +2.07856726 \pm 5.3 \cdot 10^{-8} \) | \(a_{35}= -0.10658409 \pm 5.8 \cdot 10^{-8} \) | \(a_{36}= +0.11735695 \pm 6.1 \cdot 10^{-8} \) |
\(a_{37}= -0.80425651 \pm 3.7 \cdot 10^{-8} \) | \(a_{38}= -0.67724137 \pm 4.5 \cdot 10^{-8} \) | \(a_{39}= +0.83350072 \pm 4.7 \cdot 10^{-8} \) |
\(a_{40}= +0.21245583 \pm 4.1 \cdot 10^{-8} \) | \(a_{41}= -0.96472738 \pm 3.9 \cdot 10^{-8} \) | \(a_{42}= -0.25374067 \pm 6.3 \cdot 10^{-8} \) |
\(a_{43}= +0.35947710 \pm 4.0 \cdot 10^{-8} \) | \(a_{44}= +0.47454841 \pm 4.3 \cdot 10^{-8} \) | \(a_{45}= +0.09399833 \pm 5.8 \cdot 10^{-8} \) |
\(a_{46}= +1.10651854 \pm 6.6 \cdot 10^{-8} \) | \(a_{47}= +0.50393654 \pm 4.0 \cdot 10^{-8} \) | \(a_{48}= +0.70905366 \pm 5.1 \cdot 10^{-8} \) |
\(a_{49}= +0.14285714 \pm 1.5 \cdot 10^{-7} \) | \(a_{50}= +1.07031971 \pm 4.6 \cdot 10^{-8} \) | \(a_{51}= +1.03205711 \pm 5.2 \cdot 10^{-8} \) |
\(a_{52}= -0.50827257 \pm 3.9 \cdot 10^{-8} \) | \(a_{53}= -1.19716449 \pm 2.5 \cdot 10^{-8} \) | \(a_{54}= +0.22377823 \pm 6.3 \cdot 10^{-8} \) |
\(a_{55}= +0.38009475 \pm 4.6 \cdot 10^{-8} \) | \(a_{56}= -0.28475950 \pm 5.1 \cdot 10^{-8} \) | \(a_{57}= -0.33626613 \pm 4.2 \cdot 10^{-8} \) |
\(a_{58}= -0.88745375 \pm 5.1 \cdot 10^{-8} \) | \(a_{59}= +1.14402341 \pm 4.3 \cdot 10^{-8} \) | \(a_{60}= -0.05732062 \pm 1.0 \cdot 10^{-7} \) |
\(a_{61}= +0.69030237 \pm 4.4 \cdot 10^{-8} \) | \(a_{62}= -2.17133040 \pm 2.6 \cdot 10^{-8} \) | \(a_{63}= -0.12598816 \pm 1.8 \cdot 10^{-7} \) |
\(a_{64}= +0.44366194 \pm 4.9 \cdot 10^{-8} \) | \(a_{65}= -0.40710648 \pm 4.4 \cdot 10^{-8} \) | \(a_{66}= +0.90487702 \pm 1.0 \cdot 10^{-7} \) |
\(a_{67}= -0.42299438 \pm 4.9 \cdot 10^{-8} \) | \(a_{68}= -0.62935317 \pm 5.0 \cdot 10^{-8} \) | \(a_{69}= +0.54941226 \pm 5.7 \cdot 10^{-8} \) |
\(a_{70}= +0.12393447 \pm 1.1 \cdot 10^{-7} \) | \(a_{71}= -0.08522172 \pm 3.6 \cdot 10^{-8} \) | \(a_{72}= +0.25113428 \pm 5.1 \cdot 10^{-8} \) |
\(a_{73}= +0.83398246 \pm 2.7 \cdot 10^{-8} \) | \(a_{74}= +0.93517806 \pm 4.7 \cdot 10^{-8} \) | \(a_{75}= +0.53143869 \pm 5.1 \cdot 10^{-8} \) |
\(a_{76}= +0.20505663 \pm 4.6 \cdot 10^{-8} \) | \(a_{77}= -0.50944985 \pm 4.9 \cdot 10^{-8} \) | \(a_{78}= -0.96918281 \pm 1.0 \cdot 10^{-7} \) |
\(a_{79}= -0.55201590 \pm 5.0 \cdot 10^{-8} \) | \(a_{80}= -0.34632284 \pm 4.8 \cdot 10^{-8} \) | \(a_{81}= +0.11111111 \pm 2.3 \cdot 10^{-7} \) |
\(a_{82}= +1.12177131 \pm 4.3 \cdot 10^{-8} \) | \(a_{83}= +0.25545294 \pm 3.6 \cdot 10^{-8} \) | \(a_{84}= +0.07682816 \pm 6.1 \cdot 10^{-8} \) |
\(a_{85}= -0.50408731 \pm 4.0 \cdot 10^{-8} \) | \(a_{86}= -0.41799487 \pm 3.5 \cdot 10^{-8} \) | \(a_{87}= -0.44064148 \pm 5.0 \cdot 10^{-8} \) |
\(a_{88}= +1.01549481 \pm 3.5 \cdot 10^{-8} \) | \(a_{89}= +0.18412506 \pm 3.1 \cdot 10^{-8} \) | \(a_{90}= -0.10929993 \pm 1.1 \cdot 10^{-7} \) |
\(a_{91}= +0.54565431 \pm 4.7 \cdot 10^{-8} \) | \(a_{92}= -0.33503412 \pm 5.9 \cdot 10^{-8} \) | \(a_{93}= -1.07811617 \pm 4.5 \cdot 10^{-8} \) |
\(a_{94}= -0.58597026 \pm 5.4 \cdot 10^{-8} \) | \(a_{95}= +0.16424235 \pm 3.6 \cdot 10^{-8} \) | \(a_{96}= -0.38950021 \pm 5.7 \cdot 10^{-8} \) |
\(a_{97}= +1.94006566 \pm 2.7 \cdot 10^{-8} \) | \(a_{98}= -0.16611226 \pm 6.3 \cdot 10^{-8} \) | \(a_{99}= +0.44929254 \pm 4.9 \cdot 10^{-8} \) |
\(a_{100}= -0.32407376 \pm 3.5 \cdot 10^{-8} \) | \(a_{101}= -0.41032134 \pm 3.5 \cdot 10^{-8} \) | \(a_{102}= -1.20006137 \pm 1.0 \cdot 10^{-7} \) |
\(a_{103}= -0.13686141 \pm 4.8 \cdot 10^{-8} \) | \(a_{104}= -1.08766175 \pm 3.4 \cdot 10^{-8} \) | \(a_{105}= +0.06153635 \pm 5.8 \cdot 10^{-8} \) |
\(a_{106}= +1.39204589 \pm 3.4 \cdot 10^{-8} \) | \(a_{107}= -1.21842796 \pm 3.6 \cdot 10^{-8} \) | \(a_{108}= -0.06775607 \pm 6.1 \cdot 10^{-8} \) |
\(a_{109}= +0.82907084 \pm 3.4 \cdot 10^{-8} \) | \(a_{110}= -0.44196878 \pm 5.2 \cdot 10^{-8} \) | \(a_{111}= +0.46433771 \pm 4.7 \cdot 10^{-8} \) |
\(a_{112}= +0.46418458 \pm 5.1 \cdot 10^{-8} \) | \(a_{113}= +1.08558819 \pm 4.7 \cdot 10^{-8} \) | \(a_{114}= +0.39100549 \pm 9.5 \cdot 10^{-8} \) |
\(a_{115}= -0.26834925 \pm 4.4 \cdot 10^{-8} \) | \(a_{116}= +0.26870520 \pm 4.9 \cdot 10^{-8} \) | \(a_{117}= -0.48122187 \pm 4.7 \cdot 10^{-8} \) |
\(a_{118}= -1.33025419 \pm 4.4 \cdot 10^{-8} \) | \(a_{119}= +0.67563998 \pm 5.2 \cdot 10^{-8} \) | \(a_{120}= -0.12266143 \pm 9.9 \cdot 10^{-8} \) |
\(a_{121}= +0.81677406 \pm 3.5 \cdot 10^{-8} \) | \(a_{122}= -0.80267380 \pm 6.3 \cdot 10^{-8} \) | \(a_{123}= +0.55698561 \pm 5.0 \cdot 10^{-8} \) |
\(a_{124}= +0.65744019 \pm 3.0 \cdot 10^{-8} \) | \(a_{125}= -0.54156542 \pm 3.7 \cdot 10^{-8} \) | \(a_{126}= +0.14649724 \pm 6.3 \cdot 10^{-8} \) |
\(a_{127}= +1.73885257 \pm 2.9 \cdot 10^{-8} \) | \(a_{128}= -1.19051797 \pm 5.2 \cdot 10^{-8} \) | \(a_{129}= -0.20754420 \pm 5.1 \cdot 10^{-8} \) |
\(a_{130}= +0.47337764 \pm 4.6 \cdot 10^{-8} \) | \(a_{131}= +0.25860008 \pm 4.4 \cdot 10^{-8} \) | \(a_{132}= -0.27398065 \pm 1.0 \cdot 10^{-7} \) |
\(a_{133}= -0.22013786 \pm 4.2 \cdot 10^{-8} \) | \(a_{134}= +0.49185186 \pm 6.7 \cdot 10^{-8} \) | \(a_{135}= -0.05426996 \pm 5.8 \cdot 10^{-8} \) |
\(a_{136}= -1.34676433 \pm 4.1 \cdot 10^{-8} \) | \(a_{137}= +0.84740112 \pm 4.0 \cdot 10^{-8} \) | \(a_{138}= -0.63884878 \pm 1.0 \cdot 10^{-7} \) |
\(a_{139}= +0.88538262 \pm 3.0 \cdot 10^{-8} \) | \(a_{140}= -0.03752515 \pm 1.0 \cdot 10^{-7} \) | \(a_{141}= -0.29094790 \pm 5.1 \cdot 10^{-8} \) |
\(a_{142}= +0.09909461 \pm 4.5 \cdot 10^{-8} \) | \(a_{143}= -1.94588454 \pm 3.2 \cdot 10^{-8} \) | \(a_{144}= -0.40937232 \pm 5.1 \cdot 10^{-8} \) |
\(a_{145}= +0.21522237 \pm 4.9 \cdot 10^{-8} \) | \(a_{146}= -0.96974297 \pm 3.2 \cdot 10^{-8} \) | \(a_{147}= -0.08247861 \pm 3.5 \cdot 10^{-7} \) |
\(a_{148}= -0.28315527 \pm 4.2 \cdot 10^{-8} \) | \(a_{149}= +0.14454598 \pm 4.2 \cdot 10^{-8} \) | \(a_{150}= -0.61794937 \pm 1.0 \cdot 10^{-7} \) |
\(a_{151}= -0.41917587 \pm 3.7 \cdot 10^{-8} \) | \(a_{152}= +0.43880443 \pm 3.9 \cdot 10^{-8} \) | \(a_{153}= -0.59585845 \pm 5.2 \cdot 10^{-8} \) |
\(a_{154}= +0.59238106 \pm 1.0 \cdot 10^{-7} \) | \(a_{155}= +0.52658392 \pm 4.3 \cdot 10^{-8} \) | \(a_{156}= +0.29345130 \pm 9.8 \cdot 10^{-8} \) |
\(a_{157}= +0.85323351 \pm 5.0 \cdot 10^{-8} \) | \(a_{158}= +0.64187625 \pm 6.7 \cdot 10^{-8} \) | \(a_{159}= +0.69118324 \pm 3.5 \cdot 10^{-8} \) |
\(a_{160}= +0.19024346 \pm 4.8 \cdot 10^{-8} \) | \(a_{161}= +0.35967475 \pm 5.7 \cdot 10^{-8} \) | \(a_{162}= -0.12919842 \pm 6.3 \cdot 10^{-8} \) |
\(a_{163}= -0.65424111 \pm 3.7 \cdot 10^{-8} \) | \(a_{164}= -0.33965238 \pm 3.1 \cdot 10^{-8} \) | \(a_{165}= -0.21944780 \pm 9.7 \cdot 10^{-8} \) |
\(a_{166}= -0.29703705 \pm 5.5 \cdot 10^{-8} \) | \(a_{167}= +1.87224912 \pm 5.2 \cdot 10^{-8} \) | \(a_{168}= +0.16440598 \pm 5.1 \cdot 10^{-8} \) |
\(a_{169}= +1.08417036 \pm 2.4 \cdot 10^{-8} \) | \(a_{170}= +0.58614557 \pm 5.0 \cdot 10^{-8} \) | \(a_{171}= +0.19414334 \pm 4.2 \cdot 10^{-8} \) |
\(a_{172}= +0.12656141 \pm 4.0 \cdot 10^{-8} \) | \(a_{173}= +0.96161320 \pm 4.2 \cdot 10^{-8} \) | \(a_{174}= +0.51237166 \pm 1.0 \cdot 10^{-7} \) |
\(a_{175}= +0.34790829 \pm 5.1 \cdot 10^{-8} \) | \(a_{176}= -1.65535136 \pm 3.9 \cdot 10^{-8} \) | \(a_{177}= -0.66050222 \pm 5.3 \cdot 10^{-8} \) |
\(a_{178}= -0.21409801 \pm 4.0 \cdot 10^{-8} \) | \(a_{179}= -1.25007383 \pm 3.7 \cdot 10^{-8} \) | \(a_{180}= +0.03309407 \pm 1.0 \cdot 10^{-7} \) |
\(a_{181}= +0.39940697 \pm 3.8 \cdot 10^{-8} \) | \(a_{182}= -0.63447909 \pm 1.0 \cdot 10^{-7} \) | \(a_{183}= -0.39854626 \pm 5.5 \cdot 10^{-8} \) |
\(a_{184}= -0.71694562 \pm 3.6 \cdot 10^{-8} \) | \(a_{185}= -0.22679632 \pm 3.8 \cdot 10^{-8} \) | \(a_{186}= +1.25361819 \pm 9.8 \cdot 10^{-8} \) |
\(a_{187}= -2.40943280 \pm 4.2 \cdot 10^{-8} \) | \(a_{188}= +0.17742136 \pm 4.4 \cdot 10^{-8} \) | \(a_{189}= +0.07273930 \pm 4.4 \cdot 10^{-7} \) |
\(a_{190}= -0.19097868 \pm 4.9 \cdot 10^{-8} \) | \(a_{191}= -0.36636748 \pm 3.7 \cdot 10^{-8} \) | \(a_{192}= -0.25614834 \pm 6.0 \cdot 10^{-8} \) |
\(a_{193}= +1.01660225 \pm 4.6 \cdot 10^{-8} \) | \(a_{194}= -2.25588082 \pm 2.9 \cdot 10^{-8} \) | \(a_{195}= +0.23504304 \pm 9.5 \cdot 10^{-8} \) |
\(a_{196}= +0.05029584 \pm 6.1 \cdot 10^{-8} \) | \(a_{197}= +1.46208979 \pm 4.4 \cdot 10^{-8} \) | \(a_{198}= -0.52243099 \pm 1.0 \cdot 10^{-7} \) |
\(a_{199}= +0.86131942 \pm 3.8 \cdot 10^{-8} \) | \(a_{200}= -0.69349135 \pm 2.8 \cdot 10^{-8} \) | \(a_{201}= +0.24421592 \pm 5.9 \cdot 10^{-8} \) |
\(a_{202}= +0.47711583 \pm 3.9 \cdot 10^{-8} \) | \(a_{203}= -0.28846756 \pm 5.0 \cdot 10^{-8} \) | \(a_{204}= +0.36335722 \pm 1.0 \cdot 10^{-7} \) |
\(a_{205}= -0.27204830 \pm 4.8 \cdot 10^{-8} \) | \(a_{206}= +0.15914051 \pm 5.8 \cdot 10^{-8} \) | \(a_{207}= -0.31720331 \pm 5.7 \cdot 10^{-8} \) |
\(a_{208}= +1.77299021 \pm 3.4 \cdot 10^{-8} \) | \(a_{209}= +0.78504439 \pm 2.5 \cdot 10^{-8} \) | \(a_{210}= -0.07155360 \pm 1.1 \cdot 10^{-7} \) |
\(a_{211}= -0.31812588 \pm 4.4 \cdot 10^{-8} \) | \(a_{212}= -0.42148671 \pm 3.3 \cdot 10^{-8} \) | \(a_{213}= +0.04920279 \pm 4.6 \cdot 10^{-8} \) |
\(a_{214}= +1.41677075 \pm 4.6 \cdot 10^{-8} \) | \(a_{215}= +0.10137074 \pm 4.9 \cdot 10^{-8} \) | \(a_{216}= -0.14499244 \pm 5.1 \cdot 10^{-8} \) |
\(a_{217}= -0.70579271 \pm 4.5 \cdot 10^{-8} \) | \(a_{218}= -0.96403181 \pm 4.2 \cdot 10^{-8} \) | \(a_{219}= -0.48149999 \pm 3.8 \cdot 10^{-8} \) |
\(a_{220}= +0.13382028 \pm 5.1 \cdot 10^{-8} \) | \(a_{221}= +2.58066104 \pm 3.9 \cdot 10^{-8} \) | \(a_{222}= -0.53992531 \pm 1.0 \cdot 10^{-7} \) |
\(a_{223}= +0.57034139 \pm 3.6 \cdot 10^{-8} \) | \(a_{224}= -0.25498774 \pm 5.7 \cdot 10^{-8} \) | \(a_{225}= -0.30682627 \pm 5.1 \cdot 10^{-8} \) |
\(a_{226}= -1.26230654 \pm 6.7 \cdot 10^{-8} \) | \(a_{227}= -0.88722796 \pm 3.8 \cdot 10^{-8} \) | \(a_{228}= -0.11838950 \pm 9.3 \cdot 10^{-8} \) |
\(a_{229}= -0.86149795 \pm 4.5 \cdot 10^{-8} \) | \(a_{230}= +0.31203270 \pm 5.9 \cdot 10^{-8} \) | \(a_{231}= +0.29413101 \pm 4.9 \cdot 10^{-8} \) |
\(a_{232}= +0.57500716 \pm 4.3 \cdot 10^{-8} \) | \(a_{233}= +1.17857056 \pm 3.5 \cdot 10^{-8} \) | \(a_{234}= +0.55955796 \pm 1.0 \cdot 10^{-7} \) |
\(a_{235}= +0.14210758 \pm 5.8 \cdot 10^{-8} \) | \(a_{236}= +0.40277729 \pm 4.0 \cdot 10^{-8} \) | \(a_{237}= +0.31870653 \pm 6.0 \cdot 10^{-8} \) |
\(a_{238}= -0.78562458 \pm 1.0 \cdot 10^{-7} \) | \(a_{239}= +0.00559917 \pm 4.2 \cdot 10^{-8} \) | \(a_{240}= +0.19994959 \pm 9.9 \cdot 10^{-8} \) |
\(a_{241}= -0.74875045 \pm 3.3 \cdot 10^{-8} \) | \(a_{242}= -0.94973329 \pm 3.8 \cdot 10^{-8} \) | \(a_{243}= -0.06415003 \pm 5.5 \cdot 10^{-7} \) |
\(a_{244}= +0.24303534 \pm 6.1 \cdot 10^{-8} \) | \(a_{245}= +0.04028500 \pm 5.8 \cdot 10^{-8} \) | \(a_{246}= -0.64765497 \pm 1.0 \cdot 10^{-7} \) |
\(a_{247}= -0.84083419 \pm 2.7 \cdot 10^{-8} \) | \(a_{248}= +1.40686827 \pm 3.0 \cdot 10^{-8} \) | \(a_{249}= -0.14748582 \pm 4.7 \cdot 10^{-8} \) |
\(a_{250}= +0.62972459 \pm 5.0 \cdot 10^{-8} \) | \(a_{251}= +1.75741673 \pm 4.3 \cdot 10^{-8} \) | \(a_{252}= -0.04435676 \pm 6.1 \cdot 10^{-8} \) |
\(a_{253}= -1.28265374 \pm 4.1 \cdot 10^{-8} \) | \(a_{254}= -2.02191310 \pm 3.1 \cdot 10^{-8} \) | \(a_{255}= +0.29103494 \pm 1.0 \cdot 10^{-7} \) |
\(a_{256}= +0.94065546 \pm 5.1 \cdot 10^{-8} \) | \(a_{257}= -0.94306859 \pm 3.2 \cdot 10^{-8} \) | \(a_{258}= +0.24132945 \pm 1.0 \cdot 10^{-7} \) |
\(a_{259}= +0.30398039 \pm 4.7 \cdot 10^{-8} \) | \(a_{260}= -0.14333032 \pm 4.3 \cdot 10^{-8} \) | \(a_{261}= +0.25440448 \pm 5.0 \cdot 10^{-8} \) |
\(a_{262}= -0.30069650 \pm 5.8 \cdot 10^{-8} \) | \(a_{263}= +0.51536813 \pm 5.0 \cdot 10^{-8} \) | \(a_{264}= -0.58629620 \pm 9.0 \cdot 10^{-8} \) |
\(a_{265}= -0.33759440 \pm 3.1 \cdot 10^{-8} \) | \(a_{266}= +0.25597318 \pm 9.5 \cdot 10^{-8} \) | \(a_{267}= -0.10630465 \pm 4.1 \cdot 10^{-8} \) |
\(a_{268}= -0.14892399 \pm 6.8 \cdot 10^{-8} \) | \(a_{269}= -0.48871491 \pm 3.8 \cdot 10^{-8} \) | \(a_{270}= +0.06310434 \pm 1.1 \cdot 10^{-7} \) |
\(a_{271}= -0.28902713 \pm 4.2 \cdot 10^{-8} \) | \(a_{272}= +2.19535162 \pm 3.4 \cdot 10^{-8} \) | \(a_{273}= -0.31503366 \pm 4.7 \cdot 10^{-8} \) |
\(a_{274}= -0.98534600 \pm 4.4 \cdot 10^{-8} \) | \(a_{275}= -1.24069280 \pm 4.0 \cdot 10^{-8} \) | \(a_{276}= +0.19343204 \pm 1.0 \cdot 10^{-7} \) |
\(a_{277}= -0.28755006 \pm 4.7 \cdot 10^{-8} \) | \(a_{278}= -1.02951035 \pm 3.8 \cdot 10^{-8} \) | \(a_{279}= +0.62245066 \pm 4.5 \cdot 10^{-8} \) |
\(a_{280}= -0.08030076 \pm 9.9 \cdot 10^{-8} \) | \(a_{281}= -1.59006102 \pm 3.8 \cdot 10^{-8} \) | \(a_{282}= +0.33831009 \pm 1.0 \cdot 10^{-7} \) |
\(a_{283}= +1.01471863 \pm 3.7 \cdot 10^{-8} \) | \(a_{284}= -0.03000408 \pm 4.4 \cdot 10^{-8} \) | \(a_{285}= -0.09482537 \pm 9.0 \cdot 10^{-8} \) |
\(a_{286}= +2.26264694 \pm 3.7 \cdot 10^{-8} \) | \(a_{287}= +0.36463268 \pm 5.0 \cdot 10^{-8} \) | \(a_{288}= +0.22487805 \pm 5.7 \cdot 10^{-8} \) |
\(a_{289}= +2.19542565 \pm 3.3 \cdot 10^{-8} \) | \(a_{290}= -0.25025752 \pm 6.1 \cdot 10^{-8} \) | \(a_{291}= -1.12009743 \pm 3.8 \cdot 10^{-8} \) |
\(a_{292}= +0.29362091 \pm 3.0 \cdot 10^{-8} \) | \(a_{293}= -0.69118804 \pm 3.6 \cdot 10^{-8} \) | \(a_{294}= +0.09590496 \pm 6.3 \cdot 10^{-8} \) |
\(a_{295}= +0.32260888 \pm 4.8 \cdot 10^{-8} \) | \(a_{296}= -0.60592913 \pm 2.9 \cdot 10^{-8} \) | \(a_{297}= -0.25939917 \pm 4.9 \cdot 10^{-8} \) |
\(a_{298}= -0.16807602 \pm 6.1 \cdot 10^{-8} \) | \(a_{299}= +1.37380654 \pm 3.4 \cdot 10^{-8} \) | \(a_{300}= +0.18710407 \pm 1.0 \cdot 10^{-7} \) |
\(a_{301}= -0.13586957 \pm 5.1 \cdot 10^{-8} \) | \(a_{302}= +0.48741175 \pm 4.2 \cdot 10^{-8} \) | \(a_{303}= +0.23689914 \pm 4.6 \cdot 10^{-8} \) |
\(a_{304}= -0.71529219 \pm 3.5 \cdot 10^{-8} \) | \(a_{305}= +0.19466182 \pm 4.3 \cdot 10^{-8} \) | \(a_{306}= +0.69285575 \pm 1.0 \cdot 10^{-7} \) |
\(a_{307}= +0.77186576 \pm 4.1 \cdot 10^{-8} \) | \(a_{308}= -0.17936244 \pm 1.0 \cdot 10^{-7} \) | \(a_{309}= +0.07901697 \pm 5.9 \cdot 10^{-8} \) |
\(a_{310}= -0.61230432 \pm 2.8 \cdot 10^{-8} \) | \(a_{311}= +1.13785193 \pm 3.5 \cdot 10^{-8} \) | \(a_{312}= +0.62796180 \pm 8.8 \cdot 10^{-8} \) |
\(a_{313}= -1.28349383 \pm 4.1 \cdot 10^{-8} \) | \(a_{314}= -0.99212782 \pm 5.9 \cdot 10^{-8} \) | \(a_{315}= -0.03552803 \pm 5.8 \cdot 10^{-8} \) |
\(a_{316}= -0.19434870 \pm 6.3 \cdot 10^{-8} \) | \(a_{317}= -0.97782748 \pm 3.3 \cdot 10^{-8} \) | \(a_{318}= -0.80369807 \pm 8.8 \cdot 10^{-8} \) |
\(a_{319}= +1.02871830 \pm 4.3 \cdot 10^{-8} \) | \(a_{320}= +0.12511045 \pm 4.2 \cdot 10^{-8} \) | \(a_{321}= +0.70345971 \pm 4.7 \cdot 10^{-8} \) |
\(a_{322}= -0.41822470 \pm 1.0 \cdot 10^{-7} \) | \(a_{323}= -1.04113755 \pm 3.0 \cdot 10^{-8} \) | \(a_{324}= +0.03911898 \pm 6.1 \cdot 10^{-8} \) |
\(a_{325}= +1.32886361 \pm 3.5 \cdot 10^{-8} \) | \(a_{326}= +0.76074227 \pm 5.1 \cdot 10^{-8} \) | \(a_{327}= -0.47866427 \pm 4.5 \cdot 10^{-8} \) |
\(a_{328}= -0.72682834 \pm 2.7 \cdot 10^{-8} \) | \(a_{329}= -0.19047011 \pm 5.1 \cdot 10^{-8} \) | \(a_{330}= +0.25517079 \pm 1.5 \cdot 10^{-7} \) |
\(a_{331}= -1.21355936 \pm 4.5 \cdot 10^{-8} \) | \(a_{332}= +0.08993753 \pm 5.9 \cdot 10^{-8} \) | \(a_{333}= -0.26808550 \pm 4.7 \cdot 10^{-8} \) |
\(a_{334}= -2.17702471 \pm 7.5 \cdot 10^{-8} \) | \(a_{335}= -0.11928230 \pm 4.9 \cdot 10^{-8} \) | \(a_{336}= -0.26799709 \pm 5.1 \cdot 10^{-8} \) |
\(a_{337}= -0.64329759 \pm 3.9 \cdot 10^{-8} \) | \(a_{338}= -1.26065791 \pm 3.0 \cdot 10^{-8} \) | \(a_{339}= -0.62676463 \pm 5.8 \cdot 10^{-8} \) |
\(a_{340}= -0.17747445 \pm 5.1 \cdot 10^{-8} \) | \(a_{341}= +2.51696194 \pm 2.9 \cdot 10^{-8} \) | \(a_{342}= -0.22574712 \pm 9.5 \cdot 10^{-8} \) |
\(a_{343}= -0.05399492 \pm 7.1 \cdot 10^{-7} \) | \(a_{344}= +0.27083106 \pm 3.7 \cdot 10^{-8} \) | \(a_{345}= +0.15493151 \pm 1.0 \cdot 10^{-7} \) |
\(a_{346}= -1.11815019 \pm 5.6 \cdot 10^{-8} \) | \(a_{347}= +0.90169967 \pm 4.2 \cdot 10^{-8} \) | \(a_{348}= -0.15513702 \pm 1.0 \cdot 10^{-7} \) |
\(a_{349}= +0.83402663 \pm 3.8 \cdot 10^{-8} \) | \(a_{350}= -0.40454283 \pm 1.0 \cdot 10^{-7} \) | \(a_{351}= +0.27783357 \pm 4.7 \cdot 10^{-8} \) |
\(a_{352}= +0.90932427 \pm 3.8 \cdot 10^{-8} \) | \(a_{353}= +0.81326088 \pm 4.3 \cdot 10^{-8} \) | \(a_{354}= +0.76802261 \pm 1.0 \cdot 10^{-7} \) |
\(a_{355}= -0.02403210 \pm 3.8 \cdot 10^{-8} \) | \(a_{356}= +0.06482507 \pm 3.1 \cdot 10^{-8} \) | \(a_{357}= -0.39008092 \pm 5.2 \cdot 10^{-8} \) |
\(a_{358}= +1.45356811 \pm 4.1 \cdot 10^{-8} \) | \(a_{359}= -0.58609245 \pm 4.2 \cdot 10^{-8} \) | \(a_{360}= +0.07081861 \pm 9.9 \cdot 10^{-8} \) |
\(a_{361}= -0.66077527 \pm 3.2 \cdot 10^{-8} \) | \(a_{362}= -0.46442476 \pm 4.4 \cdot 10^{-8} \) | \(a_{363}= -0.47156472 \pm 4.6 \cdot 10^{-8} \) |
\(a_{364}= +0.19210897 \pm 9.8 \cdot 10^{-8} \) | \(a_{365}= +0.23517888 \pm 3.1 \cdot 10^{-8} \) | \(a_{366}= +0.46342394 \pm 1.0 \cdot 10^{-7} \) |
\(a_{367}= -1.10412935 \pm 3.5 \cdot 10^{-8} \) | \(a_{368}= +1.16868832 \pm 3.5 \cdot 10^{-8} \) | \(a_{369}= -0.32157579 \pm 5.0 \cdot 10^{-8} \) |
\(a_{370}= +0.26371554 \pm 4.5 \cdot 10^{-8} \) | \(a_{371}= +0.45248565 \pm 3.5 \cdot 10^{-8} \) | \(a_{372}= -0.37957327 \pm 9.6 \cdot 10^{-8} \) |
\(a_{373}= +1.11739550 \pm 4.0 \cdot 10^{-8} \) | \(a_{374}= +2.80165428 \pm 5.4 \cdot 10^{-8} \) | \(a_{375}= +0.31267294 \pm 4.7 \cdot 10^{-8} \) |
\(a_{376}= +0.37966721 \pm 3.8 \cdot 10^{-8} \) | \(a_{377}= -1.10182498 \pm 3.3 \cdot 10^{-8} \) | \(a_{378}= -0.08458022 \pm 6.3 \cdot 10^{-8} \) |
\(a_{379}= +0.63734810 \pm 3.4 \cdot 10^{-8} \) | \(a_{380}= +0.05782494 \pm 4.7 \cdot 10^{-8} \) | \(a_{381}= -1.00392700 \pm 4.0 \cdot 10^{-8} \) |
\(a_{382}= +0.42600690 \pm 5.6 \cdot 10^{-8} \) | \(a_{383}= -0.89978811 \pm 4.3 \cdot 10^{-8} \) | \(a_{384}= +0.68734587 \pm 6.3 \cdot 10^{-8} \) |
\(a_{385}= -0.14366231 \pm 9.7 \cdot 10^{-8} \) | \(a_{386}= -1.18209067 \pm 6.4 \cdot 10^{-8} \) | \(a_{387}= +0.11982570 \pm 5.1 \cdot 10^{-8} \) |
\(a_{388}= +0.68304056 \pm 3.1 \cdot 10^{-8} \) | \(a_{389}= -0.44081700 \pm 4.3 \cdot 10^{-8} \) | \(a_{390}= -0.27330471 \pm 1.4 \cdot 10^{-7} \) |
\(a_{391}= +1.70107448 \pm 4.6 \cdot 10^{-8} \) | \(a_{392}= +0.10762898 \pm 5.1 \cdot 10^{-8} \) | \(a_{393}= -0.14930282 \pm 5.5 \cdot 10^{-8} \) |
\(a_{394}= -1.70009727 \pm 4.6 \cdot 10^{-8} \) | \(a_{395}= -0.15566572 \pm 5.0 \cdot 10^{-8} \) | \(a_{396}= +0.15818280 \pm 1.0 \cdot 10^{-7} \) |
\(a_{397}= -0.78156138 \pm 3.5 \cdot 10^{-8} \) | \(a_{398}= -1.00153000 \pm 5.5 \cdot 10^{-8} \) | \(a_{399}= +0.12709665 \pm 4.2 \cdot 10^{-8} \) |
\(a_{400}= +1.13045566 \pm 4.3 \cdot 10^{-8} \) | \(a_{401}= -1.26281547 \pm 4.7 \cdot 10^{-8} \) | \(a_{402}= -0.28397081 \pm 1.1 \cdot 10^{-7} \) |
\(a_{403}= -2.69583183 \pm 3.9 \cdot 10^{-8} \) | \(a_{404}= -0.14446218 \pm 3.5 \cdot 10^{-8} \) | \(a_{405}= +0.03133278 \pm 5.8 \cdot 10^{-8} \) |
\(a_{406}= +0.33542599 \pm 1.0 \cdot 10^{-7} \) | \(a_{407}= -1.08403935 \pm 3.1 \cdot 10^{-8} \) | \(a_{408}= +0.77755475 \pm 9.3 \cdot 10^{-8} \) |
\(a_{409}= +1.36043746 \pm 3.3 \cdot 10^{-8} \) | \(a_{410}= +0.31633390 \pm 5.4 \cdot 10^{-8} \) | \(a_{411}= -0.48924727 \pm 5.1 \cdot 10^{-8} \) |
\(a_{412}= -0.04818491 \pm 5.6 \cdot 10^{-8} \) | \(a_{413}= -0.43240020 \pm 5.3 \cdot 10^{-8} \) | \(a_{414}= +0.36883951 \pm 1.0 \cdot 10^{-7} \) |
\(a_{415}= +0.07203645 \pm 3.9 \cdot 10^{-8} \) | \(a_{416}= -0.97394612 \pm 3.8 \cdot 10^{-8} \) | \(a_{417}= -0.51117589 \pm 4.0 \cdot 10^{-8} \) |
\(a_{418}= -0.91283848 \pm 3.5 \cdot 10^{-8} \) | \(a_{419}= +0.88985328 \pm 3.5 \cdot 10^{-8} \) | \(a_{420}= +0.02166516 \pm 1.0 \cdot 10^{-7} \) |
\(a_{421}= +0.42706735 \pm 2.9 \cdot 10^{-8} \) | \(a_{422}= +0.36991226 \pm 6.4 \cdot 10^{-8} \) | \(a_{423}= +0.16797885 \pm 5.1 \cdot 10^{-8} \) |
\(a_{424}= -0.90194711 \pm 3.2 \cdot 10^{-8} \) | \(a_{425}= +1.64542525 \pm 3.0 \cdot 10^{-8} \) | \(a_{426}= -0.05721230 \pm 9.9 \cdot 10^{-8} \) |
\(a_{427}= -0.26090977 \pm 5.5 \cdot 10^{-8} \) | \(a_{428}= -0.42897296 \pm 4.4 \cdot 10^{-8} \) | \(a_{429}= +1.12345696 \pm 8.7 \cdot 10^{-8} \) |
\(a_{430}= -0.11787246 \pm 4.1 \cdot 10^{-8} \) | \(a_{431}= +0.59083142 \pm 4.8 \cdot 10^{-8} \) | \(a_{432}= +0.23635122 \pm 5.1 \cdot 10^{-8} \) |
\(a_{433}= +1.41905548 \pm 4.9 \cdot 10^{-8} \) | \(a_{434}= +0.82068575 \pm 9.8 \cdot 10^{-8} \) | \(a_{435}= -0.12425869 \pm 9.8 \cdot 10^{-8} \) |
\(a_{436}= +0.29189167 \pm 3.4 \cdot 10^{-8} \) | \(a_{437}= -0.55424620 \pm 3.6 \cdot 10^{-8} \) | \(a_{438}= +0.55988136 \pm 9.1 \cdot 10^{-8} \) |
\(a_{439}= +1.68095001 \pm 4.0 \cdot 10^{-8} \) | \(a_{440}= +0.28636446 \pm 3.7 \cdot 10^{-8} \) | \(a_{441}= +0.04761905 \pm 8.8 \cdot 10^{-7} \) |
\(a_{442}= -3.00075605 \pm 4.2 \cdot 10^{-8} \) | \(a_{443}= -1.77966630 \pm 4.1 \cdot 10^{-8} \) | \(a_{444}= +0.16347977 \pm 9.8 \cdot 10^{-8} \) |
\(a_{445}= +0.05192235 \pm 3.4 \cdot 10^{-8} \) | \(a_{446}= -0.66318488 \pm 5.0 \cdot 10^{-8} \) | \(a_{447}= -0.08345366 \pm 5.3 \cdot 10^{-8} \) |
\(a_{448}= -0.16768845 \pm 6.0 \cdot 10^{-8} \) | \(a_{449}= +0.47062911 \pm 5.1 \cdot 10^{-8} \) | \(a_{450}= +0.35677324 \pm 1.0 \cdot 10^{-7} \) |
\(a_{451}= -1.30033444 \pm 4.1 \cdot 10^{-8} \) | \(a_{452}= +0.38220395 \pm 6.0 \cdot 10^{-8} \) | \(a_{453}= +0.24201130 \pm 4.7 \cdot 10^{-8} \) |
\(a_{454}= +1.03165608 \pm 4.4 \cdot 10^{-8} \) | \(a_{455}= +0.15387179 \pm 9.5 \cdot 10^{-8} \) | \(a_{456}= -0.25334385 \pm 8.3 \cdot 10^{-8} \) |
\(a_{457}= +0.66792533 \pm 4.8 \cdot 10^{-8} \) | \(a_{458}= +1.00173759 \pm 6.6 \cdot 10^{-8} \) | \(a_{459}= +0.34401904 \pm 5.2 \cdot 10^{-8} \) |
\(a_{460}= -0.09447795 \pm 4.8 \cdot 10^{-8} \) | \(a_{461}= -0.65570725 \pm 4.1 \cdot 10^{-8} \) | \(a_{462}= -0.34201136 \pm 1.0 \cdot 10^{-7} \) |
\(a_{463}= +1.03475247 \pm 2.8 \cdot 10^{-8} \) | \(a_{464}= -0.93731536 \pm 4.7 \cdot 10^{-8} \) | \(a_{465}= -0.30402337 \pm 9.3 \cdot 10^{-8} \) |
\(a_{466}= -1.37042513 \pm 4.4 \cdot 10^{-8} \) | \(a_{467}= +1.12794044 \pm 3.5 \cdot 10^{-8} \) | \(a_{468}= -0.16942419 \pm 9.8 \cdot 10^{-8} \) |
\(a_{469}= +0.15987685 \pm 5.9 \cdot 10^{-8} \) | \(a_{470}= -0.16524068 \pm 7.5 \cdot 10^{-8} \) | \(a_{471}= -0.49261460 \pm 6.0 \cdot 10^{-8} \) |
\(a_{472}= +0.86191047 \pm 3.1 \cdot 10^{-8} \) | \(a_{473}= +0.48453113 \pm 3.9 \cdot 10^{-8} \) | \(a_{474}= -0.37058743 \pm 1.1 \cdot 10^{-7} \) |
\(a_{475}= -0.53611450 \pm 2.9 \cdot 10^{-8} \) | \(a_{476}= +0.23787314 \pm 1.0 \cdot 10^{-7} \) | \(a_{477}= -0.39905483 \pm 3.5 \cdot 10^{-8} \) |
\(a_{478}= -0.00651063 \pm 3.9 \cdot 10^{-8} \) | \(a_{479}= -0.86866636 \pm 3.8 \cdot 10^{-8} \) | \(a_{480}= -0.10983711 \pm 1.0 \cdot 10^{-7} \) |
\(a_{481}= +1.16107746 \pm 3.3 \cdot 10^{-8} \) | \(a_{482}= +0.87063640 \pm 3.1 \cdot 10^{-8} \) | \(a_{483}= -0.20765831 \pm 5.7 \cdot 10^{-8} \) |
\(a_{484}= +0.28756233 \pm 4.1 \cdot 10^{-8} \) | \(a_{485}= +0.54708881 \pm 2.5 \cdot 10^{-8} \) | \(a_{486}= +0.07459274 \pm 6.3 \cdot 10^{-8} \) |
\(a_{487}= +1.77992690 \pm 4.3 \cdot 10^{-8} \) | \(a_{488}= +0.52007576 \pm 4.6 \cdot 10^{-8} \) | \(a_{489}= +0.37772628 \pm 4.8 \cdot 10^{-8} \) |
\(a_{490}= -0.04684283 \pm 1.1 \cdot 10^{-7} \) | \(a_{491}= -0.45062983 \pm 3.2 \cdot 10^{-8} \) | \(a_{492}= +0.19609840 \pm 1.0 \cdot 10^{-7} \) |
\(a_{493}= -1.36430152 \pm 3.7 \cdot 10^{-8} \) | \(a_{494}= +0.97771006 \pm 3.4 \cdot 10^{-8} \) | \(a_{495}= +0.12669825 \pm 9.7 \cdot 10^{-8} \) |
\(a_{496}= -2.29332666 \pm 3.0 \cdot 10^{-8} \) | \(a_{497}= +0.03221078 \pm 4.6 \cdot 10^{-8} \) | \(a_{498}= +0.17149442 \pm 1.0 \cdot 10^{-7} \) |
\(a_{499}= +1.68848204 \pm 4.7 \cdot 10^{-8} \) | \(a_{500}= -0.19066940 \pm 4.5 \cdot 10^{-8} \) | \(a_{501}= -1.08094353 \pm 6.2 \cdot 10^{-8} \) |
\(a_{502}= -2.04349924 \pm 5.5 \cdot 10^{-8} \) | \(a_{503}= -0.92559999 \pm 4.0 \cdot 10^{-8} \) | \(a_{504}= -0.09491983 \pm 5.1 \cdot 10^{-8} \) |
\(a_{505}= -0.11570857 \pm 4.2 \cdot 10^{-8} \) | \(a_{506}= +1.49145157 \pm 5.4 \cdot 10^{-8} \) | \(a_{507}= -0.62594605 \pm 3.5 \cdot 10^{-8} \) |
\(a_{508}= +0.61219929 \pm 2.9 \cdot 10^{-8} \) | \(a_{509}= -0.53736585 \pm 4.7 \cdot 10^{-8} \) | \(a_{510}= -0.33841130 \pm 1.5 \cdot 10^{-7} \) |
\(a_{511}= -0.31521574 \pm 3.8 \cdot 10^{-8} \) | \(a_{512}= +0.09673714 \pm 4.9 \cdot 10^{-8} \) | \(a_{513}= -0.11208871 \pm 4.2 \cdot 10^{-8} \) |
\(a_{514}= +1.09658677 \pm 3.8 \cdot 10^{-8} \) | \(a_{515}= -0.03859423 \pm 4.6 \cdot 10^{-8} \) | \(a_{516}= -0.07307026 \pm 1.0 \cdot 10^{-7} \) |
\(a_{517}= +0.67924478 \pm 3.9 \cdot 10^{-8} \) | \(a_{518}= -0.35346408 \pm 1.0 \cdot 10^{-7} \) | \(a_{519}= -0.55518764 \pm 5.2 \cdot 10^{-8} \) |
\(a_{520}= -0.30671517 \pm 3.6 \cdot 10^{-8} \) | \(a_{521}= -0.06991953 \pm 4.3 \cdot 10^{-8} \) | \(a_{522}= -0.29581792 \pm 1.0 \cdot 10^{-7} \) |
\(a_{523}= -0.70516310 \pm 4.2 \cdot 10^{-8} \) | \(a_{524}= +0.09104555 \pm 4.5 \cdot 10^{-8} \) | \(a_{525}= -0.20086495 \pm 5.1 \cdot 10^{-8} \) |
\(a_{526}= -0.59926275 \pm 6.4 \cdot 10^{-8} \) | \(a_{527}= -3.33803240 \pm 3.1 \cdot 10^{-8} \) | \(a_{528}= +0.95571756 \pm 9.0 \cdot 10^{-8} \) |
\(a_{529}= -0.09443851 \pm 4.7 \cdot 10^{-8} \) | \(a_{530}= +0.39254998 \pm 4.1 \cdot 10^{-8} \) | \(a_{531}= +0.38134114 \pm 5.3 \cdot 10^{-8} \) |
\(a_{532}= -0.07750412 \pm 9.3 \cdot 10^{-8} \) | \(a_{533}= +1.39274373 \pm 3.5 \cdot 10^{-8} \) | \(a_{534}= +0.12360954 \pm 9.4 \cdot 10^{-8} \) |
\(a_{535}= -0.34359059 \pm 4.4 \cdot 10^{-8} \) | \(a_{536}= -0.31868516 \pm 5.4 \cdot 10^{-8} \) | \(a_{537}= +0.72173046 \pm 4.8 \cdot 10^{-8} \) |
\(a_{538}= +0.56827076 \pm 3.8 \cdot 10^{-8} \) | \(a_{539}= +0.19255394 \pm 4.9 \cdot 10^{-8} \) | \(a_{540}= -0.01910687 \pm 1.0 \cdot 10^{-7} \) |
\(a_{541}= -0.70759870 \pm 5.1 \cdot 10^{-8} \) | \(a_{542}= +0.33607664 \pm 5.2 \cdot 10^{-8} \) | \(a_{543}= -0.23059772 \pm 4.8 \cdot 10^{-8} \) |
\(a_{544}= -1.20595939 \pm 4.1 \cdot 10^{-8} \) | \(a_{545}= +0.23379383 \pm 3.8 \cdot 10^{-8} \) | \(a_{546}= +0.36631667 \pm 1.0 \cdot 10^{-7} \) |
\(a_{547}= -0.23634424 \pm 5.4 \cdot 10^{-8} \) | \(a_{548}= +0.29834523 \pm 4.1 \cdot 10^{-8} \) | \(a_{549}= +0.23010079 \pm 5.5 \cdot 10^{-8} \) |
\(a_{550}= +1.44265998 \pm 4.0 \cdot 10^{-8} \) | \(a_{551}= +0.44451842 \pm 2.7 \cdot 10^{-8} \) | \(a_{552}= +0.41392875 \pm 9.7 \cdot 10^{-8} \) |
\(a_{553}= +0.20864240 \pm 6.0 \cdot 10^{-8} \) | \(a_{554}= +0.33435913 \pm 7.0 \cdot 10^{-8} \) | \(a_{555}= +0.13094091 \pm 9.5 \cdot 10^{-8} \) |
\(a_{556}= +0.31171741 \pm 3.8 \cdot 10^{-8} \) | \(a_{557}= +0.96808926 \pm 3.6 \cdot 10^{-8} \) | \(a_{558}= -0.72377680 \pm 9.8 \cdot 10^{-8} \) |
\(a_{559}= -0.51896472 \pm 4.4 \cdot 10^{-8} \) | \(a_{560}= +0.13089773 \pm 9.9 \cdot 10^{-8} \) | \(a_{561}= +1.39108668 \pm 9.2 \cdot 10^{-8} \) |
\(a_{562}= +1.84890040 \pm 3.1 \cdot 10^{-8} \) | \(a_{563}= +1.04155135 \pm 5.1 \cdot 10^{-8} \) | \(a_{564}= -0.10243427 \pm 1.0 \cdot 10^{-7} \) |
\(a_{565}= +0.30613044 \pm 5.7 \cdot 10^{-8} \) | \(a_{566}= -1.17990042 \pm 5.1 \cdot 10^{-8} \) | \(a_{567}= -0.04199605 \pm 1.0 \cdot 10^{-6} \) |
\(a_{568}= -0.06420629 \pm 3.8 \cdot 10^{-8} \) | \(a_{569}= -0.02139797 \pm 4.7 \cdot 10^{-8} \) | \(a_{570}= +0.11026159 \pm 1.4 \cdot 10^{-7} \) |
\(a_{571}= -0.59161722 \pm 3.9 \cdot 10^{-8} \) | \(a_{572}= -0.68508922 \pm 3.3 \cdot 10^{-8} \) | \(a_{573}= +0.21152236 \pm 4.7 \cdot 10^{-8} \) |
\(a_{574}= -0.42398970 \pm 1.0 \cdot 10^{-7} \) | \(a_{575}= +0.87593680 \pm 4.0 \cdot 10^{-8} \) | \(a_{576}= +0.14788731 \pm 6.0 \cdot 10^{-8} \) |
\(a_{577}= +1.08450196 \pm 4.7 \cdot 10^{-8} \) | \(a_{578}= -2.55280979 \pm 3.5 \cdot 10^{-8} \) | \(a_{579}= -0.58693558 \pm 5.7 \cdot 10^{-8} \) |
\(a_{580}= +0.07577352 \pm 5.4 \cdot 10^{-8} \) | \(a_{581}= -0.09655213 \pm 4.7 \cdot 10^{-8} \) | \(a_{582}= +1.30243340 \pm 9.1 \cdot 10^{-8} \) |
\(a_{583}= -1.61363122 \pm 2.4 \cdot 10^{-8} \) | \(a_{584}= +0.62832474 \pm 2.5 \cdot 10^{-8} \) | \(a_{585}= -0.13570216 \pm 9.5 \cdot 10^{-8} \) |
\(a_{586}= +0.80370364 \pm 5.4 \cdot 10^{-8} \) | \(a_{587}= +0.63506383 \pm 3.1 \cdot 10^{-8} \) | \(a_{588}= -0.02903831 \pm 6.1 \cdot 10^{-8} \) |
\(a_{589}= +1.08760186 \pm 2.2 \cdot 10^{-8} \) | \(a_{590}= -0.37512503 \pm 3.9 \cdot 10^{-8} \) | \(a_{591}= -0.84413794 \pm 5.5 \cdot 10^{-8} \) |
\(a_{592}= +0.98772107 \pm 3.2 \cdot 10^{-8} \) | \(a_{593}= -0.79116631 \pm 4.9 \cdot 10^{-8} \) | \(a_{594}= +0.30162567 \pm 1.0 \cdot 10^{-7} \) |
\(a_{595}= +0.19052709 \pm 1.0 \cdot 10^{-7} \) | \(a_{596}= +0.05089043 \pm 6.0 \cdot 10^{-8} \) | \(a_{597}= -0.49728300 \pm 4.9 \cdot 10^{-8} \) |
\(a_{598}= -1.59744275 \pm 4.7 \cdot 10^{-8} \) | \(a_{599}= -1.71213146 \pm 3.3 \cdot 10^{-8} \) | \(a_{600}= +0.40038742 \pm 9.1 \cdot 10^{-8} \) |
\(a_{601}= -0.72613667 \pm 3.3 \cdot 10^{-8} \) | \(a_{602}= +0.15798721 \pm 1.0 \cdot 10^{-7} \) | \(a_{603}= -0.14099813 \pm 5.9 \cdot 10^{-8} \) |
\(a_{604}= -0.14757960 \pm 3.7 \cdot 10^{-8} \) | \(a_{605}= +0.23032620 \pm 4.1 \cdot 10^{-8} \) | \(a_{606}= -0.27546295 \pm 9.9 \cdot 10^{-8} \) |
\(a_{607}= +0.62745096 \pm 4.0 \cdot 10^{-8} \) | \(a_{608}= +0.39292719 \pm 3.8 \cdot 10^{-8} \) | \(a_{609}= +0.16654682 \pm 5.0 \cdot 10^{-8} \) |
\(a_{610}= -0.22635000 \pm 5.9 \cdot 10^{-8} \) | \(a_{611}= -0.72751584 \pm 3.1 \cdot 10^{-8} \) | \(a_{612}= -0.20978439 \pm 1.0 \cdot 10^{-7} \) |
\(a_{613}= +0.27463483 \pm 4.3 \cdot 10^{-8} \) | \(a_{614}= -0.89751456 \pm 5.7 \cdot 10^{-8} \) | \(a_{615}= +0.15706716 \pm 9.8 \cdot 10^{-8} \) |
\(a_{616}= -0.38382096 \pm 9.0 \cdot 10^{-8} \) | \(a_{617}= -1.54656914 \pm 4.1 \cdot 10^{-8} \) | \(a_{618}= -0.09187982 \pm 1.1 \cdot 10^{-7} \) |
\(a_{619}= -0.77549287 \pm 3.0 \cdot 10^{-8} \) | \(a_{620}= +0.18539485 \pm 3.5 \cdot 10^{-8} \) | \(a_{621}= +0.18313742 \pm 5.7 \cdot 10^{-8} \) |
\(a_{622}= -1.32307808 \pm 4.6 \cdot 10^{-8} \) | \(a_{623}= -0.06959273 \pm 4.1 \cdot 10^{-8} \) | \(a_{624}= -1.02363638 \pm 8.8 \cdot 10^{-8} \) |
\(a_{625}= +0.76776008 \pm 3.0 \cdot 10^{-8} \) | \(a_{626}= +1.49242842 \pm 5.8 \cdot 10^{-8} \) | \(a_{627}= -0.45324559 \pm 8.1 \cdot 10^{-8} \) |
\(a_{628}= +0.30039864 \pm 5.9 \cdot 10^{-8} \) | \(a_{629}= +1.43766912 \pm 3.9 \cdot 10^{-8} \) | \(a_{630}= +0.04131149 \pm 1.1 \cdot 10^{-7} \) |
\(a_{631}= +0.44763875 \pm 3.4 \cdot 10^{-8} \) | \(a_{632}= -0.41589034 \pm 4.6 \cdot 10^{-8} \) | \(a_{633}= +0.18367006 \pm 5.4 \cdot 10^{-8} \) |
\(a_{634}= +1.13700392 \pm 4.2 \cdot 10^{-8} \) | \(a_{635}= +0.49034773 \pm 3.2 \cdot 10^{-8} \) | \(a_{636}= +0.24334547 \pm 8.6 \cdot 10^{-8} \) |
\(a_{637}= -0.20623794 \pm 4.7 \cdot 10^{-8} \) | \(a_{638}= -1.19617904 \pm 5.2 \cdot 10^{-8} \) | \(a_{639}= -0.02840724 \pm 4.6 \cdot 10^{-8} \) |
\(a_{640}= -0.33572011 \pm 5.2 \cdot 10^{-8} \) | \(a_{641}= +0.33895491 \pm 3.1 \cdot 10^{-8} \) | \(a_{642}= -0.81797297 \pm 9.9 \cdot 10^{-8} \) |
\(a_{643}= +0.34866933 \pm 3.5 \cdot 10^{-8} \) | \(a_{644}= +0.12663099 \pm 1.0 \cdot 10^{-7} \) | \(a_{645}= -0.05852643 \pm 9.9 \cdot 10^{-8} \) |
\(a_{646}= +1.21061998 \pm 4.4 \cdot 10^{-8} \) | \(a_{647}= -0.92104412 \pm 3.8 \cdot 10^{-8} \) | \(a_{648}= +0.08371143 \pm 5.1 \cdot 10^{-8} \) |
\(a_{649}= +1.54200354 \pm 4.2 \cdot 10^{-8} \) | \(a_{650}= -1.54518375 \pm 3.8 \cdot 10^{-8} \) | \(a_{651}= +0.40748961 \pm 4.5 \cdot 10^{-8} \) |
\(a_{652}= -0.23033922 \pm 5.6 \cdot 10^{-8} \) | \(a_{653}= +1.94575961 \pm 2.9 \cdot 10^{-8} \) | \(a_{654}= +0.55658403 \pm 9.8 \cdot 10^{-8} \) |
\(a_{655}= +0.07292393 \pm 5.5 \cdot 10^{-8} \) | \(a_{656}= +1.18479806 \pm 3.9 \cdot 10^{-8} \) | \(a_{657}= +0.27799415 \pm 3.8 \cdot 10^{-8} \) |
\(a_{658}= +0.22147594 \pm 1.0 \cdot 10^{-7} \) | \(a_{659}= +0.30338284 \pm 4.0 \cdot 10^{-8} \) | \(a_{660}= -0.07726117 \pm 1.4 \cdot 10^{-7} \) |
\(a_{661}= -0.92757091 \pm 5.0 \cdot 10^{-8} \) | \(a_{662}= +1.41110961 \pm 6.0 \cdot 10^{-8} \) | \(a_{663}= -1.48994535 \pm 9.0 \cdot 10^{-8} \) |
\(a_{664}= +0.19245896 \pm 5.3 \cdot 10^{-8} \) | \(a_{665}= -0.06207777 \pm 9.0 \cdot 10^{-8} \) | \(a_{666}= +0.31172602 \pm 1.0 \cdot 10^{-7} \) |
\(a_{667}= -0.72628149 \pm 4.2 \cdot 10^{-8} \) | \(a_{668}= +0.65916433 \pm 7.3 \cdot 10^{-8} \) | \(a_{669}= -0.32928676 \pm 4.6 \cdot 10^{-8} \) |
\(a_{670}= +0.13869977 \pm 6.5 \cdot 10^{-8} \) | \(a_{671}= +0.93044311 \pm 3.7 \cdot 10^{-8} \) | \(a_{672}= +0.14721724 \pm 5.7 \cdot 10^{-8} \) |
\(a_{673}= -1.30603749 \pm 4.2 \cdot 10^{-8} \) | \(a_{674}= +0.74801731 \pm 4.4 \cdot 10^{-8} \) | \(a_{675}= +0.17714623 \pm 5.1 \cdot 10^{-8} \) |
\(a_{676}= +0.38170478 \pm 3.1 \cdot 10^{-8} \) | \(a_{677}= +0.80355973 \pm 2.8 \cdot 10^{-8} \) | \(a_{678}= +0.72879302 \pm 1.1 \cdot 10^{-7} \) |
\(a_{679}= -0.73327589 \pm 3.8 \cdot 10^{-8} \) | \(a_{680}= -0.37978081 \pm 4.1 \cdot 10^{-8} \) | \(a_{681}= +0.51224130 \pm 4.8 \cdot 10^{-8} \) |
\(a_{682}= -2.92668764 \pm 2.2 \cdot 10^{-8} \) | \(a_{683}= -1.32482548 \pm 3.2 \cdot 10^{-8} \) | \(a_{684}= +0.06835221 \pm 9.3 \cdot 10^{-8} \) |
\(a_{685}= +0.23896288 \pm 5.1 \cdot 10^{-8} \) | \(a_{686}= +0.06278453 \pm 6.3 \cdot 10^{-8} \) | \(a_{687}= +0.49738607 \pm 5.6 \cdot 10^{-8} \) |
\(a_{688}= -0.44147992 \pm 3.5 \cdot 10^{-8} \) | \(a_{689}= +1.72830519 \pm 2.0 \cdot 10^{-8} \) | \(a_{690}= -0.18015216 \pm 1.5 \cdot 10^{-7} \) |
\(a_{691}= +0.86961440 \pm 3.5 \cdot 10^{-8} \) | \(a_{692}= +0.33855597 \pm 5.3 \cdot 10^{-8} \) | \(a_{693}= -0.16981662 \pm 4.9 \cdot 10^{-8} \) |
\(a_{694}= -1.04848358 \pm 4.8 \cdot 10^{-8} \) | \(a_{695}= +0.24967347 \pm 3.7 \cdot 10^{-8} \) | \(a_{696}= -0.33198054 \pm 9.1 \cdot 10^{-8} \) |
\(a_{697}= +1.72452289 \pm 4.3 \cdot 10^{-8} \) | \(a_{698}= -0.96979433 \pm 4.7 \cdot 10^{-8} \) | \(a_{699}= -0.68044803 \pm 4.5 \cdot 10^{-8} \) |
\(a_{700}= +0.12248837 \pm 1.0 \cdot 10^{-7} \) | \(a_{701}= -0.50248271 \pm 5.8 \cdot 10^{-8} \) | \(a_{702}= -0.32306094 \pm 1.0 \cdot 10^{-7} \) |
\(a_{703}= -0.46842314 \pm 2.9 \cdot 10^{-8} \) | \(a_{704}= +0.59800200 \pm 3.8 \cdot 10^{-8} \) | \(a_{705}= -0.08204585 \pm 9.9 \cdot 10^{-8} \) |
\(a_{706}= -0.94564821 \pm 5.0 \cdot 10^{-8} \) | \(a_{707}= +0.15508689 \pm 4.6 \cdot 10^{-8} \) | \(a_{708}= -0.23254358 \pm 1.0 \cdot 10^{-7} \) |
\(a_{709}= +0.13214837 \pm 4.7 \cdot 10^{-8} \) | \(a_{710}= +0.02794419 \pm 4.8 \cdot 10^{-8} \) | \(a_{711}= -0.18400530 \pm 6.0 \cdot 10^{-8} \) |
\(a_{712}= +0.13872034 \pm 2.6 \cdot 10^{-8} \) | \(a_{713}= -1.77699072 \pm 2.4 \cdot 10^{-8} \) | \(a_{714}= +0.45358056 \pm 1.0 \cdot 10^{-7} \) |
\(a_{715}= -0.54872971 \pm 3.8 \cdot 10^{-8} \) | \(a_{716}= -0.44011455 \pm 4.5 \cdot 10^{-8} \) | \(a_{717}= -0.00323268 \pm 5.2 \cdot 10^{-8} \) |
\(a_{718}= +0.68149998 \pm 4.6 \cdot 10^{-8} \) | \(a_{719}= -0.48034943 \pm 4.4 \cdot 10^{-8} \) | \(a_{720}= -0.11544095 \pm 9.9 \cdot 10^{-8} \) |
\(a_{721}= +0.05172875 \pm 5.9 \cdot 10^{-8} \) | \(a_{722}= +0.76834011 \pm 3.4 \cdot 10^{-8} \) | \(a_{723}= +0.43229127 \pm 4.4 \cdot 10^{-8} \) |
\(a_{724}= +0.14061955 \pm 3.5 \cdot 10^{-8} \) | \(a_{725}= -0.70252180 \pm 4.2 \cdot 10^{-8} \) | \(a_{726}= +0.54832877 \pm 9.8 \cdot 10^{-8} \) |
\(a_{727}= +0.30787555 \pm 4.5 \cdot 10^{-8} \) | \(a_{728}= +0.41109750 \pm 8.8 \cdot 10^{-8} \) | \(a_{729}= +0.03703704 \pm 1.3 \cdot 10^{-6} \) |
\(a_{730}= -0.27346267 \pm 3.4 \cdot 10^{-8} \) | \(a_{731}= -0.64259240 \pm 4.4 \cdot 10^{-8} \) | \(a_{732}= -0.14031652 \pm 1.0 \cdot 10^{-7} \) |
\(a_{733}= +0.81348303 \pm 4.3 \cdot 10^{-8} \) | \(a_{734}= +1.28386594 \pm 4.3 \cdot 10^{-8} \) | \(a_{735}= -0.02325856 \pm 5.8 \cdot 10^{-8} \) |
\(a_{736}= -0.64198857 \pm 5.4 \cdot 10^{-8} \) | \(a_{737}= -0.57014465 \pm 3.9 \cdot 10^{-8} \) | \(a_{738}= +0.37392377 \pm 1.0 \cdot 10^{-7} \) |
\(a_{739}= +0.19957332 \pm 3.6 \cdot 10^{-8} \) | \(a_{740}= -0.07984837 \pm 3.7 \cdot 10^{-8} \) | \(a_{741}= +0.48545584 \pm 7.9 \cdot 10^{-8} \) |
\(a_{742}= -0.52614389 \pm 8.8 \cdot 10^{-8} \) | \(a_{743}= +0.03124208 \pm 3.9 \cdot 10^{-8} \) | \(a_{744}= -0.81225578 \pm 8.6 \cdot 10^{-8} \) |
\(a_{745}= +0.04076124 \pm 4.5 \cdot 10^{-8} \) | \(a_{746}= -1.29929163 \pm 5.4 \cdot 10^{-8} \) | \(a_{747}= +0.08515098 \pm 4.7 \cdot 10^{-8} \) |
\(a_{748}= -0.84829104 \pm 4.7 \cdot 10^{-8} \) | \(a_{749}= +0.46052248 \pm 4.7 \cdot 10^{-8} \) | \(a_{750}= -0.36357166 \pm 1.0 \cdot 10^{-7} \) |
\(a_{751}= +1.56573318 \pm 5.0 \cdot 10^{-8} \) | \(a_{752}= -0.61889301 \pm 4.7 \cdot 10^{-8} \) | \(a_{753}= -1.01464502 \pm 5.4 \cdot 10^{-8} \) |
\(a_{754}= +1.28118645 \pm 3.8 \cdot 10^{-8} \) | \(a_{755}= -0.11820550 \pm 4.5 \cdot 10^{-8} \) | \(a_{756}= +0.02560939 \pm 6.1 \cdot 10^{-8} \) |
\(a_{757}= +1.57548763 \pm 4.8 \cdot 10^{-8} \) | \(a_{758}= -0.74109932 \pm 4.9 \cdot 10^{-8} \) | \(a_{759}= +0.74054048 \pm 9.6 \cdot 10^{-8} \) |
\(a_{760}= +0.12374065 \pm 4.1 \cdot 10^{-8} \) | \(a_{761}= -0.03777121 \pm 3.1 \cdot 10^{-8} \) | \(a_{762}= +1.16735207 \pm 9.3 \cdot 10^{-8} \) |
\(a_{763}= -0.31335932 \pm 4.5 \cdot 10^{-8} \) | \(a_{764}= -0.12898731 \pm 5.7 \cdot 10^{-8} \) | \(a_{765}= -0.16802910 \pm 1.0 \cdot 10^{-7} \) |
\(a_{766}= +1.04626085 \pm 6.3 \cdot 10^{-8} \) | \(a_{767}= -1.65158724 \pm 4.2 \cdot 10^{-8} \) | \(a_{768}= -0.54308768 \pm 6.1 \cdot 10^{-8} \) |
\(a_{769}= -0.33129306 \pm 3.3 \cdot 10^{-8} \) | \(a_{770}= +0.16704850 \pm 1.5 \cdot 10^{-7} \) | \(a_{771}= +0.54448090 \pm 4.2 \cdot 10^{-8} \) |
\(a_{772}= +0.35791601 \pm 6.1 \cdot 10^{-8} \) | \(a_{773}= -0.68624729 \pm 4.0 \cdot 10^{-8} \) | \(a_{774}= -0.13933162 \pm 1.0 \cdot 10^{-7} \) |
\(a_{775}= -1.71885796 \pm 3.3 \cdot 10^{-8} \) | \(a_{776}= +1.46165095 \pm 3.3 \cdot 10^{-8} \) | \(a_{777}= -0.17550316 \pm 4.7 \cdot 10^{-8} \) |
\(a_{778}= +0.51257575 \pm 4.6 \cdot 10^{-8} \) | \(a_{779}= -0.56188619 \pm 2.0 \cdot 10^{-8} \) | \(a_{780}= +0.08275180 \pm 1.4 \cdot 10^{-7} \) |
\(a_{781}= -0.11486845 \pm 3.5 \cdot 10^{-8} \) | \(a_{782}= -1.97798528 \pm 6.7 \cdot 10^{-8} \) | \(a_{783}= -0.14688049 \pm 5.0 \cdot 10^{-8} \) |
\(a_{784}= -0.17544528 \pm 5.1 \cdot 10^{-8} \) | \(a_{785}= +0.24060758 \pm 5.6 \cdot 10^{-8} \) | \(a_{786}= +0.17360721 \pm 1.0 \cdot 10^{-7} \) |
\(a_{787}= +1.35035225 \pm 3.5 \cdot 10^{-8} \) | \(a_{788}= +0.51475919 \pm 4.9 \cdot 10^{-8} \) | \(a_{789}= -0.29754793 \pm 6.0 \cdot 10^{-8} \) |
\(a_{790}= +0.18100589 \pm 5.6 \cdot 10^{-8} \) | \(a_{791}= -0.41031377 \pm 5.8 \cdot 10^{-8} \) | \(a_{792}= +0.33849827 \pm 9.0 \cdot 10^{-8} \) |
\(a_{793}= -0.99656579 \pm 3.5 \cdot 10^{-8} \) | \(a_{794}= +0.90878849 \pm 4.4 \cdot 10^{-8} \) | \(a_{795}= +0.19491022 \pm 8.3 \cdot 10^{-8} \) |
\(a_{796}= +0.30324545 \pm 5.5 \cdot 10^{-8} \) | \(a_{797}= +1.19032748 \pm 4.2 \cdot 10^{-8} \) | \(a_{798}= -0.14778618 \pm 9.5 \cdot 10^{-8} \) |
\(a_{799}= -0.90082454 \pm 2.9 \cdot 10^{-8} \) | \(a_{800}= -0.62098645 \pm 4.2 \cdot 10^{-8} \) | \(a_{801}= +0.06137502 \pm 4.1 \cdot 10^{-8} \) |
\(a_{802}= +1.46838392 \pm 6.3 \cdot 10^{-8} \) | \(a_{803}= +1.12410628 \pm 2.7 \cdot 10^{-8} \) | \(a_{804}= +0.08598130 \pm 1.1 \cdot 10^{-7} \) |
\(a_{805}= +0.10142648 \pm 1.0 \cdot 10^{-7} \) | \(a_{806}= +3.13467500 \pm 2.5 \cdot 10^{-8} \) | \(a_{807}= +0.28215968 \pm 4.8 \cdot 10^{-8} \) |
\(a_{808}= -0.30913726 \pm 2.4 \cdot 10^{-8} \) | \(a_{809}= -0.01468695 \pm 3.1 \cdot 10^{-8} \) | \(a_{810}= -0.03643331 \pm 1.1 \cdot 10^{-7} \) |
\(a_{811}= -1.43367149 \pm 4.4 \cdot 10^{-8} \) | \(a_{812}= -0.10156102 \pm 1.0 \cdot 10^{-7} \) | \(a_{813}= +0.16686989 \pm 5.2 \cdot 10^{-8} \) |
\(a_{814}= +1.26050558 \pm 3.6 \cdot 10^{-8} \) | \(a_{815}= -0.18449272 \pm 4.2 \cdot 10^{-8} \) | \(a_{816}= -1.26748685 \pm 9.3 \cdot 10^{-8} \) |
\(a_{817}= +0.20937025 \pm 2.8 \cdot 10^{-8} \) | \(a_{818}= -1.58189738 \pm 3.9 \cdot 10^{-8} \) | \(a_{819}= +0.18188477 \pm 4.7 \cdot 10^{-8} \) |
\(a_{820}= -0.09578027 \pm 3.9 \cdot 10^{-8} \) | \(a_{821}= -0.51579137 \pm 4.3 \cdot 10^{-8} \) | \(a_{822}= +0.56888978 \pm 1.0 \cdot 10^{-7} \) |
\(a_{823}= +0.80564334 \pm 4.8 \cdot 10^{-8} \) | \(a_{824}= -0.10311177 \pm 4.2 \cdot 10^{-8} \) | \(a_{825}= +0.71631432 \pm 9.0 \cdot 10^{-8} \) |
\(a_{826}= +0.50278882 \pm 1.0 \cdot 10^{-7} \) | \(a_{827}= -0.48576053 \pm 4.0 \cdot 10^{-8} \) | \(a_{828}= -0.11167804 \pm 1.0 \cdot 10^{-7} \) |
\(a_{829}= +0.06503607 \pm 4.7 \cdot 10^{-8} \) | \(a_{830}= -0.08376296 \pm 5.8 \cdot 10^{-8} \) | \(a_{831}= +0.16601711 \pm 5.8 \cdot 10^{-8} \) |
\(a_{832}= -0.64049948 \pm 3.4 \cdot 10^{-8} \) | \(a_{833}= -0.25536791 \pm 5.2 \cdot 10^{-8} \) | \(a_{834}= +0.59438808 \pm 9.3 \cdot 10^{-8} \) |
\(a_{835}= +0.52796489 \pm 5.9 \cdot 10^{-8} \) | \(a_{836}= +0.27639124 \pm 3.6 \cdot 10^{-8} \) | \(a_{837}= -0.35937206 \pm 4.5 \cdot 10^{-8} \) |
\(a_{838}= -1.03470877 \pm 3.4 \cdot 10^{-8} \) | \(a_{839}= +0.31776792 \pm 4.7 \cdot 10^{-8} \) | \(a_{840}= +0.04636166 \pm 9.9 \cdot 10^{-8} \) |
\(a_{841}= -0.41750526 \pm 3.0 \cdot 10^{-8} \) | \(a_{842}= -0.49658785 \pm 3.5 \cdot 10^{-8} \) | \(a_{843}= +0.91802216 \pm 4.9 \cdot 10^{-8} \) |
\(a_{844}= -0.11200285 \pm 6.4 \cdot 10^{-8} \) | \(a_{845}= +0.30573062 \pm 2.6 \cdot 10^{-8} \) | \(a_{846}= -0.19532342 \pm 1.0 \cdot 10^{-7} \) |
\(a_{847}= -0.30871158 \pm 4.6 \cdot 10^{-8} \) | \(a_{848}= +1.47025802 \pm 3.8 \cdot 10^{-8} \) | \(a_{849}= -0.58584807 \pm 4.8 \cdot 10^{-8} \) |
\(a_{850}= -1.91327714 \pm 3.3 \cdot 10^{-8} \) | \(a_{851}= +0.76533850 \pm 4.5 \cdot 10^{-8} \) | \(a_{852}= +0.01732287 \pm 9.7 \cdot 10^{-8} \) |
\(a_{853}= -1.72480281 \pm 4.2 \cdot 10^{-8} \) | \(a_{854}= +0.30338218 \pm 1.0 \cdot 10^{-7} \) | \(a_{855}= +0.05474745 \pm 9.0 \cdot 10^{-8} \) |
\(a_{856}= -0.91796707 \pm 3.8 \cdot 10^{-8} \) | \(a_{857}= +0.02323703 \pm 3.8 \cdot 10^{-8} \) | \(a_{858}= -1.30633982 \pm 1.3 \cdot 10^{-7} \) |
\(a_{859}= -1.30351788 \pm 5.2 \cdot 10^{-8} \) | \(a_{860}= +0.03568968 \pm 4.8 \cdot 10^{-8} \) | \(a_{861}= -0.21052077 \pm 5.0 \cdot 10^{-8} \) |
\(a_{862}= -0.68701040 \pm 7.1 \cdot 10^{-8} \) | \(a_{863}= +0.15864531 \pm 3.5 \cdot 10^{-8} \) | \(a_{864}= -0.12983340 \pm 5.7 \cdot 10^{-8} \) |
\(a_{865}= +0.27117012 \pm 4.7 \cdot 10^{-8} \) | \(a_{866}= -1.65005758 \pm 5.9 \cdot 10^{-8} \) | \(a_{867}= -1.26752959 \pm 4.3 \cdot 10^{-8} \) |
\(a_{868}= -0.24848904 \pm 9.6 \cdot 10^{-8} \) | \(a_{869}= -0.74404987 \pm 4.2 \cdot 10^{-8} \) | \(a_{870}= +0.14448625 \pm 1.5 \cdot 10^{-7} \) |
\(a_{871}= +0.61066243 \pm 4.1 \cdot 10^{-8} \) | \(a_{872}= +0.62462432 \pm 2.2 \cdot 10^{-8} \) | \(a_{873}= +0.64668855 \pm 3.8 \cdot 10^{-8} \) |
\(a_{874}= +0.64446962 \pm 5.3 \cdot 10^{-8} \) | \(a_{875}= +0.20469249 \pm 4.7 \cdot 10^{-8} \) | \(a_{876}= -0.16952211 \pm 8.9 \cdot 10^{-8} \) |
\(a_{877}= +1.24020923 \pm 4.3 \cdot 10^{-8} \) | \(a_{878}= -1.95458483 \pm 4.2 \cdot 10^{-8} \) | \(a_{879}= +0.39905760 \pm 4.7 \cdot 10^{-8} \) |
\(a_{880}= -0.46680081 \pm 4.7 \cdot 10^{-8} \) | \(a_{881}= +0.07843168 \pm 4.6 \cdot 10^{-8} \) | \(a_{882}= -0.05537075 \pm 6.3 \cdot 10^{-8} \) |
\(a_{883}= -1.40914196 \pm 3.7 \cdot 10^{-8} \) | \(a_{884}= +0.90857552 \pm 4.1 \cdot 10^{-8} \) | \(a_{885}= -0.18625832 \pm 1.0 \cdot 10^{-7} \) |
\(a_{886}= +2.06937073 \pm 4.6 \cdot 10^{-8} \) | \(a_{887}= +0.86974115 \pm 3.4 \cdot 10^{-8} \) | \(a_{888}= +0.34983335 \pm 8.8 \cdot 10^{-8} \) |
\(a_{889}= -0.65722450 \pm 4.0 \cdot 10^{-8} \) | \(a_{890}= -0.06037457 \pm 4.2 \cdot 10^{-8} \) | \(a_{891}= +0.14976418 \pm 4.9 \cdot 10^{-8} \) |
\(a_{892}= +0.20080058 \pm 4.9 \cdot 10^{-8} \) | \(a_{893}= +0.29350777 \pm 2.7 \cdot 10^{-8} \) | \(a_{894}= +0.09703873 \pm 1.0 \cdot 10^{-7} \) |
\(a_{895}= -0.35251457 \pm 4.2 \cdot 10^{-8} \) | \(a_{896}= +0.44997350 \pm 6.3 \cdot 10^{-8} \) | \(a_{897}= -0.79316758 \pm 9.4 \cdot 10^{-8} \) |
\(a_{898}= -0.54724085 \pm 5.6 \cdot 10^{-8} \) | \(a_{899}= +1.42518812 \pm 3.1 \cdot 10^{-8} \) | \(a_{900}= -0.10802459 \pm 1.0 \cdot 10^{-7} \) |
\(a_{901}= +2.14002174 \pm 2.2 \cdot 10^{-8} \) | \(a_{902}= +1.51201043 \pm 4.4 \cdot 10^{-8} \) | \(a_{903}= +0.07844433 \pm 5.1 \cdot 10^{-8} \) |
\(a_{904}= +0.81788521 \pm 4.1 \cdot 10^{-8} \) | \(a_{905}= +0.11263077 \pm 4.6 \cdot 10^{-8} \) | \(a_{906}= -0.28140730 \pm 1.0 \cdot 10^{-7} \) |
\(a_{907}= +1.73555416 \pm 3.9 \cdot 10^{-8} \) | \(a_{908}= -0.31236710 \pm 4.3 \cdot 10^{-8} \) | \(a_{909}= -0.13677378 \pm 4.6 \cdot 10^{-8} \) |
\(a_{910}= -0.17891993 \pm 1.4 \cdot 10^{-7} \) | \(a_{911}= +0.55164401 \pm 4.0 \cdot 10^{-8} \) | \(a_{912}= +0.41297414 \pm 8.3 \cdot 10^{-8} \) |
\(a_{913}= +0.34431929 \pm 3.4 \cdot 10^{-8} \) | \(a_{914}= -0.77665409 \pm 6.2 \cdot 10^{-8} \) | \(a_{915}= -0.11238805 \pm 1.0 \cdot 10^{-7} \) |
\(a_{916}= -0.30330831 \pm 5.9 \cdot 10^{-8} \) | \(a_{917}= -0.09774164 \pm 5.5 \cdot 10^{-8} \) | \(a_{918}= -0.40002046 \pm 1.0 \cdot 10^{-7} \) |
\(a_{919}= -0.26235999 \pm 4.6 \cdot 10^{-8} \) | \(a_{920}= -0.20217508 \pm 3.2 \cdot 10^{-8} \) | \(a_{921}= -0.44563691 \pm 5.2 \cdot 10^{-8} \) |
\(a_{922}= +0.76244709 \pm 6.2 \cdot 10^{-8} \) | \(a_{923}= +0.12303167 \pm 3.0 \cdot 10^{-8} \) | \(a_{924}= +0.10355495 \pm 1.0 \cdot 10^{-7} \) |
\(a_{925}= +0.74030109 \pm 3.4 \cdot 10^{-8} \) | \(a_{926}= -1.20319549 \pm 2.7 \cdot 10^{-8} \) | \(a_{927}= -0.04562047 \pm 5.9 \cdot 10^{-8} \) |
\(a_{928}= +0.51488985 \pm 5.2 \cdot 10^{-8} \) | \(a_{929}= +0.95764200 \pm 3.9 \cdot 10^{-8} \) | \(a_{930}= +0.35351406 \pm 1.4 \cdot 10^{-7} \) |
\(a_{931}= +0.08320429 \pm 4.2 \cdot 10^{-8} \) | \(a_{932}= +0.41494033 \pm 4.5 \cdot 10^{-8} \) | \(a_{933}= -0.65693912 \pm 4.6 \cdot 10^{-8} \) |
\(a_{934}= -1.31155314 \pm 4.2 \cdot 10^{-8} \) | \(a_{935}= -0.67944800 \pm 3.9 \cdot 10^{-8} \) | \(a_{936}= -0.36255392 \pm 8.8 \cdot 10^{-8} \) |
\(a_{937}= -0.71463673 \pm 4.6 \cdot 10^{-8} \) | \(a_{938}= -0.18590253 \pm 1.1 \cdot 10^{-7} \) | \(a_{939}= +0.74102551 \pm 5.2 \cdot 10^{-8} \) |
\(a_{940}= +0.05003194 \pm 5.5 \cdot 10^{-8} \) | \(a_{941}= +1.63348501 \pm 4.5 \cdot 10^{-8} \) | \(a_{942}= +0.57280527 \pm 1.1 \cdot 10^{-7} \) |
\(a_{943}= +0.91804417 \pm 3.7 \cdot 10^{-8} \) | \(a_{944}= -1.40499456 \pm 3.5 \cdot 10^{-8} \) | \(a_{945}= +0.02051212 \pm 5.8 \cdot 10^{-8} \) |
\(a_{946}= -0.56340593 \pm 3.3 \cdot 10^{-8} \) | \(a_{947}= -0.10458617 \pm 4.0 \cdot 10^{-8} \) | \(a_{948}= +0.11220728 \pm 1.1 \cdot 10^{-7} \) |
\(a_{949}= -1.20399178 \pm 2.6 \cdot 10^{-8} \) | \(a_{950}= +0.62338633 \pm 3.4 \cdot 10^{-8} \) | \(a_{951}= +0.56454896 \pm 4.4 \cdot 10^{-8} \) |
\(a_{952}= +0.50902907 \pm 9.3 \cdot 10^{-8} \) | \(a_{953}= -1.51711147 \pm 5.0 \cdot 10^{-8} \) | \(a_{954}= +0.46401530 \pm 8.8 \cdot 10^{-8} \) |
\(a_{955}= -0.10331380 \pm 3.6 \cdot 10^{-8} \) | \(a_{956}= +0.00197130 \pm 4.1 \cdot 10^{-8} \) | \(a_{957}= -0.59393079 \pm 8.9 \cdot 10^{-8} \) |
\(a_{958}= +1.01007292 \pm 4.9 \cdot 10^{-8} \) | \(a_{959}= -0.32028752 \pm 5.1 \cdot 10^{-8} \) | \(a_{960}= -0.07223255 \pm 1.0 \cdot 10^{-7} \) |
\(a_{961}= +2.48700346 \pm 4.7 \cdot 10^{-8} \) | \(a_{962}= -1.35008440 \pm 3.7 \cdot 10^{-8} \) | \(a_{963}= -0.40614265 \pm 4.7 \cdot 10^{-8} \) |
\(a_{964}= -0.26361320 \pm 2.8 \cdot 10^{-8} \) | \(a_{965}= +0.28667675 \pm 5.7 \cdot 10^{-8} \) | \(a_{966}= +0.24146214 \pm 1.0 \cdot 10^{-7} \) |
\(a_{967}= -1.48752904 \pm 4.3 \cdot 10^{-8} \) | \(a_{968}= +0.61535989 \pm 2.8 \cdot 10^{-8} \) | \(a_{969}= +0.60110105 \pm 8.4 \cdot 10^{-8} \) |
\(a_{970}= -0.63614711 \pm 2.7 \cdot 10^{-8} \) | \(a_{971}= -1.38204451 \pm 4.2 \cdot 10^{-8} \) | \(a_{972}= -0.02258536 \pm 6.1 \cdot 10^{-8} \) |
\(a_{973}= -0.33464318 \pm 4.0 \cdot 10^{-8} \) | \(a_{974}= -2.06967375 \pm 5.3 \cdot 10^{-8} \) | \(a_{975}= -0.76721976 \pm 8.8 \cdot 10^{-8} \) |
\(a_{976}= -0.84777205 \pm 3.8 \cdot 10^{-8} \) | \(a_{977}= +0.51106505 \pm 5.1 \cdot 10^{-8} \) | \(a_{978}= -0.43921476 \pm 1.0 \cdot 10^{-7} \) |
\(a_{979}= +0.24817805 \pm 2.8 \cdot 10^{-8} \) | \(a_{980}= +0.01418317 \pm 1.0 \cdot 10^{-7} \) | \(a_{981}= +0.27635695 \pm 4.5 \cdot 10^{-8} \) |
\(a_{982}= +0.52398598 \pm 4.6 \cdot 10^{-8} \) | \(a_{983}= -1.31188062 \pm 4.1 \cdot 10^{-8} \) | \(a_{984}= +0.41963454 \pm 9.0 \cdot 10^{-8} \) |
\(a_{985}= +0.41230201 \pm 6.0 \cdot 10^{-8} \) | \(a_{986}= +1.58639045 \pm 4.9 \cdot 10^{-8} \) | \(a_{987}= +0.10996797 \pm 5.1 \cdot 10^{-8} \) |
\(a_{988}= -0.29603320 \pm 3.2 \cdot 10^{-8} \) | \(a_{989}= -0.34208198 \pm 2.7 \cdot 10^{-8} \) | \(a_{990}= -0.14732293 \pm 1.5 \cdot 10^{-7} \) |
\(a_{991}= -1.02208238 \pm 3.9 \cdot 10^{-8} \) | \(a_{992}= +1.25977943 \pm 3.3 \cdot 10^{-8} \) | \(a_{993}= +0.70064883 \pm 5.6 \cdot 10^{-8} \) |
\(a_{994}= -0.03745424 \pm 9.9 \cdot 10^{-8} \) | \(a_{995}= +0.24288777 \pm 4.1 \cdot 10^{-8} \) | \(a_{996}= -0.05192546 \pm 9.7 \cdot 10^{-8} \) |
\(a_{997}= -1.12606932 \pm 2.4 \cdot 10^{-8} \) | \(a_{998}= -1.96334296 \pm 6.0 \cdot 10^{-8} \) | \(a_{999}= +0.15477924 \pm 4.7 \cdot 10^{-8} \) |
\(a_{1000}= -0.40801692 \pm 3.5 \cdot 10^{-8} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000